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We show that the Kantowski-Sachs model of a Schwarzschild black hole interior can be slightly
generalized in order to accommodate spatial metrics of different orientations, and in this formulation the
equations of motion admit a variable redefinition that makes the system regular at the singularity. This
system will then traverse the singularity in a deterministic way (information will be conserved through it),
and evolve into a time-reversed and orientation-flipped Schwarzschild white hole interior.
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I. INTRODUCTION

Singularities are a striking prediction of General Relativity
(GR), and seem to imply that classical determinism breaks
down whenever one is formed, in the sense that the equations
of motion are unable to predict the evolution of the physical
degrees of freedom past the singularity [1]. The issue of the
fate of determinism in gravitational singularities has tradi-
tionally been discussed in terms of the (weak and strong)
cosmic censorship conjectures, conceived by Penrose [2].
These conjectures imply that, even if determinism fails at
singularities, General Relativity is nevertheless able to
uniquely predict the entire evolution of the Universe, with
the exception of some finite regions of space hidden inside
event horizons. Counterexamples have been found for both
theweak and strong versions of the conjecture [3,4], and there
is some degree of disagreement on the precise formulation of
the strong version.
In a recent series of papers [5–7],1 wewere able to bypass

the cosmic censorship discussion entirely, by showing that
there is a sense in which determinism is preserved, at
singularities, by the classical dynamics of General
Relativity. The version of determinism that is respected
does not make reference to the continuability of geodesics,2

or to the fate of observers (which is what the strong cosmic
censorship conjecture is concerned with). Our result con-
cerns the physical degrees of freedom of relativistic field
theories (gravity included). These are the gauge-invariant
degrees of freedom that are necessary to specify on a
spacelike hypersurface in order to uniquely fix a solution
of the GRþmatter fields system. This is the basic ontology
of classical field theory, and all the physical predictions of
the theory can, in principle, be expressed in terms of those
degrees of freedom. In [5–7], we considered the special
cases of a homogeneous cosmology with compact spatial
slices (Bianchi IX and Friedmann-Lemaître-Robertson-
Walker models) with, at most, an arbitrary number of scalar
fields. By extending the configuration space of the theory to
include the information about the orientation of spatial
slices, this result allowed us to prove that to each and every
collapsing solution ending up in a singularity, there corre-
sponds one and only one expanding solution that evolves
away from the singularity with opposite orientation.
Our result does not involve a spacetime extension

beyond the big bang singularity; the 4-dimensional picture
is that of a 4-metric with a singular spacelike cross section.
This singularity is a degenerate hypersurface which cannot
support a nonzero volume because it is effectively one- or
two-dimensional. At this hypersurface, the spatial orienta-
tion flips. What we proved is that the dynamics of the
homogeneous spatial hypersurfaces of the model has, at the
big bang, a singularity that can be regularized, much like,
for example, the singularities of the N-body problem [12].
We hope that this result represents a first step towards
proving a general conjecture: namely, that a large class of
gravitational singularities preserve classical determinism,
so that one can predict unambiguously the spacetime
geometry that can be found beyond said singularities.
There are good reasons to believe that our result can be
extended beyond the confines of homogeneous cosmolo-
gies: for example, if the Belinski-Kalatnikov-Lifshitz

1See also [8–10] for a closely-related approach, and [11] for a
possible quantum origin for the quiescence mechanism.

2Geodesics, as it turns out, might not admit at all a unique
continuation through the singularity in ourmodel,without ruining the
predictability of the theory. In fact, geodesics are an abstraction that
describeswell themotion of the center ofmass of a physical observer
only when tidal forces are small on the length scales of the observer.
Close to a singularity these tidal forces will become arbitrarily large,
making the notion of a pointlike observer meaningless. Still, if all the
physical (i.e., gauge-invariant) degrees of freedom of classical GR
coupled to StandardModelmatter fields admit a unique continuation
through the singularity, classical determinism is safe. Our physical
observers might get irreparably scrambled by the tidal forces at the
singularity, but theywould do so in a unique and predictable fashion.
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(BKL) conjecture [13] were proven, it would imply that the
result can be extended immediately to all inhomogeneous
cosmological solutions with the global topology of the
Bianchi IX model (i.e., S3 ×R). There is a significant
amount of numerical support for the validity of this
conjecture [14,15], and there is an actual proof in the case
of analytic solutions [16].
In the present paper, we will extend our result to

Schwarzschild singularities. Thanks to the fact that empty
Kantowski-Sachs homogeneous cosmological models are
isometric to the interior of the Schwarzschild spacetime
[17], our insights on homogeneous cosmologies can be
directly applied to black hole singularities described as
singularities of Kantowski–Sachs spacetimes. The result
will be an extension of Schwarzschild spacetimes (with,
possibly, a spherically symmetric scalar field) into a unique
spacetime with a low degree of regularity. We do not evade
no-go theorems on continuous extensions of spacetime
through the Schwarzschild singularity, e.g., [18–21]. What
we do have, is a preservation of determinism, like in the
cosmological case [5–7]. Also in this case, a proof of the
BKL conjecture would allow to generalize our result to
general inhomogeneous solutions of Einstein’s equations
with a Schwarzschild-type singularity.

II. THE EMPTY KANTOWSKI-SACHS MODEL

The interior of the Schwarzschild metric can be under-
stood as a special case of the Kantowski-Sachs class of
spacetimes [17]. These are homogeneous cosmological
models with an S2 × R spatial topology, and a spacetime
metric of the form,

dτ2 ¼ −NðσÞ2dσ2 þ AðσÞ2dρ2 þ BðσÞ2dΩ2: ð1Þ

The ordinary Schwarzschild metric is found as the par-
ticular case

N¼
�
2M
σ

−1

�
−1=2

; A¼
�
2M
σ

−1

�
1=2

; B¼σ; ð2Þ

if we call σ ¼ r and ρ ¼ t. This, of course, is only valid
when r < 2M, i.e., the region inside the event horizon,
where the r coordinate is timelike and the t coordinate is
spacelike. The manipulation we described allows us to
understand the Schwarzschild singularity in a similar
manner to the big bang, and to translate progress in the
understanding of homogeneous cosmological singularities
into advancement in the physics of black holes.
After imposing the ansatz (1), the Einstein-Hilbert

Lagrangian reads

L¼ 1

2κ

Z
d3x

ffiffiffiffiffiffi
−g

p
R¼ 4πNλ

κ

�
A−

Að _BÞ2 þ 2B _A _B
N2

�
þ _K;

ð3Þ

where κ ¼ 8πGc−4 and λ ¼ R
r2
r1
dρ is the width of a fiducial

interval of radii over which we integrate (by homogeneity,
the metric outside this interval will be identical to the
one inside). Our notation is _f ¼ df

ds, where we call our
independent timelike variable s (rather than t, to
avoid confusion between Schwarzschild time and radius).
K ¼ 4πλ

κN ð _AB2 þ 2 _BABÞ appears as a total derivative, and is
therefore a boundary term that can be removed (it is minus
the Gibbons-Hawking-York term [22,23]).
In terms of the canonical momenta PA ¼ ∂L=∂ _A,

PB ¼ ∂L=∂ _B, we can write the total Hamiltonian
H ¼ PA

_Aþ PB
_B − L as

H ¼ N
ν2

�
P2
AA − 2PAPBB

4B2
− ν4A

�
; ð4Þ

where ν ¼
ffiffiffiffiffiffi
4πλ
κ

q
. With the following canonical

transformation,

A ¼ e−
xffiffi
2

p

ν
; B ¼ e

xþyffiffi
2

p

ν
;

PA ¼ −
ffiffiffi
2

p
νe

xffiffi
2

p ðpx − pyÞ; PB ¼
ffiffiffi
2

p
νe−

xþyffiffi
2

p
py; ð5Þ

the Hamiltonian takes the simple form,

H ¼ Nν

2
e−

xþ2yffiffi
2

p ðp2
x − p2

y − 2e
ffiffi
2

p
yÞ: ð6Þ

We are free to choose the lapse function N, and the

obvious choice isN ¼ 1
ν e

xþ2yffiffi
2

p
, which simplifies the prefactor

and gives us the elementary Hamiltonian

H ¼ 1

2
ðp2

x − p2
yÞ − e

ffiffi
2

p
y: ð7Þ

This Hamiltonian makes px a conserved quantity, and
the Hamiltonian constraint H ≈ 0 imposes that p2

x ¼
p2
y þ 2e

ffiffi
2

p
y. This is the Hamiltonian of a one-dimension

nonrelativistic point particle with potential 2e
ffiffi
2

p
y and

energy p2
x. The general solution to Hamilton’s equations is

x ¼ pxðs − s1Þ; py ¼ k tanh

�
kðs − s2Þffiffiffi

2
p

�
;

y ¼ −
ffiffiffi
2

p
log

� ffiffiffi
2

p

jkj cosh
�
kðs − s2Þffiffiffi

2
p

��
; ð8Þ

where px now is a constant of motion, and k, s1, and s2 are
constants of integration. Moreover, the Hamiltonian con-
straint imposes that p2

x ¼ k2. The asymptotic components
of the velocity are _x ¼ px and _y !

½s→�∞�
∓ jkj ¼∓ jpxj. In

the x–y plane, all solutions look like a ball bouncing off an

FLAVIO MERCATI and DAVID SLOAN PHYS. REV. D 106, 044015 (2022)

044015-2



exponential slope and rolling inertially to infinity at a 45°
angle. In Fig. 1, we show the Penrose diagram of
Schwarzschild spacetime, the patch that our coordinates
cover, the hypersurfaces of simultaneity that correspond to
the s ¼ const. condition, and the location of the singularity,
which can be seen as an asymptotic condition for the “time”
variable s.
From Fig. 2, we can see that the volume v ∝ AB2 of our

fiducial region is concave (as a function of s), going to zero
as s → �∞, and reaching a unique maximum in between.
We can calculate the Ricci tensor on the solution (8), and

only one component turns out to be nonzero

Rμν ¼ ðk2 − p2
xÞδ0μδ0ν; ð9Þ

and if we impose the Hamiltonian constraint p2
x ¼ k2, the

spacetime we get is Ricci-flat. To highlight the location of

the singularity, we can calculate the Kretschmann scalar
(when p2

x ¼ k2)

RμνρσRμνρσ ¼ 3ν4ðe
ffiffi
2

p
kðs2−sÞ þ 1Þ6

k4e−
ffiffi
2

p
kð2s1þ4s2Þ

; ð10Þ

and see that it diverges when signðkÞs → −∞, while it
asymptotes to a constant as signðkÞs → þ∞. The first limit
corresponds to the singularity, while the second is the
horizon.

III. OBTAINING THE SCHWARZSCHILD METRIC

The Schwarzschild solution can be obtained by setting3

kðs1 − s2Þ ¼
ffiffiffi
2

p
log ν; ð11Þ

then one can see that A and B, expressed in terms of the
solution x, y of (8) through the relations (5), satisfy the
equation

A2 ¼ 2M
B

− 1; ð12Þ

where, as it turns out, 2M ¼
ffiffi
2

p jkj
ν2

. We can recover the full
Schwarzschild metric by making a time reparametrization
s → r that transforms B½sðrÞ� ¼ r (which is legitimate
because, as is easy to check, on shell _B is definite, and
B is therefore monotonic), which gives

s ¼ s2 −
1ffiffiffi
2

p
k
log

�
2M
r

− 1

�
; ð13Þ

and transforms the lapse into

N½sðrÞ� ∂s
∂r

¼
� ffiffiffi

2
p jkj
ν2r

− 1

�−1=2
¼

�
2M
r

− 1

�
−1=2

: ð14Þ

Notice that all solutions (8) represent a Schwarzschild
spacetime. Those whose integration constants fail to satisfy
(11) are just associated to a rescaled metric,

N¼α

�
2M
r

−1

�
−1=2

; A¼α

�
2M
r

−1

�
1=2

; B¼αr;

ð15Þ

where α ¼ ν e−
kðs1−s2Þ−x0ffiffi

2
p

, and therefore a redefinition of units
can reabsorb this.
The time redefinition (13) gives us another way to

identify the values of s corresponding to the singularity
(which is at r → 0). The reparametrization monotonically

2

2

0

2

FIG. 1. The shaded region corresponds to the patch of
Schwarzschild spacetime that is covered by the s, ρ coordinates
as it appears in the Penrose-Carter diagram. The borders of this
coordinate patch are represented by the two red dots, the
singularity and the horizon.
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FIG. 2. Examples of solutions of the Kantowski-Sachs system
in the x–y plane, with a plot of the potential on the side. The
curves asymptotes to the singularity on the left, and the horizon
on the right. The gradient on the background represents the values
of the volume degree of freedom v (darker ¼ larger), and the
black dots represent the points of maximum volume.

3In this section, we assume that px ¼ k, the other case
px ¼ −k can be straightforwardly worked out analogously.
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maps r ∈ ð0; 2MÞ into signðkÞs ∈ ð−∞;∞Þ. The singu-
larity r → 0þ coincides with signðkÞs → −∞, i.e., when
x → −∞. The other limit x → þ∞ coincides with the
horizon r → ð2MÞ−.

IV. SHAPE SPACE AND ORIENTATION

One linear combination of the x and y variables
corresponds to the scale degree of freedom, while
the other is conformally invariant and determines the shape
of our spatial hypersurface (in particular, it determines the
ratio between the radial extension of our coordinate
patch and its areal radius). To disentangle scale and
shape, consider the determinant of the spatial metric,
det g ¼ A2B4 ¼ ν−6e

ffiffi
2

p ðxþ2yÞ, which is a pure scale degree
of freedom. Therefore xþ 2y determines the scale, while
the orthogonal direction in the ðx; yÞ plane determines the
shape. The following linear canonical transformation sep-
arates between scale z and shape w,

x ¼ 1ffiffiffi
3

p ð2w − zÞ; y ¼ 1ffiffiffi
3

p ð2z − wÞ;

px ¼
pz þ 2pwffiffiffi

3
p ; py ¼

2pz þ pwffiffiffi
3

p ; ð16Þ

so that now det g ¼ ν−6e
ffiffi
6

p
z depends on z alone. In the new

variables, the Hamiltonian constraint takes a simple form,

H ¼ 1

2
ðp2

w − p2
zÞ − e

ffiffi
2
3

p
ð2z−wÞ; ð17Þ

notice that, as usual in a constant-mean-extrinsic-curvature
foliation, the scale degree of freedom gives a negative
contribution to the kinetic term [24].
Notice now that the coordinate change from the ðw; zÞ

variables to the original ðA; BÞ variables,

A ¼ e
1ffiffi
6

p ðz−2wÞ

ν
; B ¼ e

1ffiffi
6

p ðwþzÞ

ν
; ð18Þ

is not surjective; it only maps R2 to the first quadrant
(A > 0, B > 0) of R2. Normally this would not be a
problem, because the metric (1) depends only on the
square of A and B, and the configuration space of
Kantowski-Sachs metrics is more appropriately defined
as the quotient of the ðA;BÞ plane by reflections of A an B.
However, there is a bit of information that is erased by this
quotienting procedure, which we might want to keep track
of instead. This is the orientation of our spatial manifold,
which is encoded, for example, in the triad formulation of
the metric [25]

gij ¼ δabeaiebj; ð19Þ

the associated volume form e1 ∧ e2 ∧ e3 defines an ori-
entation on our manifold. In this formulation, under the

Kantowski-Sachs ansatz the frame field components are
linear in A and B, and the volume form reads
e1 ∧ e2 ∧ e3 ¼ AB2. Therefore, the sign of A determines
the orientation of our spatial hypersurface.
The variable z parametrizes the scale degree of freedom,

while w determines the shape of our spatial manifold, and it
makes sense to include the information regarding the
orientation into the “shape space” of our model [5,24].
We can then extend the shape space, by defining two
coordinate patches, wþ ∈ R and w− ∈ R, which are
mapped to the two possible signs of A,

A ¼
8<
:

e
1ffiffi
6

p ðz−2wþÞ

ν ; if A > 0;

− e
1ffiffi
6

p ðz−2w−Þ

ν ; if A < 0:
ð20Þ

The above map sends two copies of R onto the two halves
of the real line.
The two possible signs of A correspond to the choice

between left- and right-handed triads compatible with the
metric, e�. Taking the Schwarzschild solution as our guide
we expect that, as we approach the singularity jAj → ∞.
The singularity is potentially a point of transition between
eþ and e−, hence a point at which the orientation of our
space may change. By extending our description to the
coordinate patches w� we allow for our dynamics to
distinguish between orientations.
At this point we could propose a continuation theorem

along the lines of what was done in Bianchi IX [5–7],
however such a theorem would be, in the present case,
trivial. This is because the theorem of [5–7] depends on the
presence of more than one shape degree of freedom, and it
becomes trivial in the case of a one-dimensional shape
space. In fact, at the core of the continuation result, is the
fact that one can decouple the scale degree of freedom
(which is singular at the singularity) from the shape ones,
and express the dynamics as a differential system in which
the change of one shape degree of freedom is expressed in
terms of the change in the others. This is the fundamental
idea behind the “shape dynamics” formulation of General
Relativity [24], and the papers [5–7] show how this
intrinsic dynamics of pure shapes is regular at the singu-
larity and can be continued deterministically through it.
However, when we have only one shape degree of freedom,
its change cannot be expressed in terms of other shape
degrees of freedom. The intrinsic shape dynamics reduces
to the prediction of an unparametrized curve on a one-
dimensional manifold (a circle), and there is only one such
curve. The fact that this curve continues through the
singularity (which is located at a particular point on the
circle) is a trivial statement.
For this reason, we are compelled to add some more

shape degrees of freedom, in order to have a shape space of
dimension at least two, where the fact that the intrinsic
shape dynamics continues uniquely through the singularity
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is a nontrivial statement. The simplest way to do this is to
add a homogeneous scalar field, which contributes with one
shape degree of freedom. Notice that in [5,7] too we were
forced to add (at least) one scalar field, but for a different
reason. In fact, in these papers we were interested in the
Bianchi IX cosmological model, which already comes
equipped with a two-dimensional shape space. However,
unless a stiff matter source is added, this model has an
essential singularity at the big bang, which makes con-
tinuation impossible. The the simplest form of stiff matter is
a scalar field without mass or potential, the addition of
which causes the system to transition to a state that is
known as “quiescence”, after which the dynamics ceases to
be chaotic and admits a deterministic continuation through
the singularity. In the present case, we add the scalar field
just because we need additional scale degrees of freedom
and that is the simplest option. The dynamics of the
Kantowski-Sachs model can be continued through the
singularity independently of the presence of scalar fields
or stiff matter sources, because it is not chaotic like
Bianchi IX.

V. HOMOGENEOUS SCALAR FIELD

To include a homogeneous scalar field to the Einstein-
Hilbert Lagrangian (3) we need to add the following term,

Lφ ¼ −
Z

d3x
ffiffiffiffiffiffi
−g

p �
1

2
gμν∂μφ∂νφþ VðφÞ

�

¼ 4πλAB2

�
1

2
N−1ð _φÞ2 − NVðφÞ

�
: ð21Þ

Notice that the homogeneous ansatz for the scalar field
corresponds, in the limit ks → ∞ (r → ð2MÞ−), to a field
that is constant on the horizon. This could be taken as the s-
wave contribution in an expansion in spherical harmonics
around a Schwarzschild background. We can now show
how the Hamiltonian (6) generalizes in presence of a
minimally-coupled homogeneous scalar field φ (with the

convenient choice of lapse N ¼ 1
ν e

ffiffi
3
2

p
z),

H ¼ 1

2

�
p2
w − p2

z þ
1

κ
π2φ

�
þ Uðz; w;φÞ; ð22Þ

where πφ is the momentum canonically conjugate to φ, and

Uðz; w;φÞ ¼ −e
ffiffi
2
3

p
ð2z−wÞ þ κ

ν2
e

ffiffi
6

p
zVðφÞ; ð23Þ

is the sum of the geometric and the scalar field potentials.
The first thing to notice is that the scalar field potential

term is coupled to the scale degree of freedom z only, and in
such a way that large negative values of z make its
contribution to the potential negligible. Moreover, if
VðφÞ is positive, this potential has the opposite sign of

the geometric potential, and as z grows it quickly dominates
it. So it has the ability to reverse the collapse of the solution
towards the singularity. Given a solution evolving from the
horizon (the region w ≫ 1 and z ≪ −1), it is not guaran-
teed that it will reach a maximum value of z and bounce off
the potential like in the plots of Fig. 3. If the initial
conditions are right, it might get captured by the
κ
ν2
e

ffiffi
6

p
zVðφÞ potential, and run off towards the positive-z

direction. As is well known, the spherically-symmetric
Einstein-scalar system has a nontrivial dynamics, and the
general conditions under which gravitational collapse leads
to a singularity are not simple to express [26,27].
At any rate, we are interested only in those solutions

which do reach the singularity, and depending on the form
of VðφÞ,4 there will be large classes of solutions which run
off in the negative-z and negative-w directions, so that the

e
ffiffi
2

p ðxþ2yÞVðφÞ term asymptotes to zero, and z and w
asymptote to the straight-line motion that ends in the
singularity at w → −∞. Calculating the Kretschmann
scalar (10) in this case, where p2

x ≤ k2, reveals that such
runoff solutions end up in a curvature singularity just like in
the matter-free case.
The solutions we are interested in asymptote to a free

dynamics for all the configurational variables, z, u, and w.
The whole potential term Uðz; w;φÞ becomes negligible
near the singularity, and the solutions are identical to
Eq. (3), with the addition of φ ¼ puðs − s3Þ, pu ¼ const.
What changes is the form of the Hamiltonian constraint. In
the variables x, y used in Eq. (3) it takes the form,

p2
x þ

1

κ
π2φ − k2 ¼ 0; ð24Þ

−20 −10 10 20
w

−15

−10

−5

5

10
z

FIG. 3. The same solutions of Fig. 2, this time plotted in the
w–z plane. The singularity is reached asymptotically as w → −∞,
while the horizon is at w → þ∞.

4The ability of scalar field potentials to change the behavior of
solutions near a singularity has been discussed also in the context
of Bianchi IX cosmological models in [7].
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which implies that the asymptotic motion in the x–y plane
is not at 45° like in Eq. (3), but at a steeper angle.
Equation (24) has another consequence; the Ricci tensor
vanishes only when πφ ¼ 0. It is only in absence of the
scalar field that spacetime is Ricci-flat, and isometric to the
Schwarzschild metric (a well-known fact).

VI. COMPACTIFICATION OF SHAPE SPACE
WITH ORIENTATION AND CONTINUATION

THROUGH THE SINGULARITY

First, it is convenient to change the scalar field variable φ
to a dimensionless one, by means of the following
canonical transformation,

u ¼ ffiffiffi
κ

p
φ; pu ¼ πφ=

ffiffiffi
κ

p
: ð25Þ

Then, we can repeat the transformation (16) in order to
separate scale and shape degrees of freedom. In the new
variables, the Hamiltonian constraint takes this form,

H ¼ 1

2
ðp2

w þ p2
u − p2

zÞ þUðw; u; zÞ: ð26Þ

The map (20) still applies in presence of a scalar field,
however now the two fixed-orientation shape spaces are
two-dimensional planes, coordinatized by ðw−; u−Þ ∈ R2

and ðwþ; uþÞ ∈ R2. This also extends to any number
of additional fields; the shape space consists of two
N-dimensional hyperplanes, one for each orientation.
We can now discuss one of the crucial steps allowing us

to establish a continuation result; as we did in [5–7],
we impose a particular topology on shape-space-with-
orientation, which joins the borders of its two fixed-
orientation connected components, making the overall
space connected. This is done by compactifying shape
space through the gnomonic projection; each of the two
fixed-orientation planes is mapped onto one of the hemi-
spheres of a 2-sphere, with the origins mapped to the two
poles, and the asymptotic borders mapped to the equator
(see Fig. 4). The gnomonic projection maps the coordinates
ðw�; u�Þ into the spherical coordinates β ∈ ½0; π� and α ∈
½0; 2πÞ as follows:

j tan βjðcos α; sin αÞ ¼
� ðwþ; uþÞ; if β < π=2;

ðw−; u−Þ; if β > π=2:
ð27Þ

The equations of motion for the new angular variables
are

_α ¼ cot2 βλ _β ¼ cos2 β cot β δ; ð28Þ

where

λ ¼ wpu − upw; δ ¼ wpw þ upu: ð29Þ

The quantity λ is the angular momentum on the w–u plane,
and it is asymptotically conserved (because inertial motion
conserves it). The quantity δ is neither conserved nor finite
at the singularity, and the same holds for the remaining
variable z. We then need to find alternative variables which
take finite values at the singularity. In complete analogy
with the cosmological models discussed in [5–7], we
introduce the following variables,

ρ ¼ cot β δ; η ¼ signðtan βÞzþ j tan βj
ρ

pz; ð30Þ

finally, we need to consider the fact that the gnomonic
projection we introduced glues the negative-w region of
one plane with the negative-w region of the other. So,
solutions that asymptote to the singularity (as opposed to
the horizon), will be glued to solutions that come out of the
singularity (with opposite orientation). The volume degree
of freedom will have to go to zero on one side, and come
out of zero on the other side. Then z will have to be
decreasing (that is, pz > 0) on one side, and then increasing
pz < 0 on the other. The variable pz cannot be continuous
at the singularity, so we need to replace it with

κ ¼ −signðtan βÞpz: ð31Þ

With the variables just defined, one can show that the
following equations of motion [when we write ∂U

∂z we mean
that one first takes the z-derivative of Uðw; u; zÞ, and then
converts the variables into α, β, η]

u-

|tan | det e < 0

det e > 0

w+

w-

u+

FIG. 4. Shape space with orientation; each hemisphere repre-
sents an orientation, and each point on the sphere represents
different values of the shape degrees of freedom ðw; uÞ. The poles
coincide with the value u ¼ w ¼ 0, while the equator corre-
sponds to the border of the ðw; uÞ plane at infinity. A solution
curve is shown on the top plane, together with its projection on
the northern hemisphere.
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_α ¼ cot2 β λ; _β ¼ cos2 β ρ; _λ ¼ −
∂U
∂α

;

_η ¼ 1

ρ2

�
cot2 β κλ2 − j tan βjρ ∂U

∂z
− sin β cos β κ

∂U
∂β

�
; _ρ ¼ cot3 β λ2 − cos2β

∂U
∂β

; _κ ¼ signðtan βÞ ∂U
∂z

; ð32Þ

are equivalent to the original ones everywhere on the sphere
(except at the equator, where the original equations of
motion are singular).
The final step is to consider that the parameter time s

diverges at the singularity, so it needs to be compactified. A
physically sensible choice is to use a quantity on the shape
sphere of the system, to be used as independent variable. The
arc of length on the shape sphere is particularly well suited,
because it is monotonic everywhere on the solution curves,

dl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 β dα2 þ dβ2

q
⇒ _l ¼ cos2β

sin β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ ρ2 sin2 β

q
:

ð33Þ

With respect to this “internal time variable”, the equations of
motion take the form

dα
dl

¼ λ

sin β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ ρ2sin2 β

p ;

dβ
dl

¼ ρ sin βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ ρ2sin2 β

p ;

dη
dl

¼ 1

ρ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ ρ2sin2β

p
�
κλ2

sin β
−

sin2 β
jcos3βj ρ

∂u
∂z

− κ sin β tan β
∂U
∂β

�
;

dλ
dl

¼ −
sin β

cos2 β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ ρ2 sin2 β

p ∂U
∂α

;

dρ
dl

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ ρ2sin2β

p
�
cos β
sin2β

λ2 − sin β
∂U
∂β

�
;

dκ
dl

¼ sin βsignðtan βÞ
cos2β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ ρ2sin2β

p ∂U
∂z

: ð34Þ

The Hamiltonian constraint, in these variables, takes the
form,

H ¼ 1

2
ð−κ2 þ ρ2 þ cot2 β λ2Þ þ Uðα; β; ηÞ ≈ 0; ð35Þ

which is regular at the equator, where Uðα; β; ηÞ → 0.
Just as in our previous results [5–7], Eq. (34) satisfy the

assumptions of the existence and uniqueness theorem (the
Picard-Lindelöf theorem) for solutions of ordinary differ-
ential equations, and therefore, to each solution reaching
the singularity from one hemisphere we can associate one
and only one solution reaching the same point on the
equator from the other hemisphere.
The Schwarzschild solution is a special case of the above

system, in which there is no matter potential (U ¼ 0) and
no scalar field momentum. In such a case it can be verified

that α ¼ pα ¼ 0 is a solution to the equations of motion,
which is represented by a great circle through the poles on
the shape sphere. At the equator the solution continues
along the great circle and crosses from one hemisphere to
the other. On each hemisphere of shape space, the solution
describes a black hole interior with either a left- or right-
handed triad. The Picard-Lindelöf theorem shows then that
there is a unique continuation of the Schwarzschild interior
beyond the singularity—it is an orientation-flipped interior
of an otherwise identical black hole.
To make the result clearer, we can study the system

in the vicinity of the singularity. As we approach the
singularity β → ðπ

2
Þ�, all the terms containing the potential

U or its derivatives are exponentially suppressed (they
are all multiplied to exponentials of negative constants
times tan β). The equations of motion tend to the free
equations,
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dα
dl

¼ λ

sin β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ ρ2 sin2 β

p ;

dβ
dl

¼ ρ sin βffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ ρ2 sin2 β

p ;

dη
dl

¼ κλ2

ρ2 sin β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ ρ2 sin2 β

p ;

dρ
dl

¼ λ2 cos β

sin2 β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ ρ2 sin2 β

p ;

dλ
dl

¼ dκ
dl

¼ 0: ð36Þ

Consider now a small region around the equator,
β ∼ π=2þ δβ, cos β ∼ −δ β, sin β ∼ 1þOðδβ2Þ. The
equations of motion approximate to

dα
dl

≃
λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2 þ ρ2
p ;

dδβ
dl

≃
ρffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2 þ ρ2
p ;

dη
dl

≃
1

ρ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ ρ2

p κλ2;
dρ
dl

≃
δβffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ ρ2

p λ2;

dλ
dl

≃ 0;
dκ
dl

≃ 0; ð37Þ

and the Hamiltonian constraint

H ≃
1

2
ð−κ2 þ ρ2 þ δβ2λ2Þ ≈ 0; ð38Þ

and we can plug the solution to the Hamiltonian constraint
into the right-hand side of the equations of motion as
follows:

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ ρ2

p ≃
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2 þ κ2 − δβ2λ2
p

≃
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2 þ κ2
p

�
1þ λ2

2ðλ2 þ κ2Þ δβ
2

�
; ð39Þ

as well as

1

ρ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ ρ2

p ≃
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2 þ κ2 − δβ2λ2
p

≃
1

κ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ λ2

p þ δβ2λ2ð3κ2 þ 2λ2Þ
2κ4ðκ2 þ λ2Þ3=2 ; ð40Þ

ρffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ ρ2

p ≃� jκjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ κ2

p −
δβ2λ4

2ð
ffiffiffiffiffi
κ2

p
ðκ2 þ λ2Þ3=2Þ

; ð41Þ

where we have to choose the sign plus because ρ needs to
be positive. So, at first order in δβ,

dα
dl

≃
λffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2 þ κ2
p ;

dδβ
dl

≃
κffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2 þ κ2
p ;

dη
dl

≃
λ2

κ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 þ κ2

p ;

dλ
dl

≃ 0;
dκ
dl

≃ 0: ð42Þ

with the approximate solution to the Hamiltonian constraint
ρ ≃ κ. The solutions of Eq. (42) are

α≃ α0þ
λ0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ20þκ20

p
κ0

ðl−l0Þ; β ≃
π

2
þ κ0ffiffiffiffiffiffiffiffiffiffiffiffiffi

λ20þκ20
p ðl−l0Þ;

η≃ η0þ
λ20

κ0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
λ20þκ20

p ðl−l0Þ; ρ≃ κ0; λ≃ λ0; κ ≃ κ0;

ð43Þ

where we chose the integration constants so that when
l ¼ l0, we are at the equator β ¼ π=2. The solution above,
written in terms of the original variablesw; u; z; pw; pu; pz is

x0 ¼ signðtan βÞ
�
ηþ κ

ρ
tan β

�
; x1 ¼ j tan βj cos α; x2 ¼ j tan βj sin α;

p0 ¼ −signðtan βÞκ; p1 ¼ −
sin αλ
j tan βj þ signðtan βÞ cos αρ; p2 ¼

cos αλ
j tan βj þ signðtan βÞ sin α ρ; ð44Þ

z ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ20 þ κ20

p
κ0

jl − l0j−1 þ signðl0 − lÞη0 þ
λ20=κ0 þ κ0=3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ20 þ κ20
p jl − l0j þOðl − l0Þ3;

ðw; uÞ ≃ ðcos α0; sin α0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ20 þ κ20

p
κ0

jl − l0j−1 þ ð− sin α0; cos α0Þ
λ0ðλ20 þ κ20Þ

κ20
signðl − l0Þ þOðl − l0Þ;

pz ≃ κ0 signðl − l0Þ;
ðpw; puÞ ≃ signðl − l0Þκ0ðcos α0; sin α0Þ þOðl − l0Þ: ð45Þ
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The above solution has the following characteristics:
(a) the momenta pw, pu, pz all change sign upon crossing

the equator,
(b) the coordinates w, u, z all diverge with the same sign,

as we approach the equator from the two hemispheres,
so it represents two (asymptotic) solutions of the original
system with opposite orientations, joined at the singularity.

VII. DISCUSSION

Our generalized dynamical system allows to continue
singular solutions through the Schwarzschild singularity
uniquely. As can be deduced by looking at the shape sphere
in Fig. 4, a great circle that crosses the equator would not be
invariant under reflections with respect to the equator’s
plane (unless we are in the special case of a vertical,
“meridian” circle). Then the solution continues to one that
is objectively different; it is not simply the time-reversed
repetition of the initial solution. After crossing the singu-
larity, the shape degrees of freedom w and u will have a
different evolution and will go through different pairs of
values.
A legitimate question, at this point, is: what is the

structure of the spacetime that corresponds to these
continued solutions? Thanks to the work of
Christodoulou and Sbierski [18,21], a rather strong for-
mulation of the strong cosmic censorship conjecture for the
spherically symmetric Einstein-scalar field system is
proven, so we know that there can be no continuous
spacetime extending the Schwarzschild singularity. Our
picture is that of two spacetimes that are smooth every-
where except for a singularity, which are glued in a
particular way at said singularity. Or, alternatively, we
can talk about a single nonorientable spacetime with a
singular hypersurface. The causal structure of such space-
time is entirely codified in the evolution of the shape
variable w. This reflects the fact that within our ontology,
spacetime is not fundamental—the shape degrees of free-
dom are, and these determine all observations. Spacetime is
a useful descriptive tool, and the singularity represents a
failure of this tool, not a breakdown in the determinism of
the fundamental physics. We know the causal structure
associated to any half of each solution that is confined to
one hemisphere; it is that of the region of Schwarzschild’s
spacetime that is inside the horizon (the shaded region in
Fig. 1). A full solution can then be associated to two such
causal patches, and it is tempting to glue them at the
singularity in the manner of Fig. 5; one has two regions
with opposite spatial orientations, looking like a black hole
interior glued to a white hole interior. Extending these
spacetimes beyond the horizons, one finds two asymptoti-
cally flat regions of opposite orientations, one in the causal
past and one in the future.
This picture, however, is tentative and does not neces-

sarily reflect actual physics. A Penrose diagram makes
sense as an effective description of the causal relations

between test particles propagating in a background space-
time, in a regime in which the backreaction of the particles
on the geometry can be neglected. This is a reasonable
assumption around most points in the Penrose diagram 5,
but not in the vicinity of the singularity. We cannot say, at
the moment, what a test particle would experience upon
crossing the singularity: that would need a dedicated
analysis. Until that is done, we cannot be sure that timelike
worldlines would behave smoothly at the singularity in the
Penrose diagram 5, and therefore the physical meaning of
that diagram remains unclear.
This paper has shown how spacelike singularities at the

center of black holes do not represent the end of the
determinism of the solution. Together with [5–7], this hints
that the resolution of spacelike singularities may be a
generic feature of the relational approach. However, this is
far from the end of the problem of singularities. The
Hawking-Penrose theorems still hold, and as yet it is not
known how to extend geodesics beyond the singularity
itself. Recent work [28], see also [29,30], has shown that
despite these problems, given some extensions of space-
time beyond a singularity certain quantum matter degrees
of freedom can be deterministically evolved beyond these
points. A tantalizing prospect is that relational descriptions
may resolve the issues of singularities entirely classically.
The ramifications for quantum gravity searches, many of
which have their sights set on resolution of singularities,
would be profound.

2

2

2

0

FIG. 5. The continuation of the Schwarzschild solution. At the
singularity, the shape system remains well defined, and connects
two Schwarzschild interiors described by right- and left-handed
triads.
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Another issue that should be investigated before
proposing causal structures for our singularity-crossing
solutions (and, in particular, before extending these
structures outside of the horizons, is the fact that
the Schwarzschild spacetime represents an eternal black
hole, while realistic black holes are created through the
collapse of matter. This is better discussed within a matter
collapse model that creates the black hole metric in its
wake (e.g., a thin-shell [31,32] or a Lemaître-Tolman-
Bondi model). Then, the study of the behavior of the
collapsing matter upon crossing the singularity should

reveal the nature of the region beyond the singularity. A
compelling possibility is that the singularity turns the
collapse of the matter into an expansion, and the expand-
ing matter leaves behind a pocket of spacetime with a
white-hole metric.
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