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We analytically investigate a new family of horizonless compact objects in vector-tensor theories of
gravity, called ultracompact vector stars. They are sourced by a vector condensate, induced by a
nonminimal coupling with gravity. They can be as compact as black holes, thanks to their internal
anisotropic stress. In the spherically symmetric case their interior resembles an isothermal sphere, with a
singularity that can be resolved by tuning the available integration constants. The star interior smoothly
matches to an exterior Schwarzschild geometry, with no need of extra energy momentum tensor at the star
surface. We analyze the behavior of geodesics within the star interior, where stable circular orbits are
allowed, as well as trajectories crossing in both ways the star surface. We analytically study stationary
deformations of the vector field and of the geometry, which break spherical symmetry, and whose features
depend on the vector-tensor theory we consider. We introduce and determine the vector magnetic
susceptibility as a probe of the star properties, and we analyze how the rate of rotation of the star is affected
by the vector charges.
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I. INTRODUCTION

The new experimental opportunities offered by gravita-
tional wave science motivate the theoretical analysis of
compact objects in theories beyond general relativity (GR).
Encouraging us to take a broader view on gravitational
interactions, their study can address, by means of concrete
examples, open issues in our understanding of gravity in
strong-field regimes. For instance: establish the validity of
no-hair [1] and cosmic censorship [2] hypothesis. Clarify
the extremal properties of self-gravitating compact objects
[3], as a function of their content. Determine the most
convenient methods for testing GR against alternative
theories of gravity [4]. See e.g., [5] for a review on these
and related subjects. Examples of exotic compact objects
relevant for our discussion are: boson stars [6–8], first
introduced as regular solutions of Einstein-Klein-Gordon
equations (see e.g., [9,10] for reviews), and then shown to
exist also in the vector-tensor case [11–13]. Gravastar,
supported by negative pressure fluids [14–17] (see e.g.,
[18] for a general discussion). The singular isothermal
sphere [19–23], a self-similar configurations supported by a
perfect fluid in its interior which contains a naked singu-
larity [24], and which has been investigated also in the
context of exceptions to the cosmic censorship hypothesis
(see e.g., [25] for a review).
In this work we present and investigate new analytic

solutions describing a family of compact objects in vector-
tensor theories of gravity, which we dub ultracompact
vector stars. They correspond to a vector condensate,
induced by a nonminimal coupling with gravity [26–30]

that break the vector Abelian symmetry. The Lagrangian
for the system has no additional parameters with respect to
an Einstein-Maxwell system. The vector field can be
interpreted as a dark photon with relevant applications
for dark energy (see e.g., [31,32]), but it can also be
motivated by recent theoretical advances in characterizing
scenarios of ultralight vector dark matter [33–38] (see e.g.,
[39] for a recent review). We refer also to [40,41] for recent
reviews on the physics of dark photons, and their phe-
nomenological consequences.
The self-gravitating objects can be as compact as black

holes, thanks to their internal anisotropic stress: we discuss
their properties in Sec. II. In fact, a free parameter controls
their compactness, spanning from Minkowski space to the
black hole solutions first studied in [42] (see [43–51] for
further developments). In the spherically symmetric case,
their external geometry corresponds to the Schwarzschild
solution as in GR, even if they are characterized by an
electric-type charge. The solution has no horizon, since its
Schwarzschild radius is located inside the star. The interior
part of the solution resembles a singular isothermal sphere,
and the singularity at the star center can be resolved by
tuning some of the available integration constants. The
interior configuration is smoothly matched to the exterior
geometry of the star, with no need of extra energy
momentum tensor localized at the star surface.
By studying the behavior of geodesics and of vector and

metric perturbations, we investigate how to distinguish
vector star solutions from self-gravitating configurations in
GR. In fact, the simplicity of our solutions allow us to
analytically study in detail their properties. The study of

PHYSICAL REVIEW D 106, 044022 (2022)

2470-0010=2022=106(4)=044022(15) 044022-1 © 2022 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.044022&domain=pdf&date_stamp=2022-08-09
https://doi.org/10.1103/PhysRevD.106.044022
https://doi.org/10.1103/PhysRevD.106.044022
https://doi.org/10.1103/PhysRevD.106.044022
https://doi.org/10.1103/PhysRevD.106.044022


geodesics in Sec. III reveals new features with respect to
Schwarzschild black holes in GR, thanks to the possibility
to cross the star surface in both directions. We find new
stable circular orbits for timelike geodesics whose location
depend on the star compactness. We also study geodesic
trajectories that enter, bounce, and leave from the star
interior, with the time spent to complete the process
depending on the star properties. For null-like geodesics,
we relate as [52] the presence of unstable circular orbits
(light-rings) with parameters controlling the compactness
of the object (see also [18] for a comprehensive review on
how to distinguish exotic compact objects from black hole
configurations).
In Sec. IV we analyse stationary, parity-odd fluctuations

of the system. The inclusion of magnetic vector perturba-
tions allows us to switch on a magnetic-type charge, which
backreacts on the geometry at the linearized level, and
breaks the spherical symmetry forcing the star to slowly
rotate. The perturbed geometry depends on the features of
the vector profile, making the exterior configuration dis-
tinguishable from their GR counterparts. The rotation rate
depends both on the values of magnetic and electric charge,
and the interior region of the object is dragged by the
external rotation. We study the response of the vector field
profile to an external magnetic field, and the distinctive
features of the induced magnetic susceptibility.
We conclude in Sec. V, discussing possible future

directions for studying the properties of vector star
configurations.

II. SPHERICALLY SYMMETRIC VECTOR STARS

A. The setup and the field equations

We consider a vector-tensor theory described by the
following Lagrangian density (we set MPl ¼ c ¼ ℏ ¼ 1)

L ¼ R
2
−
1

4
F2
μν þ

β

4
VμVνGμν; ð2:1Þ

with Vμ the vector field and Fμν ¼ ∂μVν − ∂νVμ the
associated field strength. The last term, proportional
to the dimensionless parameter β, controls a ghost-free
[26–28] nonminimal coupling of vector fields with the
Einstein tensor Gμν. This coupling with gravity breaks the
Abelian gauge symmetry Vμ → Vμ − ∂μχ, with χ an arbi-
trary scalar field. Notice that we do not include a mass term
for the vector: the gauge symmetry breaking is only due to
coupling with gravity. It would be interesting to find
symmetry arguments protecting the structure of the theory
governed by Lagrangian (2.1), for example along the lines
of [53]. While Lagrangians as (2.1) have been studied at
length in the context of dark energy, it would be interesting
to explore possible applications for dark matter, as for the
ultralight vector dark matter scenarios of [33–37].

The covariant equations of motion for the metric and
vector field associated with Lagrangian (2.1) result

Gμν ¼FμρFν
ρ−

1

4
gμνF2−

β

2

�
1

2
gμνðDαVαÞ2−2VðμDνÞDαVα

þ gμνVαDαDβVβþ
1

2
gμνDαVβDβVα−2DαVðμDνÞVα

þDαðVðνDμÞVαþVðμDαVνÞ−VαDðμVνÞÞ

−
1

2
ðV2GμνþVμVνR−DμDνV2þ gμν□V2Þ

�
; ð2:2Þ

DμFμν ¼ −
β

2
GμνVμ: ð2:3Þ

From now on, we make the choice

β ¼ 1; ð2:4Þ

since as we will see it is the simplest option for finding
novel configurations with interesting properties. This
choice implies that we do not have additional free para-
meters with respect to the standard Einstein-Maxwell
system. In this section we focus on spherically symmetric
solutions associated with the metric element

ds2 ¼ gμνdxμdxν

¼ −AðrÞdt2 þ dr2

BðrÞ þ r2dθ2 þ r2 sin2 θdϕ2; ð2:5Þ

and an electric-type vector field Ansatz

Vμdxμ ¼ α0ðrÞdtþ ΠðrÞdr; ð2:6Þ

associated with a dark electric charge for the object. In
Sec. IV we extend our discussion to configurations with
magnetic-type charges, and solutions breaking spherical
symmetry. Notice that the metric can be influenced by the
vector radial vector profile ΠðrÞ, since the theory we
consider breaks the Abelian gauge symmetry and the radial
vector component is not removable by a gauge trans-
formation. The field equations associated with our Ansätze
of Eqs. (2.5) and (2.6) are (all quantities depend on the
radial direction r only)

0 ¼ Π
�
A0 −

A
rB

ð1 − BÞ
�
; ð2:7Þ

0 ¼ α020 þ ∂rα
2
0

4A
þ α20ðB − 1Þ

8r2AB
þ
�
4þ 3BΠ2

8rA
−

α20
8rA2

�
A0

þ Bð4þ ð3B − 1ÞΠ2Þ − 4

8r2B
; ð2:8Þ

GIANMASSIMO TASINATO PHYS. REV. D 106, 044022 (2022)

044022-2



0¼ ∂r

�
r2B1=2α00
A1=2 −

rα0
A1=2B1=2

�
þB−1=2

∂r

�
rα0
A1=2

�
þ α0ðB−1Þ
2A1=2B1=2 ;

ð2:9Þ

and

0¼∂r

�
B3=2Π2þB1=2

�
1−

α20
4A

��
þB1=2

∂r

�
α20
4A

�
þrB1=2α020

A

þB1=2ðB−1ÞΠ2

2r
þα20ðB−1Þ

2rB1=2A
þ2B−2

rB1=2 : ð2:10Þ

The condition (2.7) identifies two branches of solutions. If
we were considering β a free parameter, the branch with
ΠðrÞ ¼ 0 would be continuously connected with the
Reissner-Nordström configuration, when sending β to zero
[42]. We concentrate here on the second branch with
ΠðrÞ ≠ 0, that exists because of the nonminimal coupling
with gravity in the Lagrangian (2.1). Equations (2.7) and
(2.8) are algebraic equations and dictate the conditions

BðrÞ ¼ AðrÞ
AðrÞ þ rA0ðrÞ ; ð2:11Þ

Π2ðrÞ ¼ rα20ðrÞ
AðrÞ

�
A0ðrÞ
AðrÞ − 2

α00ðrÞ
α0ðrÞ

− r
α020 ðrÞ
α20ðrÞ

�
: ð2:12Þ

The Ricci scalar associated with the metric (2.5), and with
the condition (2.11), is

Ricci scalar¼ ð2AðrÞ− rA0ðrÞÞð2A0ðrÞþ rA00ðrÞÞ
2rðAðrÞþ rA0ðrÞÞ ; ð2:13Þ

and usually diverges at the origin r ¼ 0, unless AðrÞ
acquires a specific profile (more on this later). Once we
implement the conditions (2.11) and (2.12), it is straight-
forward to check that a solution of Eqs. (2.7)–(2.10) is1

α0ðrÞ ¼
2QR
r

þ 2σ þ 2ð1 − σÞ
1þ γ

�
r
R

�
γ

; ð2:14Þ

AðrÞ ¼ σ2 −
2M
r

þ 2σð1 − σÞ
ð1þ γÞ

�
r
R

�
γ

þ ð1 − σÞ2
ð1þ 2γÞ

�
r
R

�
2γ

;

ð2:15Þ

BðrÞ ¼ AðrÞ
ðσ þ ð1 − σÞðr=RÞγÞ2 ; ð2:16Þ

where Q, γ and σ are dimensionless constant parameters,
whileM, R dimensionful parameters. Notice that the metric
and vector components, besides the familiar decaying

contributions scaling as 1=r, contain also additional power-
like contributions controlled by an arbitrary exponent γ,
and scaling as powers of ðr=RÞγ . These contributions to the
solution, which will play an essential role in our discussion,
exist only for the choice (2.4) of β ¼ 1 in action (2.1) (see
[44]), making this value of β special: it would be interesting
to find symmetry reasons to single out this value among
others. The solution for ΠðrÞ is cumbersome and we do
not write it explicitly: it is directly obtained plugging
Eqs. (2.14) and (2.15) in Eq. (2.12). Choosing γ ¼ 0, σ ¼ 1
one finds the black hole solutions of [42]: the geometry
corresponds to a stealth Schwarzschild space-time, with a
nonvanishing profile for α0ðrÞ and ΠðrÞ and a horizon at
r ¼ 2M. Turning on γ and σ − 1 allows us to determine
new families of horizonless configurations: these param-
eters have a transparent physical interpretation, that we are
going to discuss in what comes next.

B. The simplest ultracompact vector star configuration

We proceed asking: Can we use the solutions (2.14)–
(2.16) as building blocks to construct horizonless objects,
with compactness C in the interval 0 ≤ C < 1=2, and with
an asymptotically flat exterior geometry?
We are going to answer affirmatively to the question, by

discussing a simple analytical configuration with the
desired properties. The horizonless object can be as
compact as a Schwarzschild black hole, violating the
Buchdahl bound [54] thanks to the anisotropic stress
characterizing its interior. For this reason we call the
solution ultracompact vector star. (See e.g., [55] and
references therein for a recent analysis of consequences
of compact objects with pronounced anisotropic stress
tensor.) The star interior geometry is sourced by a vector
condensate, induced by the nonminimal couplings with
gravity in Lagrangian (2.1). As we will learn, the simplicity
of the configuration will allow us to analytically investigate
many of its properties.

1. The geometry of the vector star

We assume that the geometry is separated in two regions,
smoothly matching at a radial position R, which we
interpret as the radius of the compact object. In fact, we
aim at finding a configuration with a continuous transition
from an interior to an exterior region at r ¼ R, with no need
of additional localized energy-momentum tensor at the star
surface r ¼ R.
For characterizing the interior region r ≤ R we take the

configuration (2.14), (2.15), and set M ¼ σ ¼ 0 focusing
on γ ≥ 0. The line element ds2 ¼ gμνdxμdxν, with
gμν ¼ diagð−AðrÞ; 1=BðrÞ; r2; r2 sin2 θÞ, results

ds2ðintÞ ¼ −
1

ð1þ 2γÞ
�
r
R

�
2γ

dt2 þ ð1þ 2γÞdr2 þ r2dθ2

þ r2 sin2 θdϕ2: ð2:17Þ
1A version of these solutions was presented in [44]. See also

the discussion in [45].
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The coefficients of the vector field configuration,
Vμdxμ ¼ αðintÞðrÞdtþ ΠðintÞðrÞdr, are

αðintÞðrÞ ¼
2QIR
r

þ 2

1þ γ

�
r
R

�
γ

; ð2:18Þ

Π2
ðintÞðrÞ ¼ 4ð1þ 2γÞ2

��
QIR1þγ

r1þγ þ 1

1þ γ

�
2

−
1

1þ 2γ

�
;

ð2:19Þ
where QI the vector charge in the interior geometry. The
solution (2.17)–(2.19) is valid for any radius r ≤ R: for
ensuring that the profile for ΠðintÞðrÞ is real in this interval,
we impose the following inequality on the charge QI:

QI ≥
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2γ

p −
1

1þ γ

�
: ð2:20Þ

The function in the right hand side of Eq. (2.20) is positive
and has a maximum for γ ≃ 5.22, with value 0.13: a QI >
0.14 then ensures that (2.20) is satisfied for any value of γ.
The geometry described by Eq. (2.17) is quite simple, and
corresponds to a self-similar space-time controlled by the
constant parameter γ. In fact, the parameters have been
chosen in such a way to relate our geometry to the one of
the singular isothermal sphere [19–22]. Under a scale
transformation r → λr, t → λ1−γt, the metric scales as
ds2 → λ2ds2. Examples of self-similar geometries have
been found in the literature [23,24], sourced by a perfect
fluid equation of state.
In our case the interior geometry is sourced by vector field

condensate, induced by the nonminimal couplings of the
vector with gravity: the corresponding energy-momentum
tensor associated with the vector field2 can be computed
straightforwardly using our Ansatz for the interior star
configuration. It is anisotropic and can be expressed as

Tν
μ ¼ diagð−ρ; pr; pt; ptÞ; ð2:21Þ

with

ρ ¼ AðrÞð2A0ðrÞ þ rA00ðrÞÞ
rðAðrÞ þ rA0ðrÞÞ2 ¼ 2γ

ð1þ 2γÞr2 ; ð2:22Þ

pr ¼ 0; ð2:23Þ

pt ¼
rA0ðrÞ
4AðrÞ ρ ¼ γ2

ð1þ 2γÞr2 ¼
γ

2
ρ: ð2:24Þ

While the first of the equalities in the previous equations
applies to any solution of the system (2.7)–(2.10) (selecting

the branch with nonvanishing profile ΠðrÞ), the remaining
ones are specialized to the internal configuration (2.17).
Notice that the tangential pressure is larger than the radial
one, pt ≥ pr, hence we have the opportunity to overcome
Buchdahl theorem [18,54].
The interior geometry (2.17) is singular, since it has a

singularity at the origin r ¼ 0 as it can be readily checked
computing the Ricci scalar. (Self-similar configurations are
being discussed as possible candidates for the exceptions
to the cosmic censorship hypothesis, see e.g., [25] for a
review.) In our system, the singularity can be resolved
turning on the parameter σ in Eqs. (2.14) and (2.15): we
will study this option in Sec. II C. We find this feature
interesting, since the singularity can be resolved without
changing the initial action.
For characterizing the exterior region r ≥ R we instead

set γ ¼ 0, σ ¼ 1 in Eqs. (2.14) and (2.15). The resulting
line element corresponds to a Schwarzschild geometry

ds2ðextÞ ¼−
�
1−

2M
r

�
dt2þ dr2

ð1− 2M
r Þ

þr2dθ2þr2 sin2θdϕ2:

ð2:25Þ
The vector field profile Vμdxμ ¼ αðextÞðrÞdtþ ΠðextÞðrÞdr is

αðextÞ ¼ 2þ 2QER
r

; ð2:26Þ

Π2
ðextÞ ¼

4Q2
ER

2 þ 8Mrþ 8QERr
ðr − 2MÞ2 : ð2:27Þ

The quantity QE corresponds to an electric-type charge for
the star configuration, as measured by an external observer.
In order to smoothly match the interior and exterior
geometries at radius R, we select the exterior mass M
and the exterior charge QE as

QE ¼ QI −
γ

1þ γ
; ð2:28Þ

M ¼ γ

1þ 2γ
R; ð2:29Þ

where QI is the vector charge in the interior, as appearing in
Eq. (2.18). Interestingly, these conditions automatically
ensure that the profiles for A, B, α0, Π are continuous at
r ¼ R, as well as3 the first derivatives of A, α0, with no need

2Notice that we could also include further sources of internal
stress tensor, for example an additional perfect fluid: the solutions
can be extended to include this case as well.

3Notice that it is not necessary to impose that the first
derivatives of B and Π are continuous at the surface r ¼ R,
since these components on the radial direction along which we
match the geometries. This can be checked by computing the
Israel junction conditions. Alternatively, we can integrate equa-
tions (2.7)–(2.10) along the radial direction, over a small interval
R − ϵ, Rþ ϵ for an infinitesimal ϵ. One can check that the
consistency of the equations requires the continuity of all
functions at r ¼ R, but only of the first derivatives of A, α0 at
that position.
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of extra energy momentum tensor at the matching surface
position. This differs from gravastar configurations, which
make use of a crust of energy momentum tensor for
connecting the exterior with the interior geometry [14].
Using this property, in what follows we define the star
surface as the position r ¼ R where the star interior and
exterior geometries smoothly match.
We turn off possible additional contributions associated

with parameters σ − 1, γ in Eq. (2.15) in the exterior region
of the geometry, since we find that only the Schwarzschild
profile in Eq. (2.25) allows us to consistently satisfy the
matching conditions at the sphere radius R. We interpret
this fact as a manifestation of a no-hair condition for this
set-up, so that in the spherically symmetric case the exterior
geometry is only characterized by the mass M, while it is
independent from the charge QE. We will learn in Sec. IV
that the story is more complex (and interesting) when
breaking spherical symmetry, since then the geometry
depends on magnetic and electric charges.

2. The vector star compactness

We find the inequality

rSchw ≡ 2M ¼ 2γR
1þ 2γ

≤ R; ð2:30Þ

showing that the Schwarzschild radius rSchw is inside the
star radius R. We conclude that our configuration has no

horizons. Hence the non-negative parameter γ has a trans-
parent physical interpretation. It controls the compactness

C≡M=R ð2:31Þ

of the object we are examining. We find

0 ≤ C ¼ γ

1þ 2γ
<

1

2
: ð2:32Þ

Hence this quantity spans from 0 for γ ¼ 0 (flat space) to
1=2 for γ ¼ ∞, which is the same compactness of a
Schwarzschild black hole. As anticipated above, the vector
star can violate the Buchdahl bound C ≤ 4=9, thanks to a
sizeable anisotropic stress.
We represent in Fig. 1 the time-time metric component

AðrÞ, together with the position of the would-be
Schwarzschild radius, for different choices of γ. As γ
becomes smaller and smaller, the geometry approaches flat
space. In the opposite case, the larger the γ is, the nearer the
Schwarzschild radius approaches from inside the surface of
the star. In the limit γ → ∞ the interior geometry is not well
defined, at least in Boyer-Lindquist coordinates, since the
metric profile for A becomes flatter and flatter (see Fig. 1,
upper left panel). However, as will discuss in what comes
next, this limit can be meaningful in specific contexts and
applications.

FIG. 1. The time-time metric component AðrÞ (see our metric Ansatz in Eq. (2.5)) both in the interior and exterior of the star. We make
the following choices (from left-to-right and top-to-bottom) of the exponent γ: γ ¼ 10.2, 1.2, 0.2, 0.02. Red dashed line: the
Schwarzschild radius r ¼ 2M. Black dashed line: the position of the star surface r ¼ R.
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C. Resolving the singularity in the star interior

The singularity at the star origin r ¼ 0 can be resolved
by switching on the parameter σ within the interval 0 ≤
σ ≤ 1 in Eqs. (2.15), at least for large enough values of γ. In
order to obtain a configuration with a smooth matching at
the star surface, the interior geometry and vector field
solutions are given by [the cumbersome expression for
ΠðrÞ can be determined plugging the next formulas in
Eq. (2.12)]:

α0ðrÞ ¼
2QIR
r

þ 2σ þ 2ð1 − σÞ
1þ γ

�
r
R

�
γ

; ð2:33Þ

AðrÞ ¼ σ2 þ 2σð1 − σÞ
ð1þ γÞ

�
r
R

�
γ

þ ð1 − σÞ2
ð1þ 2γÞ

�
r
R

�
2γ

; ð2:34Þ

BðrÞ ¼ AðrÞ
½σ þ ð1 − σÞðr=RÞγ�2 : ð2:35Þ

The exterior geometry is again given by the Schwarzschild
expressions (2.25), but this time the mass and the outside
vector charge are given by

M ¼ ð1 − σÞγð1þ γ þ σγÞ
ð1þ γÞð1þ 2γÞ R; ð2:36Þ

QE ¼ QI −
γð1 − σÞ
1þ γ

; ð2:37Þ

in order to continuously match the interior with the exterior.
This configuration is typically less compact than the one of
Sec. II B, since now the compactness parameter C spans
between C ¼ 0 for γ ¼ 0, to C ¼ ð1 − σ2Þ=2 for γ → ∞
(recall that 0 ≤ σ ≤ 1).
The curvature invariants are now no more necessarily

singular for r → 0. In fact, computing for example the Ricci
scalar by means of Eq. (2.13) we find

Ricci scalar ¼ 2rγ−2γð1 − σÞ
½σ þ ð1 − σÞrγ�3

�
σ2 þ σð2 − γÞð1 − σÞ

1þ γ
rγ

þ ð1 − γÞð1 − σÞ2
1þ 2γ

r2γ
�
: ð2:38Þ

Hence, if γ ≥ 2, the Ricci scalar can be nonsingular at the
origin, when turning on any positive value for σ. The other
curvature invariants built in terms of the Riemann and Ricci
tensors show a similar behavior.
We represent in Fig. 2 the profile for AðrÞ, which makes

manifest that this function is nonvanishing at the origin and
can be continued for negative r. One might explore these
configurations as possible wormhole solutions [56,57], and
study their properties and their stability. Notice that the
parameter σ here is free in the interval 0 ≤ σ ≤ 1: it would
be interesting to determine physical motivations for its size
and how to relate it with observable properties, as for some
wormhole configurations [58]. We postpone these ques-
tions to future work.

III. GEODESICS

We learned in the previous section that—when consid-
ering spherically symmetric configurations—the exterior
geometry of our vector star solutions corresponds to a
Schwarzschild space-time. In this and the next section we
discuss possible methods for distinguishing our system
from GR configurations, and for probing the interior
properties of the star.
We start studying timelike and null-like geodesics, as a

probe of the internal geometry of the star. The behavior of
geodesics around our configuration can be richer4 than
what occurs in a Schwarzschild geometry within GR, also
thanks to the possibility of having geodesics crossing the
star surface in both directions, probing its interior.

FIG. 2. The time-time metric profile AðrÞ of Eq. (2.34) evaluated nearby the origin, choosing γ ¼ 2 and σ ¼ 0.2 (left panel) and
σ ¼ 0.8 (right panel). We represent only the region r ≥ 0 since the configurations are symmetric with respect to the axis r ¼ 0 and can
be continuously connected to negative values of r. Black dashed line: the position of the star surface r ¼ R.

4The topic in a similar context has been recently studied in the
work [23].
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In fact, the analytic study of geodesics is important for
understanding the global and causal properties of the
geometry under consideration. For timelike geodesics,
we show that there can be additional stable circular orbits
with respect to Schwarzschild black holes. Geodesics can
cross the star surface in both directions, probing its
compactness. For null-like geodesics, we study the con-
nections between the compactness of the configuration, and
the existence of unstable circular orbits, the light rings
associated with a photosphere [52]. We assume that the
probe particle experiencing the geometry is uncharged
under the vector field Vμ.
We explore the case σ ¼ 0 and focus on the configura-

tions of Sec. II B. Using standard textbook methods it is
straightforward to obtain the relevant geodesic equations.
We study the trajectory of a probe particle at radial position
rðτÞ, with τ indicating the particle proper time. We
introduce the dimensionless combination

yðτÞ≡ rðτÞ
R

; ð3:1Þ

with R indicating the radius of the star.
For the case of timelike geodesics, when y > 1 the particle

is outside the star, and experiences a Schwarzschild space-
time characterized by a mass M related with γ by Eq. (2.29).
The particle geodesics is controlled by the equation

1

2

�
dy
dτ

�
2

þ UextðyÞ ¼
E
R2

; for y ≥ 1: ð3:2Þ

The geodesic potential is

UextðyÞ ¼
1

R2

�
−
M
Ry

þ l2

2y2
−
Ml2

Ry3

�
;

¼ 1

ð1þ 2γÞR2

�
−
γ

y
þ l2ð1þ 2γÞ

2y2
−
γl2

y3

�
: ð3:3Þ

In Eqs. (3.2)–(3.3) the quantity E is a parameter associated
with the conserved energy of the probe particle, and l ¼
L=R is a convenient dimensionless combination, with L
indicating the conserved angular momentum of the particle.
The particle trajectory in the interior of the star, y ≤ 1, is

instead described by the equation

1

2

�
dy
dτ

�
2

þUintðyÞ ¼
E
R2

; for y ≤ 1: ð3:4Þ

The interior potential is

UintðyÞ ¼
ð1þ γÞ2

2R2ð1þ 2γÞ×
�
y

2γ
ð1þγÞ þ

�
l2

ð1þ γÞþ
γ2

1− γ2

�
y−

2ð1−γÞ
1þγ

−
1þ γð3þl2 − γð2þl2ÞÞ

ð1− γ2Þð1þ γÞ
�
: ð3:5Þ

The integration constants characterizing the interior
potential (3.5) have been chosen so to ensure that the
potential UintðyÞ, together with its first derivative,5 is
continuously connected with the potential UextðyÞ at the
star surface y ¼ 1. When γ < 1 the interior potential is
unbounded and diverges at plus infinity at the origin. This
implies that a timelike geodesics entering the star cannot
reach the singularity, and bounces back to the exterior
(more on this later). We represent in Fig. 3 the entire profile
of the geodesic timelike potential, for two representative
values of γ.
We can now study more quantitatively the main features

of timelike geodesics, using our expressions (3.3) and (3.5)
for the potentials. In the exterior part of the geometry y ≥ 1
(or r ≥ R), the potential has extrema if the following
condition is realized

FIG. 3. Particle potential for timelike geodesics. Left panel: γ ¼ l ¼ 1=8. Right panel γ ¼ 2, l ¼ 1.4. Black dotted line: star surface.
Red dashed line: Schwarzschild radius. On the right we include in magenta dot-dashed line the innermost stable circular orbit position
calculated within GR, and located at y ¼ 6MR. Both panels makes manifest that there are extrema of the geodesic potential located
within the star radius.

5For the special case γ ¼ 1 it is not possible to ensure
continuity of the first derivative of the potential at the star surface.
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l >
ffiffiffiffiffi
12

p γ

1þ 2γ
: ð3:6Þ

When this inequality is satisfied, the extrema are located at
the positions

y0 ¼
l2ð1þ 2γÞ

2γ

"
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

12γ2

l2ð1þ 2γÞ2

s #
: ð3:7Þ

The plus choice corresponds a maximum of the potential
(always located in the star exterior), the minus choice is a
minimum of the potential. The innermost stable circular
orbit (ISCO) in the star exterior is at

yisco ¼
6γ

1þ 2γ
; ð3:8Þ

and is outside the star if we choose γ > 1=4.
Considering now the interior geometry, we find that the

potential (3.5) admits an extremal point at

y
2

1þγ

0 ¼ γ2 þ ð1 − γÞl2

γð1þ γÞ : ð3:9Þ

The position y0 lies within the star interior if the following
condition on l is satisfied

l2 <
γ

1 − γ
for γ < 1; ð3:10Þ

l2 <
γ2

γ − 1
for γ > 1: ð3:11Þ

The value γ ¼ 1 is special case, since the extremum is
always at y ¼ 1=2 (regardless of the value of l). When
γ > 1=4, by tuning l, we can have local stable minima for
the timelike geodesic potential both in the star interior and
the star exterior, as shown in Fig. 3 (right panel).
It is interesting to study timelike geodesics which cross

the star surface in both directions: we can use them for
probing the star interior. In this case, the analysis of the
particle trajectories can help in determining the properties
of the internal geometry. The simplest option are radial
plunge orbits, that start at rest from plus infinity with zero
angular momentum, and enter inside the star radius. Let us
then choose E ¼ l ¼ 0 in the geodesic evolution equations.
If we further choose γ < 1, the interior potential [see
Eq. (3.5)] has an infinite barrier at the origin, which
prevents the trajectory from falling into the singularity.
A massive particle arriving from infinitely far away enters
into the star region with finite velocity at the star radius, and
changes the direction of its speed at the zero of the internal
potential Uint. Then it bounces, crossing the star surface
with the same velocity (in opposite direction) as it enters,
and then travels back to infinite distance from the star. In

such a situation, the proper time τint spent within the star in
the “bouncing process” depends only on γ, and on the star
radius. An observer far away from the star, who measures
the time for radial plunge orbits to reach the star and bounce
back, can then infer the star compactness.
The proper time τint spent within the star interior is given

by the integral

τintðγ; RÞ
R

¼
ffiffiffi
2

p

R

Z
1

y⋆

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−UintðyÞ

p ; ð3:12Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 8γ

p
1þ γ

Z
1

y⋆

dy

y
γ−1
γþ1

�ð1þ 3γ − 2γ2Þy2ð1−γÞ
ð1þγÞ

ð1 − γÞð1þ γÞ2

− y
2

ð1þγÞ −
γ2

1 − γ2

�
−1=2

; ð3:13Þ

where y⋆ is the zero of the potential in the interior—i.e., the
zero of the integrand function within square parenthesis in
Eq. (3.13). In general, this expression needs to be integrated
numerically, although for some special values of γ an
analytical integration is possible.
For example, for γ ¼ 1=2 we get

T intð1=2;RÞ ¼−
4

ffiffiffi
2

p

3

�
1þ 4

3
arccos

�
−

1ffiffiffiffiffi
37

p
��

R; ð3:14Þ

≃ 2.48R: ð3:15Þ

Given its dependence on the value of γ, the time spent by a
particle traveling along the geodesics in the interior
geometry of the star configuration can be used as a tool
for studying the star properties, as its compactness that
depends on γ and R through relation (2.32).
The equation for null-like geodesics results

1

2
y02 þ 1

R2

l2

2y2

�
1 −

2γ

ð1þ 2γÞy
�

¼ E2

R2
; ð3:16Þ

in the exterior. (The various quantities have the same
meanings as in the previous timelike case.) Imposing
continuity of the function yðτÞ and its first derivatives at
the star surface, we find the following equation for null-like
geodesics in the interior

1

2
y02þ 1

R2

l2

2ð1þ 2γÞ
�
−γþð1þ γÞy−2ð1−γÞ

ð1þγÞ

�
¼ E2

R2
: ð3:17Þ

These results indicate that the interior geometry has no
extremal points for null-like geodesics. The exterior poten-
tial admits one maximum at

yext ¼
3γ

1þ 2γ
ð3:18Þ
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If γ > 1, yext is located in the exterior region of the star.
Hence, if this condition is satisfied, the null-like geodesic
potential have a maximum which can be associated with a
light-ring and the photosphere: the situation is then very
similar to GR. For γ < 1 there is no local maximum instead,
and there instead is an infinite barrier for light rays: the
situation is then similar to what we discussed in the case of
timelike geodesics. The value γ ¼ 1 is special because the
potential is constant. The condition for having a photo-
sphere, γ > 1, corresponds to the condition of considering
ultracompact objects, C > 1=3, in agreement with the
general analysis of [52].

IV. BEYOND SPHERICAL SYMMETRY

We have seen that the behavior of geodesics can be richer
with respect to what occurs in a Schwarzschild geometry,
since geodesics can probe the star interior. In this section
we go beyond spherical symmetry, considering the dynam-
ics of fluctuations of the vector field and of the metric
tensor, both outside and inside the star. We will learn that
their properties are sensitive to vector charges (both electric
and magnetic-type ones) as well as the star compactness.
They can then offer probes for distinguishing a vector star
from a black hole, as well as to investigate applications of
no-hair arguments in this context.
We focus on parity-odd, spin-1 stationary fluctuations:

they are easier to deal with analytically, and can lead to
distinctive effects in systems (like ours) with a pronounced
anisotropic stress in the internal stress-tensor of the star.
Our aims are as follows:
(1) First, in Sec. IVA we analytically investigate the

response of the vector-field profile Vμ to magnetic-
type, spin-1 perturbations, which add magnetic-type
charges to the vector star solution. We determine
the structure of the dipolar magnetic field which can
be sourced by the star configuration, as well as the
vector magnetic susceptibility to the application of
an external field. The characteristic response of the
vector can be used as a probe of the star properties,
playing a role analog to neutron star Love numbers
[59–61] for distinguishing exotic compact objects
from black holes [62].

(2) Then, in Sec. IV B we focus on metric fluctuations,
and study the behavior of the corresponding
parity-odd spin-1 deformations. They break spheri-
cal symmetry, and can be sourced by magnetic-
type deformations of the vector profile studied in
Sec. IVA. Their properties depend on the electric

and magnetic charges, showing that—when break-
ing spherical symmetry—the exterior geometry
becomes sensitive to the properties of the vector
configuration. We are also able to characterize the
properties of fluctuations in the interior of the star,
and their dependence on the vector charge.

A. Magnetic charge, and the vector
magnetic susceptibility

We start studying the dynamics of parity-odd, magnetic
fluctuations of the vector field profile Vμ, that contribute to
the total combination

Vμdxμ þ δVμdxμ; ð4:1Þ

defining the total vector field backgroundþ fluctuations.
We focus on this section on the vector fluctuations δVμ

only: we study their backreaction on the metric in
section IV B. The first part of Eq. (4.1), Vμdxμ, contains
the background electric-type components, as in Eq. (2.6).
Its profile in the internal and external regions of space-time
are given in Eqs. (2.18) and (2.26) (we focus on the case of
singular internal geometry of Sec. II B). On top, we have
the second contribution to Eq. (4.1). Parity-odd, spin-1
stationary fluctuations are parametrized by

δVμdxμ ≡ aφðrÞ
sin θ

ð∂φYlmðθ;φÞÞdθ
− aφðrÞ sin θð∂θYlmðθ;φÞÞdφ; ð4:2Þ

in terms of a function aφðrÞ. In this formula the Ylm are the
scalar spherical harmonics, and their gradients are asso-
ciated with the spin-1 spherical harmonics (see e.g.,
[63,64]) we are interested in. They are characterized by
a multipole index l (l ≥ 1) and an azimuthal index m: in
our study of fluctuations around spherically symmetric
configurations, there is no dependence on the index m
hence we understand it from now on. We assume that the
quantities aφðrÞ are small. We obtain the linearized
equations in the exterior (r ≥ R) and interior (r ≤ R) of
the star as

0 ¼ a00φ þ
2QER

rðQERþ rÞ a
0
φ −

2QERþ lðlþ 1Þr
rðQERþ rÞ2 aφ ¼ 0;

ð4:3Þ

0 ¼ a00φ þ
QIð2þ γ − γ2Þ − 3γðr=RÞ1þγ

rðQIð1þ γÞ þ ðr=RÞ1þγÞ a0φ

þ 2Q2
I γð1þ γÞ þQIðr=RÞ1þγð1þ γÞð1þ 2γÞ − 2ðr=RÞ2þ2γðlþ γðl − 1ÞÞð1þ lþ ðlþ 2ÞγÞ

2r2ðQIð1þ γÞ þ ðr=RÞ1þγÞ2 aφ ð4:4Þ
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The internal electric charge QI is related with the external
one QE by the relation (2.28). Interestingly, in both the
exterior and interior regions the equations governing the
vector fluctuations aφ are decoupled from the parity-
odd metric perturbations.6 However, as we will learn, the
vector modes aφ backreact on the metric at the linearized
level, breaking spherical symmetry. Notice that also the
exterior equation (4.3) depends on the star electric charge,
indicating that the behavior of the external magnetic
deformation is controlled by QE.
The two equations (4.3) and (4.4) admit two distinct

exact solutions, each depending on two integration con-
stants. Fixing the integration constants in the interior so that
the solutions continuously match—together with their
derivative—at the star surface r ¼ R, we get

aφðrÞ¼
PφR

r
ðQEþr=RÞ1−lþSφR

r
ðQEþr=RÞ2þl; ð4:5Þ

aφðrÞ ¼
PφR

r

�
QEð1þ γÞ þ γ þ ðr=RÞ1þγ

1þ γ

�
1−l

þ SφR

r

�
QEð1þ γÞ þ γ þ ðr=RÞ1þγ

1þ γ

�
2þl

; ð4:6Þ

for two constants Pφ, Sφ, respectively in the exterior—
Eq. (4.5)—and in the interior—Eq. (4.6)—of the star
configuration.
We now study two applications of the previous general

solutions. In the first case, we interpret the solutions (4.5)–
(4.6) as controlling a magnetic dipolar potential of the star
configuration, with a magnetic field strength decaying at
infinity. Hence, we select l ¼ 1 and Sφ ¼ 0: the vector
potential component δVφ becomes

δVφ ¼ −aφðrÞ sin θð∂θY10ðθÞÞ;

¼
ffiffiffiffiffiffi
3

4π

r
Pφ

R
r
sin2 θ; ð4:7Þ

for any r > 0. This leads to a dipolar, parity-odd magnetic
field deformation Br̂ along the radial direction, which can
be computed through the vector field strength using
standard formulas

Br̂ ¼
∂θVφ

r2 sin θ
¼ Pφ

ffiffiffi
3

π

r
R
r3

cos θ: ð4:8Þ

The dipolar magnetic field of the star is then controlled by
the magnetic dipolar charge Pφ.
In the second case, we study the response of the system

to an external constant dipolar magnetic field, whose radial
component behaves at large distances (r → ∞) as

BðextÞ
r̂ ðr → ∞Þ ¼ C0 cos θ ⇒ aðextÞφ ðr → ∞Þ ¼ C0

ffiffiffi
π

3

r
r2;

ð4:9Þ

for a small constant C0. In passing from the left to the right
of the arrow in Eq. (4.9), we made use of the definitions in
Eqs. (4.7)–(4.8).
In studying the star vector response to the external field

(4.9)—a phenomenon that we call vector magnetic sus-
ceptibility—we impose for definiteness that the magnetic-
type fluctuations aφ do not blow-up at the origin r ¼ 0, so
to fix the last of the integration constants in Eq. (4.6). The
regularity condition requires that Pφ and Sφ in Eq. (4.6) are
related by the condition

Sφ
Pφ

¼ −
ð1þ γÞ1þ2l

ðQEð1þ γÞ þ γÞ1þ2l : ð4:10Þ

Requiring to match the asymptotic value of the magnetic
field as in Eq. (4.9), we fix the last of the integration
constants, and find the following solution for aφ:

aφðrÞ ¼ C0

ffiffiffi
π

3

r
R3

r
ðQE þ r=RÞ3

×

�
1 −

�
R
r

�
3 ðQE þ γ=ð1þ γÞÞ3

ðQER=rþ 1Þ3
�
: ð4:11Þ

While the part outside the squared parenthesis matches the
boundary condition at spatial infinity, the part inside
the parenthesis controls to the dipolar susceptibility of
the external magnetic field. Interestingly, such vector
magnetic susceptibility depends both on the electric charge
QE and the parameter γ controlling the star compactness.
This quantity is analogous, although not identical, to the
gravitational magnetic susceptibility as studied in various
works in the context of studies of tidal deformability for
black holes—see e.g., [64–67].
Defining the vector magnetic susceptibility Sm as the

opposite of the second term in the squared parenthesis of
Eq. (4.11), evaluated at the star surface r ¼ R, we get

Sm ≡ ðQE þ γ=ð1þ γÞÞ3
ðQE þ 1Þ3 : ð4:12Þ

Interestingly, this quantity approaches the value Sm ¼ 1 for
very large γ, showing that in the limit of ultracompact
objects approaching the compactness of a black hole, the
susceptibility behaves as the one of a conducting sphere.
We plot in Fig. 4 examples of the dependence of Sm

on QE and γ, for some representative cases. It would be
interesting to find measurable observables sensitive to the
value of Sm, which can represent distinctive probes of the
properties of the star—its charges and compactness.

6For the case l ≥ 2we need to substitute a constraint condition
into the equations—more on this in Sec. IV B.
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B. Parity-odd stationary deformations of the
metric, and star rotation

After discussing the perturbations in the vector field, we
now focus on parity-odd, stationary fluctuations of the
metric, along the lines of the classical analysis of [68]. To
slightly reduce the length of our formulas, in this section we
set the star radius R ¼ 1.
We decompose the metric in a background part and

perturbations:

gμνdxμdxν þ hμνdxμdxν: ð4:13Þ

In this equation, gμνdxμdxν corresponds to the spherically
symmetric background solution with Ansatz (2.5), with
exterior and interior metric components studied in Sec. II.
The quantity hμνdxμdxν controls the parity-odd, spin-1
stationary metric fluctuations in Regge-Wheeler gauge:

hμν ¼

0
BBBBB@

0 0 −h0ðrÞ sin θ−1∂φ h0ðrÞ sin θ∂θ

0 0 −h1ðrÞ sin θ−1∂φ h1ðrÞ sin θ∂θ

−h0ðrÞ sin θ−1∂φ −h1ðrÞ sin θ−1∂φ 0 0

h0ðrÞ sin θ∂θ h1ðrÞ sin θ∂θ 0 0

1
CCCCCAYðθ;φÞ: ð4:14Þ

The metric fluctuations break the spherical symmetry of the
system. The angular dependence of the solution is con-
trolled by derivatives of the scalar spherical harmonics
Ylmðθ;φÞ (l ≥ 1) which define spin-1 spherical harmonics
as in the previous section. It is straightforward to determine
the expression for the linearized equations controlling the
radial profiles of the metric components h0ðrÞ and h1ðrÞ,
and how they are sourced by the magnetic-type vector
fluctuations studied in Sec. IVA. For the case l ¼ 1, the
function h1ðrÞ is a gauge mode and can be set to zero; for
l ≥ 2, the equation of h1 is algebraic, and can be solved as
a function of h0 and aφ, both in the exterior and the interior
of the star. For example, in the star exterior we find

h1ðrÞ ¼
r

r − 2M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

E þ 2MrþQEr
p

QE þ r
h0ðrÞ

−
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

E þ 2MrþQEr
p

2ðQE þ rÞ2 aφðrÞ: ð4:15Þ

Plugging this expression into the equation for aφ we find
Eq. (4.3), that—as explained in Sec. IVA—is decoupled
from metric fluctuations. The quantity h0ðrÞ is controlled
by the following equation in the star exterior, valid for any
l ≥ 1 (we understand the dependence on r):

0 ¼ h000 −
4QE

rðQE þ rÞ h
0
0 þ

ð6Q2
E þ 4QEr − lðlþ 1Þr2Þ

r2ðQE þ rÞ2 h0 þ
4M − 2r
QE þ r

a00φ −
4M
r

a0φ
QE þ r

þ aφ
rðQE þ rÞ3

�
Q2

E

�
1þ 3

2
lðlþ 1Þ

�
þ 2Mrþ

�
1þ 3

2
lðlþ 1Þ

�
QEr − lðlþ 1ÞðM − 2rÞr

�
: ð4:16Þ

FIG. 4. Plots of the vector magnetic susceptibility of Eq. (4.12), as function of γ (left panel) and QE (right panel). Left: QE ¼ 1=10
(black); QE ¼ 1 (red dashed); QE ¼ 10 (blue dotted). Right: γ ¼ 1=10 (black); γ ¼ 1 (red dashed); γ ¼ 10 (blue dotted).
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Notice that the metric component h0ðrÞ is sourced by the
magnetic-type vector perturbation aφðrÞ. The equation for
h0 in the star interior can also be derived quite easily, but is
longer and we do not write it explicitly.
Let us study explicit examples of solutions. Focus on the

dipolar case l ¼ 1, m ¼ 0 (and h1 ¼ 0), and on perturba-
tions that decay at infinity. As first noticed in [68], the
metric then describes a slowly rotating configuration, with
h0ðrÞ controlling the stationary rotation of the geometry
through an off-diagonal metric component

gtφdt dφ ¼ −2
� ffiffiffiffiffiffi

3

4π

r
h0ðrÞ
r2

�
r2sin2θdt dφ: ð4:17Þ

It is straightforward to solve Eq. (4.16) for h0ðrÞ in the star
exterior, taking as source the magnetic-type solution
we found in Eq. (4.5) with l ¼ 1 and Sφ ¼ 0. We find
for r ≥ 1

−
ffiffiffiffiffiffi
3

4π

r
h0ðrÞ
r2

¼ aM
ðQE þ rÞ3 þ

ffiffiffi
3

π

r
PφM

QEr3
; ð4:18Þ

with a an integration constant associated with the rotation
of the geometry (the Kerr parameter), and Pφ the intrinsic
magnetic dipolar charge as given in Eq. (4.7) above. This
metric coefficient should be compared with the one found
in the slowly-rotating limit of the Kerr solution in GR:

−
ffiffiffiffiffiffi
3

4π

r
hGR0 ðrÞ
r2

¼ aM
r3

: ð4:19Þ

Comparing (4.18) with (4.19), we find that the magnetic
charges Pφ and QE influence the geometry as vector hairs,
and contribute in breaking the spherical symmetry of the
configuration to an axial one. Interestingly, QE appears at
the denominators: we interpret this fact as a consequence of
the specific nonminimal couplings of the vector to gravity.
The quantity QE contributes to modulate the 1=r3 decay at
large distances of the angular momentum contribution
proportional to a. Instead, Pφ=QE adds a new contribution
to h0, absent in the vacuum GR case, being induced by the
magnetic dipolar charge of the star configuration.
The peculiar dependence on the radial coordinate r in

Eq. (4.18) can lead to interesting effects, distinctive of the
vector-tensor system under consideration. Let us suppose
that a and Pφ have opposite sign (say a is positive) and call

ν3 ≡ −
ffiffiffiffiffiffiffiffi
3=π

p
jPφjM=ðQEaÞ ð4:20Þ

We assume 0 ≤ ν < 1. We can rewrite Eq. (4.18) as

−
ffiffiffiffiffiffi
3

4π

r
h0ðrÞ
r2

¼ aM
r3

�
r3

ðQE þ rÞ3 − ν3
�
: ð4:21Þ

While for large values of r the right-hand side of (4.21) is
positive, as we approach the star the sign of h0ðrÞ changes.
This occurs at

r⋆ ¼ νQE

1 − ν
ð4:22Þ

which is larger than the star radius R ¼ 1 by choosing a
large enough QE. This fact implies that the direction of
rotation of the space-time changes as we approach the star,
due to the opposite contributions to rotation of the Kerr
parameter a and the magnetic charge Pφ. It would be
interesting to further explore the consequences of this
phenomenon, and whether can be used to find distinctive
probes of this system.
The discussion of the interior part of the geometry is

particularly simple in the case Pφ ¼ 0: let us focus for
simplicity on this case for the rest of the section, although
analytic expressions for Pφ ≠ 0 can also be found. This
limit implies that the exterior dipolar configuration is
described by Eq. (4.18) with no magnetic-charge contri-
bution. The interior solution r ≤ 1 of the field equations for
h0 that continuously match with the exterior for r ≥ 1 is

−
ffiffiffiffiffiffi
3

4π

r
h0ðrÞ
r2

¼ aMð1þ γÞ3
½QEð1þ γÞ þ γð1 − σÞ þ r1þγð1 − σÞ þ rσð1þ γÞ�3 ;

ð4:23Þ

where we selected as interior background configuration the
solution described in Sec. II C. The interior part of the star
is dragged by the rotation of the configuration: the dragging
effects are also modulated by the electric charge QE and
depend on the star compactness through the parameter γ.
While in this example we focused on the case l ¼ 1, the
cases l ≥ 2 can also be straightforwardly analyzed, at least
in absence of intrinsic magnetic charge, and the previous
formulas generalize by changing the exponents from 3
to lþ 2.
In summary, the study of properties of parity-odd sta-

tionary metric fluctuations reveal a very rich structure that
goes beyond what found in solutions of GR in empty space,
even if the exterior star geometry is given by Schwarzschild
space-time. Both the exterior and the interior metric
elements are indeed sensitive to the vector properties. A
detailed analysis of time-dependent perturbations, as well
as parity-even modes, is left for future studies.

V. OUTLOOK

In this work we presented and investigated new analytic
solutions describing a family of horizonless compact
objects in vector-tensor theories of gravity, dubbed ultra-
compact vector stars. They are sourced by a vector
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condensate, induced by a nonminimal coupling with
gravity. They can be as compact as black holes, thanks
to their internal anisotropic stress. In the spherically
symmetric case, their external geometry corresponds to
the Schwarzschild solution as in GR, even if they can be
characterized by an electric-type charge. The interior part of
the solution resembles a singular isothermal sphere, and the
singularity at the star center can be resolved by tuning some
of the available integration constants. The interior configu-
ration is smoothly matched to the exterior geometry of the
star, with no need of extra stress-tensor on the star surface.
We investigated features of our systems that allow one to

distinguish vector star objects from GR black hole sol-
utions. We analytically studied the behavior of geodesics
trajectories within the star interior—where new stable
circular orbits are allowed—as well as geodesics crossing
in both ways the star surface. We analytically investigated
parity-odd stationary fluctuations that break spherical
symmetry and can assign a magnetic charge to our vector
star configurations.
It would be interesting to further develop our analysis

along the following directions:
(i) Study time-dependent fluctuations—both odd and

even parity—and investigate the stability the hori-
zonless vector star objects. This topic is particularly
interesting since black hole configurations in vector-
tensor theories of gravity have been shown to have
instabilities [69,70] which might be cured (or not) in
more general configurations like ours.

(ii) Study mechanisms of formation of vector stars from
a process of gravitational collapse, including further
sources of energy momentum tensor in the form of
standard matter. Gravitationally bound solitons
made of dark-matter vector bosons—in a Proca
theory—have been recently numerically investi-
gated in [71–74], and would be interesting to pursue
similar studies in our context. In fact, nonminimal
couplings of the vector with gravity are allowed (and
expected) once the vector Abelian symmetry is
broken.

(iii) Determine solutions with a large rotation parameter
in the exterior geometry—the analog of Kerr—and
large magnetic charge. Investigate the properties and
phenomenology of the resulting magnetically-
charged configurations, for example taking inspira-
tion from [75].

(iv) Determine additional field-theory and cosmological
motivations for the vector-tensor theories we con-
sider and their possible extensions for dark matter
and dark energy.

We leave these points to future investigations.
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