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Université Paris-Saclay, CNRS, CEA, Institut de Physique Théorique, 91191 Gif-sur-Yvette, France
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We present a novel calculation of the four-momentum that is radiated into gravitational waves during the
scattering of two arbitrarily spinning bodies. Our result, which is accurate to leading order in G, to
quadratic order in the spins, and to all orders in the velocity, is derived by using a Routhian-based worldline
effective field theory formalism in concert with a battery of analytic techniques for evaluating loop
integrals. While nonspinning binaries radiate momentum only along the direction of their relative velocity,
we show that the inclusion of spins generically allows for momentum loss in all three spatial directions. We
also verify that our expression for the radiated energy agrees with the overlapping terms from state-of-the-
art calculations in post-Newtonian theory.
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I. INTRODUCTION

The burgeoning field of gravitational-wave astronomy
[1,2] will offer new opportunities to explore questions in
fundamental physics, test the nature of strong-field gravity,
and constrain various binary formation and evolution
channels [3–9]. As binary systems with spinning black
holes constitute one of the primary sources of gravitational
waves, modeling precisely how spin influences a binary’s
inspiral is essential for making robust detections and
performing accurate parameter estimation studies [10–12].
In the traditional approach to the two-body problem, one

makes the so-called post-Newtonian (PN) expansion [13]:
the equations of motion for the binary and the gravitational
field are solved order by order simultaneously in powers ofG
and v2; respectively, the gravitational constant and the square
of the relative velocity between the two bodies. Since the two
parameters are related by the virial theorem, this perturbative
scheme is ideally suited to the study of bound orbits.
An alternative approach, which lends itself more natu-

rally to the study of unbounded orbits (i.e., scattering
encounters), is the post-Minkowskian (PM) approximation
[14]. Here, one also expands in powers of G, but keeps v
fully relativistic. While the study of unbounded orbits
may, at face value, seem far removed from the coalescing
binaries that gravitational-wave detectors observe, quan-
tities computed in one scenario can be linked to the other
via, e.g., analytic continuation [15–18]. Alternatively, PM

calculations could also be used as inputs to improve the
accuracy of the effective-one-body approach [14,19–24]—a
popular semianalytic method for constructing waveform
templates.
In recent years, rapid advancements in the PM program

have been driven by the scattering-amplitudes community
[25–40], who (at present) have pushed out calculations in
the conservative sector up to 4PM; i.e., up to OðG4Þ
[41,42]. Analogous results were also obtained independ-
ently through various worldline effective field theory (EFT)
approaches [43–48]. These results were later extended to
include tidal deformation [49–56] and spin effects [57–69].
Developments in the radiative sector are more recent.

The four-momentum emitted into gravitational waves by a
nonspinning binary was first computed at leading (3PM)
order in Refs. [70,71] via the “KMOC” approach [29],
independently in Ref. [72] via the eikonal approach, and
then in Ref. [73] via the worldline EFT approach. Tidal
contributions were later included in Ref. [74]. (See also
Refs. [67,68,75–89] for related works on radiative effects.)
Notably absent from the literature, however, is the inclusion
of spins in the radiated observables at 3PM.
To be precise, the outgoing waveform from a spinning

binary has been computed up to 2PM in Ref. [85]. Using
this to compute the radiated four-momentum at 3PM is
challenging, however, because of the multiscale nature of
the resulting integrals, which have so far proven to be
intractable unless one also performs a low-velocity expan-
sion [83–85]. Fortunately, this is not the only option, and
indeed our goal in this paper is to compute the four-
momentum radiated at 3PM up to quadratic order in the
spins and to all orders in the velocity.
We bypass the aforementioned complications with the

waveform by formulating the problem as an integral of the
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outgoing graviton momentum over phase space, weighted
by (what is essentially) the square of the binary’s (pseudo)
stress-energy tensor. The latter we construct by using
the worldline EFT formalism, while the loop integrals that
arise are computed by appropriating powerful techniques
from high-energy physics [90]; namely, reverse unitarity
[91–94], a reduction to master integrals via integration by
parts [95–97], and differential equation methods [98–103],
as previously used in Refs. [70–74] for the nonspinning
case.
These techniques are described in more detail in Sec. II.

In Sec. III, we discuss the key features of our main result,
but owing to its length, we present the full expression only
in the Supplemental Material [104], a computer-readable
version of which is available in the ancillary files attached
to the arXiv submission of this paper. Also included in the
Supplemental Material are explicit expressions for some of
the intermediate quantities that we calculate, like the stress-
energy tensor. We conclude in Sec. IV.

II. METHODS

A. Worldline effective field theory

Consider the case of two spinning bodies approaching
one another from infinity, and suppose that their distance
of closest approach remains much larger than their indi-
vidual radii. In this scenario, the details of their scattering
encounter are well described by an EFT in which the
two bodies are treated as point particles traveling along
the worldlines of their respective centers of energy. Their
dynamics are conveniently described by a Routhian
[65,105–107], which for each body of mass m reads

R ¼ −
1

2

�
mgμνUμUν þ ωab

μ SabUμ

−
1

m
UaUeRebcdSabScd −

1

m
CEEabSa

cScb

�
: ð1Þ

The translational degrees of freedom (d.o.f.s) of this
body are encoded in four worldline coordinates xμðτÞ,
which chart the integral curve of the four-velocity
Uμ ≡ dxμ=dτ. Only three of these are needed to specify
the position of the body uniquely, however, and so we
remove the remaining unphysical d.o.f. by imposing the
constraint UμUμ ¼ 1 [43,65]. Meanwhile, the body’s rota-
tional d.o.f.s are encoded in the antisymmetric spin tensor
Sab, which notably is defined in a locally flat frame with
coordinates fyag. Tensors defined in the general coordinate
frame fxμg are transformed into the former by way of
the vielbein eaμ ≡ ∂ya=∂xμ (e.g., Ua ≡ eaμUμ), which also
defines for us the spin connection ωab

μ ≔ gρσebσ∇μeaρ . Only
three of the six components in Sab are needed to specify the
spin of the body uniquely; hence, the other three d.o.f.s
are to be removed by imposing a spin supplementary
condition (SSC) [108–111]. Given the relativistic nature of

the problem, the covariant SSC, UaSab ¼ 0þOðS3Þ
[111], proves to be the most convenient choice.
The first three terms in Eq. (1) are universal, in the

sense that they apply to any body with a mass monopole
and spin dipole. Higher-order multipole moments, how-
ever, are sensitive to the body’s internal structure, and
this is why the final term in Eq. (1), which describes
the self-induced quadrupole moment of the rotating body
(Eμν ≡ RμρνσUρUσ), is accompanied by the Wilson coef-
ficient CE. Kerr black holes have CE ¼ 1 [106], although
this value can be larger for objects like neutron stars
[112,113]. Infinitely many more terms can be appended
to Eq. (1) should we wish to include even higher-order
multipoles [114], or other finite-size effects like tidal
deformations [74,115], but these all come with higher
powers of either the curvature tensors or the spin, and so are
irrelevant to our purposes here.
As the Routhian behaves like a Lagrangian from the

point of view of the translational d.o.f.s, but like a
Hamiltonian with regards to the rotational d.o.f.s, the
equations of motion for each body follow from a mixture
of Euler-Lagrange and Hamilton equations [116]; namely,

δ

δxμ

Z
dτR ¼ 0 and

d
dτ

Sab ¼ fSab;Rg: ð2Þ

The only nontrivial Poisson bracket we require is [105]

fSab;Scdg ¼ ηacSbd þ ηbdSac − ηadSbc − ηbcSad; ð3Þ

where ηab is the Minkowski metric with a mostly minus
signature. Note that the aforementioned constraints on Uμ

and Sab should be imposed only after all functional
derivatives and Poisson brackets have been evaluated.
To fully specify our EFT, we must also endow the metric

gμν with its own dynamics; hence, we take the full effective
action to be S ¼ SEH þ SFP þ

P
2
A¼1

R
dτARA, where SEH

is the Einstein-Hilbert action, SFP is a Faddeev-Popov term
that enforces the de Donder gauge, and the label A ∈ f1; 2g
is used to distinguish between the binary’s two constituents.

B. Stress-energy tensor

As a precursor to computing the radiated four-momen-
tum, we first determine the stress-energy tensor Tμν for the
binary as a whole. This object is sourced by the multipolar
moments of the two bodies, as well as by the energy stored
in nonlinear interactions of the gravitational field, and can
be obtained perturbatively from our EFT with the help of
Feynman diagrams once we expand the action in powers of
κhμν ≔ gμν − ημν, with κ≡ ffiffiffiffiffiffiffiffiffiffiffi

32πG
p

. Crucially, since

eaμ ¼ ηaν
�
ημν þ

1

2
κhμν −

1

8
κ2hμρhρν þOðκ3h3Þ

�
ð4Þ
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in this expansion, Greek and Latin indices are now
indistinct. The spin tensors are, nonetheless, still defined
in their respective locally flat frames [65].
Only the Feynman rules shown in Fig. 1 are required at

the order in G to which we are working. In d-dimensional
momentum space (we work in d dimensions for added
generality), the graviton propagator in Fig. 1(a) is iPμνρσ=k2,
withPμνρσ ¼ ημðρησÞν þ ημνηρσ=ðd − 2Þ (an iϵ prescription is
unnecessary at this order because the loop integrals never hit
the poles at k2 ¼ 0 [83]), while the worldline vertex for
single-graviton emission is

Fig:1ðbÞ¼−
1

2
iκ
Z

dτAeik·xA
�
mAUA

μUA
νþ ikρSA

ρðμUA
νÞ

þ 1

mA
kρkσUAαðUA

ðμSA
νÞρSA

σαþUA
ρSA

σðμSA
νÞαÞ

þ 1

2mA
CEA

kρkσðSA
ραSA

σ
αUA

μUA
ν

þ2UA
ρSA

σαSAα
ðμUA

νÞ þSA
ðμ
αSA

νÞαUA
ρUA

σÞ
�
:

ð5Þ

Expressions for the two remaining vertices, which are much
lengthier, are presented in the Supplemental Material [104].
In addition to making the weak-field expansion above, we

must also expand the body variables XA ≡ ðxA;UA;SAÞ
about their initial straight-line trajectories in order to achieve
manifest power counting in G. We therefore write [43,65]

XAðτAÞ ¼ X̄AðτAÞ þ
X∞
n¼1

δðnÞXAðτAÞ; ð6Þ

where δðnÞXA is the OðGnÞ deflection away from the initial
trajectory X̄A due to the gravitational pull of the other body.
The 1PM deflections δð1ÞXA, which wewill need later in our
calculation, were previously computed using Eq. (2) in
Refs. [43,65]. (They are reproduced in the Supplemental
Material [104] for completeness.) As for X̄A, we write

x̄μA ¼ bμA þ uμAτA; Ūμ
A ¼ uμA; and S̄μν

A ¼ mAs
μν
A ; ð7Þ

where the constant vectors uμA and bμA are the initial velocity
and orthogonal displacement of the Ath body, respectively,

while the constant tensor sμνA describes its initial spin per unit
mass. Note that sμνA uAν ¼ 0 as per the covariant SSC, while
the impact parameter bμ ≔ bμ1 − bμ2 satisfies b · uA ¼ 0 [43].
We now use these rules to compute the (tree-level)

expectation value hhμνðkÞi≡ κPμνρσTρσðkÞ=ð2k2Þ, from
which the (classical) stress-energy tensor Tμν may be
extracted. At leading order in G, only the diagram in
Fig. 2(a), with XA replaced by X̄A, contributes. The result is

Tμν
LOðkÞ ¼

X2
A¼1

�δ ðk · uAÞmAeik·bA
�
uAμuAν þ ikρsAρðμuAνÞ

−
1

2
CEA

ðkρsAρσsAσαkαÞuAμuAν
�
; ð8Þ

where the delta function �δ ðxÞ≡ 2πδðxÞ comes from
having performed the integral over τA in Eq. (5).
All three diagrams in Fig. 2 contribute at next-to-leading

order in G. From Fig. 2(a), we extract the OðGÞ part of
the diagram by expanding XA up to 1PM, whereas for
Figs. 2(b) and 2(c), it suffices to replace XA by X̄A. The total
result is

Tμν
NLOðkÞ ¼

κ2M2ν

4

Z
q

Δ12ðq; kÞ
q2ðk − qÞ2 t

μνðq; kÞeiq·beik·b2 ; ð9Þ

where M ¼ m1 þm2 is the binary’s total mass, ν ¼
m1m2=M2 is its symmetric mass ratio,

R
q ≡

R
ddq=ð2πÞd,

and Δ12ðq; kÞ ≔ �δ ðq · u1Þ�δ ððk − qÞ · u2Þ. An explicit
expression for the object tμν, accurate toOðs2Þ, is presented
in the Supplemental Material [104].

C. Loop integrals

Given the above, we may now compute the radiated four-
momentum via the definition [117]

Pμ
rad ¼

κ2

4

Z
k

�δþðk2Þkμ½TανðkÞPανρσT�ρσðkÞ�; ð10Þ

where �δþðk2Þddk=ð2πÞd is the Lorentz-invariant phase-
space measure for the emission of on shell gravitons.

FIG. 1. Feynman rules relevant to our calculation.
FIG. 2. Feynman diagrams contributing to the stress-energy
tensor up to next-to-leading order in G. While not drawn
explicitly, our calculation includes the mirror inverses of (a)
and (b), which are obtained by interchanging the body labels
1 ↔ 2 and redefining the loop momentum q ↦ k − q.
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Observe that because the delta functions in Eq. (8) have
compact support away from k2 ¼ 0, Tμν

LO is nonradiative
and so does not contribute to Pμ

rad. It therefore suffices to
substitute Eq. (9) into Eq. (10) when working to leading
order in G. We then find

Pμ
rad ¼

κ6M4ν2

64

Z
k;q1;q2

tανðq1; kÞPανρσt�ρσðq2; kÞ
q21q

2
2ðk − q1Þ2ðk − q2Þ2

kμ

× eiðq1−q2Þ·b�δþðk2ÞΔ12ðq1; kÞΔ12ðq2; kÞ: ð11Þ

Next, we define new momentum variables q ¼ q1 − q2,
l1 ¼ −q2, and l2 ¼ q1 − k [73] in order to write

Pμ
rad ¼

κ6M4ν2

64

Z
q

�δ ðq · u1Þ�δ ðq · u2Þeiq·bQμðqÞ: ð12Þ

The radiated four-momentum may thus be viewed as the
inverse Fourier transform of some object Qμ, which is
expressible as a sum of terms in which qμ, uμA, and sμνA are
contracted amongst themselves and with the two-loop
integrals

G
μ1���μiν1���νj
n1���n9 ≔

Z
l1;l2

lμ1
1 � � �lμi

1 l
ν1
2 � � �lνj

2

ρn11 ρn22 ρn33 ρn44 ρn55 ρn66 ρn77 ρn88 ρn99
: ð13Þ

Following Ref. [90], we define ρ2 ¼ −2l1 · u2,
ρ3 ¼ −2l2 · u1, ρ5 ¼ l2

1, ρ6 ¼ l2
2, ρ8 ¼ ðl1 − qÞ2, and

ρ9 ¼ ðl2 − qÞ2, while the underlined variables are used
to denote the presence of delta functions; i.e.,
2=ρ

1
¼�δ ðl1 · u1Þ, 2=ρ4 ¼ �δ ðl2 · u2Þ, and 1=ρ

7
¼ �δþðk2Þ

with k≡ q − l1 − l2. All of the integrals in Qμ have
n1 ¼ n4 ¼ n7 ¼ 1. Reverse unitarity then allows us to treat
these delta functions as cut propagators [91–94].
The tensor-valued nature of these integrals make them

cumbersome to evaluate as is, but fortunately they can all
be reduced to scalar-valued ones via a suitable basis
decomposition [85]. Specifically, we expand each of the
loop momenta lμ

A (A ∈ f1; 2g) in the numerator as

lμ
A ¼ ðlA · u1Þǔ1μ þ ðlA · u2Þǔ2μ þ

ðlA · qÞ
q2

qμ þ lμ
A⊥;

ð14Þ

where ǔμ1 ≔ ðuμ1 − γuμ2Þ=ð1 − γ2Þ and ǔμ2 ≔ ǔμ1j1↔2 are the
dual vectors to the two initial velocities (ǔA · uB ¼ δAB),
γ ≡ u1 · u2 is the Lorentz factor for the relative velocity v,
and lμ

A⊥ is the part of lμ
A that is orthogonal to u1, u2, and q

[the delta functions in Eq. (12) guarantee that q · uA ¼ 0].
The three inner products in Eq. (14) are then easily
rewritten in terms of the variables ρi and q2 only.
As for lμ

A⊥, the fact that the denominator of Eq. (13) is
invariant under ðl1⊥;l2⊥Þ ↦ −ðl1⊥;l2⊥Þ implies that any
term in the numerator with i powers of l1⊥ and j powers of

l2⊥ will integrate to zero if iþ j is odd. If instead
iþ j ¼ 2, then rotational invariance on the hypersurface
orthogonal to u1, u2, and q allows us to replace

lμ
A⊥lν

B⊥ ↦
ðlρ

A⊥ρσlσ
BÞ

d − 3
⊥μν ð15Þ

under the integral, where the metric on this hypersurface is
⊥μν ¼ ημν − ǔ1μu1ν − ǔ2μu2ν − qμqν=q2, and note that the
inner product ðlρ

A⊥ρσlσ
BÞ is easily rewritten solely in terms

of the variables ρi, q2, and γ. Analogous replacement rules
can be derived for the iþ j ¼ 4 case by positing the ansatz
lμ
A⊥lν

B⊥l
ρ
C⊥lσ

D⊥ ↦ c1⊥μν⊥ρσ þ c2⊥μρ⊥νσ þ c3⊥μσ⊥ρν

and then solving for the coefficients fc1; c2; c3g by taking
appropriate contractions. The same can be done for all
iþ j ∈ 2Z, although in practice we encounter only inte-
grals with iþ j ≤ 5.
The object Qμ is now a sum of terms in which different

combinations of qμ, uμA, and sμνA are contracted with one
another and multiplied by one of the scalar-valued integrals
Gn1���n9 . At this stage, 3,100 different scalar integrals enter
intoQμ, but not all of them are independent. After using the
LiteRed software package [118,119] to identify nontrivial
integration by parts relations between the different integrals
[95–97], we find that they reduce to a set of only four
master integrals; the same four as in Eqs. (4.13)–(4.16) of
Ref. [73]. These are solved via differential equation
methods [98–103]; see Ref. [73] for details.
All that remains is to compute the Fourier transform in

Eq. (12). We do so by using another family of master
integrals,

I
μ1���μj
n ≔

Z
q

�δ ðq · u1Þ�δ ðq · u2Þ
qμ1 � � � qμj
ð−q2Þn eiq·b; ð16Þ

whose scalar-valued member evaluates to

In ¼
Γðd=2 − n − 1Þ

ΓðnÞ
ð−bμ⊥μν

12bνÞnþ1−d=2

4nπðd−2Þ=2ðγ2 − 1Þ1=2 ; ð17Þ

with⊥μν
12 ¼ ημν − ǔμ1u

ν
1 − ǔμ2u

ν
2 [67]. Its tensor-valued cous-

ins follow from differentiation; e.g., Iμn ¼ −i∂In=∂bμ.

III. RESULTS

A. Radiated four-momentum

Now specializing to four dimensions, it becomes con-
venient to decompose our final result into components
along the basis vectors fu1; u2; b̂; l̂g, where b̂μ ≔ bμ=b
ðb≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi

−bμbμ
p Þ and l̂μ ≔ ϵμνρσuν1u

ρ
2b̂

σ=
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
are the

unit vectors pointing along the impact parameter and
orbital angular momentum, respectively. After also elimi-
nating the spin tensors in favor of the Pauli-Lubanski spin
vectors sμA ≔ ϵμνρσuνAs

ρσ
A =2, we find that we can write
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Pμ
rad ¼

G3M4πν2

b3
ðCu1 ǔμ1 þ Cu2 ǔ

μ
2 − Cb̂b̂

μ − Cl̂ l̂
μÞ: ð18Þ

The components CV , with V ∈ fu1; u2; b̂; l̂g, are dimen-
sionless functions of only the Lorentz factor γ, the two
Wilson coefficients CEA

, and the six inner products
ðsA · VÞ=b. (There are only six because sA · uA ¼ 0 by
definition.)
The fact that Pμ

rad is a polar vector strongly constrains
which inner products can appear at any given order, and in
which combinations. For instance, because Cu1 , Cu2 , and Cb̂
must all be even under parity, they can only depend on
ðsA · l̂Þ=b at linear order in the spins. Indeed, we find
explicitly that

Cu1 ¼ fIðγÞ þ
1

b
½ðs1 · l̂ÞfIIðγÞ þ ðs2 · l̂ÞfIIIðγÞ� þOðs2Þ;

Cl̂ ¼
1

b
½ðs1 · u2Þ þ ðs2 · u1Þ�fIVðγÞ þOðs2Þ; ð19Þ

while Cb̂ ¼ 0þOðs2Þ. The remaining component Cu2 can
be obtained from Cu1 by swapping the body labels 1 ↔ 2,
since Pμ

rad must be symmetric under this interchange. As an
added consequence, Cb̂ and Cl̂ must be odd and even under
this interchange, respectively.
The four functions ffI;…; fIVg in Eq. (19) depend

purely on γ and are presented in Table I [fI, which appears
at Oðs0Þ, was previously determined in Refs. [70–73], but
is reproduced here for completeness]. An additional 21
functions of γ, with similar analytic structures, appear at
Oðs2Þ. These are presented in the Supplemental Material
[104]. Notice that Cb̂ and Cl̂ both vanish when the spins are

aligned along l̂ (or, indeed, when they are zero); hence,
for so-called “aligned-spin” configurations, for which
the binary’s motion is confined to a plane, we see that
momentum is lost only in the direction of the relative
velocity.

B. Consistency checks

To validate Eq. (18) against the existing literature,
we compare results for the energy ΔE radiated in the
center-of-mass frame. This is computed in our approach
as ΔE ¼ ðPrad · ptotÞ=E, where pμ

tot ¼ m1u
μ
1 þm2u

μ
2 and

E2 ¼ p2
tot ¼ M2½1þ 2νðγ − 1Þ�. Since b̂μ and l̂μ are purely

spatial in this frame, sA · b̂ and sA · l̂ are equivalent to the
three-dimensional dot products −sA · b̂ and −sA · l̂, respec-
tively, and note that s1 · u2 ≃ s1 · v while s2 · u1 ≃ −s2 · v
after expanding to first order in the relative 3-velocity v.
Having done so, our result for ΔE agrees with that of
Ref. [85], which is accurate to leading order in v and to
quadratic order in the spins, once we also replace
ðb; sA; CEA

Þ ↦ ð−b;−sA; 1 − CEA
Þ to account for differing

conventions.
As a second consistency check, we use analytic con-

tinuation by way of the boundary-to-bound (B2B) map
[15–17] to convert our result for ΔE into the energy ΔEell
radiated during one period of ellipticlike motion. This is
accomplished in three steps. Owing to current limitations of
the B2B map, we first specialize to aligned-spin configu-
rations. Next, we must transform from the covariant SSC to
the canonical (Newton-Wigner) SSC [110] for the map to
work. This generally entails transforming ðb; sAÞ to new
canonical variables ðbc; sAcÞ [59,60], but sA ≡ sAc in the
aligned-spin case; hence, only the magnitude of the impact
parameter must be transformed. The rule is

bp∞ ¼ bcp∞ −
E −M
2E

½Eaþ − ðm1 −m2Þa−�; ð20Þ

where p∞ ¼ M2ν
ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
=E is the initial momentum of

either body in the center-of-mass frame, a� ¼ ðs1 � s2Þ · l̂,
and we may define Lc ¼ bcp∞ as the canonical orbital
angular momentum. Finally, we obtain ΔEell from ΔE
via [17]

ΔEellðE; Lc; a�Þ ¼ ΔEðE; Lc; a�Þ − ΔEðE;−Lc;−a�Þ;
ð21Þ

having eliminated γ in favor of E ≡ ðE −MÞ=ðMνÞ. The
left-hand side follows after analytic continuation from
positive to negative values of E. Expanded in powers of
E, we find that our result, which is valid in the large-
angular-momentum limit [17], agrees with the overlapping
terms from PN theory up to 3PN in Ref. [17], and up to 4PN
in Refs. [120,121].

TABLE I. Functions of the Lorentz factor γ appearing in
Eq. (19).

fI 210γ6−552γ5þ339γ4−912γ3þ3148γ2−3336γþ1151

48ðγ2−1Þ3=2

− 35γ4þ60γ3−150γ2þ76γ−5
8

ffiffiffiffiffiffiffi
γ2−1

p logð1þγ
2
Þ

þ 70γ7−165γ5þ112γ3−33γ
16ðγ2−1Þ2 cosh−1 γ

fII 210γ6−356γ5−111γ4−1627γ3þ5393γ2−4741γþ1352

16ðγþ1Þðγ2−1Þ
− 105γ4þ345γ3−405γ2þ147γ−48

8ðγþ1Þ logð1þγ
2
Þ

þ 210γ6−405γ4þ135γ2

16ðγ2−1Þ3=2 cosh−1 γ

fIII 210γ6−279γ5−219γ4−1350γ3þ4732γ2−4243γþ1245

16ðγþ1Þðγ2−1Þ
− 21γ4þ66γ3−84γ2þ30γ−9

2ðγþ1Þ logð1þγ
2
Þ

þ 42γ6−81γ4þ27γ2

4ðγ2−1Þ3=2 cosh−1 γ

fIV − 425γ5−1215γ4þ2491γ3−3957γ2þ2992γ−760
16ðγþ1Þðγ2−1Þ2

− 84γ6þ459γ5−825γ4−138γ3þ666γ2−321γþ75

8ðγþ1Þðγ2−1Þ2 logð1þγ
2
Þ

þ 168γ7þ78γ6−414γ5−171γ4þ261γ3þ81γ2−27γ
16ðγþ1Þðγ2−1Þ5=2 cosh−1 γ
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IV. CONCLUSION

The worldline EFTapproach has proven to be an efficient
way of obtaining classical radiated observables from the
scattering encounter of two compact objects, be they
Schwarzschild or Kerr black holes, or even neutron stars.
This work closes an important gap in the PM literature by
computing the radiated four-momentum at 3PM up to
quadratic order in the spins and to all orders in the velocity.
Remarkably, integrating over the loop momenta required
knowledge of only fourmaster integrals—the same four as in
the nonspinning case—which explains why the analytic
structure of our result is similar to that of Refs. [70–74],
despite the inclusion of spins. At low velocities, our radiated
energy is consistent with the existing literature, including the
case of the energy loss from a bound system during a single
orbit, which we derived via analytic continuation.
These results should prove invaluable for making further

consistency checks in the future. We expect, for example,
that our 3PM result for the radiated energy should reemerge
in the tail term of the (as yet unknown) conservative
potential for spinning binaries at 4PM, analogously to
how the tail term [41,42,47] was found to match the

radiated energy [70–73] in the nonspinning case. In the
future, it would also be interesting to reconstruct the
radiated flux for bound systems (via the approach in
Ref. [17]) from our calculation of the energy loss, so as
to make a more direct comparison with PN results, since it
is the former that directly impacts the binary’s inspiral via
the balance equation [13].

ACKNOWLEDGMENTS

It is a pleasure to thank Gihyuk Cho, Gregor Kälin, and
Rafael Porto for providing us with their result for the
radiated energy up to 4PN. We acknowledge use of the xAct

package [122] for MATHEMATICA in our calculations. This
work was partially supported by the Centre National
d’Études Spatiales (CNES).

Note added.—While this manuscript was undergoing peer
review, we became aware of similar calculations being
undertaken by Gustav Jakobsen and Gustav Mogull. We
thank them for verifying that their result for the radiated
four-momentum is in agreement with ours.

[1] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Observation of Gravitational Waves from a Binary
Black Hole Merger, Phys. Rev. Lett. 116, 061102
(2016).

[2] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), GW170817: Observation of Gravitational Waves
from a Binary Neutron Star Inspiral, Phys. Rev. Lett. 119,
161101 (2017).

[3] E. Berti et al., Testing general relativity with present and
future astrophysical observations, Classical Quantum
Gravity 32, 243001 (2015).

[4] R. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Tests of general relativity with binary black holes
from the second LIGO-Virgo gravitational-wave transient
catalog, Phys. Rev. D 103, 122002 (2021).

[5] E. Barausse et al., Prospects for fundamental physics with
LISA, Gen. Relativ. Gravit. 52, 81 (2020).

[6] P. Auclair et al., Cosmology with the Laser Interferometer
Space Antenna, arXiv:2204.05434.

[7] K. G. Arun et al., New horizons for fundamental physics
with LISA, Living Rev. Relativity 25, 4 (2022).

[8] E. Barausse, The evolution of massive black holes and
their spins in their galactic hosts, Mon. Not. R. Astron.
Soc. 423, 2533 (2012).

[9] T. Callister, M. Fishbach, D. Holz, and W. Farr, Shouts and
Murmurs: Combining individual gravitational-wave
sources with the stochastic background to measure the
history of binary black hole mergers, Astrophys. J. Lett.
896, L32 (2020).

[10] S. Vitale, R. Lynch, J. Veitch, V. Raymond, and R. Sturani,
Measuring the Spin of Black Holes in Binary Systems
Using Gravitational Waves, Phys. Rev. Lett. 112, 251101
(2014).

[11] T. D. Abbott et al. (LIGO Scientific and Virgo Collabo-
rations), Improved Analysis of GW150914 Using a Fully
Spin-PrecessingWaveformModel, Phys. Rev. X 6, 041014
(2016).

[12] R. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), GW190412: Observation of a binary-black-hole
coalescence with asymmetric masses, Phys. Rev. D 102,
043015 (2020).

[13] L. Blanchet, Gravitational radiation from post-Newtonian
sources and inspiralling compact binaries, Living Rev.
Relativity 17, 2 (2014).

[14] T. Damour, Gravitational scattering, post-Minkowskian
approximation, and effective-one-body theory, Phys.
Rev. D 94, 104015 (2016).

[15] G. Kälin and R. A. Porto, From boundary data to bound
states, J. High Energy Phys. 01 (2020) 072.

[16] G. Kälin and R. A. Porto, From boundary data to bound
states. Part II. Scattering angle to dynamical invariants
(with twist), J. High Energy Phys. 02 (2020) 120.

[17] G. Cho, G. Kälin, and R. A. Porto, From boundary data to
bound states. Part III. Radiative effects, J. High Energy
Phys. 04 (2022) 154.

[18] D. Bini, T. Damour, and A. Geralico, Sixth post-
Newtonian nonlocal-in-time dynamics of binary systems,
Phys. Rev. D 102, 084047 (2020).

RIVA, VERNIZZI, and WONG PHYS. REV. D 106, 044013 (2022)

044013-6

https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1088/0264-9381/32/24/243001
https://doi.org/10.1088/0264-9381/32/24/243001
https://doi.org/10.1103/PhysRevD.103.122002
https://doi.org/10.1007/s10714-020-02691-1
https://arXiv.org/abs/2204.05434
https://doi.org/10.1007/s41114-022-00036-9
https://doi.org/10.1111/j.1365-2966.2012.21057.x
https://doi.org/10.1111/j.1365-2966.2012.21057.x
https://doi.org/10.3847/2041-8213/ab9743
https://doi.org/10.3847/2041-8213/ab9743
https://doi.org/10.1103/PhysRevLett.112.251101
https://doi.org/10.1103/PhysRevLett.112.251101
https://doi.org/10.1103/PhysRevX.6.041014
https://doi.org/10.1103/PhysRevX.6.041014
https://doi.org/10.1103/PhysRevD.102.043015
https://doi.org/10.1103/PhysRevD.102.043015
https://doi.org/10.12942/lrr-2014-2
https://doi.org/10.12942/lrr-2014-2
https://doi.org/10.1103/PhysRevD.94.104015
https://doi.org/10.1103/PhysRevD.94.104015
https://doi.org/10.1007/JHEP01(2020)072
https://doi.org/10.1007/JHEP02(2020)120
https://doi.org/10.1007/JHEP04(2022)154
https://doi.org/10.1007/JHEP04(2022)154
https://doi.org/10.1103/PhysRevD.102.084047


[19] T. Damour, High-energy gravitational scattering and the
general relativistic two-body problem, Phys. Rev. D 97,
044038 (2018).

[20] D. Bini and T. Damour, Gravitational spin-orbit coupling
in binary systems, post-Minkowskian approximation,
and effective one-body theory, Phys. Rev. D 96, 104038
(2017).

[21] D. Bini and T. Damour, Gravitational spin-orbit coupling
in binary systems at the second post-Minkowskian
approximation, Phys. Rev. D 98, 044036 (2018).

[22] T. Damour, Classical and quantum scattering in post-
Minkowskian gravity, Phys. Rev. D 102, 024060 (2020).

[23] A. Antonelli, A. Buonanno, J. Steinhoff, M. van de Meent,
and J. Vines, Energetics of two-body Hamiltonians in post-
Minkowskian gravity, Phys. Rev. D 99, 104004 (2019).

[24] M. Khalil, A. Buonanno, J. Steinhoff, and J. Vines,
Energetics and scattering of gravitational two-body sys-
tems at fourth post-Minkowskian order, Phys. Rev. D 106,
024042 (2022).

[25] D. Neill and I. Z. Rothstein, Classical space–times from the
S-matrix, Nucl. Phys. B877, 177 (2013).

[26] N. E. J. Bjerrum-Bohr, J. F. Donoghue, and P. Vanhove,
On-shell techniques and universal results in quantum
gravity, J. High Energy Phys. 02 (2014) 111.

[27] A. Luna, I. Nicholson, D. O’Connell, and C. D. White,
Inelastic black hole scattering from charged scalar ampli-
tudes, J. High Energy Phys. 03 (2018) 044.

[28] N. E. J. Bjerrum-Bohr, P. H. Damgaard, G. Festuccia, L.
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Vanhove, Classical gravity from loop amplitudes, Phys.
Rev. D 104, 026009 (2021).

[37] N. E. J. Bjerrum-Bohr, P. H. Damgaard, L. Planté, and
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