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The condensates of cold atoms at zero temperature in the tunable binary Bose-Einstein condensate
system are studied with the Rabi transition between atomic hyperfine states where the system can be
represented by a coupled two-field model of gapless excitations and gapped excitations. We set up the
configuration of the supersonic and subsonic regimes with the acoustic horizon between them in the
elongated two-component Bose-Einstein condensates, trying to mimic Hawking radiations, in particular
due to the gapped excitations. The simplified steplike sound speed change is adopted for the subsonic-
supersonic transition so that the model can be analytically treatable. The effective-energy gap term in the
dispersion relation of the gapped excitations introduces the threshold frequency ωmin in the subsonic
regime, below which the propagating modes do not exist. Thus, the particle spectrum of the Hawking
modes significantly deviates from that of the gapless cases near the threshold frequency due to the modified
gray-body factor, which vanishes as the mode frequency is below ωmin. The influence from the gapped
excitations to the quantum entanglement of the Hawking mode and its partner of the gapless excitations is
also studied according to the Peres-Horodecki-Simon (PHS) criterion. It is found that the presence of the
gapped excitations will deteriorate the quantumness of the pair modes of the gapless excitations when the
frequency of the pair modes in particular is around ω ∼ ωmin. On top of that, when the coupling constant
between the gapless and gapped excitations becomes large enough, the huge particle density of the gapped
excitations in the small ω regime will significantly disentangle the pair modes of the gapless excitations.
The detailed time-dependent PHS criterion will be discussed.
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I. INTRODUCTION

The program of the analog models of gravity is an
attempt to implement laboratory systems to mimic various
phenomena that happen in the interplay between general
relativity and quantum field theory such as in black holes
and the early Universe. The aim is to devise experiments of
real laboratory tests that provide insights in the phenomena
and further probe the structure of curved-space quantum
field theory. The beginning of analog gravity dates back to
the pioneering work of Unruh [1], who used the sound
waves in a moving fluid as an analog to light waves
in curved spacetime and further showed that supersonic
fluid can generate a “dumb hole”, an acoustic analog of a
“black hole”. From there, the existence of analog-photonic

Hawking radiations due to the presence of the acoustic
horizon can be theoretically demonstrated. Since its develop-
ment, the analog gravity program has received much
attention to explore fundamental physics through interdis-
ciplinary research among particle/astrophysicists and con-
densed matter physicists (for a review see [2]). Despite the
early start of theoretic investigations, great progress has also
been made recently in experimental analog gravity to
advance its technologies for realizing the Hawking effects.
One of the most successful systems is the Bose-Einstein
condensations (BECs). The work of [3] is a first exper-
imental observation of Hawking radiation extracted from
the correlations of the collective excitations that agree with
a thermal spectrum with the temperature estimated from
analog surface gravity. Also, the time dependence of the
Hawking radiation in an analog black hole is observed in [4].
Most of the works for BEC analogous black holes

consider the Hawking radiations due to the gapless exci-
tations analogous to the massless scalar particles. As the
Hawking temperature rises to the order of the mass scale of
some massive particles, the production of these massive
particles also becomes significant [5]. The aspects of the
analog models of the gapped excitations of the BECs have
been explored in [6–8], where the energy-gap term is either
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induced from the transverse wave number inversely propor-
tional to the size in the perpendicular direction in the
elongated quasi-one-dimensional system or added by hand
as a toy model. One of the main features for the gapped
excitations includes the existence of the minimum fre-
quency ωmin, below which in the subsonic regime the
propagating modes do not survive resulting in the total
reflection of radiation coming from the supersonic regime
at the horizon. The other feature is that solving the
dispersion relation can find the nonvanishing zero-
frequency mode where their density-density correlation
functions reveal the undulation phenomenon in the super-
sonic regime. In this work, we will focus on the gapped
excitations created from the binary BECs. Two-component
BECs have been experimentally studied using the mixture
of atoms with two hyperfine states of 87Rb [9] or the
mixture of two different species of atoms [10–14]. In the
analog-gravity program, the class of two-component BECs
subject to laser- or radio-wave induced Rabi transition
between different atomic hyperfine states has been pro-
posed to serve as an “emergent” spacetime model, which
provides very rich spacetime geometries, such as a specific
class of pseudo-Finsler geometries, and both bimetric
pseudo-Riemannian geometries and single-metric pseudo-
Riemannian geometries of interest in cosmology and
general relativity [2,15–18]. In fact, this class of the
two-component BEC systems with the Rabi interaction
exhibits two types of excitations on condensates; the
gapless excitations due to the “in phase” oscillations
between two respective density waves of the binary system
and the gapped excitation stemming from the “out-of-
phase” oscillations of the density waves in the presence of
the Rabi transition, which are respectively analogous of the
Goldstone modes and the Higgs modes in particle physics.
In addition, in [19] the dynamics of collective atomic
motion by choosing tunable scattering lengths through
Feshbach resonances has been studied with the introduced
effective parameter characterizing the miscible or immis-
cible regime of binary condensates and their stabilities.
In this system, we plan to set up the configuration of the

supersonic and subsonic regimes with the acoustic horizon
between them. We consider the simplified steplike sound
speed profile to implement the subsonic-supersonic tran-
sition in the elongated two-component Bose-Einstein con-
densates using the tunable couplings between the atoms
through the Feshbach resonances [20,21] so that the
configuration can be analytically treatable. Although the
problem of this sudden transition gives the infinity acoustic
surface gravity, the corresponding Hawking temperature
still can be read off from the obtained spectrum of the
Hawking modes. More realistic transitions can be consid-
ered in the waterfall configuration that relies on full
numerical studies to explore its physics. The experimen-
tally spatial variation of the interaction strengths to fit into

the configuration is challenged but feasible [22–24]. We
first find the dispersion relation of the gapped excitations and
identify the various modes in both supersonic and subsonic
regimes. The energy-gap term is governed by the Rabi-
coupling constant Ω between two hyperfine states of
Bose-Einstein condensates [2],meff ∝

ffiffiffiffi
Ω

p
, which is tunable

experimentally. In addition, a spatial varying of the Rabi-
coupling constant is also doable experimentally [23], which
allows to design two different effective-energy gaps on the
subsonic and supersonic regimes. The matching between
two sets of the wave functions in subsonic/supersonic
regimes allows us to define the S-matrix, whose elements
can be experimentally determined from the density-density
correlation functions [3]. One of the main results in this
paper then comes from the study of the quantum entangle-
ment between the Hawking mode and its partner of the
gapped excitations by employing the Peres-Horodecki-
Simon (PHS) criterion [25–27]. On top of that, to this
binary Bose-Einstein condensate system, it provides the
opportunity to study the analog-gravity phenomena in the
open quantum system, where the gapless excitations
are treated as the system and the gapped excitations as an
environment. The same idea has been employed to examine
the effect of quantum fluctuations due to the gapped
excitations on phonon propagation in the binary BECs
system to build up an analogous model of the light cone
fluctuations induced by quantum gravitational effects in
[28]. Here we study the entanglement between the Hawking
mode and its partner of the gapless excitations under the
influence of the environment of the gapped excitations.
We organize this paper as follows. In Sec. II, we

introduce the model of interest and construct the gapped
excitations in the supersonic/subsonic configuration where
the acoustic horizon is present between them in a binary
BECs system. In Sec. III, the matching of the mode
functions of two sides of the acoustic horizon is carried
out to obtain the scattering coefficients for three outgoing
channels. In Sec. IV, we study density-density correlation
functions. Section V is devoted to the study of the non-
separability of the gapless excitations influenced by the
gapped excitations. We conclude the work in Sec. VI.

II. THE MODEL

A. The Bogoliubov-de Gennes equations
in coupled Bose condensates

We consider the binary BECs of the same atoms in two
different internal hyperfine states. We then assume that a
strong cigar-shape trap potential is used where the size of
the trap Lx along the axial direction, say in the x-direction,
is much larger than the size of Lr along the radial direction.
Therefore, the system (in units of ℏ ¼ kB ¼ 1) can be
treated in the pseudo-one-dimension with the Lagrangian
given by
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L1D ¼
Z

dx

� X
a¼A;B

�
i
2
ðΨ̂†

a∂tΨ̂a − Ψ̂a∂tΨ̂†
aÞ

−
�

1

2m
∂xΨ̂†

a∂xΨ̂a þ VaΨ̂†
aΨ̂a þ

Uaa

2
Ψ̂†

aΨ̂†
aΨ̂aΨ̂a

��

−UABΨ̂†
AΨ̂

†
BΨ̂AΨ̂B þΩ

2
ðΨ̂AΨ̂†

B þ Ψ̂†
AΨ̂BÞ

�
; ð1Þ

where m is atomic mass and VA, VB are the external
potential along the axial direction on the hyperfine states A
and B. The field operators obey the equal-time commuta-
tion relations

½Ψ̂aðx; tÞ; Ψ̂†
bðx0; tÞ� ¼ δabδðx − x0Þ: ð2Þ

The interaction strengths of atoms between the same hyper-
fine states and different hyperfine states are given by
UAA;UBB, and UAB, respectively. The coupling strengths
are related with the scattering lengths a as U ¼ 2a=mL2

r .
Experimentally, the values of scattering lengths can be tuned
using Feshbach resonances such as two hyperfine states of
87Rb [9,11]. In addition, we introduce a Rabi-coupling term
by shining the laser field or applying the radio wave with the
strength given by the Rabi frequency, Ω.
The corresponding time-dependent equations of motion

are obtained as

i∂tΨ̂A ¼
�
−

1

2m
∂
2
x þVAðxÞ þUAAΨ̂†

AΨ̂A þUABΨ̂†
BΨ̂B

�
Ψ̂A

−
Ω
2
Ψ̂B; ð3aÞ

i∂tΨ̂B ¼
�
−

1

2m
∂
2
x þVBðxÞ þUBBΨ̂

†
BΨ̂B þUABΨ̂

†
AΨ̂A

�
Ψ̂B

−
Ω
2
Ψ̂A: ð3bÞ

The condensate wave functions are given by the expect-
ation value of the field operator hΨ̂ai ¼ ψae−iμt, where they
are governed by the stationary Gross-Pitaevskii (GP)
equations [29]

μψA ¼
�
−

1

2m
∂
2
x þ VAðxÞ þ UAAjψAj2 þ UABjψBj2

�
ψA

−
Ω
2
ψB; ð4aÞ

μψB ¼
�
−

1

2m
∂
2
x þ VBðxÞ þUBBjψBj2 þ UABjψAj2

�
ψB

−
Ω
2
ψA; ð4bÞ

with the chemical potential μ. The condensate wave
functions define the density ρa and the phase θa

ψaðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
ρaðxÞ

p
eiθaðxÞ: ð5Þ

Meanwhile, the continuity equation gives the relations

vaðxÞρaðxÞ ¼ constant ð6Þ

with the condensate-flow velocities ∂xθaðxÞ=m ¼ vaðxÞ.
Here we choose the scattering parameters in this binary

systems so as to have a stable and miscible state of the
background condensates where ρA ¼ ρB ¼ ρ and θA ¼
θB ¼ θ, and also UAA ¼ UBB ¼ U [20,21]. The detailed
analysis of the choice of the parameters can be found in our
previous work [28]. We further assume that ρ ¼ ρ0 is a
constant across the whole condensate. We also consider the
constant condensate-flow velocity vA ¼ vB ¼ −v ðv > 0Þ
from the positive x to the negative x. For the interaction
strengths, we consider the steplike change forUðxÞ, namely

UðxÞ ¼
�
Ul; x < 0;

Ur; x ≥ 0;
ð7Þ

giving the steplike change of the sound speed across x ¼ 0
while keeping UAB and Ω uniform across the condensate.
The experimentally spatial variation of the interaction
strengths is challenging but feasible [22–24]. Additionally,
the external potential is chosen to satisfy [30,31]

Vl þ ðUl þ UABÞρ0 −Ω=2 ¼ Vr þ ðUr þ UABÞρ0 − Ω=2:

ð8Þ

The perturbations around the stationary wave function
are defined through

Ψ̂a ¼ hΨ̂aið1þ ϕ̂aÞ; ð9Þ

where the perturbed fields ϕ̂a obey the equal-time com-
mutation relations

½ϕ̂aðx; tÞ; ϕ̂†
bðx0; tÞ� ¼

1

ρ0
δabδðx − x0Þ ð10Þ

with a ¼ A, B. Substituting (9) into (3) and using the GP
equations we found the Bogoliubov-de Gennes equations

i∂tϕ̂A ¼ −
1

2m
∂
2
xϕ̂A −

i
m
∂xθ∂xϕ̂A þ Uρ0ðϕ̂A þ ϕ̂†

AÞ

þ UABρ0ðϕ̂B þ ϕ̂†
BÞ þ

Ω
2
ðϕ̂A − ϕ̂BÞ; ð11aÞ

i∂tϕ̂B ¼ −
1

2m
∂
2
xϕ̂B −

i
m
∂xθ∂xϕ̂B þ Uρ0ðϕ̂B þ ϕ̂†

BÞ

þ UABρ0ðϕ̂A þ ϕ̂†
AÞ þ

Ω
2
ðϕ̂B − ϕ̂AÞ; ð11bÞ

where U has a steplike form across x ¼ 0.
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The system of equations (11) can be further decoupled
by means of the field transformation

ϕ̂d ¼
1ffiffiffi
2

p ðϕ̂A þ ϕ̂BÞ; ð12aÞ

ϕ̂p ¼ 1ffiffiffi
2

p ðϕ̂A − ϕ̂BÞ; ð12bÞ

where the fields ϕ̂d and ϕ̂p are due to the density and
polarization fluctuations, respectively. It will be seen that
the field ϕ̂d of the gapless excitations and the field ϕ̂p of the
gapped excitations are analogous to the Goldstone and
Higgs modes in particle physics.
In this time-translational invariant system, the field

operators ϕ̂d and ϕ̂p can be decomposed in the frequency
domain

ϕ̂dðx; tÞ ¼
X
j

Z
dω½âωjϕdωjðxÞe−iωt þ â†ωjφ

�
dωjðxÞeiωt�;

ð13aÞ

ϕ̂pðx; tÞ ¼
X
j

Z
dω½b̂ωjϕpωjðxÞe−iωt þ b̂†ωjφ

�
pωjðxÞeiωt�:

ð13bÞ

Apart from the integration over the various frequencies ω,
for each ω, there exist either the outgoing channels or
incoming channels j to be summed over that will be
discussed later. Notice that in the above decomposition,
the propagating modes are involved where the range of the
frequency for each channel j of the gapless and gapped
excitations for having the propagating modes can be
different and relies on the dispersion of relation to be seen
next. The detailed expansions will be shown in a precise
manner below when all the modes in each side of x are
determined. In (13), the creation and annihilation operators
satisfy the canonical commutation relations, namely

½âωj; â†ω0j0 � ¼ ½b̂ωj; b̂†ω0j0 � ¼ δjj0δðω − ω0Þ: ð14Þ

Substituting (12) into (11), one obtains the wave equations
for the mode functions ϕωðxÞ and φωðxÞ�

ðω − iv∂xÞ þ
1

2mρ0
ρ0∂

2
x

�
ϕdω

− ½ðU þ UABÞρ0�ðϕdω þ φdωÞ ¼ 0; ð15aÞ
�
ðω − iv∂xÞ −

1

2mρ0
ρ0∂

2
x

�
φdω

þ ½ðU þ UABÞρ0�ðϕdω þ φdωÞ ¼ 0; ð15bÞ

and

�
ðω − iv∂xÞ þ

1

2mρ0
ρ0∂

2
x

�
ϕpω

−
�
ðU −UABÞρ0 þ

Ω
2

�
ðϕpω þ φpωÞ

−
Ω
2
ðϕp;ω − φpωÞ ¼ 0; ð16aÞ

�
ðω − iv∂xÞ −

1

2mρ0
ρ0∂

2
x

�
φpω

þ
�
ðU −UABÞρ0 þ

Ω
2

�
ðϕp;ω þ φpωÞ

−
Ω
2
ðϕp;ω − φpωÞ ¼ 0: ð16bÞ

Together with (10), the normalization of the mode func-
tions is given by

Z
dx½ϕsωjðxÞϕ�

sω0j0 ðxÞ − φ�
sωjðxÞφsω0j0 ðxÞ� ¼

δjj0δðω − ω0Þ
ρ0

ð17Þ

with s ¼ d, p.

B. Plane wave solutions and dispersion relations

Assuming the plane wave solutions for each side of
x ¼ 0 in the background of the homogenous condensate
given by

ϕsωðx; tÞ ¼ Aske−iωtþikx; ð18aÞ

φsωðx; tÞ ¼ Bske−iωtþikx; ð18bÞ

we obtain the dispersion relation for the gapless excitations

ðωþ vkÞ2 ¼ c2dk
2 þ k4

4m2
ð19Þ

with the sound velocity

cd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðU þ UABÞρ0

m

r
: ð20Þ

Also the dispersion relation for the gapped excitations are
found to be

ðωþ vkÞ2 ¼ c2pk2 þ
k4

4m2
þm2

eff ð21Þ

with the speed of the excitations
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cp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðU −UABÞρ0 þ Ω

m

r
ð22Þ

and the effective energy-gap term

meff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðU − UABÞρ0ΩþΩ2

q
; ð23Þ

due to the Rabi-coupling effects [32]. The healing length of
two types of the excitations is given respectively by

ξs ¼
1

mcs
; s ¼ d; p: ð24Þ

The steplike change of the parameters in (7) reflects in the
sudden change of sound speeds (20), (22), and effective-
energy gap in (23) at x ¼ 0.
The mode amplitudes are obtained from the wave

equations (15)–(16). According to the normalization con-
ditions (17), the coefficients of the plane wave solutions
in (18) follow the relation

jAskj2 − jBskj2 ¼ � 1

2πρ0

				 dkdω
				: ð25Þ

After some algebra we find

Adk ¼
ωþ vkþ k2=2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8πρ0ðk2=2mÞvgðωþ vkÞ
q ;

Bdk ¼
−ðωþ vkÞ þ k2=2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πρ0ðk2=2mÞvgðωþ vkÞ

q ; ð26Þ

Apk ¼
ωþ vkþ k2=2mþ Ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8πρ0ðk2=2mþΩÞvgðωþ vkÞ
q ;

Bpk ¼
−ðωþ vkÞ þ k2=2mþ Ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πρ0ðk2=2mþΩÞvgðωþ vkÞ

q ; ð27Þ

where vg is the group velocity vg ¼ dω=dk. In (25), the
positive (negative) sign corresponds to positive (negative)
norm branch.
In order to create Hawking radiations, one needs the

supersonic and subsonic configuration such that

cd;l < v < cd;r; ð28aÞ

cp;l < v < cp;r; ð28bÞ

through the choice of Ul < Ur in each side of x ¼ 0 while
keeping the flow velocity of the condensates a constant.
The schematic plot of the setup is in Fig. 1. The Mach
numbers are defined as [33,34]

ms;l ¼
v
cs;l

; and ms;r ¼
v
cs;r

; s ¼ d; p: ð29Þ

The requirement ms;r < 1 < ms;l leads to the subsonic
region (x > 0) and the supersonic region (x < 0) separated
by a sudden change of the speed at x ¼ 0 so that the acoustic
horizon emerges. Analogous Hawking radiations given by
the gapless excitations have been studied extensively [35].
Here we would like to focus on the gapped excitations
instead, which themselves can create analogous Hawking
radiations. Additionally, turning on the interaction between
the gapless and gapped excitations opens the possibility to
study how the gapped excitations influence the analogous
Hawking radiations from the gapless excitations.

C. Gapped excitation modes

We now investigate the wave numbers of gapped exci-
tations with a fixed frequency ω from solving the dispersion
relation (21). Dispersive effects of the system lead to four
solutions for the wave numbers. In the supersonic region or
downstream region in x < 0 with cp;l < v, the solutions are
qualitatively illustrated in Fig. 2. Two of the solutions
kþl; kvl are from the dispersion of the relation of the positive
comoving frequencies branches and the other two k−l; kul
are from the negative comoving frequencies branches when
ω < ωmax. When ω > ωmax, the solutions of the wave
numbers k−l; kul will change to complex values, leaving
two real-number solutions kþl; kvl only. The wave number
kmax and the frequency ωmax are determined by requiring
dω
dk jk¼kmax ¼ 0, from the dispersion of relation in the negative
comoving frequencies branch, namely

ω ¼ −vk −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2p;lk

2 þ k4

4m2
þm2

eff;l

r
: ð30Þ

To have analytical expression of ωmax and kmax, we consider
small meff;l limit, where mc2p;l ≈mv2 ≫ meff;l, leading to

FIG. 1. The schematic plot depicts two sides of x ¼ 0. The
supersonic region x < 0 has the sound speed cl < v, while the
subsonic region x > 0 has the sound speed cr > v. This setting is
achieved by tuning the intraspecies interaction as Ur > Ul in (7).
This works for both gapless and gapped excitations.

ANALOGOUS HAWKING RADIATION AND QUANTUM … PHYS. REV. D 106, 044016 (2022)

044016-5



Uρ0 ≫ Ω. Then, to order m2
eff;l, the solution of kmax can be

expressed as kmax ¼ kð0Þmax þ kð1Þmax, where

kð0Þmax ¼ −
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8c2p;l þ v2

q
− 4c2p;l þ v2

r
ffiffiffi
2

p ; ð31Þ

corresponds to the gapless case [35], and the correction due
to meff is obtained as

kð1Þmax ¼
2m2½2c2p;lm2 þ ðkð0ÞmaxÞ2�

ðkð0ÞmaxÞ3½6c2p;lm2 þ ðkð0ÞmaxÞ2�
m2

eff;l þOðm3
eff;lÞ: ð32Þ

The resulting ωmax can be then approximated by ωmax ¼
ωð0Þ
max þ ωð1Þ

max with

ωð0Þ
max ¼ −vkð0Þmax −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2p;lðkð0ÞmaxÞ2 þ ðkð0ÞmaxÞ4

4m2

s
; ð33Þ

ωð1Þ
max¼

2m2½2c2p;lm2ωð0Þ
maxþ2ðkð0ÞmaxÞ3vþ3ðkð0ÞmaxÞ2ωð0Þ

max�
ðkð0ÞmaxÞ4½6c2p;lm2þðkð0ÞmaxÞ2�

m2
eff;l

þOðm3
eff;lÞ: ð34Þ

As long as cp;l < v, ωð1Þ
max is negative, leading to a smaller

value of ωmax due to the effective energy gap term meff;l as

compared with ωð0Þ
max corresponding to the gapless cases. The

existence of the two real-number solutions of the wave

numbers in the negative comoving frequencies branch allows
the quantum states with negative norm that open a window
to trigger the subsequent analogous Hawking radiation.
Roughly speaking, the above analytical results can provide
an estimate of the value of ωmax.
In the subsonic region (cp;r > v) and also in the upstream

for x > 0, when ω > ωmin, there are two solutions kur; kvr
of the real numbers obtained from the positive comoving
frequencies branch and the other two wave numbers k�r of
the complex numbers from the negative comoving frequen-
cies branch. See Figs. 2 and 3 for more details.
In fact, from the supersonic to subsonic region, the

solution of ku shifts from the negative comoving frequen-
cies branch to the positive comoving frequencies branch
whereas the solution kþ shifts in stead from the positive
comoving frequencies branch to the negative comoving
frequencies branch, then becoming complex-valued in the
subsonic region. On the contrary, the solutions of kv and k−
remain in the positive and negative comoving frequencies
branches on both regions, but k− becomes complex-valued
in the subsonic region. The minimum frequency ωmin can
be obtained, when two real wave number solutions merge,
with the approximate value in the small meff limit, namely
mc2p ≈mv2 ≫ meff as [7,36]

ωmin ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2p;r − v2

c2p;r

s
meff;r: ð35Þ

For ω < ωmin, all four wave numbers are complex values,
where two of them are the decaying modes and the other
two are growing modes. The propagating modes together

FIG. 2. The frequency ω varies with wave number k according to the dispersion relation of gapped excitation (21) (solid line with
lighter color) and gapless excitation (19) (dashed line with darker color). In the left panel, a given ω gives four real-valued roots when
ω < ωmax. However, in the right panel two real-valued roots exist only for ω ≥ ωmin. We consider the single-metric geometry cp ¼ cd.
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with the decaying modes will be taken into account on the
matching at x ¼ 0 between two sides of the modes. Here
we assume that the growing modes will not be excited. In
Fig. 3, we draw the corresponding moving direction of each
mode according to the sign of the group velocity vg.
The analytical solutions of the wave numbers can only

be explored in the limits of small frequency ω and the

effective energy gap meff when μ≡meff=mc2p ≪ 1 and
ν≡ ω=mc2p ≪ 1. In the case of the supersonic wave, for
ω < ωmax, two of the solutions with small wave numbers
of order much smaller than 1=ξp in (24) are obtained by
treating the term k4=4m2 in the dispersion relation (21)
perturbatively to yield

kv ¼
vωþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv2 − c2pÞm2

eff þ ω2c2p
q

c2p − v2

8>><
>>:1 −

c4p
h
vνþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv2 − c2pÞμ2 þ ν2c2p

q i
3

8ðc2p − v2Þ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv2 − c2pÞμ2 þ ν2c2p

q þOðν4; μ4Þ

9>>=
>>;; ð36Þ

ku ¼
vω −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv2 − c2pÞm2

eff þ ω2c2p
q

c2p − v2

8>><
>>:1þ

c4p
h
vν −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv2 − c2pÞμ2 þ ν2c2p

q i
3

8ðc2p − v2Þ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv2 − c2pÞμ2 þ ν2c2p

q þOðν4; μ4Þ

9>>=
>>;: ð37Þ

The other two solutions with large wave numbers of the order of 1=ξp, where the dispersive term in the dispersion relation
is dominant, are approximated by

k� ¼ vω
v2 − c2p

�
1þ c4pμ2

2ðv2 − c2pÞ2
þ ðv2 þ c2pÞc4pν2

2ðv2 − c2pÞ3
þOðν4; μ4Þ

�

� 2m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − c2p

q �
1 −

c4pμ2

8ðv2 − c2pÞ2
−
ð2v2 þ c2pÞc4pν2
8ðv2 − c2pÞ3

þOðν4; μ4Þ
�
: ð38Þ

In the subsonic region, both k� become complex values.
Notice that the nonzero zero-frequency modes will play an
important role in forming the undulations in the density-
density correlation functions to be discussed later.
If we switch off the Rabi frequency Ω ¼ 0 (meff ¼ 0),

and replace cp by cd, the resulting (36)–(38) are identical to
the wave numbers obtained in [35] for the gapless exci-
tations. For cp < v of the supersonic region, and in the case
of cp ≈ v under consideration, kmax ∼mcp in (31) gives the
value ωmax ∼mc2p obtained from (33). Thus the above
approximate solutions in (36)–(38) valid in particular for
ω ≪ mc2p fail to give the value of ωmax. Nevertheless, for

cp > v of the subsonic region, the value of ωmin in (35),
below which all four solutions become complex valued,
can be obtained by setting ku ¼ kv using the above
approximate expressions.

III. MODE FUNCTIONS AND SCATTERING
MATRICES

A. Matching of mode functions

We proceed by considering the matching of the wave
functions at x ¼ 0, in which both wave functions at x > 0
and x < 0 must change smoothly

FIG. 3. Schematic representation of the scattering modes and the decaying modes. In the downstream (supersonic) region, there are
four plane wave modes, while in the upstream (subsonic) region, there are only two plane wave modes and one decaying mode. The
amplitudes for each mode can be solved by the matching conditions in (43).
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ϕjð0−; tÞ ¼ ϕjð0þ; tÞ; φjð0−; tÞ ¼ φjð0þ; tÞ;
∂xϕ

jð0−; tÞ ¼ ∂xϕ
jð0þ; tÞ; ∂xφ

jð0−; tÞ ¼ ∂xφ
jð0þ; tÞ;

ð39Þ

where again j denotes outgoing or incoming channels.
According to the dispersion relation of the gapped exci-
tation, for a given frequency there exist four wave numbers
for each side of x ¼ 0 (21).
For each channel j, the general solution is a linear

superposition of the four solutions

ϕðt;xÞ¼
�
Culϕ

ulþCvlϕ
vlþCþlϕ

þlþC−lϕ
−l for x<0

Curϕ
urþCvrϕ

vrþCþrϕ
þrþC−rϕ

−r for x>0
:

ð40Þ

Similarly, we have

φðt;xÞ¼
�
Culφ

ulþCvlφ
vlþCþlφ

þlþC−lφ
−l for x<0

Curφ
urþCvrφ

vrþCþrφ
þrþC−rφ

−r for x>0
:

ð41Þ

Using (40) and (41) together with (18) in the matching
condition (39), one can write the result in the following
matrix form

0
BBB@

Cul

Cvl

Cþl

C−l

1
CCCA ¼ Mscat

0
BBB@

Cur

Cvr

Cþr

C−r

1
CCCA; ð42Þ

where

Mscat ¼ W−1
l Wr ð43Þ

with Wl and Wr given by

Wh ¼

0
BBB@

Auh Avh Aþh A−h

Buh Bvh Bþh B−h

ikuhAuh ikvhAvh ikþhAþh ik−hA−h

ikuhBuh ikvhBvh ikþhBþh ik−hB−h

1
CCCA;

h ¼ l; r: ð44Þ

To figure out Mscat, we adopt the results of the mode
functions as well as their wave numbers in the small ω
expansion and consider the leading terms only. The
coefficients C0s will be connected to the elements of the
S-matrix to be determined later.

B. Construction of the S-matrix

The density fluctuation field operator for the gapped
excitation are then decomposed in terms of the in or the out
basis. In this paper, we mainly focus on the effects of the
modes from the negative comoving frequencies branch
withω < ωmax. In the regionωmin ≤ ω ≤ ωmax, as shown in
Fig. 3, three modes with the wave functions ϕvr

p ;ϕ�l
p move

toward x ¼ 0 and the other three modes with the wave
functions ϕur

p ;ϕvl
p , and ϕul

p move away from x ¼ 0, which
form the respective incoming and outgoing channels. For
the three outgoing (incoming) channels, the corresponding
out (in) states involving the linear superposition of all
relevant plane wave solutions in their respective channels
form a out (in) basis [35]. The details of particular modes
involved in each of outgoing channels will be specified
below. Although the decaying modes are considered on the
matching of the wave functions, they will decay and thus
will not contribute to the asymptotic states in the scattering
processes. Additionally, the existence of the solutions
kul; k−l from the negative comoving frequencies branch
in the supersonic region leads to the negative norm states
that destabilize the vacuum state of the system with the
corresponding creation/annihilation operators, denoted by
ðb̂−l;in−ω Þ†; b̂−l;in−ω and ðb̂ul;out−ω Þ†; b̂ul;out−ω . The mode expansion
can then be expressed as

ϕ̂pðx;tÞ¼
Z

ωmax

ωmin

dω
nh

b̂vr;inω ϕvr;in
p þ b̂þl;in

ω ϕþl;in
p þðb̂−l;in−ω Þ†ϕ−l;in

p

i
þ
h
ðb̂vr;inω Þ†φvr;in

p þðb̂þl;in
ω Þ†φþl;in

p þ b̂−l;in−ω φ−l;in
p

io
ð45aÞ

¼
Z

ωmax

ωmin

dω
nh

b̂ur;outω ϕur;out
p þ b̂vl;outω ϕvl;out

p þðb̂ul;out−ω Þ†ϕul;out
p

i
þ
h
ðb̂ur;outω Þ†φur;out

p þðb̂vl;outω Þ†φvl;out
p þ b̂ul;out−ω φul;out

p

io
:

ð45bÞ

The relation of the in basis to the out basis is through the S-matrix, which can be defined for the wave function ϕ as [31,37]

0
B@

ϕvr;in
p

ϕþl;in
p

ϕ−l;in
p

1
CA ¼ S ·

0
B@

ϕur;out
p

ϕvl;out
p

ϕul;out
p

1
CA ¼

0
B@

Sur;vr Svl;vr Sul;vr
Sur;þl Svl;þl Sul;þl

Sur;−l Svl;−l Sul;−l

1
CA
0
B@

ϕur;out
p

ϕvl;out
p

ϕul;out
p

1
CA: ð46Þ
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The same transformation also applies to the wave function φ.
This in turn gives the Bogoliubov transformation,

0
BB@

b̂ur;outω

b̂vl;outω

ðb̂ul;out−ω Þ†

1
CCA ¼

0
BB@

Sur;vr Sur;þl Sur;−l
Svl;vr Svl;þl Svl;−l
Sul;vr Sul;þl Sul;−l

1
CCA
0
BB@

b̂vr;inω

b̂þl;in
ω

ðb̂−l;in−ω Þ†:

1
CCA:

ð47Þ

Those scattering amplitudes are obtained by solving the
matching equations in (42) for all mode functions from each
incoming/outgoing mode channels. The current conservation
in an asymptotic region require that

S†ηS ¼ η; with η ¼ diagð1; 1;−1Þ: ð48Þ

Correspondingly, the scattering coefficients have the relations

jSur;vrj2 þ jSur;þlj2 − jSur;−lj2 ¼ 1; ð49aÞ

jSul;vrj2 þ jSul;þlj2 − jSul;−lj2 ¼ −1; ð49bÞ

jSvl;vrj2 þ jSvl;þlj2 − jSvl;−lj2 ¼ 1: ð49cÞ

Theminus sign in the left-hand side of the relations is because
of the incomingmodesk−l of thenegative normstates, and the
minus sign in the right-hand side is due to the outgoingmodes
kul of also the negative norm state. Both modes are in the
supersonic regime.
For 0 < ω < ωmin, since in the subsonic region the

propagating modes do not exist, there are then two
incoming modes and outgoing modes in the supersonic
region [6] with the mode expansion given by

ϕ̂pðx; tÞ ¼
Z

ωmin

0

dω
nh

b̂þl;in
ω ϕþl;in

p þ ðb̂−l;in−ω Þ†ϕ−l;in
p

i
þ
h
ðb̂þl;in

ω Þ†φþl;in
p þ b̂−l;in−ω φ−l;in

p

io
¼

Z
ωmin

0

dω
nh

b̂vl;outω ϕvl;out
p þ ðb̂ul;out−ω Þ†ϕul;out

p

i
þ
h
ðb̂vl;outω Þ†φvl;out

p þ b̂ul;out−ω φul;out
p

io
: ð50Þ

The S-matrix can be constructed from the wave function ϕ
below or the wave function φ by

�
ϕþl;in
p

ϕ−l;in
p

�
¼ S ·

�
ϕvl;out
p

ϕul;out
p

�
¼

�
Svl;þl Sul;þl

Svl;−l Sul;−l

��
ϕvl;out
p

ϕul;out
p

�

ð51Þ

giving the Bogoliubov transformation,

�
b̂vl;outω

ðb̂ul;out−ω Þ†
�

¼
�
Svl;þl Svl;−l
Sul;þl Sul;−l

��
b̂þl;in
ω

ðb̂−l;in−ω Þ†:

�
: ð52Þ

The current conservation in this case becomes

S†ηS ¼ η; with η ¼ diagð1;−1Þ: ð53Þ

Explicitly, the scattering matrix elements thus have the
relations

jSvl;þlj2 − jSvl;−lj2 ¼ 1; ð54aÞ

jSul;þlj2 − jSul;−lj2 ¼ −1: ð54bÞ

Apparently the existence of the negative norm states results
in the Bogoliubov transformations involving the mixture
of the creation and annihilation operators giving particle
production.
Finally, when ω > ωmax all the negative norm states

disappear, the mode expansion is given in terms of the
positive norm states as

ϕ̂pðx; tÞ ¼
Z

∞

ωmax

dω
nh

b̂vr;inω ϕvr;in
p þ b̂þl;in

ω ϕþl;in
p

i
þ
h
ðb̂vr;inω Þ†φvr;in

p þ ðb̂þl;in
ω Þ†φþl;in

p

io
¼

Z
∞

ωmax

dω
nh

b̂ur;outω ϕur;out
p þ b̂vl;outω ϕvl;out

p

i
þ
h
ðb̂ur;outω Þ†φur;out

p þ ðb̂vl;outω Þ†φvl;out
p

io
: ð55Þ

The scattering matrix S is thus defined from the wave
function ϕ below or the wave function φ by

�
ϕvr;in
p

ϕþl;in
p

�
¼ S ·

�
ϕur;out
p

ϕvl;out
p

�
¼

�
Sur;vr Svl;vr
Sur;þl Svl;þl

��
ϕur;out
p

ϕvl;out
p

�
;

ð56Þ

where the corresponding Bogoliubov transformation
becomes

�
b̂ur;outω

b̂vl;outω

�
¼

�
Sur;vr Sur;þl

Svl;vr Svl;þl

��
b̂vr;inω

b̂þl;in
ω

�
ð57Þ

with no mixture of the creation and annihilation operators,
showing no particle production. Thus, the scattering matrix
elements satisfy the relations

jSur;vrj2 þ jSur;þlj2 ¼ 1; ð58aÞ

jSvl;vrj2 þ jSvl;þlj2 ¼ 1: ð58bÞ
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We shall consider the process outgoing channels in, ωmin <
ω < ωmax; 0 < ω < ωmin regimes, respectively, using the
approximate formulas of the wave functions and their wave
numbers obtained in the previous discussions.

C. ur outgoing channel

To construct the ur outgoing (ur, out) channel in the
region ωmin < ω < ωmax, one might consider that an out-
going ϕur

p wave with unit amplitude moves away from
x ¼ 0 due to the scattering of the incoming ϕvr

p mode
moving toward x ¼ 0 with amplitude Sur;vr in the subsonic
region, the ϕþl

p modes in the supersonic region with Sur;þl,
and ϕ−l

p in a particular negative norm state with Sur;−l, as
shown in Fig. 4. In addition, the decaying mode ϕþr

p will
be also taken into account on the matching calculations.
However, in the region ω < ωmin, the ϕur

p mode becomes
a decaying mode with the vanishing amplitude in the

asymptotic region so all Sur;þl; Sur;−l; Sur;vr vanish.
According to the above description, the matching equations
can be written as

0
BBB@

0

0

Sur;þl

Sur;−l

1
CCCA ¼ Mscat

0
BBB@

1

Sur;vr
Cur;þr

0

1
CCCA; ð59Þ

where we have replaced Cj by the specific expression
Sin;out.
Using the result of Mscat given in (43) and (44) one

solves easily the system of equations (59). Up to two
leading-order terms in the small ω expansion for ω < ωmax,
to guarantee the unitary relation (49a), we find that

Sur;−l ¼
8<
:−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mcp;rηr

p ðv2 − c2p;lÞ3=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2p;r − v2

q 
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2p;r − v2

q
þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − c2p;l

q �
ðc2p;r − c2p;lÞðcp;r þ vηrÞ

1ffiffiffiffi
ω

p

þ
h
2

ffiffiffiffiffiffiffi
2m

p
vðc2p;r − c2p;lÞðv2 − c2p;lÞ3=4ðc2p;r − v2Þðcp;r þ vηrÞ

i
−1 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cp;rηrω
p ½2v6 þ v4ðc2p;r − 4c2p;lÞ

þ 2v2ð2c4p;l þ c4p;r − 3c2p;lc
2
p;rÞ þ c4p;lc

2
p;r − iΣðv2 − c2p;lÞðc2p;r þ 2v2Þ� þOðω3=2Þ

9=
;θðω − ωrÞ; ð60Þ

Sur;vr ¼
�
vηr − cp;r
cp;r þ vηr

þOðω3=2Þ
�
θðω − ωrÞ; ð61Þ

Sur;þl ¼
8<
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mcp;rηr

p ðv2 − c2p;lÞ3=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2p;r − v2

q 
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2p;r − v2

q
− i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − c2p;l

q �
ðc2p;r − c2p;lÞðcp;r þ vηrÞ

1ffiffiffiffi
ω

p

þ
h
2

ffiffiffiffiffiffiffi
2m

p
vðc2p;r − c2p;lÞðv2 − c2p;lÞ3=4ðc2p;r − v2Þðcp;r þ vηrÞ

i
−1 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cp;rηrω
p ½2v6 þ v4ðc2p;r − 4c2p;lÞ

þ 2v2ð2c4p;l þ c4p;r − 3c2p;lc
2
p;rÞ þ c4p;lc

2
p;r þ iΣðv2 − c2p;lÞðc2p;r þ 2v2Þ� þOðω3=2Þ

9=
;θðω − ωrÞ; ð62Þ

where ηr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ω2

r=ω2
p

, Σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv2 − c2p;lÞðc2p;r − v2Þ

q
, and ωr is the minimum frequency ωmin (35).

FIG. 4. Schematic representation of ur outgoing channel scattering processes when ωrð¼ ωminÞ < ω < ωmax in (a) and when ω <
ωrð¼ ωminÞ in (b).
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These scattering coefficients can also be obtained numeri-
cally from the matching equations (59) together with the
normalization condition (25). Those scattering coefficients
will be used as the inputs to numerically produce Figs. 5
and 8. Moreover, in these analytical expressions, the step
function θðω − ωrÞ is added in each equation, when
ω < ωrð¼ ωminÞ all the modes of the subsonic (upstream)
region will become decaying or growing waves. The
growing modes are ignored and the decaying modes can
not reach the asymptotic region x → ∞. One expects that
particle production occurs in the region (x < 0) as a result of
encountering the total reflection at x ¼ 0.
To realize the radiation due to particle production from

the negative norm states, we first consider the particle
distribution function nurpω¼h0injb̂ur†ω b̂urω j0ini. We then apply
the relations in (47), where the mode mixing occurs in the
ur outgoing channel from the negative norm states ϕ−l

p , to
give nurpω ¼ jSur;−lj2, yielding

nurpω ¼ jSur;−lj2

¼
�
2mcp;rηrðv2 − c2p;lÞ3=2ðc2p;r − v2Þ

ðc2p;r − c2p;lÞðcp;r þ vηrÞ2
1

ω

−
2cp;rvηr

ðcp;r þ vηrÞ2
þOðωÞ

�
θðω − ωrÞ: ð63Þ

The ϕur
p modes are called the Hawking modes. The small

ω expansion of the particle distribution function of the
Hawking radiation satisfies the Planck distribution

Γ
expð ω

TH
Þ − 1

; ð64Þ

accompanying by the gray-body factor Γ [38–41] approxi-
mated as

Γ
�
TH

ω
−
1

2
þ � � �

�
: ð65Þ

Then the effective Hawking temperature and its gray-body
factor can be read off from the small ω expansion of (63) in
terms of Mach numbers (29) as follows [42]:

TH ¼ mc2p;rð1 −m2
p;rÞm2

p;rðm2
p;l − 1Þ3=2

2mp;lðm2
p;l −m2

p;rÞ
; ð66Þ

Γ ¼ 4mp;rηr
ð1þmp;rηrÞ2

: ð67Þ

The effective temperature is monotonically decreased as
mp;r (mp;l) increases (decreases) toward unity. Especially
TH → 0 as mp;r → 1 or/and mp;l → 1 where the analogous
horizon disappears. As for the gray-body factor, the relation
Γ ¼ 1 − jSur;vrj2 is justified showing that some flux of the
particles moves through x ¼ 0 from the subsonic regime.
As compared with the gray-body factor of the gapless cases
by sending ωr → 0 giving ηr → 1 [38,40]

Γωr¼0 ¼
4mp;r

ð1þmp;rÞ2
: ð68Þ

Here in (67) of the gapped cases theMachnumbers seem to be
dressed by the parameters ηl=r becoming frequency depen-
dent. But these effectiveMach numbers have no effects to the
Hawking temperature. In particular, when ω → ωr, ηr → 0
leads to the gray-body factorΓ → 0 consistentwith [36]. This
is just the critical value of frequency, below which the
excitations in the supersonic regime move toward x ¼ 0
and then are totally reflected away from x ¼ 0, leading to no
Hawking radiation to be observed in the subsonic regime.
Thus, for ω < ωr, all Sur;þl; Sur;−l; Sur;vr vanish.

D. ul outgoing channel

We now discuss the ul outgoing channel in the down-
stream region of x < 0, which reveals information about
the ϕul

p modes, the partner modes of the Hawking radia-
tions. The ul outgoing channel involves the mode ϕul

p of the
negative norm state with the unit amplitude plus three
incoming modes, namely ϕ−l

p with the amplitude Sul;−l, ϕþl
p

with the amplitude Sul;þl, and ϕvr
p with the amplitude Sul;vr

as shown in Fig. 6. The decay mode ϕþr
p with the amplitude

Cul;þr is included also in this calculation. Now the match-
ing equations become

FIG. 5. The Hawking spectrum nurpω varies as a function of ω (in
the unit of mc2p;l) with different Rabi frequencies; Ω=ρ0Ul ¼ 0.0
(red), 3.3 × 10−4 (blue), and 6.6 × 10−4 (green). The solid lines
are based on the numerical computation with details stated in the
text, while dashed lines are due to the analytical prediction in
(63). We consider mp;l ¼ 7=5; mp;r ¼ 3=4, with Ur=Ul ¼ 8=3;
UAB=Ul ¼ 1=3.
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0
BBB@

1

0

Sul;þl

Sul;−l

1
CCCA ¼ Mscat

0
BBB@

0

Sul;vr
Cul;þr

0

1
CCCA: ð69Þ

As before we solve the scattering coefficients for ω < ωmax in the small ω expansion

Sul;−l ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðc2p;r − v2Þ

q
ðv2 − c2p;lÞ3=4ðcp;rηl þ cp;lηrÞ


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2p;r − v2

q
þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − c2p;l

q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cp;lηlω

p ðc2p;r − c2p;lÞðcp;r þ vηrÞ
þ
h
4

ffiffiffi
2

p ffiffiffiffi
m

p
vðc2p;r − c2p;lÞðv2 − c2p;lÞ3=4ðc2p;r − v2Þ ffiffiffiffiffiffiffiffiffiffiffi

cp;lηl
p ðcp;r þ vηrÞ

i
−1

×
ffiffiffiffi
ω

p fcp;r½−2vcp;lðc2p;l − c2p;rÞ2 þ ηlðv2 − c2p;lÞðc2p;r þ 2v2Þð−c2p;l − iΣþ v2Þ�
þ ηr½−2v3ηlðc2p;l − c2p;rÞ2 þ cp;lðc2p;l − v2Þðc2p;r þ 2v2Þðc2p;l þ iΣ − v2Þ�g þOðω3=2Þ; ð70Þ

Sul;vr ¼
vηl − cp;l
cp;r þ vηr

ffiffiffiffiffiffiffiffiffiffiffiffi
cp;rηr
cp;lηl

r
θðω − ωrÞ þOðω3=2Þ; ð71Þ

Sul;þl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðc2p;r − v2Þ

q
ðv2 − c2p;lÞ3=4ðcp;rηl þ cp;lηrÞ


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2p;r − v2

q
− i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − c2p;l

q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cp;lηlω

p ðc2p;r − c2p;lÞðcp;r þ vηrÞ
þ
h
4

ffiffiffi
2

p ffiffiffiffi
m

p
vðc2p;r − c2p;lÞðv2 − c2p;lÞ3=4ðc2p;r − v2Þ ffiffiffiffiffiffiffiffiffiffiffi

cp;lηl
p ðcp;r þ vηrÞ

i
−1

×
ffiffiffiffi
ω

p fcp;r½−2vcp;lðc2p;l − c2p;rÞ2 þ ηlðv2 − c2p;lÞðc2p;r þ 2v2Þð−c2p;l þ iΣþ v2Þ�
þ ηr½−2v3ηlðc2p;l − c2p;rÞ2 þ cp;lðv2 − c2p;lÞðc2p;r þ 2v2Þð−c2p;l þ iΣþ v2Þ�g þOðω3=2Þ; ð72Þ

where ηl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω2

l =ω
2

q
, and ωl ¼ meff;l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv2 − c2p;lÞ=c2p;l

q
. In particular, when ω < ωr the ϕvr

p mode turns out to be

growing modes to be ignored giving the vanishing Sul;vr. These coefficients satisfy the unitary relation (49b).
The number density nulp−ω ¼ h0injb̂ul†−ωb̂

ul
−ωj0ini for the partner modes of the Hawking radiations is

nulp−ω ¼ jSul;þlj2 þ jSul;vrj2

¼ ðmp;lηl þmp;rηrÞ2
mp;lηlð1þmp;rηrÞ2

�
TH

ω
−

1þmp;lηlmp;rηr
2ðmp;lηl þmp;rηrÞ

�
þmp;rηrð1 −mp;lηlÞ2
mp;lηlð1 −mp;rηrÞ2

θðω − ωrÞ þOðωÞ for ωr < ω ≤ ωmax;

ð73Þ

¼
�

m2
p;lη

2
l þm2

p;rjηrj2
mp;lηl þmp;lηlm2

p;rjηrj2
�
TH

ω
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

p;l − 1
q

m2
p;rjηrjðm2

p;lη
2
l − 1Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

p;r

q
m2

p;lηlðm2
p;rjηrj2 þ 1Þ

−
1

2
þOðωÞ

for 0 < ω ≤ ωr: ð74Þ

FIG. 6. Schematic representation of ul, out-channel scattering processes when ωr < ω < ωmax in (a) and ω < ωr in (b).
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Since ϕul
p mode itself is the negative norm states with the

mode mixing of the incoming modes of the positive norm
states, namely, the ϕþl

p ;ϕvr
p modes, we then write the

particle density nulp−ω in terms of the Hawking temperature
TH obtained above. Note that both jSul;þlj2 and jSul;vrj2 can
not be cast into the Planck distribution in the small ω
expansion leading to the nonthermal nature of nulp−ω,
the result also found in the work [36]. In general,
jSul;vrj2 ≪ jSul;þlj2. The above features are also true in
the gapless cases by setting ηl ¼ ηr ¼ 1.

E. vl outgoing channel

Finally we compute the vl outgoing channel of the
positive-norm ϕvl

p mode with unit amplitude plus incoming

modes, which are ϕ−l
p of the negative norm state with

the amplitude Svl;−l, ϕþl
p with the amplitude Svl;þl, and ϕvr

p

with the amplitude Svl;vr (see Fig. 7). The corresponding
matching equations are

0
BBB@

0

1

Svl;þl

Svl;−l

1
CCCA ¼ Mscat

0
BBB@

0

Svl;vr
Cvl;þr

0

1
CCCA; ð75Þ

giving the following scattering coefficients

Svl;−l ¼ −
ðv2 − c2p;lÞ3=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðc2p;r − v2Þ

q
ðcp;rηl − cp;lηrÞ


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2p;r − v2

q
þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − c2p;l

q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cp;lηlω

p ðc2p;r − c2p;lÞðcp;r þ vηrÞ
þ
h
4

ffiffiffi
2

p ffiffiffiffi
m

p
vðc2p;r − c2p;lÞðv2 − c2p;lÞ3=4ðc2p;r − v2Þ ffiffiffiffiffiffiffiffiffiffiffi

cp;lηl
p ðcp;r þ vηrÞ

i
−1

×
ffiffiffiffi
ω

p fcp;rð−2vcp;lðc2p;l − c2p;rÞ2 − ηl½v2 − c2p;lÞðc2p;r þ 2v2Þð−c2p;l þ iΣþ v2Þ�
þ ηr½2v3ηlðc2p;l − c2p;rÞ2 þ cp;lðv2 − c2p;lÞðc2p;r þ 2v2Þð−c2p;l þ iΣþ v2Þ�g þOðω3=2Þ; ð76Þ

Svl;vr ¼
cp;l þ vηl
cp;r þ vηr

ffiffiffiffiffiffiffiffiffiffiffiffi
cp;rηr
cp;lηl

r
θðω − ωrÞ þOðω3=2Þ; ð77Þ

Svl;þl ¼
ðv2 − c2p;lÞ3=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðc2p;r − v2Þ

q
ðcp;rηl − cp;lηrÞ


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2p;r − v2

q
− i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − c2p;l

q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cp;lηlω

p ðc2p;r − c2p;lÞðcp;r þ vηrÞ
þ
h
4

ffiffiffi
2

p ffiffiffiffi
m

p
vðc2p;r − c2p;lÞðv2 − c2p;lÞ3=4ðc2p;r − v2Þ ffiffiffiffiffiffiffiffiffiffiffi

cp;lηl
p ðcp;r þ vηrÞ

i
−1

×
ffiffiffiffi
ω

p fcp;r½−2vcp;lðc2p;l − c2p;rÞ2 − ηlðv2 − c2p;lÞðc2p;r þ 2v2Þð−c2p;l − iΣþ v2Þ�
þ ηr½2v3ηlðc2p;l − c2p;rÞ2 þ cp;lðc2p;l − v2Þðc2p;r þ 2v2Þðc2p;l þ iΣ − v2Þ�g þOðω3=2Þ; ð78Þ

which obey the unitary relation (49c). The particle density
nvlpω defined as h0injb̂vl†ω b̂vlω j0ini turns out to be

nvlpω ¼ jSvl;−lj2 ð79Þ

due to the mode mixing from the negative norm state ϕ−l
p .

Another consistency check comes from the fact that
nulp−ω − nvlpω ¼ nurpω, given by the current conservation
requirement in (53). When ω < ωr ¼ ωmin, since there is
no Hawking radiation emission nurpω ¼ 0, then nulp−ω ¼ nvlpω.

FIG. 7. Schematic representation of vl, out-channel scattering processes when ωr < ω < ωmax in (a), and ω < ωr in (b).
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Once the frequency is larger than ωr, the emergence of
Hawking radiation will drastically decrease production of
nvlpω. See Fig. 8(b) for detail.

IV. DENSITY-DENSITY CORRELATIONS

Density-density correlation functions of the gapped
excitations can assess the analog Hawking radiation by
measuring the correlation between modes in the supersonic
and subsonic regimes. The approximate expressions of
scattering coefficients for each outgoing channels obtained

in the last section can help realize the density-density
correlation function. To proceed, the density and the
associated phase operators can be defined in terms of
the fields ϕ̂s and ϕ̂†

s as

δn̂s¼
δρ̂s
2ρs

¼ ϕ̂sþ ϕ̂†
s

2
; δθ̂s¼

ϕ̂s− ϕ̂†
s

2i
; s¼d;p: ð80Þ

Then the density fluctuation operator for the gapped
excitations can be expanded as

δn̂pðx; tÞ ¼
Z

∞

ωmax

dω½b̂ur;outω χur;outp ðx; tÞ þ b̂vl;outω χvl;outp ðx; tÞ�

þ
Z

ωmax

ωmin

dω½b̂ur;outω χur;outp ðx; tÞ þ b̂vl;outω χvl;outp ðx; tÞ þ ðb̂ul;out−ω Þ†χul;outp ðx; tÞ�;

þ
Z

ωmin

0

dω½b̂vl;outω χvl;outp ðx; tÞ þ ðb̂ul;out−ω Þ†χul;outp ðx; tÞ� þ H:c:; ð81Þ

where

χjp ¼ ðϕj
p þ φj

pÞ=2 ð82Þ

have the formulas given in (40) and (41) according to different out basis. The equal-time correlation function is defined as

Gpðx; x0Þ ¼ h0injfδn̂pðt; xÞ; δn̂pðt; x0Þgj0ini; ð83Þ

where we consider in-vacuum initial state, and f; g is the anticommutation bracket. Employing the Bogoliubov transforms
(47), (52), we have (83) written as

FIG. 8. The spectrums of nulp−ω in (a) and nvlpω in (b) vary as a function of ω (in units of mc2p;l) with different Rabi frequencies;
Ω=ρ0Ul ¼ 0.0 (red), 3.3 × 10−4 (blue), and 6.6 × 10−4 (green). The analytical predictions drawn as dashed lines are obtained from (73)–
(74) and (79) while the numerical results, whose details are stated in the text, are presented with solid lines. The parameters are the same
as that used in Fig. 5.
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hfδn̂pðx; tÞ; δn̂pðx0; tÞgiω ¼ ðjSur;vrj2 þ jSur;þlj2 þ jSur;−lj2Þχur;outp ðxÞχur;out�p ðx0Þ
þ ðjSvl;vrj2 þ jSvl;þlj2 þ jSvl;−lj2Þχvl;outp ðxÞχvl;out�p ðx0Þ
þ ðjSul;vrj2 þ jSul;þlj2 þ jSul;−lj2Þχul;outp ðxÞχul;out�p ðx0Þ
þ ðSur;vrS�ul;vr þ Sur;þlS�ul;þl þ Sur;−lS�ul;−lÞðχur;outp ðxÞχul;out�p ðx0Þ þ χur;outp ðx0Þχul;out�p ðxÞÞ
þ ðSur;vrS�vl;vr þ Sur;þlS�vl;þl þ Sur;−lS�ul;−lÞðχur;outp ðxÞχvl;out�p ðx0Þ þ χur;outp ðx0Þχvl;out�p ðxÞÞ
þ ðSul;vrS�vl;vr þ Sul;þlS�vl;þl þ Sul;−lS�vl;−lÞðχul;outp ðxÞχvl;out�p ðx0Þ þ χul;outp ðx0Þχvl;out�p ðxÞÞ þ c:c:

ð84Þ

In the end, we will sum over all possible Fourier frequen-
cies ω. In Fig. 9, we present the full numerical result of the
correlation function at equal time, which has the same
pattern as in paper [8]. Our result can be compared with the
pattern of the density-density correlation function of the
gapless excitations in [31,42]. The upper-right quadrant
x > 0; x0 > 0 reveals the correlation of the right-moving
positive norm modes ϕur

p with themselves, which shows a
clear peak along x ¼ x0 line, and the correlations vanish
when x ≠ x0 due to the atom-atom repulsive interactions.
This peak pattern of the gapped excitation is almost the
same as for the gapless excitation. The major difference in
the density correction function is manifested in the other
three quadrants discussed separately below.

A. The quadrant of correlation function
within x < 0; x0 > 0 or x > 0; x0 < 0

For x > 0; x0 < 0, the density-density correlation
function Gpðx; x0Þ involves the correlations of the

right-moving positive norm modes ϕur
p outside the hori-

zon at x0 > 0 and the left-moving negative norm modes
ϕul
p inside the horizon at x < 0 as well as the left-moving

positive norm modes ϕvl
p also inside the horizon at x < 0.

Apart from the peaks along the two lines denoted by i and
ii respectively in Fig. 9, which appear in both gapped
and gapless cases [8,31,42], the ripples are found in the
region below the line i [7,8]. The pattern of Gpðx; x0Þ in
the quadrant x < 0; x0 > 0 is the same as in the quadrant
x > 0; x0 < 0 according to the symmetry along the diago-
nal line x ¼ x0.
The lines of the peaks and the ripples can be analytically

studied as follows. Applying (60) and (70) to (84) and
collecting the relevant terms in the region of x < 0; x0 > 0,
the equal-time correlation function of the upper-left quad-
rant turns out to be

Gpðx < 0; x0 > 0Þ ¼
Z

ωmax

ωmin

dω½2Sur;−lS�ul;−lχur;outp ðx0Þχul;out�p ðxÞ þ 2Sur;−lS�vl;−lχ
ur;out
p ðx0Þχvl;out�p ðxÞ� þ c:c:

∼
Z

ωmax

ωmin

dω

2
64m2

p;rðmp;lηl þ 1Þðmp;lηl þmp;rηrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

p;l − 1
q

4πρ0vηlðm2
p;l −m2

p;rÞðmp;rηr þ 1Þ cos ðkulx − kurx0Þ

−
m2

p;rðmp;lηl − 1Þðmp;lηl −mp;rηrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

p;l − 1
q

4πρ0vηlðm2
p;l −m2

p;rÞðmp;rηr þ 1Þ cos ðkvlx − kurx0Þ

3
75: ð85Þ

Here the lines i; ii can be determined by the above integral evaluated at ω ¼ ωmax. One can approximate the integrand with
ηr ¼ ηl ¼ 1 in (85) as ω → ωmax and then consider the integral at ωmax to find

Gpðx < 0; x0 > 0Þ ∼
ðmp;l þ 1Þm2

p;r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

p;l − 1
q

4πρ0vðmp;r þ 1Þðmp;l −mp;rÞ
sin

h
ωmax



x

v−cp;l
þ x0

cp;r−v

�i



x
v−cp;l

þ x0
cp;r−v

�

−
ðmp;l − 1Þm2

p;r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

p;l − 1
q

4πρ0mp;lðmp;r þ 1Þðmp;l þmp;rÞ
sin

h
ωmax



x

vþcp;l
þ x0

cp;r−v

�i



x
vþcp;l

þ x0
cp;r−v

� : ð86Þ
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The peaks occur in the lines,

i ⇒
x

v − cp;l
¼ −

x0

cp;r − v
;

ii ⇒
x

vþ cp;l
¼ −

x0

cp;r − v
;

which are attributed to the correlations of ϕul
p − ϕur

p modes
(the line i) and ϕvl

p − ϕur
p modes (the line ii), respectively.

The same formula for determining the line i is found for the
gapless cases in [35] as long as ωmax ≫ ωl;r leading to the
gapless results [3]. The line ii is also obtained. In particular,
the magnitude of the density correlations along the line i is
much larger than that in the line of ii, which is shown in
Fig. 9 and also in [8] for the gapped cases, and in [8,31,42]
for the gapless cases.
The pattern reveals the ripples in the region of x

v−cp;l
<

− x0
cp;r−v

to be realized by studying the phase θ ¼ kulx −
kurx0 (θ ¼ kvlx − kurx0) of the integrand of the first
(second) term in (85) as a function of ω. At the points
of this region, the phase θ decreases with ω as ω starts
from the lower limit of the integral, namely ωr, and then
increases instead with ω as ω reaches ωmax, developing the
local minimum of θ, around which values of ω give
significant contributions to the respective integral (85).
The wavelength of the ripples can be estimated from the

minimum value of the phase θ along the lines with the
slops v−cp;l

cp;r−v
and vþcp;l

cp;r−v
, which are perpendicular to i, ii

giving respectively

λi ¼
�
2πvmp;lð1 −m2

p;lÞðmp;r − 1Þ2ðmp;r þ 1Þg=fm2
p;lðmp;r − 1Þ2ðmp;r þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
l þ ω2

r

q

þ ωr½2m3
p;lm

3
p;r −m2

p;lm
2
p;rðmp;l þmp;rÞ −mp;lmp;rðm2

p;l þm2
p;rÞ þm3

p;l þm3
p;r�

�
; ð87aÞ

λii ¼
�
2πvmp;lð1 −m2

p;lÞðmp;r − 1Þ2ðmp;r þ 1Þgfm2
p;lðmp;r − 1Þ2ðmp;r þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
l þ ω2

r

q

þ ωr½2m3
p;lm

3
p;r −m2

p;lm
2
p;rðmp;l −mp;rÞ −mp;lmp;rðm2

p;l þm2
p;rÞ þm3

p;l −m3
p;r�

�
: ð87bÞ

In general, λii < λi can be seen in Fig. 9, and both wavelengths are inversely proportional to ωl and ωr. However, in the
region of x

v−cp;l
> − x0

cp;r−v
ripples disappeared because both phases θ ¼ kulx − kurx0 and θ ¼ kvlx − kurx0 monotonically

decrease with ω that lead to the phase cancellation when integrated over ω.

B. The quadrant of correlation function within x < 0; x0 < 0

In the lower-left quadrant of x < 0; x0 < 0, the density correlations account for the negative norm mode ϕul
p and the

positive norm mode ϕvl
p in the supersonic regime. The correlation pattern shows a cone shape of the group of the peaks

in Fig. 9, where a similar behavior also appears in the gapless cases [3]. However, for the gapped cases, again the
peculiar pattern of the undulations due to the existence of the zero-frequency modes are also shown as in the paper [8].
To understand the origin, notice that the density correlation function obtained from the relevant terms of (84) in the
region of x < 0; x0 < 0 is

FIG. 9. The density-density correlation function pattern is
obtained from numerical computations of the integral (83) with
the scattering coefficients, wave numbers and mode amplitudes
also numerically obtained with the details stated in the text. We
have used the parameters mp;l ¼ 7=5, mp;r ¼ 3=4, and
Ω=ρ0Ul ¼ 6.6 × 10−4.
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Gpðx < 0; x0 < 0Þ ¼
Z

ωmax

0

dωfð1þ 2jSvl;−lj2Þχvl;outp ðxÞχvl;out�p ðx0Þ þ ð1þ 2jSul;vrj2 þ 2jSul;þlj2Þχul;outp ðxÞχul;out�p ðx0Þ

þ 2Sul;−lS�vl;−l½χul;outp ðxÞχvl;out�p ðx0Þ þ χul;outp ðx0Þχvl;out�p ðxÞ� þ c:c:g; ð88Þ

where the first line contributes the peaks mainly along the line of x ¼ x0, and again due to the atom-atom repulsive
interaction the correlation vanishes when x ≠ x0. The second line manifests the correlations of the ϕul and ϕvl modes
expressed explicitly in terms of the mode functions ϕ and φ through (82) by

∼
Z

ωmax

0

dω
mp;lð1 −m2

p;rÞðm2
p;lη

2
l þ 1Þðm2

p;lη
2
l −m2

p;rjηrj2Þ
8πρ0vη2l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

p;l − 1
q

ðm2
p;l −m2

p;rÞðmp;rηr þ 1Þ2
½cos ðkulx − kvlx0Þ þ cos ðkulx0 − kvlxÞ�; ð89Þ

where the magnitude is given by inserting the scattering
coefficients in (70) and (76). Thus the cone-shape
boundary of the two lines can be determined by evalu-
ating the above integral at its upper limit ωmax. In this
case, because ωmax ≫ ωl;r where ηl;r → 1 is considered,
the integral evaluated at the upper limit leads to the
similar formula as in (86), giving the two lines to be

x
mp;l − 1

¼ x0

mp;l þ 1
; and

x
mp;l þ 1

¼ x0

mp;l − 1
; ð90Þ

which are the same as in the gapless cases in [31]. The
magnitude of the density correlations on the two lines are
the same. The slopes of the lines (i and ii) only depend on
mp;l since both modes are at x < 0; x0 < 0. The increasing
mp;l can increase the effective temperature TH in (66) but
decrease the angle of cone, namely, reducing the area of
the undulations confined in the cone.
The undulations, which show up only for the gapped

cases, can be understood analytically as follows. Their
typical wavelength λ near the direction of x ¼ x0 can be
extracted directly form the phase θ ¼ kulx − kvlx0 in the
region of small ω given by

λ ≃
2π

ðkul − kvlÞ
				
ω¼0

≃
πðv2 − c2p;lÞ

cp;lωl
; ð91Þ

which is consistent with Fig. 9. The zero-frequency modes
in the solutions of the momentum kv and ku in (36) and (37)
in the supersonic region for the gapped cases play a key role
in determining the wavelength of the undulations. The
phase θ outside the cone decreases monotonically with ω
that leads to the phase cancellation when integrating over ω
so that the undulations disappear.

V. QUANTUM ENTANGLEMENT BETWEEN
HAWKING MODES AND ITS PARTNERS

A. The Peres-Horodecki-Simon criterion

This section devotes to the discussion of quantum
entanglement in this system. We first briefly introduce

the criterion of the quantum entanglement between the
Hawking mode and its partner. The quantum entanglement
and/or the nonseparability of the bipartite systems can be
explored based upon the Peres-Horodecki-Simon criterion
[25–27,43], which then is adapted to assess the entangle-
ment through the simple measure [44]

Δur;ul
pω ¼ nurpωnulp−ω − jcur;ulpω j2: ð92Þ

The formula uses the particle number density nω and their
cross correlations defined as

cur;ulpω ¼ h0injb̂ur;outω b̂ul;out−ω j0ini
¼ Sur;vrS�ul;vr þ Sur;þlS�ul;þl ¼ Sur;−lS�ul;−l: ð93Þ

Here we consider the pair modes of the positive norm state
ϕur, the analogous Hawking mode in the subsonic regime,
and the negative norm state ϕul, the partner mode in the
supersonic regime. Using the unitary properties of the
S-matrix, the measure then becomes

Δur;ul
pω ¼ −jSur;−lj2: ð94Þ

Apparently, the values of Δur;ul
ω are always negative

implying that two modes are quantum mechanical entan-
glement. The above discussions hold true for both gapless
and gapped excitations.
Here is the side issue about how the nonzero particle

number distribution for the incoming modes in the subsonic
regime affects the entanglement of the Hawking mode and
its partner [40]. It is quite straightforward to generalize
the above formulas by considering the incoming ϕvr

p mode

with the nonzero particle distribution function nvr;inpω . In the
gapped cases, it reads

Δur;ul
pω ¼ ðjSul;vrj2 − jSur;−lj2Þnvr;inpω − jSur;−lj2; ω > ωr;

ð95Þ

which can be rewritten as
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Δur;ul
pω

jSur;−lj2
¼ δur;uln

vr;in
pω − 1 ð96Þ

with

δur;ul ¼
jSul;vrj2 − jSur;−lj2

jSur;−lj2
¼ ðmp;lηl −mp;rηrÞ2

4mp;lηlmp;rηr
: ð97Þ

In (97), δur;ul is always positive, and thus can not possibly
be set to vanishing since mp;l; ηl > 1 in the supersonic
region and mp;r; ηr < 1 in the subsonic region. δur;ul can
be tuned to zero so as to avoid the reduction of entangle-
ment in the gapless cases (ηl;r → 1) under the condition of
vlcl ¼ vrcr [40].

B. Inhomogeneous equations

As for the quantum entanglement in the BEC systems,
which are affected by the omnipresent environment,
there have been extensive studies in various fluctuating
environmental degrees of freedom [45–48]. Here the binary
systems have the parameter window to turn on the
interactions between gapless and gapped excitations.
More specifically, we would like to study how the gapped
excitations treated as an environment affect the quantum
entanglement between the Hawking modes and their
partners of the gapless excitations. This is an extension
of our previous work in [28], where the gapped excitations
serve as the environmental degrees of freedom to induce the
sound cone fluctuations, the analogous light cone fluctua-
tions given by the quantum gravitational effects. To turn on
the interactions, we relax the restriction of the parameters to
have small difference between two intra-species interaction
UAA, UBB while other restrictions such as ρl ¼ ρr ¼ ρ0,
vl ¼ vr ¼ −vðv > 0Þ, Ωl ¼ Ωr ¼ Ω still hold. Then, the
interaction between gapless and gapped excitations starts at
t ¼ 0 with the interaction term

Lint ¼ −αρ20δn̂pδn̂d: ð98Þ

The interaction strength α is given by

α ¼ ðUAA −UBBÞθðtÞ: ð99Þ

We assume that two degrees of freedom are completely
decoupled when t < 0, and establish their own excitations
under the super-subsonic configuration, namely cs;l < v <
cs;r for s ¼ d, p. After turning on the interaction, the
gapped excitations start to influence the quantum entangle-
ment of the pair modes of the gapless excitations, resulting
in the time dependent Δjj0

ω developed above. The coupled
equations of motion for δn̂d of the gapless excitations and
δn̂p of the gapped excitations defined in (80), which can be
adapted from (15)–(16) by including the above interaction
term, are obtained as

ð∂t − v∂xÞ2δn̂d þ
1

2m
∂
2
x

�
1

2m
∂
2
x − 2mc2d

�
δn̂d ¼

αρ0
2m

∂
2
xδn̂p;

ð100Þ

ð∂t − v∂xÞ2δn̂p þ
1

2m
∂
2
x

�
1

2m
∂
2
x − 2mc2p

�
δn̂p þm2

effδn̂p

¼ αρ0
2m

ð∂2x − 2mΩÞδn̂d: ð101Þ

Thus, the general solution of (100) is the sum of two parts,
the homogeneous solution δnd;0 and the inhomogeneous
solution δnd1, namely

δn̂dðx; tÞ ¼ δn̂d;0ðx; tÞ þ δn̂d;1ðx; tÞ: ð102Þ

The homogeneous solution δnd;0 obeying the source-free
equation (100) is very much the same as in the gapped
excitations with the mode expansion (81), where the
creation/annihilation operators and also the mode functions
are replaced by the counterparts denoted by â†ω=âω and
χdðx; tÞ defined as in (82) and obtained from (18) and (26).
The wave number kd of the gapless cases for each
incoming/outgoing modes are those in (37) and (38) by
setting meff ¼ 0 and replacing cpðl;rÞ by cdðl;rÞ. The maxi-
mum wave number of the gapless case for having the
negative norm states in the downstream at x < 0 is found

to be kð0Þmax in (31), again by replacing cpðl;rÞ to cdðl;rÞ.
The threshold momentum turns out to be zero for the
gapless cases. In the end, the density-density correlations

used later to identify the quantities njω and cjj
0

ω , with which

to compute the criterion Δjj0
ω in (92) in the gapless cases,

will have the same form as in (84). All the S-matrix
elements in the gapless case are those of the gapped cases
in (60)–(62) for the ur outgoing channel, (70)–(72) for
the ul outgoing channel, and (76)–(78) for the vl outgoing
channel by taking the limit of meff ¼ 0 and replacing
cpðl;rÞ by cdðl;rÞ.
On the other hand, the inhomogeneous solution δnd1

obeys Eq. (100) due to the source term from δnp, which is
the solution of (101). The solution of δnp can also be
written as the homogeneous solution δnp0 and the inho-
mogeneous solution that depends linearly on δnd1.
According to [49,50], substituting the solution δnp ¼
δnp0 þ δnp1 back to the Eq. (100) of δnd1 gives the
damping term from the contribution of δnp1 and leaves
δnp0 in the right-hand side of the equation as a source term.
Since the interaction term of the gapless and gapped
excitations involves second order spatial derivatives, the
damping effect of the momentum dependence can be
parametrized as

γðkÞ ¼ ðαρ0Þ2½k2ðk2 þ 2mΩÞ=4m2�=2m3
eff ð103Þ
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[46]. In the hydrodynamical approximation with small k
and ω, the relevant parameter from the gapped excitations
to the damping term is meff , giving the correct dimension
of γ. Here we will focus on the saturated value of Δjj0

ω

whereas the effect of the damping term damps out the
oscillatory time-dependent terms, leading to saturation. The
relaxation time scales can be estimated from 1=γ. Strictly
speaking, the effects from the gapped excitations to the
gapless degrees of freedom can be obtained by integrating
out the gapped excitations as in [28]. This then leads to the
Langevin equation that takes into account not only the
fluctuations of the gapped excitationsmanifested in the noise
term but also the damping effect. This deserves future
studies.
So, the fluctuations of the gapped degrees of freedom

will give the corrections to the density-density correlation
function of the gapless excitations through the solution of
δn̂d;1 due to the source term δn̂p;0

δn̂d;1ðx;tÞ¼
Z

∞

−∞
dx0

Z
∞

−∞
dt0gretðx;t;x0;t0Þ

αρ0
2m

∂
2
x0δn̂p;0ðx0;t0Þ:

ð104Þ

The Fourier transform of the retarded Green’s function is
defined as

gretðx;t;x0;t0Þ¼
Z

dω
2π

dk
2π

g̃retðω;kÞe−iωðt−t0Þeikðx−x0Þ ð105Þ

with the solution

g̃retðω; kÞ ¼
−1

ðωþ v0kÞ2 þ 2iγðkÞω − c2dk
2 − k4=4m2

;

ð106Þ

which includes the damping effect. The inhomogeneous
solution for the small wave number consistent with the

hydrodynamical approximation lying within γ < vk
becomes

δn̂d;1ðx; tÞ

¼ αρ0i
2m

Z
dx0dt0θðt0Þθðt − t0Þ

×
Z

dk
2π

�
e−iðωd−ðkÞ−iγðkÞÞðt−t0Þ − e−iðωdþðkÞ−iγðkÞÞðt−t0Þ

ωd−ðkÞ − ωdþðkÞ
�

× eikðx−x0Þ∂2x0δn̂p;0ðx0; t0Þ; ð107Þ

where, ωd−;þ are given by

ωd−ðkÞ≡ −vk −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2dk

2 þ k4=4m2

q
; ð108aÞ

ωdþðkÞ≡ −vkþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2dk

2 þ k4=4m2

q
: ð108bÞ

The frequencies ωd− and ωdþ are obtained from the
dispersion relation (19) of the gapless excitations of the
negative and positive frequencies branches, respectively.
Substituting the mode expansion of δn̂p;0 expressed in (81)
and integrating over the space, time and also the wave
number, we end up with the formula

δn̂d;1ðx;tÞ

¼
Z

∞

ωmax

dωfb̂ur;outω wurþ þ b̂vl;outω wvlþg

þ
Z

ωmax

ωmin

dωfb̂ur;outω wurþ þðb̂ul;out−ω Þ†wulþ þ b̂vl;outω wvlþg

þ
Z

ωmin

0

dωfðb̂ul;out−ω Þ†wulþ þ b̂vl;outω wvlþgþH:c:; ð109Þ

where we have defined the effective mode functions

wj
þðx; tÞ ¼ −

αρ0
2m

�
1 − e−γ½kj�e−iðωd−½kj�−ωÞt

ðωd−½kj� − iγ½kj� − ωÞ −
1 − e−γ½kj�e−iðωdþ½kj�−ωÞt

ðωdþ½kj� − iγ½kj� − ωÞ
�

k2j
Δωd�½kj�

χj;outp ðx; tÞ; ð110aÞ

wj
−ðx; tÞ ¼ −

αρ0
2m

�
1 − e−γ½−kj�e−iðωd−½−kj�þωÞt

ωd−½−kj� − iγ½−kj� þ ω
−
1 − e−γ½−kj�e−iðωdþ½−kj�þωÞt

ωdþ½−kj� − iγ½−kj� þ ω

� ð−kjÞ2
Δωd�½−kj�

χj;out�p ðx; tÞ; ð110bÞ

with

Δωd�½kj� ¼ ωd−½kj� − ωdþ½kj� ¼ −2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2dk

2
j þ k4j=4m

2
q

for the channels j including j ¼ ur; ul; vl with the wave number kj of the gapped excitations obtained from a fixed ω.
The Green’s function serves as a window function that smears the effect from the gapped excitations to the gapless
excitations.

ANALOGOUS HAWKING RADIATION AND QUANTUM … PHYS. REV. D 106, 044016 (2022)

044016-19



We are now ready to calculate the correlation function of
the gapless excitations including the corrections from the
gapped excitations for a particular frequency ω

Gdωðx; t; x0; t0Þ ¼ hinjfδn̂dðx; tÞ; δn̂dðx0; t0Þgjiniω
¼ hinjfδn̂d;0ðx; tÞ; δn̂d;0ðx0; t0Þgjiniω
þ hinjfδn̂d;1ðx; tÞ; δn̂d;1ðx0; t0Þgjiniω

¼ Gd;ω0ðx; t; x0; t0Þ þGd;ω1ðx; t; x0; t0Þ;
ð111Þ

where the initial state is given by the in-vacuum state of
the gapless and gapped excitations jini ¼ j0inigapless ⊗
j0inigapped. The first term is the correlation function of
the unperturbed gapless excitations. This is quite a straight-
forward calculation to compute Gd;ω0ðx; t; x0; t0Þ by starting
from the mode expansion of the gapless excitations in (13a)
where the mode functions are written in (18) in terms of the
coefficients in (26). The wave numbers denoted by kd
together with the S-matrix elements Sd associated with the

Bogoliubov transformation of the creation/annihilation
operators as in (47) can be read off from the gapped
excitations in (37) and (38) and the above S-matrix
elements by replacing cp → cd and also setting meff ¼ 0

or Ω ¼ 0 limit. The second term comes from the modifi-
cation due to the gapped excitations. In this study, we
consider both gapless and gapped excitations are under
the supersonic-subsonic configuration in the monometric
in (15)–(16) choosingΩ ¼ 4ρ0UAB ≪ ρ0U. Also, for small
Rabi coupling Ω giving small meff ∝

ffiffiffiffi
Ω

p
in (23), the

sound-speed difference cp − cd ∝ Ω in (20) and (22) is
small, and controls the smallness of the wave number
difference kj − kdj ∝ Ω ≪ 1=ξ in various modes. We then

can approximate wj
� in (110) of the gapped excitations by

wj
þðx; tÞ ≃Wj

þðtÞχj;outd ðx; tÞ½1þ iOðxðkj − kdjÞÞ�; ð112aÞ

wj
−ðx; tÞ ≃Wj

−ðtÞχj;outd ðx; tÞ½1 − iOðxðkj − kdjÞÞ�; ð112bÞ

where

Wj
þðtÞ ¼ −

αρ0
2m

�
Apkj þ Bpkj

Adkj þ Bdkj

��
1 − e−γ½kj�te−iðωd−½kj�−ωÞt

ωd−½kj� − iγ½kj� − ω
−
1 − e−γ½kj�te−iðωdþ½kj�−ωÞt

ωdþ½kj� − iγ½kj� − ω

�
k2j

Δωd�½kj�
; ð113aÞ

Wj
−ðtÞ ¼ Wj�

þ ðtÞ: ð113bÞ

As long as the length scales in the hydrodynamic approxi-
mation of our interest are of order of the correlation length ξ
or beyond it, it leads to the considerably small error to
be ignored safely. Therefore, one can rewrite the functions
χj;outp ðx; tÞ in (81) of the gapped excitations defined in
(82), (18), and (27) in terms of Apkj and Bpkj (27) by the

functions χj;outd ðx; tÞ of the gapless excitations in terms of
Adkj and Bdkj in (26) instead.
According to different quadrants in the ðx; x0Þ plane,

we summarize the correlation functions as follows. For
the upper-right quadrant x > 0; x0 > 0 in the interval
ωmin < ω ≤ ωmax,

Gdωðx; x0; tÞ ≃ ½ð1þ 2jSdur;−lj2Þ þ ð1þ 2jSur;−lj2ÞWurþ ðtÞWur
− ðtÞ�χur;outd ðx; tÞχur;out�d ðx0; tÞ þ c:c:; ð114Þ

and in the interval 0 < ω ≤ ωmin,

Gdωðx; x0; tÞ ≃ ð1þ 2Sdur;−lj2Þχur;outd ðx; tÞχur;out�d ðx0; tÞ þ c:c: ð115Þ

For the upper-left quadrant x < 0; x0 > 0 in the interval ωmin < ω ≤ ωmax,

Gdωðx; x0; tÞ ≃ ð2Sdur;−lSd�ul;−l þ 2Sur;−lS�ul;−lW
urþ ðtÞWul

− ðtÞÞχur;outd ðx0; tÞχul;out�d ðx; tÞ
þ ð2Sdur;−lSd�vl;−l þ 2Sur;−lS�vl;−lW

urþ ðtÞWvl
− ðtÞÞχur;outd ðx0; tÞχvl;out�d ðx; tÞ þ c:c:; ð116Þ

and in the interval 0 < ω ≤ ωmin,

Gdωðx; x0; tÞ ≃ ð2Sdur;−lSd�ul;−lÞχurd ðx0; tÞχul�d ðx; tÞ þ ð2Sdur;−lSd�vl;−lÞχur;outd ðx0; tÞχvl;out�d ðx; tÞ þ c:c: ð117Þ

Finally, for the lower-right quadrant x < 0; x0 < 0 in the interval of ωmin < ω ≤ ωmax,
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Gdωðx; x0; tÞ ≃ f½1þ 2ðjSdul;vrj2 þ jSdul;þlj2Þ� þ ½1þ 2ðjSul;vrj2 þ jSul;þlj2Þ�WulþðtÞWul
− ðtÞgχul;outωd ðx; tÞχul;out�d ðx0; tÞ

þ ½ð1þ 2jSdvl;−lj2Þ þ ð1þ 2jSvl;−lj2ÞWvlþðtÞWvl
− ðtÞ�χvl;outωd ðx; tÞχvl;out�d ðx0; tÞ þ c:c:; ð118Þ

and in the interval 0 < ω ≤ ωmin,

Gdωðx; x0; tÞ ≃ f½1þ 2ðjSdul;vrj2 þ jSdul;þlj2Þ� þ ð1þ 2jSul;þlj2ÞWulþðtÞWul
− ðtÞgχul;outd ðx; tÞχul;out�d ðx0; tÞ

þ ½ð1þ 2jSdvl;−lj2Þ þ ð1þ 2jSvl;−lj2ÞWvlþðtÞWvl
− ðtÞ�χvl;outd ðx; tÞχvl;out�d ðx0; tÞ þ c:c: ð119Þ

C. Nonseparability of Hawking-partner pairs

Having gotten the correlation functions, we can extract
the effective mean occupation number 1þ 2nurω and
1þ 2nulω from the correlation functions in x > 0; x0 > 0

and x < 0; x0 < 0, and the cross correlation terms 2cur;ulω

from the correlation function in x < 0; x0 > 0 [46,47]. For a
given frequency of the pair mode of the gapless excitations,
due to the bilinear coupling between the gapless and
gapped excitations, the corrections from the gapped exci-
tations also come from the modes with frequency ω. Thus,
when ωmin < ω ≤ ωmax

nurdω ¼ jSdur;−lj2 þ ðjSur;−lj2 þ 1=2ÞjWurþ j2; ð120aÞ

nuldω ¼ ðjSdul;vrj2 þ jSdul;þlj2Þ
þ ðjSul;vrj2 þ jSul;þlj2 þ 1=2ÞjWulþj2; ð120bÞ

cur;uldω ¼ Sdur;−lS
d�
ul;−l þ Sur;−lS�ul;−lW

urþWul
− : ð120cÞ

The criterion Δur;ul
dω in (92) can be computed, using the

unitary relations of gapless and gapped excitations leads to

Δur;ul
dω ≃ −jSdur;−lj2 þ jSdur;−lj2

�
1

2
þ jSul;þlj2

�
jWulþj2

þ jSdul;þlj2
�
1

2
þ jSur;−lj2

�
jWurþ j2

− ðSdur;−lSd�ul;−lSur;−lS�ul;−lWurþWul
− þ c:c:Þ

þOðjWj
þj3Þ: ð121Þ

With no influence from the gapped excitations, Δur;ul
dω is

negative meaning that the Hawking modes ϕur
d and their

partner modes ϕul
d are quantum mechanically entangled.

The effects of the gapped excitations contribute the
modification of the occupation number density nurdω and
nuldω in (120a) and (120b) that increase the value of Δur;ul

dω
diminishing the separability. However, the cross correlation
term jcur;uldω j2 in (120c) decreases Δur;ul

dω strengthening the
entanglement, but its effect is less than that of nurdω and nuldω
due to the relative smallness of the overlap between Wurþ

and Wul
− . The net effects of the gapped excitations raise

Δur;ul
dω , driving the pair modes toward disentanglement.
However, when 0 < ω ≤ ωmin, since the ϕur modes of

the gapped excitations are not the propagating modes, the
modification only acts on nulω , while the other two terms
remain unaffected. Thus,

nurdω ¼ jSdur;−lj2; ð122aÞ

nuldω ¼ ðjSdul;vrj2 þ jSdul;þlj2Þ þ ðjSul;þlj2 þ 1=2ÞjWulþj2;
ð122bÞ

cur;uldω ¼ Sdur;−lS
d�
ul;−l: ð122cÞ

The criterion Δur;ul
dω given by (122) becomes

Δur;ul
dω ≃ −jSdur;−lj2 þ jSdur;−lj2

�
1

2
þ jSul;þlj2

�
jWulþj2

þOðjWulþj3Þ ð123Þ

also increasing Δur;ul
dω with the tendency to disentangle the

pair of modes.
The time evolution of Δur;ul

dω for various values of ω is
plotted in Fig. 10. To understand the behavior, one can
approximate jWurþ j2 and jWulþj2 from (113) as

jWurþ j2 ∝ 1þ e−2γ½kur�t − 2e−γ½kur�t cos ½ðω − ωdþ½kur�Þt�
γ2½kur� þ ðω − ωdþ½kur�Þ2

×
k4ur

ðΔωd�½kur�Þ2
; ð124aÞ

jWulþj2 ∝
1þ e−2γ½kul�t − 2e−γ½kul�t cos ½ðω − ωd−½kul�Þt�

γ2½kul� þ ðω − ωd−½kul�Þ2

×
k4ul

ðΔωd�½kul�Þ2
: ð124bÞ

For a given frequency ω, the wave numbers of the Hawking
modes and their partners of the gapped excitations kur
and kul can be given from (37) in the setting of the
supersonic-subsonic configuration. For ω < ωmin, the cor-
rections to Δur;ul

dω in (123) only come from the term jWulþj2.
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However, when ω > ωmin, the terms of Wurþ and Wulþ
contributes to the corrections in (121). Due to the fact
that the damping factor γ½kul� > γ½kur� for a given ω, the
saturation of Δur;ul

dω will take longer time. As for the
saturated values in Fig. 11, it is evident that the large
corrections occur in frequency that respectively minimize
γ2½kur� þ ðω − ωdþ½kur�Þ2 and γ2½kul� þ ðω − ωd−½kul�Þ2
when ω ∼ ωmin as anticipated. And for large enough
value α, the behavior of 1=ω in the thermal spectrum nurpω ¼
jSur;−lj2 given by (63) will significantly deteriorate the
quantum entanglement of the pair modes of the gapless
excitations as seen in the expression (123) and Fig. 11.
The presence of the environmental field at finite temper-

ature that deteriorate the quantumness of the pair modes
of the gapless excitations in the BEC system has been
studied in [44]. Here the effects the gapped excitations
serving as the environmental degrees of the freedom in two-
component BEC systems even though they are in their
vacuum states are to provide the stochastic noise that not

only induces the sound cone fluctuations in [28] but also
reduces the quantum entanglement of gapless excitation
pairs. The similar reduction mechanism on the quantum-
ness of the modes will expectedly be seen in the BEC/BCS
crossover models of the ultracold Fermi systems as the
noise manifested from quantum density fluctuations in
condensates of ultracold Fermi gases of the gapped modes
is found to lead to fluctuations in phonon times-of-flight in
the BEC regime [51].

VI. SUMMARY AND OUTLOOK

We investigate the properties of the condensates of cold
atoms at zero temperature in the tunable binary Bose-
Einstein condensate system with the Rabi transition
between atomic hyperfine states where the system can
be represented by a coupled two-field model of gapless
excitations and gapped excitations, analogous to the
Goldstone modes and the gapped Higgs modes in particle
physics. We then set up the configuration of the supersonic
and subsonic regimes with the acoustic horizon between
them by means of the spatially dependent coupling
constant between two hyperfine states in the elongated
two-component Bose-Einstein condensates. The aim is to

FIG. 11. Late-time saturation of Δur;ul
dω is plotted as function

of ω in unit of effective temperature TH . By varying the Rabi
frequency Ω=ρ0Ul: (a) 6.6 × 10−4, (b) 1.33 × 10−3, and
(c) 2 × 10−3, we show Δur;ul

dω with two different values of the
mutual coupling constants α=Ul∶0.1 (red-dotted line) and 0.17
(blue-dashed line). Other parameters are chosen as mp;r ¼ 0.63,
mp;l ¼ 1.63.

FIG. 10. The time evolution of Δur;ul
d;ω as a function of the time in

unit of period Tω ¼ 2π=ω with the parameters Mach number
mp;r ¼ 0.63, mp;l ¼ 1.63, the coupling constant α=Ul ¼ 0.13,
the Rabi frequency Ω=ρ0Ul ¼ 6.6 × 10−4. Considering (a) ω ¼
0.041TH < ωmin ¼ 0.157TH, Δur;ul

dω behaves as an underdamped
oscillation, (b) ω ¼ 0.124TH < ωmin ¼ 0.157TH , Δur;ul

dω behaves
as an overdamped oscillation, and (c) ω ¼ 0.16TH > ωmin ¼
0.157TH, the behavior of Δur;ul

dω has mixture of overdamped
oscillation for ul mode and underdamped oscillation for ur mode.
The dashed lines indicate the values of Δur;ul

d;ω with no corrections
from the gapped excitations.
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try to mimic Hawking radiations, in particular due to the
gapped excitations with the tunable energy-gap term
induced by the Rabi coupling constant. In this work, the
simplified steplike sound speed profile is adopted to
implement the subsonic-supersonic transition so that such
a system be analytically treatable. Two sets of the wave
functions of the gapped excitations can be determined by
matching them at the acoustic horizon using the obtained
dispersion relations. The existence of the negative norm
states in the supersonic regime leads to the mixing between
the creation operator and the annihilation operator through
the Bogoliubov transformation, and thus triggers the
particle production, the analog Hawking radiation. The
effective energy-gap term in the dispersion relation of
the gapped excitations gives a threshold frequency ωmin in
the subsonic regime in the analog Hawking modes, below
which the propagating modes do not exist. Thus, the
particle spectrum of the corresponding Hawking modes
significantly deviates from the gapless cases near the
threshold frequency resulting from the modified gray-body
factor, which vanishes as the mode frequency is below the
threshold frequency. The other feature is that the energy
gap term introduces the zero-frequency modes, which leads
to the density-density correlation function with the peculiar
pattern of the undulations in the supersonic regime. Their
wavelength can be determined by the effective energy gap
with cone-shaped boundaries depending on the March
number of the condensate fluid in the supersonic regime.
The created radiations of the gapped modes will influ-

ence the quantumness of the pair of the Hawking mode
in the subsonic regime and its partner in the supersonic
regime of the gapless excitations by turning on the
interactions between the gapless and gapped excitation
through tuning their own atomic coupling constants. We
consider the limit of the small Rabi coupling constant
giving the small difference in the wave numbers for a
given frequency between the gapless and gapped excita-
tions as compared with the inverse of the healing length ξ.
In the hydrodynamic approximation, the corrections to the

density-density correlation function of the gapless excita-
tions due to the gapped excitations can be written in terms
of the wave functions of the gapless excitations, resulting
in the effective density-density correlation function. Then,
from there the effective S-matrix elements of the gapless
excitations with the corrections from the gapped excitations
can be extracted. The measure of the quantum entangle-
ment is according to the PHS criterion to be computed from
the obtained effective S-matrix elements. The negative
value of the PHS measure of the pair modes indicates
the nature of the quantum entanglement. It shows that the
presence of the gapped excitations created from the in-
vacuum state, although they are quantum entangled, will
significantly deteriorate the quantumness of the pair modes
of the gapless excitations created also from the in-vacuum
state when the frequency of the pair modes is around the
threshold frequency, ω ∼ ωmin. On top of that, when the
coupling constant between the gapless and gapped excita-
tions becomes large enough, the huge particle density of the
gapped excitations in the small ω regime will significantly
disentangle the pair modes of the gapless excitations.
Here the damping term is added from the type of the

coupling between the gapless and gapped excitations and can
be derivedvia the influence functional approach following the
work of [28]. After integrating out the degrees of freedom of
thegapped excitations, the correspondingLangevin equations
for describing the gapless excitations can be derived with the
damping term and the accompanying noise term that man-
ifests quantumfluctuations of thegapped excitations.One can
find the time-dependent PHS measure from which to decode
themore precise time scales after which themeasure is settled
to some final value. Additionally, wemay extend our analysis
from1þ 1 spacetime to2þ 1 spacetime, tomimic the effects
from the acoustic spinning black holes.
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