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The role of the wandering null geodesic is studied in a black hole spacetime. Based on the continuity of
the solution of the geodesic equation, the wandering null geodesics commonly exist and explain the typical
phenomena of the optical observation of event horizons. Moreover, a new concept of “black room” is
investigated relating the wandering null geodesic to the black hole shadow more closely.
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I. INTRODUCTION

The black hole shadow [1–3] observed as the real image
of photons around the massive black hole at the center of
M87 was excitingly reported by the Event Horizon
Telescope—a planet scale array of eight ground based
radio telescopes forged through international collaboration
[4–9]. Nevertheless, of course, by definition, we cannot see
the black hole’s event horizon directly. A black hole region
is defined as the complement of the causal past of future
null infinity, and the event horizon is defined as the
boundary of the black hole region. Then any causal past
set of our world line, which is the observer on the future
null infinity, does not contain the event horizon. There is
not any direction among our line of sights corresponding to
the event horizon. Therefore, we should be careful to
understand the meaning of the image of the black hole
shadow.
On the other hand, when we consider a physically

realistic black hole, which is not the rigorous
Schwarzschild spacetime, the most significant fact we
should concern ourselves with regarding the black hole
would be that the black hole is not static. Of course, the
simplest essential picture of the shadow is interpreted
by the appearance of a photon sphere [10–12]. In
Schwarzschild spacetime, the unstable circular orbits of
photons form a bright photon sphere. And then, the absence
of the orbit in which the light ray goes into the photon
sphere and successfully goes out from it implies a centered
dark region [13,14]. Nevertheless, in general realistic black
hole spacetime, the concept of the photon sphere fails and
the formation of the black hole will become significant.
By monitoring the morphology of the event horizon, it

was suggested [15] that the shadow of a black hole does not
show any dynamical nature. We are still expecting, however,
that there still remain any remarkable dynamical aspects of
the black hole shadow that we can observe during our real

life time. The expectable dynamics that will be oscillation,
movement, formation, merging, and so on. For example,
though the oscillation may be treated perturbatively, we are
not hopeful to understand them completely without know-
ing any general extended treatment of the black hole shadow
beyond the Schwarzschild spacetime.
On the other hand, the concept of the photon sphere is

generalized by the wandering set into the general black hole
[16]. Then it is suggested that the wandering null geodesic,
which is a complete null geodesic possessing an infinite
number of conjugate points, will be accompanied by the
accumulating null geodesics coming from the photon
sources here and there under the existence of a lot of
conjugate points. We are left wondering this: What is the
condition for the appearance of the wandering null geo-
desic? Since the key concept will be the conjugate point, we
should discuss the effect of the curvature on null geodesic
congruence. In the Schwarzschild spacetime, however, the
fact is that any spacetime point outside of the event horizon
has such a wandering null geodesic. That means that the
optical signal from all of spacetime can be included by the
bright region of the black hole shadow. Is it also true for
general black holes?
One of the purposes for the present article is to inves-

tigate such a diffusional nature that the wandering null
geodesics come from here and there. Especially, we would
like to discuss its observational meaning for the black hole
shadow. In the next section, we will provide the definition
and the fundamental concept of the wandering null geo-
desic and wandering set as a generalization of the photon
sphere. In the third section, we demonstrate the common-
placeness that the wandering null geodesic can be starting
from here and there in the black hole spacetime under the
global hyperbolicity. And then we discuss the meaning of
the black hole shadow observation under the common-
placeness in the fourth section. Moreover, we will attempt
to relate the wandering null geodesic closely to black hole
shadow introducing the concept of black room. The final
section is devoted to summary.*msiino@th.phys.titech.ac.jp
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Strictly speaking, the meaning of the black hole shadow
should be the dark region of the black hole image.
Therefore, it does not rigorously include the bright sphere.
Nevertheless, this distinction is not so productive. In the
present article, we expect that the reader regards the term
“black hole shadow” as including both the dark and bright
regions of the black hole image.

II. DEFINITION OF WANDERING NULL
GEODESIC

To generalize the photon sphere, one may attempt to
consider a photon lying on a timelike hypersurface [17–21].
In the Schwarzschild spacetime, the characteristic of the
null geodesic equation was reduced to a single potential
function. So, one would expect the similar analysis gives a
light to shine on a road to generalized photon sphere.
There, the timelike hypersurface could divide the space-

time into two regions where gravity is strong and weak
[22]. In the first place, however, it is not clear even whether
the generalization of the photon sphere should be a timelike
hypersurface whose spatial section is any closed surface
(naively, we may expect it to be a sphere) or not, in general
situations. At the present, we think those are doubtful since
the essence of such an orbital kinematics will rely on not
only the gravitation in radial direction, but also in angular
direction, which will deform the orbit evolutionally, in
general. Therefore, we first rather give attention to a single
null geodesic than that dividing surface.
Since the purpose of the generalization of the photon

sphere is to explain how the black hole shadow is
structured, wewill think the generalization must not depend
on the spacetime coordinate, especially in the choice of the
spatial hypersurface. According to the general covariance,
timelike directions for each coordinate system are on an
equal adequateness. So, it is difficult to determine spacelike
hypersurface without any spacetime symmetry or conser-
vation law.
Even if we concentrate on a single null geodesic, how

can we judge the null geodesic is on an orbit or not without
a concept of any special time coordinate? Consequently, we
will consider that the concept of the generalized photon
sphere should be far away from the concept of coordinates
and the most natural substitution of it would be a concept
related to causality. Indeed, the definition of a black hole is
given as the complement of the causal past of the future null
infinity. Then also the black hole shadow as the funda-
mental nature of the black hole is expected to be discussed
as the causal nature of the spacetime.
Though one of physical key points of the black hole

shadow in static spherically symmetric spacetime was that
many null geodesics are accumulated to a single unstable
circular photon orbit [23], at the first onset we will
concentrate on a causal nature of a single null geodesic
that can substitute the circular orbit.

Considering an asymptotically flat spacetime [24,25],
inextendible complete curves go toward the boundary of
the spacetime manifold composed of future (past) null
infinity Iþ; I−, future (past) timelike infinity iþ; i−, and
spatial infinity i0. The simplest causal structure will be
asymptotically simple where every null geodesic will
terminate only on the future null infinity. Nevertheless,
as is well known the black hole spacetime is not the case
since the null geodesic going into the event horizon never
can escape from it.
The remarkable fact is that there are null geodesics that

go toward future timelike infinity iþ, which is the stable
circular orbit r ¼ 3m in Schwarzschild spacetime. Though
such a geodesic will not be allowed in asymptotically
simple spacetimes [26], general black hole spacetimes may
have such null geodesics under the condition of weak
asymptotic simpleness. And then the accumulation of
photon orbits will be discussed focusing on whether there
are many parallel null geodesics that go to escape to the
future null infinity (or coming from the past null infinity).
In the sense of conformal completion, however, the

unphysical manifold M̄ does not include the point of
timelike infinity iþ, since the conformal boundary is not
smooth there. To include iþ in the boundary of the
manifold, one may consider a c boundary [27]. Then we
see the boundary will have Hausdorff topology, but it is not
easy to handle it. Therefore, it would not be a good choice
to define the concept that geodesics go to iþ.
In spite of that, we will consider null geodesics not

falling into a black hole and not escaping to future null
infinity. We may call such a null geodesic a “neutral” null
geodesic γn as a generalization of the unstable circular
photon orbits. To examine such a neutral null geodesic, we
will analyze the null geodesic congruence [25]. Then we
will soon be aware that the neutral null geodesic will be
accompanied by the infinite number of conjugate points, if
the null geodesic is complete and inextendible1 [16]. And
then we will define a wandering null geodesic as the
generalization of the unstable circular orbit for photons. We
consider a future (past) complete null geodesic with a
repetitive infinite number of conjugate points starting from
p to the future (past) direction. Then it is named a future
(past) wandering null geodesic from p.
As we are considering a globally hyperbolic spacetime,

the existence of conjugate points implies that such a null
geodesic come into the inside of the chronological future of
the starting point. Then the same logic suggests that along
this null geodesic conjugate points repetitively appear.
This situation can be easily illustrated in the case of
Schwarzschild spacetime (see Fig. 2 in Ref. [16]).

1In the present work, we only consider an inextendible one
since the parameter of the null geodesic for light rays is to be set
to the affine parameter.
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The concept of the conjugate point is a natural result,
because under the global hyperbolicity the following
theorem is well known [24,25].
Theorem 1. Any point on the boundary of a causal

future JþðpÞ can be connected to p by the null geodesic
without a conjugate point.
This theorem means, in a sense, the formation of

conjugate points implies that the null geodesic enters the
chronological future of the starting point under the global
hyperbolicity (see Fig. 3 in Ref. [16]). This situation is of
small variation for the null geodesic generator of the
chronological future [24,25]. Roughly speaking, the exist-
ence of conjugate points suggests that the null geodesics is
passing round and round around the black hole, repetitively
visiting the conjugate points.2 Then we think that the usual
wandering of the null geodesic around the black hole region
is related to the conjugate point of complete null geodesics.
As discussed in [16], the correct correspondence of the

circular orbit is not general wandering null geodesics in a
rigorous sense. A totally wandering null geodesic is defined
as a future past complete null geodesic possessing an
infinite number of conjugate points both in future and past
directions. For the generalization of the photon sphere, we
consider a wandering set, which is the set of the totally
wandering null geodesics. Furthermore, one may manipu-
late the null geodesics in order to investigate various
aspects of the wandering nature. For example, for the sake
of the determination of the formation of the wandering null
geodesics, we will truncate the segment of the future
wandering null geodesics at the first or the second con-
jugate point. According to the definition of the wandering
null geodesic, in Schwarzschild spacetime, we see that
there are starting points of the wandering null geodesic on
all over the world commonly, as it can be easily seen by the
spherical symmetry and the static nature.

III. COMMONPLACENESS OF WANDERING
NULL GEODESIC

Let us focus on an asymptotically flat black hole
spacetime. Through the present work, to assure the cau-
sality we impose global hyperbolicity on the spacetime or a
part of the spacetime that contains the whole of the outer
region of the black hole.then3 Such a part of the spacetime
is called a strongly asymptotically predictable spacetime,
and we assign the character M to it [26]. Note that, more
precisely, an asymptotically flat spacetime ðM; gÞ is a
strongly asymptotically predictable spacetime when there
is a sufficiently large open globally hyperbolic region V in

M containing J−ðIþÞ. As a consequence of asymptotic
flatness, the unphysical spacetime manifold M̄ possesses
spatial infinity i0 and future null infinity Iþ, which is
defined as the causal future of i0. Moreover, future null
infinity Iþ admits a null coordinate u as Iþ≃
fð0;∞Þg × S2 ∼ fðu; x1; x2Þju ∈ ð0;∞Þg.
From the global hyperbolicity, there is a family of

Cauchy surfaces C½t� as a family of time slices of the
spacetime such that M ≃ C½·� × ½0;∞Þ. Then the family of
time slices is regarded as complete, since M̄ ⊃ J−ðIþÞ
even if there is a timelike or null singularity inside the event
horizon. For an initial Cauchy surface C½0�, we assume
that there already exists the black hole region:
C½0� ∩ ðMnJ−ðIþÞÞ ≠ ∅, which should finally settle to a
single spatially connected region. We also assume non-
evaporativity of black holes4; that is, for an arbitrary point p
on C½0�, there exists a causal curve from p to the interior of
the black hole region B ≔ MnJ−ðIþÞ.
Now we discuss the set of continuous future directed

causal curves starting from p and ending at q, Cðp; qÞ. By
the global hyperbolicity, Cðp; qÞ is compact [29] with
respect to the topology generated by the following basis:

OðUÞ ¼ fλ ∈ Cðp; qÞjλ ⊂ Ug; ð3:1Þ

where U is an arbitrary open subset of the spacetime
manifold M. Here it should be noted that Cðp; qÞ ¼ ∅ for
q ∉ JþðpÞ. We then determine another set of curves from
Cðp; qÞ for a Cauchy surface Σ by

Cðp;ΣÞ ¼ ∪
q∈Σ

Cðp; qÞ; ð3:2Þ

where we define the topology of Cðp;ΣÞ replacing the
point pwith a Cauchy surface Σ in (3.1). One can show that
Cðp;ΣÞ is compact.
Here we define the subset of Cðp;ΣÞ, which plays an

important role in the proof of commonplaceness of wander-
ing null geodesics:
Definition. Nðp;ΣÞ is the set of the null geodesics

starting from p to q ∈ Σ.
Here it should be noticed that while any causal curve

connecting p to q must be a null geodesic if q ∈
JþðpÞnIþðpÞ (Theorem 1), Nðp;ΣÞ is composed of not
only such null geodesics since it can contain a null geodesic
with a conjugate point of p.
In the following, we investigate properties of Nðp; AÞ in

analysis of ordinary differential equation (ODE). Here we
had better be careful about the smoothness and continuity
of the spacetime, since we might consider various space-
times; e.g., at the surface of a star the matter field might not

2Of course, one may argue that the conjugate point is not
necessarily required for the null geodesic to enter the chrono-
logical future of the starting point (topological nontriviality may
globally cause it, for example in a static spacetime of flat S1 × R2

spatial section).
3Cf., cosmic censorship conjecture.

4Even if the spacetime is globally hyperbolic and asymptoti-
cally flat, this assumption is violated by the thunderbolt singu-
larities [28].
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be continuous or Kastor-Trascen spacetime is not so
smooth [30]. Now we will demonstrate that the homotop-
ical nature between the initial value and its evolution in the
neighborhood of a unique solution. With the existence and
uniqueness of the solution for the ODE, we quote the
following known theorem that is essential for existence of
wandering null geodesics.
Theorem 2 (continuity of ODE [31]). Let τ0; τ1ðτ0 <

τ1Þ be real fixed numbers and ðτ0; ξ0Þ a fixed point in the
(nþ 1)-dimensional ðt; xÞ space. Denote by U0 the set of
all points P0∶ðτ0; ξÞ such that

jξ − ξ0j < b0; ðb0 > 0Þ: ð3:3Þ

Suppose that through each point ðt; xÞ in the region

V∶ τ0 ≤ t ≤ τ1 jx − ξ0j < b ð0 < b0 ≤ bÞ

there exists a unique solution of

dx
dt

¼ fðt; xÞ; ð3:4Þ

f being continuous on V. Let φ ¼ φðt; τ0; ξÞ be the solution
of (3.4) passing through P0 ∈ U0. Let b be sufficiently
large so that ðt;φðt; τ0; ξÞÞ ∈ V for jξ − ξ0j < b0,
τ0 ≤ t ≤ τ1. Let U1 denote the set of all points
P1∶ðτ1;φðτ1; τ0; ξÞÞ, where ðτ0; ξÞ ∈ U0. Then the map-
ping T which assigns the point P1 to each point P0 ∈ U0 is
a homeomorphism of U0 onto U1.
Now we apply Theorem 2 to Nðp;ΣÞ and discuss the

existence and uniqueness of the solution of the ODE.
Incidentally, the existence of the solution for the ODE is
locally demonstrated by Cauchy and Peano, and we should
impose the value of f to be bounded as jfj < M to extend
the solution globally. Nevertheless, by the global hyper-
bolicity the existence of the solution is assured since
Cðp;ΣÞ including Nðp;ΣÞ is compact so that the
Cauchy series of a curve λn ∈ Nðp;ΣÞ is convergent. As
is well known, for the uniqueness, the Lipschitz continuity
will be adopted as a sufficient condition. Of course the
necessary sufficient condition for the uniqueness of the
solution for the ODE is also given by Okamura [32].
We define S½t� ¼ fλ ∩ C½t�jλ ∈ Nðp; C½t�Þg and should

be careful about the fact that T in Theorem 2 is not one to
one globally, since there might be conjugate points. Thus,
as a direct consequence of global hyperbolicity, one can
show that S½t� is arc-wise connected.
Corollary. Suppose M is a globally hyperbolic space-

time, where the geodesic equation satisfies the condition for
Theorem 2. Then Nðp; C½t�Þ is also arc-wise connected in a
topology of Eq. (3.1) and S½t� is arc-wise connected.
Proof.—From Theorem 2, there is a topological immer-

sion of a sphere Φ½t�∶S2 ↦ C½t�. Then S½t� is arc-wise
connected, and Nðp; C½t�Þ is also arc-wise connected in a
topology of Eq. (3.1). ▪

Thus we are ready to prove the theorem of common-
placeness for a wandering null geodesic. First, we consider
the neutral null geodesics. To prove the existence of
the neutral null geodesic, we define a subset Iþ½u0� ¼
fðu; x1; x2Þ ∈ Iþju < u0g ⊂ Iþ and following close sub-
sets of S½t� ¼ fλ ∩ C½t�jλ ∈ Nðp; C½t�Þg:
Definition.

Sout½t; u� ¼ S½t� ∩ J−ðIþ½u�Þ; ð3:5Þ

Sin½t� ¼ S½t� ∩ B̄ ¼ S½t� ∩ ðMnJ−ðIþÞÞ: ð3:6Þ

Then an element of Nðp; Sout½t; u�Þ represents a null
geodesic going toward future null infinity and that of
Nðp; Sin½t�Þ represents a null geodesic falling into a black
hole. Our purpose is to demonstrate the existence of a null
geodesic that is included by neither Nðp; Sout½t; u�Þ nor
Nðp; Sin½t�Þ. The situation is illustrated in the Fig. 1.
We can show that Sin½t� and Sout½t; u� are not empty for

sufficiently large u and t, and they are not intersecting.
Proposition 1. For a point p on C½0� and the outside of

the black hole region, there exists t0 and u0 such that
Sout½t; u� and Sin½t� are not empty for any t > t0 and u > u0.
Moreover Sout½t; u� ∩ Sin is empty.
Proof.—Since p is a point in J−ðIþÞ, for any q on Iþ,

there is a causal curve connecting p and q. Let u0 be a u-
coordinate value of the point q. Then Sout½t; u� is not empty
for any u > u0.
Since the initial time slicing C½0� is achronal, B ∩ C½t� is

not a subset of JþðpÞ for arbitrary t > 0, where ∂JþðpÞ is
generated by the null geodesics starting from p. From the
assumption of the nonevaporativity, there exists t1 such that
ðB ∩ C½t�Þ ∩ JþðpÞ is not empty for arbitrary t > t1. Since
we consider the spacetime that “settles down” to a single
black hole state, there exists t2 such that B ∩ C½t� is arc-wise
connected for arbitrary t > t2. From these three facts, there
exists t0 such that ðB̄ ∩ C½t�Þ ∩ S½t� ¼ Sin½t� is not empty for
any t > t0.
If Sin ∩ Sout is not empty, consider r ∈ Sin½t� ∩ Sout½t; u�.

From r ∈ Sout½t; u�, there is a q0 ∈ Iþ such that r and q0 are
connected by a null geodesic. Then in a neighborhood U 0

q

FIG. 1. The conformal diagram of a part of an asymptotically
flat black hole spacetime: Sin½t�, Sout½t; u� on C½t� are drawn.
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of q0 on Iþ, there is q00 ∈ U 0
q such that r and q00 is

connected by a timelike curve. Therefore r is in an interior
of J−ðIþÞ. From r ∈ Sin½t�, r is in B ¼ MnJ−ðIþÞ or ∂B.
Since they are inconsistent, Sin ∩ Sout½t; u� ¼ ∅. ▪
Then we claim that there exists a null geodesic which

intersects neither Sout½t; u� nor Sin½t� for arbitrary large u and
t. Now we are able to give the concrete definitions of such a
neutral null geodesic to match the theorem:
Definition (neutral null geodesic). A null geodesic

which starts from the point p is called a neutral null
geodesic starting from p if for any u there exists a
sufficiently large t such that it does not cross the event
horizon and C½t� ∩ J−ðIþ½u�Þ.
Then we have a following lemma,
Lemma 1. For any p on C½0� outside of black hole

region, there exists a neutral null geodesic starting from p.
Proof.—It is sufficient to show that for any p on C½0�

outside of the black hole region, there exist sufficiently
large u0 and t0, such that there exists a null geodesic
starting from p that does not cross the event horizon and
C½t� ∩ J−ðIþ½u�Þ for any large t > t0; u > u0.
Sin½t� and Sout½t; u� are a closed subset of S½t� by their

definition. Since they are not intersecting (Proposition 1,
Sin½t� ∩ Sout½t; u� ≠ ∅), suppose S½t�nSin½t� ¼ Sout½t; u�.
Then Sout½t; u� is an open subset of S½t�, and Sout½t; u�
should be a whole connected component of S½t� or ∅. Since
S½t� is arc-wise connected, however, from Proposition 1,
ðSin½t� ∪ Sout½t; u�ÞnðSin½t� ∩ Sout½t; u�Þ ≠ S½t�. Therefore
S½t�nðSin½t� ∪ Sout½t; u�Þ correspond the subset of the null
geodesics Nðp; C½t�Þ and is not empty. ▪
Intuitively, the larger t and u are, the larger number of null

geodesics cross Sout½t; u� and Sin½t�. Without any coordinate
singularity, for a large time coordinate, a timelike curve
has large affine length. Therefore null geodesic reaching
S½t�nðSin½t� ∪ Sout½t; u�Þ also has a large affine length. Then
our theorem will state that in any long time future, there
exists an affinely long null geodesic that does not fall into the
black hole and does not escape to the null infinity.
Now we argue the discrimination between the neutral

null geodesic and the wandering null geodesic. In order to
describe the situation where a null geodesic is wandering
around the black hole we invented the concept of a
wandering null geodesic, and therefore, the wandering null
geodesic is necessarily a neutral null geodesic. On the other
hand, furthermore, from knowing the structure of the
timelike infinity, we might be able to judge the correspon-
dence between them by the global asymptotic structure.
Indeed, Galloway has shown that the existence of a null line
without conjugate points suggests the uniqueness of an
asymptotically simple spacetime [33]. Nevertheless, it is
not our principal aim to investigate that issue here since the
structure of the timelike infinity is out of our observational
interest. Rather, we want to resolve that from the viewpoint
of local geometry, especially relating it with the wandering
aspects around the black hole.

Since that congruence of neutral null geodesics does not
go to infinity, the effect of Riemann curvature must not
vanish under the null genericity: k½eRa�bc½dkf�kekc ≠ 0

anywhere. Then the curvature terms should dominate the
deviation equations of null geodesic congruence [25] in
time since expansion θ and shear σ̂ab are dumping by
∼1=ðs − s0Þ in affine length s. Then jσ̂abj becomes large
and the first equation is dominated by the σ̂ term.
Therefore, soon θ becomes a negative value, which is
denoted by θ0, and then they will have a conjugate point
since θ will diverge within affine length s ≤ 2=jθ0j.
More rigorously, we think of a null generic condition

k½eRa�bc½dkf�kekc ≠ 0. As the proof of the timelike case in
the textbook [24,25], the null generic condition and the null
energy condition imply the formation of conjugate points,
in the proposition 4.4.5 of the textbook [24]. These
conditions will hold for physically realistic spacetime since
there would be a physical matter and the tangent vector of a
null geodesic is not rigorously directed in the principal null
directions.
Furthermore, on a complete null geodesic, the generic

condition will be satisfied on an infinite number of points.
If the null generic condition and the null energy condition
are satisfied, such a conjugate point should appear in time.
If so, the number of these conjugate points is not bound on
a complete null geodesic.
Theorem 3 (commonplaceness of future wandering null

geodesics). Supposing that the spacetime satisfies the null
generic condition k½eRa�bc½dkf�kekc ≠ 0 and the null energy
condition Rabkakb ≥ 0, for any p on C½0� outside of the
black hole region, there exists a wandering null geodesic
starting from p.
Proof.—From Lemma 1, for any p on C½0� outside of the

black hole region, there exists a neutral null geodesic λn
starting from p. Let q be a point λn ∩ C½t�. If t is not
bounded, then q and p are connected by the timelike curve
of unbounded length by global hyperbolicity of M (or
strong asymptotically predictability). Then the null geo-
desic can have a parameter according to the parameter t and
it gives diffeomorphically an affine parameter. Since this
affine parameter of the null geodesic is unbounded, the
neutral null geodesic can be geodesically complete.
Furthermore, from Ref. [24], if the null energy condition
Rabkakb ≥ 0 is held and the null generic condition
k½eRa�bc½dkf�kekc ≠ 0 is satisfied in the region generically,
there is a conjugate point on the neutral null geodesic.
Besides, since the affine length is infinite, there would be
conjugate points infinitely. ▪
By the fact that for all p in a certain region there exists a

wandering null geodesic, one might lose the point of
discussing the embedding of the set of future wandering
null geodesics into the spacetime, because the embedding
of it always should cover the causal future of the initial time
slicing outside the black hole region (e.g., see Fig. 1). In
this sense, we had better pay attention to the totally
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wandering null geodesic or the truncated wandering null
geodesic [16]. Anyway, we will rather concentrate on the
local structure of the null geodesic congruence around a
future wandering null geodesic in the following section.
Then, as a fundamental issue, we expect that the wander-

ing null geodesic can be regarded as a flag of a black hole
spacetimes in place of the event horizon. Since the number of
the disconnected components of the event horizon can take
arbitrary values under the change of timeslicing [34,35],
there is a difficulty in specifying identities of black holes.
On the contrary, since the wandering null geodesic is in a
chronal region, its number of disconnected components
is free from the ambiguity by the change of timeslicing.
Moreover, to achieve a complete resolution for that problem
of identification, we have to take account of the possibility
that wandering null geodesics could be present around black
hole mimickers (e.g., noncollapsing ultracompact objects
with radius r in the range 2m < r < 3m). Nevertheless, we
are hopeful that it can be excluded by some physical
conditions like an energy condition. Besides, in the next
section we will also give a hint to resolve that by introducing
a new concept of “black room.”
Here we want to shortly comment on chaotic aspects of a

wandering set. To understand the theorem visually, we had
better illustrate the case of the Schwarzschild spacetime.
Then we will find that the catastrophic nature [36] of the
achronal boundary ∂JþðpÞ related to the chaotic appear-
ance of the set of null geodesics near the photon sphere,
which include the totally wandering null geodesics.
In Fig. 2, we are drawing a picture of S½t� in

Schwarzschild spacetime, where p is to be on a circular

orbit (r ¼ 3m), as an example. To watch the evolution
permanently, the timeslicing C½t� is avoiding the singularity
like a maximal slicing in Schwarzschild spacetime [37].
Because of its singularity avoidance, the lapse function is
very small inside the event horizon while on the outside of
the horizon the timeslice approaches iþ as an affinely
parametrized timelike geodesic approaches it. Then inside
the event horizon, the speed of the null geodesic is not fast
in this coordinate, which means the advances and enlarge-
ment of S½t� is slow there.
Considering a null geodesic going on the unstable

circular orbit, it will extend SðtÞ so that a segment of
SðtÞ meets, crosses, and merges with other separated
segments of SðtÞ, while the center of the black hole region
is not incorporated by SðtÞ. Then SðtÞ gets homotopically
nontrivial embedding after the crossing. Moreover, a
conjugate point of the wandering null geodesic appears
and it enters the inside of JþðpÞ.
Succeeding this, the null geodesic will advance along the

circular orbit, while in the direction to the center of a black
hole the null geodesic stagnates in the outward direction
away from the black hole extends SðtÞ. Therefore, while the
null geodesic along the circular orbital cycles around the
event horizon several times, its wavefront will get several
self-crossovers and become chaotically complicated.
Though we are sure from the continuity (Theorem 2) that
the wavefront is a continuous immersion of S2, it might
seem to become singular. This will also be a reflection of
the catastrophic structure of null geodesics accumulating
the wandering null geodesic.
Considering small deviations from spherical symmetry,

however, the chaotic nature may change drastically. On the
other hand, the catastrophic structure [36] will be main-
tained as stated in the beginning of [16] by the structural
stability.

IV. RELATION BETWEEN WANDERING NULL
GEODESICS AND THE BLACK HOLE SHADOW

In our previous work [16], we simply discussed the
influence of the wandering null geodesic on the brightness
of the edge of the black hole shadow, though its statement
was somewhat weakened. Here, however, we will discuss
the relation between the wandering null geodesics and the
observation of black hole shadow (if we are careful about
the handling of the word “shadow,” for convenience, we
can use it to express the difference of bright region and
dark region, while it would originally mean only the dark
region).
In the previous discussion, we did not insist that every

wandering null geodesic should be relevant for the com-
position of the photon sphere. This means that the relevance
essentially relies on the accumulation of null geodesics
around the wandering null geodesics, and will be corre-
sponding to the concept of stability around the photon
sphere in static spherical black hole spacetime.

FIG. 2. In the Schwarzschild spacetime, the photon sphere
exists on r ¼ 3m. A null geodesic from the point on the photon
sphere will go inside and outside of the sphere r ¼ 3m, or be still
on this photon sphere. They make the wavefront of the null
geodesics topologically complicated after sufficient time has
gone by.
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To find the accumulation in a global sense, the previous
discussion might be almost our best, and then further
investigation will require any concrete numerical analysis
about various null geodesics in order to go beyond the static
spherical black hole spacetime. In the former of this
section, our task is to rephrase the discussion with several
amendments incorporating the commonplaceness of the
wandering null geodesics, and the existence of an event
horizon. That would also answer the question whether we
are really looking at the region nearest to the event horizon
by black hole shadow observations or not.
Later in this section, we will introduce a convenient

causal concept named “black room” for describing the
geometry and observation of black hole shadow. With the
aid of it, we suggest the optical black hole observation
would be related to the wandering null geodesics more
tightly.

A. Photon sphere and accumulation of wandering null
geodesics

Now we rephrase the discussion in [16] for the relevance
of the wandering null geodesics to the black hole shadow.
As is well known, the black hole shadow in

Schwarzschild spacetime is explained by the photon
sphere, which is the sphere determined by its unstable
circular photon orbits. Since we have seen that the totally
wandering null geodesic coincides with the circular photon
orbit in Schwarzschild spacetime, we might expect, in
general, that the wandering null geodesics are relevant to
the black hole shadow.
Here we should be careful about the fact that the

existence of an unstable circular photon orbit is relevant
to the black hole shadow in the static spherical black hole
spacetime. There, the unstable circular orbit can collect
photons and form a photon sphere.
Is the accumulation of the wandering null geodesics

relevant to the photon sphere in general situation? In our
previous work [16], we demonstrated that the existence of
wandering null geodesics should be significantly related
to the composition of a photon sphere in the field of view
for optical black hole observation. There, though it may
be doubtful that in a dynamic situation the black hole
geometry can form such a collection of photons that is
relevant for the optical observation of the black hole
because of the dynamics of the circular orbit, we suggested
that, from the global viewpoint, this unstable aspect
corresponds to the accumulation of the null geodesics in
a null geodesic congruence around the wandering null
geodesic.
To discuss the structure of the black hole shadow, we

would consider the null geodesics related to the event
horizon and the wandering null geodesic. Then in the sense
of global causal structure, we will argue that the accumu-
lation actually occurs and will show that the existence and
the configuration of such a past wandering null geodesic

mean the existence of at least one past wandering null
geodesic that is adjacent to a normal null geodesic. In an
asymptotically flat spacetime, it is always the case that such
a wandering null geodesic is followed by accumulating null
geodesics.
Now we remind readers of the fact that the totally

wandering null geodesic and the future (past) wandering
null geodesic possibly cause the accumulation of the null
geodesics as a result of the commonplaceness of the
wandering null geodesics. The relevance of the set of
wandering null geodesics would be a subject to be inves-
tigated globally taking account of asymptotic structures of
the black hole spacetime. In the context of global differ-
ential structure, such a notion will be realized by the
existence of conjugate points. We suppose a situation
where there is at least one past wandering null geodesic.
For an observer p away from the strong gravitation, we

will consider a null geodesic congruence along a past
wandering null geodesic, whose existence is guaranteed by
the similar argument for the commonplaceness of Theorem
3 in an eternal black hole spacetime. Then the field of sight
is given by a section of the null geodesic congruence before
the first conjugate point of the past wandering null
geodesic.
Now we are relaxing the concept by extending the

geodesic further beyond the singularity of the
Raychaudhuri equation. Then the composition of this
“singular” congruence is a set of past null geodesics
intersecting the field of sight S of the congruence (see
Fig. 3). We denote the congruence with section S as c½S�.
The deviation equation will be analytically continued
through the conjugate points without a trouble since it is
a second order ordinary differential equation along one past
null geodesic.
For convenience of discussion, we artificially consider a

number function NðpÞ on S of the conjugate points along
the null geodesic congruence. Suppose that there is a past
directed null geodesic congruence along a past wandering
null geodesic λw intersecting S at pw and the spacetime is
geodesically complete in past direction.5 Each geodesic of
the congruence c½S� ≔ S × ð−∞; 0� gives the tangent null
vector field ka of each past directed null geodesics and the
past directed exponential map qpðtÞ ¼ expðkatÞ∘p, ðp ∈
S; t ∈ ð−∞; 0�Þ (cf. the embedding of the congruence into
the spacetime is not diffeomorphic since there would be
conjugate points). Then we can give a smooth number
function of conjugate points nðp; tÞ such that

nðp; tÞ∶c½S� ↦ R; ð4:1Þ

5Of course, this is not the case for our cosmology with initial
singularity. For such a big bang universe, we will carry out a
quantitative investigation; for example the comparison of the
magnitude of NðpÞ with the age of the universe should be
significantly discussed.
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nðp; tjðpÞÞ ¼ j; ð4:2Þ

ti−1ðpÞ > t > tiðpÞ ⇒ i − 1 < nðp; tÞ < i; ð4:3Þ

where ith conjugate point qi½p� of λp is related to the
parameter ti as qi½p� ¼ qpðtiÞ ¼ expðtikaÞ∘p. Then, we
also consider NðpÞ ¼ maxtfnðp; tÞg for each null
geodesic.
Once such a smooth function nðp; tÞ is found on each λp,

from the smoothness of the spacetime and the Stone-
Weierstrass theorem [38], NðpÞ is a smooth function in
a domain not containing any passing point p0

w of a past
wandering null geodesic.6 Note that at p0

w, NðpÞ diverges
as Nðp0

wÞ ¼ ∞.
Suppose an open set O containing pw includes its open

subset O0 from which no null past geodesic becomes a
wandering null geodesic. A segment from qf of such a past
directed null geodesic, where qf is the oldest conjugate
point (the final one in the past direction), should be the
generator of ∂I−ðqfÞ under the global hyperbolicity (as
illustrated in Fig. 3).
On the other hand, this boundary ∂I−ðqfÞ is the achronal

boundary, which is a closed embedded achronal C1−

submanifold [24]. We consider a Cauchy surface C and
a smooth timelike vector field ta whose integral curve can
be regarded as a model for orbits of source objects of

photons, since every integral curve of ta intersects C
precisely once. Then homeomorphism ψ∶∂I−ðqfÞ ↦ C is
given by the integral curves. Therefore, the image of
∂I−ðqfÞ assigned by A ¼ ψ ½∂I−ðqfÞ� is homeomorphic
to the C1− submanifold ∂I−ðqfÞ. After all,A is a closed and
open subset in the topology of C, so thatA is C. Then all the
orbits of the source intersecting the Cauchy surface C
crosses this achronal boundary precisely once.
The “subcongruence” c½O0� is also complete and inex-

tendible, and ψ ½c½O0�� does not measure zero in C. Then,
with a noncompact Cauchy surface on which there is no
bias in the distribution of luminous sources, each null
geodesic of the subcongruence c½O0� will cross an infinite
(numerous) number of orbits for the luminous sources
since the past directed null geodesic is complete and
inextendible—though these may be far from astrophysical
generality.
Since Nðp0

wÞ diverges and NðpÞ will be smooth on the
domain Onfp0

wg, the range of NðpÞ is containing various
positive integers, and is extremely wide there. Different
positive integers of NðpÞ mean that null geodesics had
orbited the black hole for different periods of time before
arriving at the observer. Consequently, in the analogy with
the circular orbit, the null geodesics orbiting the black hole
many times are accumulated there.
Furthermore, as the solution to the deviation equation is

smooth, the interval between two conjugate points lying
along a null geodesic is finite. Therefore, since the null
geodesics would be orbiting the black hole, past null
geodesics departing from the cycling orbit during one
cycle, will generally go out to the different directions.

FIG. 3. Singular congruences are considered around a past wandering null geodesic. While there are an infinite number of conjugate
points on the past wandering null geodesic, there are a finite number of conjugate points on a past directed null geodesic starting from p.
The final (oldest) conjugate point qf determines a past set I−ðqfÞ and a segment of the null geodesic from qf should be a generator of the
boundary of I−ðqfÞ. In the star, the sectional curvature is positive and the null geodesic congruence would expand in past direction. That
means we cannot receive the information of the spacetime point very close to the event horizon.

6Even if two null geodesics with different numbers of con-
jugate points are near at a moment, they can be divided into
former past region since they will be a generator of different
achronal boundary.
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Then they will be destined for entirely different regions at
far in the past. Therefore, Theorem 3 suggests that every
specetime point can emit photons to the neighborhood of
any wandering null geodesic, and thus, the black hole
collects the light signals from the whole of the Universe.
So, the closer O0 approaches pw, the wider the range of
NðpÞ becomes.
On the contrary, for a congruence c½O00� of a close O00

from which every null geodesic is the past wandering null
geodesic, at least a class of smooth timelike vector fields t0a
exists such that ψ ½c½O00�� is a compact subset of C, which
implies that there is a strong contrast betweenO0 andO00 on
the field of view concerning the brightness/darkness around
the past wandering null set. Of course, such a designed
choice of ta may significantly affect the result.
Thus, the accumulation of the null geodesics contributes

to the existence of the photon sphere. Nevertheless, we
cannot expect the fade-out of the image near the outside of
the wandering null geodesics, as the accumulation implies
also the dissipation of the null geodesics because of the
time-symmetricity of the concept. Indeed, if the spacetime
is static and the source of photon is uniformly distributed
on the celestial sphere, the brightness of the image outside
of the shadow must be uniform. Probably, however, this
accumulation of the null geodesics, coupled with the
distribution of the source of light around the black hole
would be incorporated to the discussion in order to
understand the ring structure of the Event Horizon
Telescope [4–9,39,40].
These ideal discussions logically indicate that past

wandering null geodesics arriving at the observer are
relevant in an optical observation. For example, that would
be corresponding to the fact that, as is well known in static
spherically symmetric spacetime, the relevance of the
photon sphere to the black hole shadow depends on the
stability of the null geodesics around the circular orbit of a
photon rather than on the aspect of a single photon running
on the same circular orbit.
From the asymptotic flatness, for a sufficiently large S it

is natural to assume that not all null geodesics of the
congruence c½S� can be wandering null geodesics. Then,
there must be a wandering null geodesic λrw from prw such
that any small O containing prw must include an open
subset O0 not containing any passing point of a past
wandering null geodesic. Therefore, there should exist at
least one such past wandering null geodesic λrw relevant to
the black hole shadow. In the case of a spherically
symmetric spacetime, this result can be translated as the
following. Whether a circular orbit of a photon is unstable
or not is decided by whether an extremal value of the
effective potential of null geodesics is maximal or not. If
there is an extremum in the potential function, it must be a
local maximum since the potential is downwardly convex at
a large radius by the asymptotic flatness. Since the location
of the maximum corresponds to an unstable circular orbit,

there exists a past wandering null geodesic that is relevant
to the black hole shadow observed in the asymptotically flat
spacetime.
As one would easily see, in order to discuss the dark

areas of the photon image in detail, it is not sufficient to be
concerned with the presence of the event horizon as well as
the wandering null geodesic. To treat the dark areas of the
photon image, we would apply the commonplaceness of
the wandering null geodesic. Theorem 3 states that from
any starting point we have a future wandering null geodesic
in a black hole spacetime. The starting point corresponds to
the spacetime point where a photon source radiates the light
signal. Then, in principle, all of the light source in the world
can contribute to the bright regions in the present black hole
shadow.
On the other hand, we can also consider the contribution

of the event horizon. Are we really looking at the region
close to the event horizon? We cannot simply conclude that
the event horizon is black by the black image of the black
hole shadow, since the line of sight in the direction of the
shadow never reaches to the event horizon in backward
time by definition.
Nevertheless, from the commonplaceness theorem, there

is also a future wandering null geodesic from each
spacetime point near but outside the event horizon. This
means that a photon from the direction of the dark region
that corresponds to just an inner side of the wandering set
seems to approach the event horizon in past direction.
Moreover, for a further inner region, which is the near
center of an image, we can simply regard the interior of the
images of the wandering set should be approximately from
an event horizon if the black hole is eternal. Of course,
since the spatial configuration of the light sources around
the black hole and the configuration of null geodesics near
the event horizon may not be so simple as the case of the
Schwarzschild black hole, we cannot illustrate the general
images without concrete analysis of null geodesics.
In these arguments, however, the assumption of the

eternal black hole is essential and too severe. In a realistic
situation, we will require to incorporate the age of the
black hole. If the black hole is dynamically formed like
an Oppenheimer-Snyder spacetime, the spacetime point
around the event horizon will have two types of contribu-
tion to make the shadow image, since in this case there can
be light sources near the event horizon unlike the stationary
black hole. The type of contribution is depending on the
geometry of the null geodesic congruence, which is
controlled by the sectional curvature Rabcdnalbncld. By
the geodesic deviation equations, that means whether a
photon with a four-wave vector la propagating in the
neighborhood of the event horizon gets away from it in
the sense of the affine length in the direction of na.
To make discussion simple, we suppose the collapsing

star is transparent and consider the null geodesic congru-
ence around a future wandering null geodesic starting from
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one point-source of photons near the event horizon. The
sectional curvature includes both components of Ricci
curvature ∼R=6þ Rnl and the Weyl curvature Cnlnl.
Since the dominant one among these two quantities
behaves as ρ=6 in a homogeneous isotropic dust star
[41], and −2m=r3 in vacuum Schwarzschild spacetime,
respectively, it will be positive inside of the star where the
tidal force is not strong, and negative outside of the star
where the tidal force dominates. Then the null geodesic
under consideration does not approach the event horizon in
the past direction of la. Consequently, we cannot get the
information from the point near a horizon segment in the
star, in principle.
Furthermore, in the case of the formation of the black

hole, if the age of the dynamical black hole is sufficiently
large also we may be able to observe the information
infinitesimally close to the event horizon from the image of
a black region of the black hole shadow. On the other hand,
if the black hole is young, we might observe the direct
image of the background of the star in the center direction
of the shadow, since this line of sight will go back to the
formation of black hole and can pass through the center of
the collapsing star.

B. Black room and wandering null geodesics

Here we want to reveal the role of the wandering null
geodesic against the dark region of the black hole shadow.
In the discussion in the Schwarzschild spacetime, the
essence of the black hole shadow has been explained
mainly by two aspects of photon orbit. One is that many
photon orbits accumulate onto the unstable circular orbit.
And then the photon sphere becomes bright [42–44]. In the
previous subsection, we have discussed this mechanism in
general situations by studying the wandering null geodesics
as a generalization of the unstable circular orbit. The other
is the fact that there is no orbit escaping from the inner side
of the photon sphere after entering it in a Schwarzschild
spacetime. From now on, we develop a corresponding
discussion in general situations, with the help of the
characteristics of the wandering null geodesics investigated
above. First of all, we introduce an auxiliary concept
accompanying the black hole, which we define as a new
subset of the spacetime manifold.
We suppose that a region named “black room”R has the

following property: Any photon that enters the black room
from an outside region cannot go out as long as it
propagates along a null geodesic. Note that differently
from the fact that any light signal cannot go out from the
black hole, we allow the possibility that a photon generated
inside the black room might go out.
The black hole region is an extreme example of the black

room, though it does not possess its own exit. Then it will
be possible that several different black rooms exist in one
black hole spacetime. If there is the maximal one, then it
will play the universal role in the optical observation of the

black hole (though one, of course, cannot help being
disturbed by the particular configuration of the light
sources).
Definition. Suppose each arc-wise connected (spatially)

bounded open subset, Ri ⊂ M; ði ¼ 1; 2…Þ such that no
null geodesic can escape from Ri after entering Ri, exists.
If there exists Rmax ∈ fRiji ¼ 1; 2…g, which includes all
Ris, then we call Rmax the maximal black room.
Obviously, if there exists a black room, light sources

outside R cannot contribute to the image of R, so that R
becomes dark in optical imaging without a light source
contained by R. This is just analogous to the case of
the photon sphere of Schwarzschild spacetime.7 In
Schwarzschild spacetime, there exists the maximal black
room whose outer boundary corresponds to the photon
sphere. And then photons never come from the direction of
the maximal black room, provided that there is no source of
photons in the maximal black room. In realistic situation, it
is unlikely that a source of photons is located around the
photon sphere or the maximal black room. The light signal
originated from realistic light sources, e.g., the accretion
disk, would have reached us after accumulating on the
boundary of the maximal black room.
Up to now, we have considered the formation that occurs

at some time. In such a situation, the black room is expected
to form as well. However, since the formation of the black
room means that all null geodesics escaping from the
region had entered the region before, the allowed black
room is just the black hole region.8 Then we cannot expect
the black room to play a remarkable role in all general
situations of black hole observation. Knowing that, how-
ever, we will suggest the relation between the maximal
black room and the wandering null geodesic. We want to
study the composition of the boundary of the maximal
black room. The null generator of an event horizon or a
wandering null geodesic could be lying on the boundary
∂R. Nevertheless, we are not strongly concerned with the
horizon generator since it should not be relevant to the
optical observation of the black hole by definition.
From the global reason, we should consider a spacetime

region chronologically complete in future direction
∼fCðtÞjt ∈ ð0;∞Þg.
Proposition 2. A maximal black roomR is bounded by

a nonspacelike hypersurface that includes at least one null
geodesic at each point, possibly admitting end points.9

7The existence of the black hole seems to be essential for the
black room. The photon sphere not accompanied by a black hole
might not mean the existence of a black room.

8To avoid such an argument related to the black room
formation, we think that it is required to consider any local
and instantaneous definition of the black room like the apparent
horizon indicating the existence of the event horizon.

9Though, for a null surface, the null geodesic is in only one
direction, there are possible S1 direction of angle for a timelike
hypersurface.
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Under the null energy condition and the null generic
condition, the null geodesics are the wandering null
geodesic, the generator of the event horizon, or the null
geodesic with future end point.
Proof.—First, we think of ∂R which is smooth around

p ∈ ∂R. The light cone at p defines all possible null
directions on ∂R and then corresponding null geodesics lps
are determined. Then there can be a small neighborhood
Up ∋ p, such that ∂R ∩ Up is smooth in its own null
directions, whose null geodesics lps have no crossover with
∂R except for p, and no conjugate point through p.
If lp is not contained in ∂R, then we have three possible

types of lp on Up, i.e., (α) lp is not in intR, (β) lp is in R’s
closure R̄, and (γ) lp crosses ∂R while it is tangential to
∂R at p.
In the type (α) where lp is not in intR, we easily see that

a slightly shifted null geodesic l0p, which is almost parallel
to lp, has two intersections with ∂R, so that it escapes from
R after entering R. Therefore, once there is such a null
geodesic lp of the type (α), the considering black room is
immediately denied. For the third type (γ), the concerned
black room also is immediately denied by finding another
point p00 in this direction on ∂R very close to p in which lp00

is of the type (α).10 Then the allowed lp is on ∂R on one
side of p and entersR through p. Therefore, this type of lp
will be discussed as a nontrivial end point of the null
geodesic, in a similar sense to indifferentiable situations
argued later.
Since the possible directions of lps are at most S1, we

should consider the case (A) where all null geodesics are of
the type (α), the case (B) where all null geodesics are of the
type (β), and the case (C) where both null geodesics of the
type (α) and of the type (β) exist, while the case (A) has
already been excluded by the above argument about the
type (α) null geodesics. In the case (B) where all lps are
contained in R̄, there is a point p00 outside of R̄which gives
null geodesics lp00s through p00 so that lp00 is close to lp in
each possible null direction along ∂R at p in the topology
Eq. (3.1). Then lp00 has two intersections with ∂R on both
sides of p00 on Up. Therefore, there exists a small
deformation R0 ⊃ R of R in Up such that R0 has all
lp00 ∩ Rc’s on its boundary ∂R0. Of course, Up can include
no null geodesic escaping R0 after entering R0. There is
such a small Up that lp00 never enters R even outside of Up

since R is open subset. Then this case is not allowed so as
not to give another black room which is not subset ofR. In
the case (C), while not all lps are of the type (β), not any lp
is of the type (α). Then lp should be included in ∂R in

several directions. Therefore, at least one null geodesic lp is
on ∂R around the smooth point p on ∂R.11

If the null geodesic is not a wandering null geodesic but
is still a future complete null geodesic, then it can be the
null geodesic generating a null surface ∂JþðpcÞ after the
final conjugate point pc (we call such a null geodesic
merely a null generator from pc). If lp on ∂R includes a
null generator, then the null generator should be a horizon
generator from the bounded nature of the definition for the
black room. Then under the null energy condition and the
null generic condition, a null geodesic lying on ∂R should
be a future incomplete null geodesic, a future wandering
null geodesic, or a null geodesic including a horizon
generator from Theorem 3. Nevertheless, global hyper-
bolicity (or strong asymptotically predictability) results and
the incomplete null geodesic will enter the event horizon
provided that it is inextendible. Therefore, since an event
horizon is also a black room, we accept geodesically
incomplete null geodesics only with a future end point
so that R can be the maximal one.
Next, we discuss the smoothness of the boundary ∂R.

Knowing the null geodesics around the each smooth points
on ∂R, we will find their tangent future null vector field ka

on ∂R almost everywhere continuous. Then the null vector
field should have a critical point at the point where ∂R is
indifferentiable and the other end points of the null geo-
desics lp. In the context of the Morse theory, at a trivial
critical point p with indexpðkaÞ ¼ 0, though S1 of the ka

direction does not always coincide with S1 of −ka direction
without the smoothness, they are homeomorphic at this
trivial critical point. So, it is convenient to consider that this
situation is an acute limit of the above smooth three cases
(A), (B), and (C). Then the allowed indifferentiable surface
is the acute limit of the case (C) where lps are on the
boundary ∂R in several null directions, and the boundary is
concave and indifferentiable in other directions.
On the contrary, at the nontrivial critical point p with

indexpðkaÞ ≠ 0, the change of the topology on the spatial
section will arise. For the nontrivial critical point, however,
if ∂R is not a null surface but a timelike hypersurface
around p, then we easily see that a slightly shifted null
geodesic near the indifferentiable point p have two inter-
sections with ∂R, so that it is escaping from R after
entering R. Therefore, such nontrivial end points of
null geodesics on a timelike hypersurface of ∂R is not
allowed. Then only a null generator provides such end
points concerning the topology change of the maximal
black room.

10Such a degenerate critical point has a nondegenerate critical
point nearby since the Morse functions form an open, dense
subset of all smooth functions in the C2 topology.

11Denoting the extrinsic curvature of ∂R as Kab, the situation
is expressed as Kabkakb ≤ 0 for arbitrary null vectors ka
tangential to ∂R, and at least one photon must satisfy the
equality. The equality will hold only when all the possible null
geodesics are included in the surface where we might regard it as
a kind of photon surface [45].
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Consequently, we have seen that a null geodesic around
p on ∂R is included in the boundary R in at least one null
direction. ▪
Here we briefly comment about the future endpoints of

null geodesics lying on the boundary of R. As shown
above, the nontrivial endpoint of the null geodesic lying on
the boundary of the maximal black room is only allowed
to be that of a null generator. Then the boundary surface
generally can become indifferentiable hypersurface.
Moreover, it seems that the future end point of the null
generators related to the remarkable dynamical process of
the black hole, that is a change of black hole topology
[35,46], black hole evaporation, and so on. Nevertheless, it
will be pretty difficult to find any universal view to restrict
the future end points. For example, though the future end
point may be related to the evaporation of black holes, we
could not conclude anything in general by the lack of
knowledge about the black hole evaporation by a quantum
process. In the following subsection, however, we will
attempt to discuss the simple case of coalescing binary
black holes as an example concerned with only past end
points.
Finally, we want to argue the general possibility of the

maximal black room. Incidentally, one may think that the
maximal black room does not generally exist. Of course, in
the Schwarzschild spacetime, there should be the maximal
black room, which is bounded by the circular photon
orbits corresponding to totally wandering null geodesics.
What would be the observational result of the absence
of the maximal one? In a general situation, one might
think that the dynamics or anisotropy of a black hole
prevents the maximal black room, (e.g., by supposing a
vibrating or rotating black room). From the viewpoint of
the observation, we may be able to translate this aspect as
the unsharpeness or deformation of the black shadow
images [15].

C. Discussion: Binary black hole

In addition to above things, we are interested in the black
hole binary since it is a typical source of the gravitational
radiation [47]. Here we will also discuss the topological
notion of the black hole shadow [48,49].
Intuitively, the commonplaceness of the wandering null

geodesic may imply there would be the families of the
wandering null geodesics related to either original black
hole or the final black hole, though that is not so convincing
because of a chaotic nature of the null geodesics around the
wandering null geodesic as illustrated in the bottom of the
third section. For clearness of discussion, we will assume
that the original two black holes already exist even in the
initial state of the universe.
Firstly, we consider all of the wandering null geodesics

in this system. In the considering region of spacetime
M ∼ fCðtÞ; ðt ∈ ð−∞;∞ÞÞg, there are several causally
homotopic classes of the null geodesics [50]. There would

be various wandering null geodesics that are related to the
final black hole, each original black hole, or their combi-
nation, by the continuity of the initial condition of the null
geodesic equation and its solution (Theorem 2).
In our standpoint, however, the binary black hole is not

defined in mathematical argument of causal structure,
but by astrophysical argument, which is strongly related
to the concept of an evolution of a single star, since we
cannot discriminate the merging event horizon and the
prolate event horizon under the general covariance of
coordinate transformation [51]. It has been argued that
wandering null geodesics might determine the definite
mathematical concept for the topology of the event
horizon, e.g., in the case of the binary of black holes
[35,46,52–55].
Here, we shall consider the topological notion of the

maximal black room for this system supposing initially
the black holes existed in region of spacetime M½ti�∼
fCðtÞ; ðt ∈ ðti;∞ÞÞg. If we have a maximal black room for
this system fortunately, we would be able to select the
wandering null geodesics dominating the black hole
shadow observation. If there is always a maximal black
room in a black hole spacetime, at least the concept of the
topology of the shadow will become clearer than before
since the boundary of the black room is almost timelike in
many typical cases. One would investigate the topology of
the maximal black room or topology of its spatial section,
even in the case like a binary coalescence. It seems that the
past end point of the wandering null geodesic which is
lying on the boundary of the maximal black room might
be related to the formation or coalescence of it. Then the
indifferentiability of the shadow might be discovered,
related to the black hole shadow observation for the arising
black hole. In other words, a “crease set for black room”
may be able to determine most of the structure, incorpo-
rating the wandering nature of null geodesics as well as the
crease set of the event horizon determines the topology
changing of it [51,56,57].
We now assume that the maximal black room R is

bounded by null geodesics without future end points. And
then, if coalescence of binary black holes happens, some of
such null geodesics should have past end points for the
topology changing. Of course, if the considering spacetime
regionM½ti� to determine the black roomRðtiÞ includes the
whole history of the black holes from the formation of
them, then both the end points for the formations of the
black holes and the end points for the binary coalescence
are included, and the maximal black room coincides with
the black hole region, as mentioned in the previous
subsection. To consider the merging, however, we may
take into account the region not including the formation, so
that there are two black holes initially. Then this region will
include only end points concerned with the binary coa-
lescence, and the maximal black room possibly becomes
larger than the black hole region. Nevertheless, the past end
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point of the wandering null geodesic cannot be the end
point for such a merging ∂RðtiÞ (in the sense of bounding
null geodesics). If not so, the past end point must be a
crossover point of two timelike hypersurfaces. This is not
consistent to that these two surfaces are bounding the
maximal black room; however, near the end point there
is a null geodesic escaping from R after entering R
(Proposition 2). Therefore, the end points concerned with
the merging should be those of the horizon generators.
One may suspect that this simply indicates the coinci-

dence of the maximal black room and the black hole region,
but it is not contradicted yet that the maximal black room
can be larger than the black hole. On the other hand, if the
merger will finally settle down to a Schwarzschild black
hole, the limit of ∂RðtiÞ as ti approaches infinity (ti is larger
than the merging time) would be the photon sphere of the
final state, which might imply that the role of the light
source in the early stages is diminished. By considering
these aspects, how can we understand the shape of the final
black hole shadow? Anyway, the existence of those null
generators on the boundary ∂RðtiÞ is consistent with the
result of some preceding studies [48,49] suggesting that
two black hole shadows will not merge.

V. SUMMARY

To clarify the role of wandering null geodesics in optical
observation of the spacetime region around a black hole, we
have investigated the commonplaceness of the wandering
null geodesics and black room region in a black hole
spacetime. Though the wandering null geodesic emanates
from an arbitrary spacetime point commonly, it is noticed
that the dark rays does not always come from the spacetime
points close to the surface “event horizon” in collapsing
black hole spacetime, and we cannot conclude that the
event horizon is black by watching the black region of the
black hole shadow. Rather, the darkness of the shadow will
be the result of the existence of the black room in which
there is no escaping null geodesic after entering it. Under
the certain conditions, we have found the maximal black
room which dominates universally the dark region in an
optical observation of a black hole is almost bounded by the
set of wandering null geodesics.
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