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In this paper, it is proved that the teleparallel energy momentum generalizes that of the Arnowitt-Deser-
Misner (ADM) formalism. In doing so, it is shown that the teleparallel 4-momentum can be made to
coincide with that of the ADM approach whenever the ADM 4-momentum is applicable. The only
assumptions are the time gauge for the teleparallel frame and the well-known restrictions for the coordinate
system used in the calculation of the ADM 4-momentum. Then, examples where the ADM formalism
fails to give consist results, but the teleparallel approach does not, are given. The advantages of the
teleparallel stress-energy tensor (density) over the pseudotensor of Landau-Lifshitz are exhibited. Finally,
the difficulties in identifying the gravitational angular-momentum density is discussed; it is shown that the
spatial part of the proposed angular-momentum density Mab vanishes when the teleparallel frame satisfies
the time-gauge condition.
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I. INTRODUCTION

All of the fields responsible for the four fundamental
interactions of nature are supposed to carry energy and
momentum, and one expects to be able to somehow
quantify these energy momenta. One of these fields is
the gravitational one, which is accessible to our everyday
experience. However, the description of the gravitational
energy is still a controversial subject, and most physicists
believe that it is not possible to have a well-defined
gravitational energy-momentum tensor density owing to
the principle of equivalence [1].
Throughout decades, many prominent scientists have

tackled the task of solving this problem [2–12]. So far the
only consensus is that the energy momentum defined as
surface terms are acceptable and have some physical
meaning [10]. But, no consensus concerning the localiza-
tion of the gravitational energy, i.e., the existence of a
unique and well-defined energy-momentum tensor density,
has been achieved. Furthermore, even the energy momenta
defined as surface terms have many issues: there are
too many giving inconsistent results and with undesirable
restrictions.
An example of a 4-momentum for the spacetime that is

too limited is that due to Arnowitt-Deser-Misner (ADM)
[6], which seems to appear as a natural consequence of the
Hamiltonian formulation of General Relativity (GR). It is
limited to a very special kind of coordinate system and to
asymptotically flat boundary conditions. For example, one
cannot use it to evaluate the total energy of the Universe or

the energy of a static and spherically symmetric spacetime
in Kruskal coordinates.
On the other hand, the Hamiltonian formulation of

the teleparallel equivalent of General Relativity (TEGR)
[13–21] yields an energy momentum that does not possess
those limitations. It has successfully predicted the space-
time energy momentum in both Kruskal and Novikov
coordinate systems [22], and also gives consistent results
for the Friedmann-Lemaître-Robertson-Walker spacetime
[23]. In principle, its only restriction is the use of a frame
that is free from artificial properties. (For more details on
this later issue, see pp. 20–54 of Ref. [24].) Nevertheless,
this is not a restriction on the spacetime.
The teleparallel approach naturally gives a well-defined

stress-energy tensor (density) that, in some sense, is on the
same footing as the acceleration tensor: they both depend
on the tetrad field, but do not depend on the coordinate
system. This tensor is probably the most promising tensor
to solve the localization problem, or at least give a better
understanding of it.
Because of the importance of both ADM and teleparallel

approaches, it is interesting to know whether or not they
are compatible. More precisely, it is important to know
whether their energy momenta contradict one another. Our
purpose in this paper is to show the advantages of the
teleparallel approach. In doing so, we prove that the
ADM energy momentum is a particular case of the tele-
parallel one (Sec. III), and show the advantages of the
teleparallel stress-energy tensor over the Landau-Lifshitz
one (Sec. IV). In addition, we prove that the spatial part of
the so-called angular-momentum density that arises from
the Hamiltonian formulation of TEGR vanishes when the*jansen@fisica.ufpb.br
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“rigid” frame satisfies Schwinger’s time gauge (Sec. V); we
also discuss the difficulties with the interpretation of this
quantity. In Sec. VI we discuss briefly some current results
obtained in the context of Noether charges and their relation
with our results. In the last section we present the con-
clusions and some final remarks.
It is worth noting that in this paper we deal only with the

TEGR. In practice, the field equations of the TEGR are
Einstein’s equations written in terms of the tetrad field.1

The only role played by the concept of teleparallelism here
is to motive the way in which Einstein’s field equations
are written and identify the gravitational energy. Therefore,
the reader does not have to have any background on
teleparallelism in order to follow this paper. (All that is
necessary to understand this paper will be given in the next
section.) For those interested in modified teleparallel
theories of gravity, see Refs. [26,27].

II. ADM AND TEGR FORMALISMS

In this section we present the basics features of both the
ADM formalism and the TEGR theory. We start by
establishing the notation and conventions.
We use the spacetime signature ð−;þ;þ;þÞ. Greek

letters represent spacetime indices, running over the values
0,1,2,3. Latin letters in the beginning of the alphabet
represent tangent space indices and also run over from
0 to 3, but we use round brackets around these numbers to
distinguish them from the spacetime indices (Að0Þ, for
example). On the other hand, Latin indices in the middle
of the alphabet run over 1,2,3 and can be used either as a
spacetime index, in which case there is no bracket (Ai, for
example), or a tangent-space one (AðiÞ, for example). The
four-dimensional metric and frame will be denoted by gμν
and ea, respectively; the three-dimensional versions will be
denoted by 3gij and 3ea.

A. ADM formalism

In the ADM formalism, the metric components are
written as [6]

3gij ≡ gij; N ≡ ð−g00Þ−1=2; Ni ≡ g0i;

g00 ¼ −ðN2 − NiNiÞ; Ni ≡ 3gijNj;
3gij is the inverse of gij; ð1Þ

where the functions N and Ni are known as the lapse and
shift functions. (Note that the three-dimensional 3gij equals
the spatial part of the four-dimensional gμν. However, as

will be clear below, 3gij does not necessarily equal the
spatial part of gμν.)
The inverse components of the metric are related to the

lapse and shift functions by

g0i ¼ Ni

N2
; g00 ¼ −

1

N2
; gij ¼ 3gij −

�
NiNj

N2

�
;

ffiffiffiffiffiffi
−g

p ¼ N
ffiffiffiffi
3g

q
: ð2Þ

In quantities with the prefix 3, the upper spacetime indices
have been raised by 3gij.
The ADM energy is given by the following surface

integral [6]:

P0 ¼ k
I
S
dSiðgij;j − gjj;iÞ; ð3Þ

where summation on repeated indices is assumed, and the
two-dimensional surface must be at spatial infinity.
In turn, the total field momentum is

Pi ¼ −2k
I
S
dSj3πij; ð4Þ

where 3πij is the momenta conjugate to the gij; it can be
written in terms of the extrinsic curvature of the hypersur-
face t ¼ constant as (see, e.g., p. 2006 of Ref. [6])

3πij ¼ −
ffiffiffiffi
3g

q
ð3Kij− 3gij3KÞ: ð5Þ

The extrinsic curvature Kij can be obtained from the spatial
part of

Kμν ¼ −∇ðνnμÞ; ð6Þ

where ∇νnμ is the covariant derivative, with respect to the
Levi-Civita connection, of the normal vector

nμ ¼ −Nδ0μ: ð7Þ

(Keep in mind that, by definition, 3Kij ≡ 3gip3gjqKpq.)
The 4-momentum defined by Eqs. (3) and (4) are well

defined only for asymptotically flat spacetimes and coor-
dinate systems that are asymptotically rectangular.
For more details on the ADM formalism, see Ref. [6] or

Sec. 21.7 of Ref. [1].

B. TEGR approach

In this section we give a brief overview of the TEGR,
starting with a historical background and ending with the
main quantities of interest.

1It is important to emphasize, however, that TEGR and GR are
not the same theory [25]; they are conceptually different and their
actions differ by a boundary term. In theories with higher-order
invariants, such as fðTÞ, where T is the torsion scalar, the field
equations will be completely different from those of fðRÞ.
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1. Historical background

The history of teleparallel theories dates back to
Einstein’s attempt to unify gravity with electromagnetism,
a period that started in 1928 and ended in 1931 [28].
Although the idea about distant parallelism was already
present in the works of Weitzenböck, Eisenhart, and Cartan
[29,30], it was Einstein who first applied it to a physical
theory. Einstein was inspired by the 16 degrees of freedom
that the tetrad field has, 6 more than the metric tensor. So,
he thought he could use these extra degrees of freedom to
account for the electromagnetic field. However, he gave up
this idea because he considered the theory to be problem-
atic. For him, there was too much freedom in the choice of
the field equations, and it was not possible to find a
tensorlike representation of the electromagnetic field (for
more details, see Sauer [28]).
Teleparallelism was revived in 1961 by Møller in a

completely different context [5,31]. Møller realized that the
tetrad formulation of General Relativity that naturally
appears in teleparallelism could help solve the problem
of the gravitational energy. However, the Møller approach
did not solve the problem, because there were an infinite
number of different ways of defining the energy distribu-
tion, and he did not have a fundamental way to justify
choosing one over another.
After Møller, teleparallelism was revived again in the

1970s by Cho and Hayashi [32,33]. They obtained tele-
parallelism as a gauge theory of translation. Hayashi
showed that this gauge theory is, in fact, a theory based
on the Weitzenböck space.
Despite all of these efforts, the Hamiltonian formulation

of the theory was initiated only in the late 1980s by Nester
[34] and in the 1990s with the works of Maluf and
collaborators2 [13–17]. In this formulation, one is naturally
led to the momentum canonically conjugated to the tetrad
field and to a 4-momentum for the spacetime. One is
also led to write Einstein’s field equations in a very
particular way that fits the view of the Hamiltonian
formulation. The common feature of Maluf’s, Møller’s,
and Cho’s approaches is the field equations: they worked
with Einstein’s field equations, i.e., they worked with a
version of teleparallelism that is equivalent to General
Relativity (TEGR). However, Maluf and Møller wrote their
field equations in a different form (their 4-momenta are also
different), which means that they ended up with a different
interpretation for the gravitational energy. Since Maluf’s
approach is based on the Hamiltonian formalism, we
consider it to be the most promising one. In other words,
we consider not only the 4-momentum motivated by the
Hamiltonian formalism to be the best approach to study the

gravitational energy, but also the form in which Einstein’s
field equations are written when adapted to this view.
In the next section we write Einstein’s field equations in

this particular form and present the basic notions that will
be used throughout this paper.

2. Field equations and energy momentum

In the TEGR, Einstein’s field equations are written in the
form [12]

∂νðeΣaλνÞ ¼ e
4k

ðtλa þ T λaÞ; ð8Þ

where k ¼ 1=ð16πÞ in natural units, T λa is the matter
stress-energy tensor, tλa is interpreted as the gravitational
stress-energy tensor, and e ¼ detðeaμÞ is the determinant
of the tetrad field eaμ. (The quantity eaμ represents the
components of the coframe in the coordinate basis, while
eaμ are the components of the frame, that is, ϑa ¼ eaμdxμ

and ea ¼ eaμ∂μ.)
The quantity Σaλν, which transforms as a second-rank

tensor field under coordinate transformations, is called
superpotential and can be written as (see, e.g., Sec. 33.5.1 of
Ref. [24])

Σabc ¼
1

2
ωcab þ ωd

d½cηb�a; ð9Þ

where

ωa
bc ¼

1

2
ðTbc

a þ Tcb
a − Ta

bcÞ ð10Þ

is the Levi-Civita spin connection; it is nothing but the
connection coefficients of ∇ in the tetrad basis, which we
have defined as ωa

bc ≡ hϑa;∇beci, where ∇ is the Levi-
Civita connection per se. 4In a coordinate basis one may
use Γλ

μν ≡ hdxλ;∇μ∂νi, which are the connection coeffi-
cients of ∇ in the coordinate basis f∂νg; the Γλ

μν are the
well-known Christoffel symbols.
It is worth noting here that we are using the following

convention. Given an object Aμ, not necessarily a tensor, we
define the quantity Aa to be Aa ≡ eaμAμ. For example, the
Ta

bc in Eq. (10) is defined as Ta
bc ≡ ebμecνTa

μν, where

Ta
μν ¼ ∂μeaν − ∂νeaμ ð11Þ

is basically the object of anholonomity, which is sometimes
called “the structure functions of the frame” [38], or

2For those interested in the Hamiltonian formulation written in
terms of differential forms, see Refs. [19,20]. For a current review
of the Hamiltonian formulation of more general teleparallel
theories, see Ref. [35].

3For the original form, see Eq. (24) of Maluf [12].
4In the coordinate-free approach, one calls an affine connec-

tion ∇ the Levi-Civita connection if it is torsionless and
compatible with the metric (vanishing nonmetricity). (See,
e.g., Secs. 7.4.1 and 7.8.4 of Ref. [36], or p. 158 of Ref. [37].)
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commutation coefficients of the basis feag [1] (be aware of
possible sign differences).
In view of the teleparallel formalism, the object of

anholonomity coincides with the so-called Weitzenöck
torsion. This is so because the Weitzenöck connection
coefficients are assumed to vanish for a particular tetrad
field. In other words, there is a frame that is parallel
transported everywhere via this connection. We have been
calling this frame the teleparallel frame.
In the Hamiltonian formulation of the TEGR (see Maluf

[12] for more details), the momentum canonically con-
jugated to eaμ is given by Πaμ ¼ −4keΣa0μ. Thus, the left-
hand side of Eq. (8) is essentially the total divergence of
Πaμ: taking λ ¼ 0 and using the fact that Σa00 ¼ 0, we can
recast Eq. (8) as

−∂iΠai ¼ et0a þ eT 0a: ð12Þ

This justifies writing Einstein’s field equations in the form
given by Eq. (8).
Integrating Eq. (12) over the hypersurface t ¼ constant,

one obtains

Pa ¼ Pa
g þ Pa

M; ð13Þ

where we interpret Pa ≡ −
R
V d

3x∂jΠaj as the spacetime
energy momentum, Pa

M ≡ R
V d

3xeT 0a as the matter energy
momentum, and Pa

g ≡ R
V d

3xet0a as the gravitational
energy momentum, all of them defined inside the region V.
If we assume that there is no singularity in the region V,

or, equivalently, if the singularity does not contribute to the
total energy, then we can use Stokes’ theorem to rewrite Pa

in the form

Pa ¼ 4k
I
S
dSjeΣa0j: ð14Þ

The question whether a spacetime singularity gives any
contribution to the total energy is still an open problem. In
fact, little effort has been made to answer this question,
despite being an important one. In Ref. [22], we proved that
the Schwarzschild black hole singularity does not contrib-
ute to Eq. (14). This result can be inferred from the second
term in Eq. (9) of this reference [or, equivalently, in Eq. (22)
there]: since this term corresponds to the inner boundary,
the fact that it goes to zero as we approach the singularity
means that the singularity does not given any contribution
to the total energy, i.e., to Eq. (14).
The 4-momentum (14) is invariant under coordinate

transformations of the three-dimensional space, i.e., coor-
dinate transformations that do not change the time coor-
dinate. This is a fundamental property for any 4-momentum,
because these kinds of transformations do not change the
state of motion of the test particles that are the constituent of
the frame. (Pa can, however, depend on other types of

coordinate transformations.5) The 4-momentum (14) is also
invariant under time reparametrizations and global SO(3,1)
transformations. It also has the advantage of not being
limited to asymptotic regions.
An important difference between the TEGR

4-momentum and that of the ADM formalism is the role
played by the tetrad field in the former. Equation (14)
depends on the tetrad. Unfortunately, its dependency goes
beyond the dynamics of the frame; it somehow mimics the
coordinate system dependency of the ADM expression.
This means that it is sensible to artificial properties of the
tetrad field, i.e., properties that are not related to the state of
motion of the physical system. A possible solution to this
problem is to lock the tetrad axes to a physical system in a
consistent way. For example, the vector field eð0Þ can be
locked to the timelike geodesic of freely falling particles,
while the triad eðjÞ can be locked to the directions of the
angular momenta of three gyroscopes. (See pp. 20–54 of
Ref. [24] for a discussion of the possible solutions to this
problem.)
In order to compare Eqs. (3) and (4) with Eq. (14), we

need to write the tetrad field in terms of the lapse and shift
functions. A possible 3þ 1 decomposition for the tetrad
fields in the same coordinate system as that of Eq. (1) is
given by

eai ¼ 3eai; ea0 ¼ Nηa þ 3eaiNi; ηa ¼ −Nea0;

eai ¼ 3eai þ Ni

N
ηa: ð15Þ

Next, we restrict the tetrad field to Schwinger’s time
gauge and show that the vector field n≡ nμ∂μ, where
nμ ≡ gμνnν and nν is given by Eq. (7), coincides with eð0Þ
in this gauge.

C. Time gauge

The time gauge can be characterized by demanding that
eðiÞ0 ¼ 0. In this gauge, the following properties hold [40]:

τðiÞ0 ¼ 0; τð0Þi ¼ 0; τð0Þ0 ¼
1

τð0Þ0
; ð16Þ

τðkÞ0 ¼ −τð0Þ0τðkÞlτð0Þl; e ¼ τð0Þ03e; ð17Þ

where, from now on, we will use τa
μ to represent the

components of a tetrad field that satisfies the time gauge;
we have also defined 3e≡ detðτðkÞlÞ. (Note that we do not

5As pointed out by Norton [39], p. 837, for each coordinate
system, there is a frame of reference whose curves coincide with
the curves of constant spatial coordinates. (One says that these
coordinates are adapted to this frame.) Furthermore, a frame of
reference is a space-filling system. We, therefore, conclude that a
change of coordinates that changes the time coordinate may
change the state of motion of the particles of the frame, which
may alter the energy momentum of the field.
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need to change e because it is independent of the tetrad, up
to a sign.)
We also have the orthonormality properties,

τðkÞiτðkÞj ¼ δij; τðiÞkτðjÞk ¼ δji : ð18Þ

Applying the time gauge to a tetrad field written in the
form given by Eq. (15) yields the expressions

τð0Þ0 ¼ 1=N; τð0Þi ¼ −Ni=N; τðiÞ0 ¼ 0;

τðiÞj ¼ 3τðiÞj; e ¼ N3e ð19Þ

and the coframe

τð0Þ0¼N; τð0Þi¼0; τðiÞ0¼ τðiÞjNj; τai¼ 3τai: ð20Þ

Comparing τð0Þμ given by Eq. (19) with (21.71) of
Ref. [1], we find that n ¼ τð0Þ, where n ¼ nμ∂μ and
nμ ¼ gμνnν. In other words, when we assume the time
gauge, the vector eð0Þ becomes normal to the hypersurface
of simultaneity t ¼ constant, where t here is the coordinate
time, and coincide with the normal vector used in the ADM
formalism.
Note that imposing the time gauge in the general frame

(15) is not a restriction on the spacetime, but rather on the
tetrad field. Therefore, we can always assume (19)
and (20).

III. ENERGY MOMENTUM OF THE TEGR
IN THE TIME GAUGE

In this section we show that the 4-momentum Pa of the
TEGR generalizes that of the ADM formalism when the
teleparallel frame satisfies the time gauge. First, we prove
that the 3-momenta are the same for the cases in which the
ADM energy momentum holds. Then, we use the results
obtained in Refs. [12,22] to conclude that Eq. (14) general-
izes Eqs. (3) and (4).
To find the relation between the extrinsic curvature of the

hypersurface t constant, where t is the same time coordinate
used in Eq. (1), and the superpotential, we write Eq. (9) in
the form Σaμν and take μ ¼ 0. This gives

Σa0i ¼ 1

2
ecieb0ωcab þ 1

2
ea0eciωb

b
c −

1

2
eaieb0ωd

d
b: ð21Þ

Let us restrict Eq. (21) to the time gauge for the case
where a ¼ ðjÞ. First, we notice that the second term of
Eq. (21) vanishes for a ¼ ðjÞ, because τðjÞ0 ¼ 0. Thus, we
only need to focus on the other two.
From the first and the third equalities in Eq. (19),

we see that τb
0ωcab

τ ¼ ð−1=NÞωc
τ
a
ð0Þ and, of course,

τb
0ωτ

d
d
b ¼ ð−1=NÞωτ

d
dð0Þ; the label “τ” indicates that

ωa
bc has been evaluated in a frame that satisfies the time

gauge. Since ωabc ¼ −ωcba, we must have ωð0Þbð0Þ ¼ 0.

So, the last two expressions in the time gauge can be
rewritten in the form

τc
iτb

0ωτ
cab ¼ −

1

N
τðkÞiω

ðkÞa
τ ð0Þ; ð22Þ

and

τb
0ωτ

d
d
b ¼ −

1

N
ωτ

ðkÞðkÞð0Þ; ð23Þ

where we have contracted the first one with τc
i.

In turn, from the definition of ωc
ab we have6 ωc

ab ¼
ecλeaμ∇μebλ, which can be recast as ωc

ab ¼ ecλeaμ∇μebλ.
From the last identity, we see that ωðkÞ

að0Þ ¼
eðkÞλeaμ∇μeð0Þλ. Now, from the equality7 τð0Þλ ¼ nλ and

Eq. (7), we find that ωτ
ðkÞðjÞð0Þ ¼ NΓ0

pqτ
ðkÞqτðjÞp, where

Γν
μλ are the Christoffel symbols of gμν (the four-dimen-

sional metric) and we have used the fact that τðkÞ0 ¼ 0. On
the other hand, from Eqs. (6) and (7), we see that the
extrinsic curvature takes on the form Kij ¼ −NΓ0

ij. Hence
we have

ωτ
ðkÞðjÞð0Þ ¼ −KpqτðjÞpτðkÞq: ð24Þ

Since τðiÞj ¼ 3τðiÞj, we can use the first equation in (18) to
obtain the relation

τðkÞqτðkÞp ¼ 3gpq: ð25Þ

Thus, contracting k with j in Eq. (24) gives

ωτ
ðkÞðkÞð0Þ ¼ −3K; ð26Þ

where 3K ≡ Kpq
3gpq.

From Eqs. (24) and (26), we find that Eqs. (22) and (23)
with a¼ðjÞ can be rewritten as τciτb0ωτ

cðjÞb ¼ ð1=NÞ3KðjÞi

and τb
0ωτ

d
d
b ¼ 3K=N, where we have used Eq. (25)

and 3KðjÞi ≡ Kpq
3τðjÞp3giq (remember that τðiÞj ¼ 3τðiÞj).

Substituting these expressions into Eq. (21) with a ¼ ðjÞ
and recalling that the second term vanishes for a ¼ ðjÞ,
we arrive at

Στ
ðjÞ0i ¼ 1

2N
ð3KðjÞi − 3τðjÞi3KÞ: ð27Þ

We know that e ¼ ffiffiffiffiffiffi−gp
(tetrads with a positive deter-

minant), where g is the metric determinant. In turn, we also

6The symbol∇μebλ represents the components of the covariant
derivative of eb with respect to the Levi-Civita connection, ∇. It is
given by ∇μebλ ¼ ∂μebλ þ Γλ

μνebν.
7See the proof at the end of Sec. II C.
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know that
ffiffiffiffiffiffi−gp ¼ N

ffiffiffiffi
3g

p
. Hence, we have e ¼ N

ffiffiffiffi
3g

p
.

From this identity and Eq. (27), we obtain

eΣ ðjÞ0i
τ ¼ 1

2

ffiffiffiffi
3g

q
ð3KðjÞi − τðjÞi3KÞ; ð28Þ

where we have removed the number 3 from the left
side of the tetrad field because τðjÞi ¼ 3τðjÞi. Comparing
Eq. (28) with (5) and using the fact that τðjÞp ¼ 3gpqτðjÞq,

we find that eΣðiÞ0j
τ ¼ð−1=2Þ3πðiÞj, where 3πðiÞj ≡ τðiÞk3πkj.

Finally, using this result in Eq. (14), we arrive at

PðiÞ
τ ¼ −2k

I
S
dSj3πðiÞj: ð29Þ

It is clear in the above expression that the teleparallel
momentum in the time gauge and the ADM momentum,
Eq. (4), will coincide whenever 3πðiÞj and 3πij are equivalent
on the two surface S. This equivalence happens either when
τðiÞk ¼ δik or when 3πij vanishes. (Note, however, that the
ADM P0 may be different from the TEGR Pð0Þ even in
those cases.)
Equations (3) and (4) have been defined in asymptoti-

cally flat regions and in a coordinate system where the
metric components tend to those of Minkowski. In this
situation, the shift functions go to zero and the lapse
function goes to 1. If we assume that the components of
the teleparallel frame are written in the coordinate basis of
this special coordinate system, we will certainly have
τðiÞk ¼ δik, ensuring the equivalence between the ADM Pi

and the TEGR PðiÞ. A similar argument was used by Maluf
et al. [16] to show that the energy of the TEGR coincides
with the ADM energy in this situation, i.e., P0 ¼ Pð0Þ.
Therefore, in all cases where the ADM energy momentum
is applicable, the TEGR energy momentum can be
made to coincide with the ADM version by taking a
teleparallel frame that satisfies the time-gauge condition
asymptotically.
There are, however, cases where the ADM 4-momen-

tum cannot be applied (and if applied, it fails to predict the
right energy), but the TEGR 4-momentum can, and give
the right answer. An example of this situation is the
Kruskal spacetime [22]: one can predict the right space-
time energy in Kruskal (also in Novikov) coordinates by
using Eq. (14), but not Eq. (3). Furthermore, the TEGR
energy momentum is invariant under general coordinate
transformations of the three-dimensional space, a property
that the ADM 4-momentum does not have. This shows
that the TEGR approach generalizes that of the ADM
formalism.

IV. TEGR ENERGY-MOMENTUM TENSOR
DENSITY VERSUS THE LANDAU-LIFSHITZ

PSEUDOTENSOR

Since the stress-energy pseudotensor of Landau and
Lifshitz is compatible with the ADM energy and momen-
tum [6], in this section we compare it with tμν and show the
advantages of the latter.
We can use Eckart’s decomposition [41] for the stress-

energy tensor to decompose the symmetric part of tμν. This
procedure leads to the energy density ρ≡ tðμνÞeð0Þμeð0Þν ¼
tð0Þð0Þ and the isotropic pressure p≡ ð1=3ÞtðμνÞhμν ¼
ð1=3Þtð0Þð0Þ, where hμν ≡ gμν þ eð0Þμeð0Þν. (We have used
the fact that tμν is traceless.) Therefore, the TEGR predicts
that the gravitational field satisfies a radiation-like equation
of state, p ¼ ρ=3, which is compatible with the fact that the
graviton is a massless particle.
The above result is a consequence of the fact that any

traceless stress-energy tensor satisfies this type of equation,
as is obvious from the above proof. As we shall see shortly,
the Landau and Lifshitz pseudotensor does not satisfy this
property and, therefore, cannot account for the energy
density of a massless field, such as the gravitational one.
In the Landau and Lifshitz approach to Einstein’s field

equations, Eq. (8) is written in the form (see, e.g., p. 138 of
Ref. [42] or Sec. 20.3 of Ref. [1])

∂λτ
μνλ ¼ −gðlμν þ T μνÞ; ð30Þ

where

τμνλ ¼ k∂ρ½ð−gÞðgμνgρλ − gμρgνλÞ�; ð31Þ

lμν is the stress-energy pseudotensor (density) of Landau-
Lifshitz, and the integral of the left-hand side of Eq. (30)
yields an energy momentum that is compatible with that of
the ADM formalism.
For the sake of simplicity and with no loss in generality,

let us assume that T μν vanishes. In this case, we have
lμν ¼ −ð1=gÞ∂λτμνλ. It is clear in this expression that the lμν

is not necessarily traceless and, therefore, it cannot always
represent a massless field. As an example, consider Rindler’s
spacetime: ds2¼−ð1þaξÞ2dτ2þdξ2þdy2þdz2, where a
is the uniform acceleration of the observer at ξ ¼ 0.
A straightforward calculation of lμν yields lμν ¼
kðg00=gÞðδμ2δν2 þ δμ3δ

ν
3Þ and l ¼ 2kðg00=gÞ, where l≡ gμνlμν,

g ¼ −ð1þ aξÞ2 is the metric determinant, and the prime
represents d=dξ. Using Eckart’s decomposition, we find
that ρ ¼ 0 and p ¼ l=3, where we have used hμν ¼ gμν þ
eð0Þμeð0Þν with eð0Þμ ¼ ð1þ aξÞδ0μ. Since ρ ¼ 0 and p ≠ 0,
lμν does not represent a radiation-like equation of state.
Furthermore, the nonvanishing pressure seems to be mean-
ingless in this case. (Note that the frame used here is the
proper reference frame of Rindler’s observer.)
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Another problem with lμν is that it is sensitive to
meaningless coordinate transformations (those that do
not change the state of motion of the observers). To see
this, take the Minkowski metric adapted to an inertial
frame of reference but with spherical coordinates, i.e.,
ds2 ¼ −dt2 þ dr2 þ r2dθ2 þ r2 sin2 θdϕ2. It is straightfor-
ward to check that l00 ≠ 0.
It is interesting to note that the nonvanishing of lμν in

spherical coordinates is a good example of the problem
pointed out by Laue (see, e.g., p. 233 of Ref. [43]): the
misleading statement that the Christoffel symbols represent
the gravitational field strengths. (lμν can be written in terms
of the Christoffel symbols.) Furthermore, the nonvanishing
of l00 in spherical coordinates is not even a realization of the
principle of equivalence, because the observers with con-
stant values in those coordinates are inertial observers (they
should not be able to emulate gravity locally). Any
reasonable definition of a gravitational energy must not
depend on a coordinate transformation that does not change
the time coordinate (the state of motion).
On the other hand, tμν vanishes in Minkowski spacetime

for any coordinate system, as long as the tetrad field is
either inertial or the proper reference frame of an arbitrarily
accelerated observer (see theorem 2.3.1 of Ref. [24], p. 29).
Another very interesting result is that tμν vanishes along the
worldline of any observer in a curved spacetime (Levi-
Civita curvature) if the teleparallel frame is the observer’s
proper reference frame (see theorem 2.3.2 of Ref. [24],
p. 36) These results are not a realization of the principle of
equivalence, because the vanishing of tμν in these cases has
nothing to do with the “local equivalence” between inertia
and gravity. In fact, they are in agreement with the modern
view, owing to Synge, that gravity is the curvature of the
Levi-Civita connection (for a detailed discussion of this
viewpoint, see Sec. 7.3 of Norton [39]). Therefore, no
curvature means no gravitational field, which means no
gravitational stress-energy tensor.
The vanishing of tμν along the observer’s worldline in the

proper reference frame in a curved spacetime is more
subtle: it is related to the kind of physical system that can
reproduce the observer’s proper coordinates. We will
discuss this issue in the next section. Here let us just point
out that, in this frame, Eq. (8) becomes 4k∂νðeΣaλνÞjγ ¼
eT λajγ along the curve γ (the observer’s worldline). So, if
the concept of locality is defined by this type of frame, then
the TEGR predicts that the gravitational energy is nonlocal.
(For a different view of locality, see Ref. [44]; for a nice
discussion of the concept of “infinitesimal regions,” see
Sec. 10 of Ref. [43].)

V. DIFFICULTIES WITH THE TEGR
ANGULAR MOMENTUM

In the context of the Hamiltonian formulation of the
TEGR, Maluf has identified an object that behaves as an

angular momentum and interpreted it as the gravitational
angular momentum [12]. The gravitational angular-
momentum density defined by Maluf is given by

Mab ≡ −4keðΣa0b − Σb0aÞ: ð32Þ

Here we discuss the challenge of interpreting Mab as the
angular-momentum density of gravity/spacetime.
First of all, it is not clear whether Mab is the spacetime

angular-momentum density or just the gravitational one (or
something else). This is so because there is no known
conservation equation involving Mab and the matter angu-
lar-momentum density. To make things more complicated,
we prove the following theorem.
Theorem V. 1 Let τa represent a frame that satisfies the

time gauge, i.e., τðiÞ0 ¼ 0. In this frame, we have MðiÞðjÞ
τ ¼

0 regardless of the spacetime metric.
Proof. From Eqs. (27) and (18)–(20), one finds that

Στ
ðjÞ0ðkÞ ¼ Στ

ðkÞ0ðjÞ, where we have used the fact that Kμν is

symmetric. As a result, MðjÞðkÞ
τ vanishes for any spacetime.

Another way to prove that MðjÞðkÞ
τ vanishes is as follows.

From Eqs. (9) and (10), one can easily show that
Mab ¼ −2keðT0ab þ eb0Ta − ea0TbÞ. In turn, from

Eqs. (18)–(20) and (11), we see that T0ðjÞðkÞ
τ and τðjÞ0

vanish, leading to MðjÞðkÞ
τ ¼ 0.

This result means that the angular-momentum density

MðjÞðkÞ
τ ¼ 0 vanishes even in spacetimes such as Gödel’s. If

one interprets MðjÞðkÞ
τ as the spacetime angular-momentum

density, then one might argue that the gravitational angular-
momentum density is canceling that of matter. However,
there is no equation to confirm that. On the other hand, by

interpreting MðjÞðkÞ
τ as the gravitational density, we would

have a spacetime where matter has a nonvanishing angular
momentum but the gravitational field does not react to that
momentum, which would be totally counterintuitive.
Another possibility is that, for some spacetimes, such as

Gödel, the ideal frame to evaluate the gravitational energy
does not satisfy the time gauge. It was speculated in
Ref. [24] (see the topic 6 on p. 38) that the ideal frame
to probe the gravitational energy properly should be given
by a frame that is freely falling in the whole region of the
spacetime where it is well defined; it must also be free from
artificial properties. In many cases this idea does not
conflict with the time gauge, but it is possible that it does
when the gravitational field “rotates” locally.
The argument in favor of this type of freely falling frame

is the following. A frame of reference is necessarily a
physical system, not an abstract entity. We may neglect its
stress-energy tensor, thus neglecting its effects on the
spacetime curvature, because we assume that this system
is made of test particles, but we cannot disregard its
qualitative properties when studying its dynamics and
the gravitational energy. For instance, the Schwarzschild
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coordinates are related to an acceleration that is necessary
to keep the test particles at rest in the radial coordinate; this
coordinate system, and therefore the frame adapted to it,
assumes the existence of an external (nongravitational)
force. In other words, the stress-energy tensor of both the
system that accelerates the test particles and the test
particles themselves are assumed not to interfere signifi-
cantly with the background geometry. However, qualitative
properties such as “the origin of the frame is accelerated”
can never be neglected. So, it is natural to think of two
possibilities. The first one is to assume that these non-
gravitational interactions embedded in the frame prevent us
from properly interpreting tμν as the gravitational energy.
The second, and perhaps the most desirable one, is that tμν

does represent the gravitational energy in any frame free
from artificial properties, but the nongravitational forces
change the gravitational energy in a way that may be hard
to understand, at least when neglecting the effects of these
forces on the background geometry. Therefore, the safest
approach seems to be that which takes tμν as the gravita-
tional stress-energy tensor only when the frame is made up
of freely falling particles.
To support the idea that these nongravitational inter-

actions change the behavior of gravity, one just need realize
that the coordinate systems that is usually used to write an
arbitrary metric in the Minkowskian form locally are all
adapted to particles that are accelerated (under nongravita-
tional interaction), with the exception of that at the origin.
(For more details, see the Appendix.) On the other hand, it
seems that coordinate systems adapted to freely falling test
particles do not allow the metric to take the Minkowskian
form along the trajectory of an arbitrary freely falling
particle if the spacetime is curved. Therefore, it is natural to
assume that the best way to probe the gravitation energy is
using a system of freely falling particles as the reference
frame. (This does not mean that this type of frame is
privileged; it is just a convenience for identifying and
interpreting the gravitational energy.)
In finding a freely falling frame that is free from artificial

properties, the minimal set of assumptions we have to
make is
(1) The acceleration tensor must vanish, i.e., ωað0Þb ¼ 0.
(2) The Levi-Civita connection coefficients ωa

bc must
vanish when the curvature tensor of this connection
vanishes (absence of gravity).

We leave the analysis of Mab in these type of frames for a
future work.

VI. CURRENT APPROACHES FOR NOETHER
CHARGES IN TELEPARALLELISM

The interest in methods for solving the gravitational
energy problem has never declined. Instead, it seems to be
increasing. For instance, in Refs. [45,46], the authors try to
deal with this problem by using the concept of Noether

charges. In this section we discuss some interesting results
obtained in these references.
In Ref. [45], the authors show that the teleparallel

4-momentum, Eq. (14), can be obtained from the
Noether charges when one considers the diffeomorphisms
generated by the tetrad vectors. This result strengthens the
validity of Eq. (14), the way in which Eq. (12) is written,
and also the interpretation of tμa as the gravitational energy-
momentum current.
They also discuss a possible ambiguity in the type of

index that one should use in the 4-momentum (Pμ or Pa).
They call the attention to the possibility that someone may
consider rewriting Eq. (12) in such a way that it becomes
free from the tangent-space index and define the energy
momentum as8 Pμ. Based on the Noether charge analysis,
they conclude that it is unlikely that this Pμ has any
physical meaning. Here, we would like to go further and
point out that in the TEGR there is no ambiguity with
respect to the nature of the 4-momentum. This is so because
the fundamental variable in the TEGR is the tetrad field
eaμ; therefore, its momentum canonically conjugated
must have the tangent-space index; a definition like
Πμν ≡ eaμΠaν has few chances to be more meaningful
than Πaν, and the same goes for Pμ versus Pa.
Another important point we would like to address is the

vanishing of Pa for the free-falling observers used in
Ref. [45] (“Lemaitre observers”). Although this result
is not in disagreement with the principle of equivalence,
it is not necessarily a consequence of this principle. The
equivalence principle is not related to frames that are freely
falling everywhere; it is related to the so-called local inertial
frame, which is freely falling only along one worldline.
One can see this from the vanishing current in the
accelerated frame used by Obukhov et al. in Ref. [47]
and the nonvanishing result obtained by us in a freely
falling (everywhere) frame that we call Novikov [22].
The results obtained in Refs [22,45] for the Novikov and

Lemaitre observers are very important to a problem that
should be discussed more in the literature, namely, the role
played by the surface of simultaneity. To understand why
those two sets of observers are helpful to illustrate this
issue, let us address their similarities and differences. Both
describe the Schwarzschild black hole in Gaussian normal
coordinates and, therefore, their coordinate times are the
proper times of the observers; furthermore, the clocks of
each set of observers are synchronized. When we published
[22], we hoped that this synchronization would be enough
to obtain theMc2 energy for the Schwarzschild black hole;
however, as is clear from these two references, this is not
enough. The difference between the Lemaitre observers
and those of Novikov is in the fact that they are not the

8It is worth noting that although Nester used the Hamiltonian
formalism to obtain a definition for the 4-momentum, his version
is defined with a spacetime index [Eq. (3.21) in [34]].
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same freely falling observers and, consequently, the
hypersurfaces of simultaneity defined by their proper
times are different. For constant time, the velocity of the
Lemaitre observers with respect to the Schwarzschild
ones is

ffiffiffiffiffiffiffiffiffiffiffiffi
2M=r

p
, while that of Novikov observers isffiffiffiffiffiffiffiffiffiffiffiffi

2M=r
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ R2 − r=ð2MÞ
p

=R, where r and R are the
Schwarzschild and Novikov radial coordinates, respec-
tively. This difference might explain the different
predictions.
A possible explanation for the vanishing result in the

Lemaitre frame is an artificial rotation of the congruence of
curves of the observers: in any hypersurface of simulta-
neity, the observer’s velocity vectors point toward the black
hole, which means that there is a relative rotation between
two neighborhood worldlines that has nothing to do with a
change in the observer’s state of motion; these rotations
were there as a set of initial conditions in the first place.
This problem was first discussed in Ref. [24] (see, e.g.,
p. 32 and Sec. 2.3.3). Although the Novikov frame shares
the same problem most of the time, there is one instant
where this problem is not present: for τ ¼ 0, where τ is the
observer’s proper time, all Novikov observers have zero
3-velocity, which means that such a spurious rotation is
not present at this instant; the same does not happen with
the Lemaitre observers. One could, perhaps, argue that the
rotations that appear after τ ¼ 0 in the Novikov case are
physical because they are caused by the gravitational
“pull,” since there was no rotation at τ ¼ 0. It might be
the case that we only need to set the right configuration for
the tetrad field in one hypersurface of simultaneity and then
let the system evolve. However, this requires a much deeper
analysis, which is out of the scope of this article.
Both Novikov and Lemaitre frames satisfy the conditions

given at the end of Sec. V, and also the time gauge. This
means that those conditions are not sufficient for removing
ambiguities in the calculation of Pa. Therefore, one must be
careful when calculating Pa with a frame that does not
satisfy the asymptotic conditions that ensure the equiv-
alence with the ADM version.
Let us now discuss some of the results of Ref. [46]. In

this reference, the authors adopt a new view of the Noether
charges in a attempt to find a unified description for many
pseudotensors and generalize the approach to the gravita-
tional energy problem. They find, for example, a unified
description for the von Freud, Landau-Lifshitz, Bergmann-
Thomson, Papapetrou, and Weinberg superpotential. This
is achieved in a geometrical setup with an affine connection
where both the curvature and the torsion tensor vanishes;
however, the nonmetricity does not. This approach is called
symmetric teleparallel formulation of general relativity and
was first proposed by Nester and Yo in Ref. [48].
In dealing with the problem of the Noether charges and

the gravitational energy, the authors of Ref. [46] postulate
that the calculation of the gravitational charges are physi-
cally meaningful only when calculated in what they call

“inertial frame.” This frame is defined as being the frame
where the energy-momentum current vanishes; it is not
necessarily a frame adapted to freely falling particles, as
one can infer from the calculation in Sec. VIII B there: the
coordinates in the metric (165) are adapted to accelerated
particles, except for those particles with x ¼ y ¼ 0 and
constant z [the coordinates ðt; x; y; zÞ are the proper
coordinates of these observers]. Furthermore, a tetrad field
that satisfies this condition is neither necessarily adapted to
the time gauge nor to freely falling particles, an example
being the tetrad used in Ref. [47]. Therefore, the proposal
of Ref. [46] to solve the ambiguities and inconsistencies in
the calculation of energy is different from ours.
It is worth noting here that the name inertial frame

may not be suitable for the TEGR because the energy-
momentum current tμa vanishes in the observer’s proper
reference frame if the Levi-Civita curvature vanishes,
regardless of the frame acceleration, as pointed out at
the end of Sec. IV.
A comment is in order here regarding the time gauge.

Attempts to solve the ambiguities in the choice of the
teleparallel frame dates back to the work of Møller [31]. He
had noticed that not all tetrads can be used to evaluate the
energy-momentum currents. Ever since, there have been
many suggestions for the “ideal” teleparallel frame to
calculate the gravitational energy. In particular, Maluf
and collaborators [16] gave an interesting set of equations
for the tetrad field: they demand that the tetrad field satisfy
eðiÞj ¼ eðjÞi and eðiÞ0 ¼ 0 (time gauge) in a Cartesian-like
coordinate system. They argued that this type of frame is “a
unique reference space-time that is neither related by a
boost transformation, nor rotating with respect to the
physical space-time.” Since many consistent results have
been obtained in the time gauge (see, e.g., pp. 20–54 of
Ref. [24]), we consider the analysis of the energy momen-
tum in this frame an important task to better apprehend
the role played by the tetrad fields, although we are now
more inclined to believe that the conditions presented at
the end of Sec. Vare more promising, although incomplete.
Another reason for using the time gauge here is, of course,
the fact that the relation between the ADM 4-momentum
and the TEGR 4-momentum becomes much clearer in
this gauge.
To end this section, we would like to point out that there

are some attempts to formulate a consistent covariant
formalism for teleparallel theories, both in the symmetric
approach (teleparallelism without torsion) [48–50] and in
the standard teleparallelism (see, e.g., Refs. [51,52] and
references therein). However, some of these approaches
present problems. For example, in Ref. [45], the authors
show an inconsistency with the “covariant” version of Pa.
The possible explanation for this inconsistency is the
“switch-off” mechanism applied there: as pointed out by
the authors, in this approach, two tetrads (not necessarily
related to each other by a global Lorentz transformation)
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can share the same spin-connection coefficients of the
Weitzenböck connection.9

VII. CONCLUSIONS AND FINAL REMARKS

We have seen that the energy momentum of the TEGR is
more general than that of the ADM formalism. It gives the
same results as the ADM one when the latter is applicable,
but can go way beyond that. It predicts the right energy of
both Kruskal and Novikov spacetimes, it does not need
asymptotically flat boundary conditions (see, e.g., the
cosmological case in Ref. [23]), and can be used in finite
regions of the spacetime.
Since the teleparallel stress-energy tensor is traceless, it

satisfies a radiation-like equation of state. On the other
hand, the Landau-Lifshitz pseudotensor is not traceless and
cannot describe massless fields.
We have also seen that the quantity that is in general

associated with the spacetime (or gravitational) angular-
momentum density in the context of the TEGR, Mab,
satisfies the relation MðjÞðkÞ ¼ 0 if the teleparallel frame
satisfies the time gauge. (Note that this result is indepen-
dent of the coordinate system.) This means that there is no
angular momentum in this case, for whatever this angular
momentum is supposed to be.
Is MðjÞðkÞ the angular momentum density of gravity

or of the spacetime? Is it a residual angular momentum
of the frame? We leave a deeper analysis of this issue for a
future work.
As a final remark, we would like to point out the

possibility that the advantages of the 4-momentum of
the TEGR over that of the ADM approach extend to
the Hamiltonian formulation as a whole. If that is the case,
then the Hamiltonian formulation of the TEGRwould be an
improvement of the ADM formulation.
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APPENDIX: LOCAL INERTIAL FRAME

Denoting the Fermi normal coordinates by xμ ¼ ðct; xjÞ,
we can write the metric components accurate to second
order in jxjj in the form gμν ¼ ημν þ hμν (see, e.g., p. 332 of
Ref. [1]), where ημν is the Minkowski metric and

h00 ¼ −R0i0jðtÞxixj; h0i ¼ −
2

3
R0jikðtÞxjxk; ðA1Þ

hij ¼ −
1

3
RikjlðtÞxkxl; ðA2Þ

where RαβμνðtÞ are evaluated along the worldline
xμ ¼ ðct; 0Þ.
The coordinates ðct; xjÞ are the proper coordinates of the

observer at xj ¼ 0. Along the observer’s worldline, the
metric becomes ημν and the connection coefficients vanish;
hence, this proper reference frame is a local Lorentz frame
(a local inertial frame of reference). Next, we show that
the physical system which realizes this coordinate system
and, of course, the frame adapted to it, is not a pure
gravitational system.
It is not clear whether the concept of a tetrad field

adapted to a certain coordinate system leads to a unique
tetrad. However, we do not need a unique tetrad to prove
that the curves with constant values of xj are accelerated for
xj ≠ 0. Any frame that is adapted to the test particles with
constant values of xj will be sufficient.
A frame that is adapted to ðct; xjÞ and satisfies the time

gauge is

τð0Þμ ≈
�
1 −

1

2
h00

�
δ0μ; τðiÞ0 ≈ h0i;

τðiÞj ≈ δij þ
1

2
hij; τð0Þ0 ≈ 1þ 1

2
h00;

τð0Þi ≈ −h0i; τðiÞ0 ≈ 0; τðiÞj ≈ δij −
1

2
hij: ðA3Þ

In principle, we could use τð0Þμ as given by Eq. (A3) to
calculate the acceleration of the particles of the frame.
However, there is a simpler way of doing that: we can
calculate the acceleration of the curves with constant values
of xj in the hypersurface of simultaneity that is orthogonal
to uμ ¼ dxμ=dτ, rather than that which is orthogonal to τð0Þ;
τ is the proper time of the particle with the worldline xμðτÞ.
One can show that the acceleration calculated with uμ

equals that calculated with τð0Þ to first order in jxjj. That is
enough for our purpose.
The 4-velocity takes the form uμ ¼ cðdt=dτÞδμ0, where

dt=dτ ≈ 1þ h00=2. Since the acceleration is given by
aμ ¼ uν∇νuμ, we have

aμ ¼ c2
dt
dτ

�
∂

∂x0
dt
dτ

δμ0 þ Γμ
00

dt
dτ

�
; ðA4Þ

where Γμ
αβ are the Christoffel symbols. From Eq. (18.2) in

Ref. [1], we find thatΓμ
00≈ημν∂0h0ν−ð1=2Þημν∂νh00. Hence,

we consider the approximation Γμ
00ðdt=dτÞ≈Γμ

00. On the
other hand, the first term in Eq. (A4) can be approximated
by ∂0ðdt=dτÞ ≈ ð1=2Þ∂0h00. Using these expressions in

9It is worth noting that the reason why the switch-off
mechanism yields the same Weitzenböck connection for the
tetrads given by Eqs. (4.3) and (5.3) there is the fact that when
gravity is switched off, both tetrads become the same tetrad: they
become the tetrad of the spherical coordinate system, i.e.,
ϑa ¼ ðdt; dr; rdθ; r sin θdϕÞ; Eq. (5.5) is exactly the Levi-Civita
spin connection in this tetrad.
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Eq. (A4), one finds that a0 ≈ 0 and ai ≈ c2R0i0jðtÞxj to first
order. Therefore, the test particles which compose the frame
are not free, except for the one at xj ¼ 0; they are under the
action of a nongravitational force.
In practice, the Fermi normal coordinates are realized

by rigid bodies with nongravitational forces that fight the

so-called tidal “forces.” To be more precise, the forces
responsible for the acceleration ai prevent the particles
from following geodesics. So, it seems clear that a system
of coordinates whose positions are marked by freely falling
particles will not always allow the metric to become that of
Minkowski along a timelike geodesic.
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