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We study the structure of the higher-curvature gravitational densities that are induced from holographic
renormalization in AdSdþ1. In a braneworld construction, such densities define a d-dimensional higher-
curvature gravitational theory on the brane, which in turn is dual to a (d − 1)-dimensional CFT living at its
boundary. We show that this CFTd−1 satisfies a holographic c-theorem in general dimensions (different
than the g-theorem of holographic boundary CFTs), since at each and every order the higher-curvature
densities satisfy c-theorems on their own. We find that, in these densities, the terms that affect the
monotonicity of the holographic c-function are algebraic in the curvature, and do not involve covariant
derivatives of the Riemann tensor. We examine various other features of the holographically induced
higher-curvature densities, such as the presence of reduced-order traced equations, and their connection to
Born-Infeld-type gravitational Lagrangians.
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I. INTRODUCTION AND SUMMARY

The quantum fluctuations of a field in a curved space-
time give rise to ultraviolet divergences that take the form
of invariants of the metric and curvature in the quantum
effective action. For holographic conformal field theories
dual to anti–de Sitter spacetime in dþ 1 dimensions with
radius l, the form of this action is [1–3]

Idiv ¼
l

16πGNðd − 2Þ
Z
∂M

ddx
ffiffiffiffiffiffi
−g

p �
2ðd − 1Þðd − 2Þ

l2
þ R

þ l2

ðd − 2Þðd − 4Þ
�
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d
4ðd − 1ÞR

2

�
þ…

�
:

ð1:1Þ

Here gab is the metric induced near the AdS boundary ∂M,
and the divergences arise because gab grows infinitely
large as the asymptotic boundary is approached. After

regularization, counterterms are added with the same
structure as (1.1) in order to renormalize the theory.
The effective action expansion in (1.1) can be system-

atically derived from the bulk Einstein equations in
asymptotically AdS spacetimes [4–8], and we will give
the explicit results up to quintic order for general dimension
d, and to sextic order for d ¼ 3. The coefficients of each of
the individual curvature invariants reflect the ultraviolet
structure of holographic CFTs,1 and although they have
been known for many years, their specific form appears to
have received little attention. In this article we will
investigate some of their properties from a point of view
that directly connects them to (i) higher-curvature theories
of gravity, and (ii) holographic c-theorems.

A. Holographically induced higher-curvature gravity

For this purpose, we will introduce a brane near the
boundary of the AdS bulk, as in a Randall-Sundrum
braneworld construction [9]. The brane effectively acts
as a cutoff that renders the action (1.1) finite, and
furthermore, it makes the metric gab dynamical. Then,
(1.1) is interpreted as the effective action of the gravita-
tional theory that is induced on the d-dimensional brane,
with a Newton’s constant Geff ¼ ðd − 2ÞGN=l, and with
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1Even though it is not known whether nontrivial CFTs exist in
arbitrary d, holography suggests that their leading planar limit
exists (at least for generalized free fields).
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the brane tension adding to the cosmological constant term
[10].2 In effect, the Einstein-Hilbert term and all the higher-
curvature operators in the effective action are generated
when the bulk Einstein equations are solved in the region
near the boundary excluded by the introduction of the
brane. In dual terms, gravitational dynamics is induced
from the integration of the ultraviolet degrees of freedom of
the CFT above the cutoff. As a result, we obtain a
holographic realization of “induced gravity” (Fig. 1).
In this manner, we can view the braneworld construction

as a means of generating a specific theory of higher-
curvature gravity. The d-dimensional action must be
regarded as an effective theory with an infinite series of
terms, each naturally smaller than the previous one. Since
the (dþ 1)-dimensional Einstein bulk theory is well
defined, we expect that this good behavior is inherited
by the d-dimensional effective theory—at least for the
entire series. However, one may also attempt to truncate the
expansion at a finite order, and hope that the higher-
curvature gravitational theory that results is, if not com-
pletely well-defined by itself, at least special in some
respects. That is, we are proposing the holographic brane-
world perspective as an appealing rationale motivating a
class of higher-curvature theories with distinctive proper-
ties, which we shall investigate in this article.

B. Holographic c-theorem for induced
higher-curvature gravities

The braneworld construction can also have another
ramification that we will exploit. In general, depending
on the value of the brane tension, the cosmological constant
that is induced on the brane theory can be positive, negative
or zero. The three cases give valid higher-curvature
effective theories, but when the cosmological constant is
negative, and the geometry on the brane is asymptotically
AdSd (known as a Karch-Randall braneworld [12]), we can
perform one more holographic dualization. Namely, we can
envisage that the gravitational theory on the brane is itself
dual to a CFTd−1 at its boundary.
The usual interpretation of this doubly holographic setup

is in terms of duality to a boundary CFT, that is, a CFTd in a
space with a boundary where a CFTd−1 lives [12,13].
However, this view will not play a role in this article. Once
we have obtained a gravitational theory on AdSd, we will
be considering it on its own, without regard to its possible
coupling to the holographic CFTd. Then, the CFTd−1 to
which our gravitational theory is dual will be different than
the one that resides at the boundary of the CFTd in doubly
holographic setups. In other words, for us the holographic
construction is simply a means of generating a specific
class of higher-curvature gravitational theories which are
plausibly dual to conformal field theories, but these are not
necessarily coupled to any other system.
We will prove that these holographic CFTd−1 possess a

basic property of well-defined conformal theories, namely,
they satisfy c-theorems. Holographic theories incorporate
renormalization group flows as bulk solutions that inter-
polate between two asymptotically AdS regions [14,15].
These act as the UV and IR fixed points, while the bulk
radial coordinate parametrizes the flow. Holographically,
one expects that the c-function should be a rough measure
of the curvature radius of the geometry, such that it
monotonously decreases along the flow from the boundary
into the bulk.
We will actually find a stronger result: the higher-

curvature theories that are defined by the Lagrangian
densities at each order in the expansion (1.1) separately
satisfy holographic c-theorems. Although this might not be
unexpected given the good behavior of the “parent theory”
that gives rise to them, it is not a direct consequence of the
c-theorem of the holographic CFTd. Neither is it the same
as the g-theorem for holographic boundary CFTs in [16]
since, as we mentioned above and will discuss later in more
detail, our CFTd−1 are differently defined, and our method
of proof and bulk interpretation of the result are also very
different.

C. Other properties of higher-curvature densities

The proof of these holographic c-theorems relies on
particularities of the d-dimensional order-n densities, but
not in a very detailed way. Further examination of their

FIG. 1. Braneworld gravity and holography. The bulk is
described by Einstein-AdSdþ1 gravity. The black region is
excluded by the introduction of a brane, where a gravitational
theory with higher-curvature terms is induced. When the brane
geometry is asymptotically AdSd (as in the figure), this higher-
curvature gravitational theory can be dualized to a CFTd−1 at its
boundary (red dots). This leads to a doubly holographic con-
struction of boundary CFT, but this view will not be prominent in
our article, where we regard the higher-curvature theory (and its
dual CFTd−1) on its own, regardless of its coupling to a CFTd
dual to the AdSdþ1 bulk.

2See, e.g., [11] for more details. If we consider the brane to be
two-sided, then (1.1) will contribute twice to the effective action.
Since we are only interested in the structure of the curvature
terms, these considerations will be immaterial for us.
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structure, up to the highest order we have computed them,
reveals finer features. In particular, we can decompose each
order-n density LðnÞ appearing in the brane effective action
into a linear combination of a term Sn, that gives a
nontrivial c-function, and a term Tn that does not contribute
to it, since it identically vanishes on the renormalization
group flow geometry. We find evidence that this decom-
position can always be made in such a way that all the Sn
are algebraic in the Riemann tensor, with no derivatives of
it. That is,

LðnÞ ∝ Sn½Rabcd� þ Tn½Rabcd;∇a�: ð1:2Þ
We have proven that this is possible for all n in d ¼ 3,
and strong evidence suggests that it should hold for all n
and d.
Using the decomposition (1.2), we have then looked

for other special properties of these densities. In most cases,
we do not have proofs that apply to all orders and
dimensions, but instead we have identified particular
features by direct inspection of the terms that we have
explicitly generated.
A first observation follows directly from the form of the

first three orders in the effective action, shown in (1.1). In
any dimension d, we have

T0 ¼ T1 ¼ T2 ¼ 0: ð1:3Þ
In particular, in d ¼ 3 the only quadratic order term is, up to
an overall factor,

S2 ¼ RabRab −
3

8
R2; ð1:4Þ

which, as noted in [17], is the same density as in the new
massive gravity (NMG) of [18]. At the next, cubic order,
the Tn make appearance in every d (see (2.17) below). In
d ¼ 3, up to an overall factor, we find

S3 ¼ Rb
aRc

bR
a
c þ

17

64
R3 −

9

8
RRabRab; ð1:5Þ

and

T3 ¼
1

2
CabcCabc; ð1:6Þ

where Cabc is the Cotton tensor. Both these densities have
featured in earlier literature: S3 was proposed in [19] as a
cubic generalization of NMG that satisfies a holographic
c-theorem, and T3 defines the only cubic theory whose
equations of motion have a third-order trace [20].
The appearance of (1.4) and (1.5) might point to a

stronger link between the three-dimensional massive grav-
ity theories of Karch-Randall braneworlds and the gener-
alized higher-curvature theories that satisfy holographic
c-theorems [21]. Note, however, that the origin of the
graviton mass in Karch-Randall braneworlds is tightly

linked to its coupling to the dual CFT [22], which is in
general absent in NMG and its generalizations.3

For general higher dimensions, the cubic densities S3

and T3 are also special in similar ways. We find that S3

can be identified with a linear combination of the cubic
quasitopological gravity density [20,23,24], which has
second-order traced equations, plus a density which con-
tributes trivially to the c-theorem. On the other hand, T3

turns out to be given by another previously identified
combination [20], distinguished, just like in three dimen-
sions, by possessing third-order traced equations.
The reduced-order property of the traced equations is a

rather stringent feature, but in holographically induced
gravities it does not seem to generally hold beyond cubic
terms. Indeed, the quartic term T4 already does not satisfy it
in d ¼ 3.
Finally, also in three dimensions, we have found an

intriguing connection between the full tower of counter-
terms and the Born-Infeld-like extension of NMG pre-
sented in [25]. At present, we do not know whether
this finding is fortuitous, or instead it has a deeper
meaning.
The remainder of the paper proceeds as follows. In

Sec. II, we review the computation of the effective action
(1.1) from holographic renormalization, and then expand it
to quintic order in general dimensions and to sextic order in
d ¼ 3. In Sec. III we review the holographic c-theorem
construction for higher-curvature gravities, and also present
a few new observations on the topic. Then, in Sec. IV, we
prove that all the terms in the effective action separately
fulfill a holographic c-theorem. In Secs. Vand VI we study
the structure of each order-n density in (1.1), in d ¼ 3 and
in general dimensions, respectively. We end with comments
on possible future directions.

II. HOLOGRAPHIC RENORMALIZATION
AND INDUCED GRAVITY

We begin with a sketch of how the action (1.1) arises.
The starting point is the gravitational bulk action for a
(dþ 1)-dimensional asymptotically AdS spacetime,

I ¼ 1

16πGN

�Z
M

ddþ1x
ffiffiffiffiffiffiffi
−G

p �
R½G� þ dðd − 1Þ

l2

�

þ 2

Z
∂M

ddx
ffiffiffiffiffiffi
−g

p
K

�
: ð2:1Þ

Near the asymptotic boundary, we write the bulk metric in a
Fefferman-Graham expansion as [26]

3Note also that the coefficient of the Einstein-Hilbert term in
NMG is negative [18], opposite to the “normal” sign it has in the
braneworld, as seen in (1.1).
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Gμνdxμdxν ¼
l2

4ρ2
dρ2 þ l2

ρ
ĝijðρ; xÞdxidxj

¼ l2

4ρ2
dρ2 þ l2

ρ
ðĝð0Þij ðxÞ þOðρÞÞdxidxj: ð2:2Þ

We then solve the Einstein equations, order by order in ρ, in

terms of the “renormalized metric” ĝð0Þij and its derivatives
[1]. This series solution is then plugged back into the bulk
action, and, after introducing a cutoff at ρ ¼ ε, the bulk
coordinate ρ is integrated between 0 and ε. The result is a
series expansion where the first terms diverge as ε → 0 in
the form

I ¼ l
16πGN

Z
ddx

ffiffiffiffiffiffiffiffiffiffi
−ĝð0Þ

q
ðε−d=2L̂ð0Þ þ � � � þ ε−1L̂ð⌈d=2⌉−1Þ

− logðεÞL̂ðd=2ÞÞ þOðε0Þ: ð2:3Þ

Here the L̂ðiÞ are invariants of ĝð0Þij and its intrinsic
curvature. The logarithmic term is present only in even
d, for the holographic Weyl anomaly [27]. At any given d
only the terms that diverge as ε → 0 are uniquely deter-
mined by the boundary metric. In dual terms, they are fixed
by the definition of the theory in the ultraviolet, and are
independent of the state of the CFTd. We can rewrite them
in terms of the (physical) metric induced at ρ ¼ ε,

gijðx; εÞ ¼
l2

ε
ĝijðx; εÞ; ð2:4Þ

which gives a divergent action of the form

Idiv ¼
1

8πGN

Z
ddx

ffiffiffiffiffiffi
−g

p
L; where

L≡ Lð0Þ þ � � � þ Lð⌈d=2⌉−1Þ − logðεÞLðd=2Þ; ð2:5Þ

and where again the logarithmic term is present only in
even d (more about it below).4 The first three terms of Idiv
were presented in (1.1). Then, holographic renormalization
is performed by adding a counterterm action Ict ¼ −Idiv to
(2.1) in order to render the action finite when ε → 0. The
action that results is the quantum effective action of the
CFTd, and its variation with respect to the renormalized

metric ĝð0Þij generates the expectation value of the renor-
malized stress tensor of the CFTd. Adding to the action
higher curvature terms that are finite when ε → 0 corre-
sponds to changing the renormalization scheme.
Our framework will, however, be different than that of

holographic renormalization. Instead of regarding ρ ¼ ε as

a regularization device to be eventually removed, we will
keep it finite and nonzero, taking it to correspond to the
location of a physical brane, and adding to the action (2.1) a
purely tensional term for the brane

Ib ¼ −T
Z
ρ¼ε

ddx
ffiffiffiffiffiffi
−g

p
: ð2:6Þ

Since the action is finite when ε ≠ 0, no counterterms
need to be added, and our theory will be completely well
defined by (2.1) and (2.6), without any other boundary
terms.5 The expansion (2.5) can then be continued to
arbitrarily high orders, producing additional densities
LðnÞ which depend on the metric on the brane gij and its
curvature. This expansion now includes terms that would
not diverge when ε → 0. Such terms are necessary in order
to correctly reproduce the dynamics of the brane in the
bulk, which is determined by the Israel junction conditions
[28] derived from the brane action (2.6) [10]. The infinite
series of these terms constitute an effective gravitational
action Ibgrav in d dimensions, and the fact that the action
(2.5) is large for small ε reflects the strong localization
of gravity on the brane. In practice, one obtains all the
gravitational terms LðnÞ in Ibgrav in a unique manner by
deriving them for arbitrary d, without regard to whether
they are finite or divergent in any specific dimension d, as
we will do in the next subsection.
Now the entire action, when evaluated on a generic bulk

solution, will be

I þ Ib ¼ Ibgrav þ ICFT: ð2:7Þ

We can think of ICFT as the finite-ε counterpart of the bulk
contribution that is not determined by the boundary metric,
thus accounting for the state of the CFTd, but some care
must be exercised. The left-hand side of (2.7) is the action
of a finite gravitational system with Einstein-Hilbert
dynamics, plus a brane, in dþ 1 dimensions. The right-
hand side recasts it in the form of a higher-curvature
gravitational theory in d dimensions, coupled to a cutoff
CFTd. This CFTd backreacts on the metric gij, so once the
cutoff is introduced and the gravitational theory Ibgrav is
defined, there is no more “renormalization scheme depend-
ence” of the CFTd.
Note that the effective action Ibgrav is unambiguously

determined (up to total derivatives) by the exact theory that
it is derived from. This is not typically the case with
effective theories, which can be subject to field redefini-
tions that change their form. For instance, the metric in an
effective gravitational theory may be redefined as

4Notice that we have absorbed a factor of l=2 in L, in order to
match the conventions in [4], which we will follow in the next
subsection.

5This is the case for de Sitter or Minkowski branes, but in
Karch-Randall models infinite renormalization must still be
performed. It will become clear that, for our purposes, we need
not concern ourselves with this.
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gij → gij þ εαRij þOðε2Þ, with some arbitrary coefficient
α.6 However, in our case the metric gijðx; εÞ is exactly
determined for finite ε by its bulk definition (2.4), and
moreover its dynamics is also exactly specified by the Israel
junction conditions in the bulk. So the effective gravita-
tional theory for gijðx; εÞ is free from such ambiguities. A
minor subtlety remains in even d for the anomaly term
Lðd=2Þ, which we will discuss in the next subsection.
Then, in (2.7), the terms I, Ib and Ibgrav are well defined,

but the action of the CFTd is only specified through (2.7).7

That is, the value of the CFTd action ICFT, and of any other
magnitude derived from it (stress tensor, entropy, etc.), is
obtained as the difference between the bulk action I þ Ib
and the d-dimensional action Ibgrav, when these are evalu-
ated on any solution of the theory.
All of these considerations simply set the stage for our

statement that, in this article, we will not be concerned with
ICFT, but only with the gravitational action Ibgrav. It is
interpreted as the effective action of the gravity theory that
is induced on the brane through the integration of the bulk
degrees of freedom in the region 0 ≤ ρ ≤ ε. In dual terms,
we integrate the ultraviolet degrees of freedom of the CFTd
at energy scales above the cutoff. Once we have obtained it
this way, we study the effective gravitational theory on
its own.

A. Algorithm for counterterms

The method of computing the effective action described
previously is cumbersome, but there exist iterative algo-
rithms that greatly simplify the calculations [4,5,8]. Here
we will follow [4].
Let us define Πab as the stress-energy tensor associated

to the full effective action Ibgrav, with Lagrangian
L≡ Lð0Þ þ Lð1Þ þ � � � ,

Πab ≡ 2ffiffiffiffiffiffi−gp δ

δgab

Z
ddx

ffiffiffiffiffiffi
−g

p
L; ð2:8Þ

and Π as its trace, Π≡ gabΠab.
The Gauss-Codazzi equations starting at the boundary are

equivalent to the bulk Einstein equations in a Fefferman-
Graham expansion. The Gauss scalar constraint is

1

d − 1
Π2 − ΠabΠab ¼ dðd − 1Þ

l2
þ R; ð2:9Þ

where R is the scalar curvature of the boundary metric gab.
We will solve this equation order by order in the curvature,

and then integrate (2.8) to find the corresponding order-n
effective Lagrangian, LðnÞ.
Two key observations were made in [4]. First, one can

start by taking

Πab
ð0Þ ¼

d − 1

l
gab; ð2:10Þ

since at the leading order the terms that are proportional to
the curvature can be neglected, implying that Πab

ð0Þ must be

proportional to the metric. Second, by studying the behav-
ior of the counterterms under Weyl rescalings, one finds
that the integration of (2.8) must simply be

LðnÞ ¼
1

d − 2n
ΠðnÞ; ð2:11Þ

up to total derivatives. This procedure then generates the
corresponding order-n term in the effective Lagrangian, and
it can be iterated to compute the counterterms. We start
from

Πab
ð0Þ ¼

d−1

l
gab; Πð0Þ ¼

dðd−1Þ
l

; Lð0Þ ¼
d−1

l
; ð2:12Þ

and then we follow these steps iteratively:
(1) Knowing all ΠðiÞ and Πab

ðiÞ of order less than n, solve
for ΠðnÞ using (2.9).

(2) Compute LðnÞ using (2.11).
(3) Vary LðnÞ to find Πab

ðnÞ.
In step 1, it is important to notice that at each order n,
Eq. (2.9) involves terms of the form ΠðnÞΠðn−iÞ and

ΠðiÞ
abΠab

ðn−iÞ, with i ≤ n. Since Πab
ð0Þ is proportional to gab,

the term Πð0Þ
abΠab

ðnÞ is proportional to ΠðnÞ, and so indeed we

find an equation for ΠðnÞ. Moreover, for all orders n ≥ 2,
there are no other terms on the right-hand side of (2.9), so
we can directly solve for ΠðnÞ to find

Πðn≥2Þ ¼ −
l
2

Xn−1
i¼1

�
1

d − 1
ΠðiÞΠðn−iÞ − ΠðiÞ

abΠab
ðn−iÞ

�
: ð2:13Þ

Notice that when d is even, the algorithm seems to break
down for n ¼ d=2 due to the divergence in (2.11). The
reason for this is the following. Even if, in our context, for
ε ≠ 0 the action I þ Ib is finite, when we expand it in
powers of ε there appears a logarithmic term. It reflects the
fact that the integration of conformal degrees of freedom
produces nonlocal terms, and in the effective theory it
shows up as the trace anomaly [27]. In the algorithmic
approaches to the computation of counterterms, it was
shown in [5] that one must effectively replace
1=ðd − 2nÞ → log ε. Therefore, in a braneworld construc-
tion where ε is finite, the apparent divergence in Lðd=2Þ for

6Field redefinitions that involve the conformal fields reduce to
the previous ones by using the lower-order effective equations of
motion.

7That is, unless we work in some specific version of AdS=CFT
where the CFT is independently defined. We will not be assuming
this.
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even d is an artifact. A similar argument would also work
for the divergences appearing in LðnÞ for n ≥ d=2.
For our purposes in this paper, we will not concern

ourselves with these effects. The overall coefficients of
each of the LðnÞ terms will not play a role in our discussion,
except in Sec. V E, where we consider them in d ¼ 3where
there is no anomaly.
The iterative procedure explained above gives for the

first terms, already presented in [4], the result

Lð0Þ ¼
d − 1

l
; ð2:14Þ

Lð1Þ ¼
l

2ðd − 2ÞR; ð2:15Þ

Lð2Þ ¼
l3

2ðd − 2Þ2ðd − 4Þ
�
RabRab −

d
4ðd − 1ÞR

2

�
; ð2:16Þ

Lð3Þ ¼ −
l5

ðd − 2Þ3ðd − 4Þðd − 6Þ
�
3dþ 2

4ðd − 1ÞRRabRab

−
dðdþ 2Þ
16ðd − 1Þ2 R

3 − 2RabRacbdRcd

þ d − 2

2ðd − 1ÞR
ab∇a∇bR − Rab

□Rab

þ 1

2ðd − 1ÞR□R

�
: ð2:17Þ

Since we are computing the brane effective action and not
its counterterms, our results differ from those in [4] by an
overall minus sign.
Using the Mathematica packages xAct [29,30], we have

been able to extend these results to quartic and quintic order
for general dimension d, and to sextic order for d ¼ 3. For
general dimension, the quartic term reads

Lð4Þ ¼−
l7

ðd− 2Þ4ðd− 4Þðd− 6Þðd− 8Þ
�
13d2 − 38d− 80

8ðd− 1Þðd− 4Þ RabRabRcdRcdþ−15d3þ 18d2þ 192dþ 64

16ðd− 4Þðd− 1Þ2 RabRabR2

þdð5d3þ 10d2− 112d− 128Þ
128ðd− 4Þðd− 1Þ3 R4þ 5d2− 16d− 24

ðd− 1Þðd− 4Þ R
abRcdRRacbd− 12Ra

cRabRdeRbdceþ 8RabRcdRac
efRbdef

− 8RabRcdRa
e
c
fRbedf −

2ðd− 6Þ
d− 4

RabRcdRa
e
b
fRcedf þ

d2þ 4d− 36

2ðd− 4Þðd− 1ÞRbcRbc∇a∇aRþ−7d2þ 22dþ 32

4ðd− 4Þðd− 1Þ2 R
2∇a∇aR

þ 4

d− 1
Rbc∇aRbc∇aR−

dþ 8

4ðd− 1Þ2R∇aR∇aRþ 3d− 8

d− 1
Rab∇aRcd∇bRcdþ

dðd− 6Þ
8ðd− 4Þðd− 1Þ2∇a∇aR∇b∇bR

þ 1

d− 1
R∇b∇b∇a∇aR−

ðd− 4Þðdþ 2Þ
4ðd− 1Þ2 Rab∇aR∇bRþd− 4

d− 1
Ra

cRbc∇b∇aR−
5d3− 38d2þ 64dþ 16

4ðd− 4Þðd−1Þ2 RabR∇b∇aR

þ 3d2 −20dþ 28

ðd− 1Þðd− 4Þ R
cdRacbd∇b∇aR−

ðd− 6Þðd− 2Þ2
8ðd− 4Þðd− 1Þ2∇b∇aR∇b∇aRþd− 4

d− 1
Rbc∇aR∇cRab − 8Rab∇eRacbd∇eRcd

þ 5d2− 6d− 64

2ðd− 1Þðd− 4ÞR
abR∇c∇cRabþ

ðd− 2Þðd− 6Þ
2ðd− 1Þðd− 4Þ∇

b∇aR∇c∇cRabþ
ðd− 2Þ
d− 1

Rab∇c∇c∇b∇aR

þ 5

d− 1
R∇cRab∇cRabþ 12RabRcd∇d∇bRacþ

11d− 6

d− 1
RabRcd∇d∇cRab−

d− 6

2ðd− 4Þ∇c∇cRab∇d∇dRab

− 2Rab∇d∇d∇c∇cRab− 4Rab∇bRcd∇dRa
cþ 4Rab∇cRbd∇dRa

cþ 2ð5d− 22Þ
d− 4

RabRacbd∇e∇eRcd

�
: ð2:18Þ

The quintic and sextic terms are too large to present here,
and so we include them as a Mathematica ancillary file.
To finish, let us mention that the algorithm of [4] was

improved in [5] into the dilatation operator method using a
Hamiltonian formulation. This allowed to include matter
fields, prove the equivalence of these algorithmic tech-
niques to the holographic renormalization method of [1],
and rigorously recover the trace anomaly. The method has
been further explored [6,7], and a practical implementation
that circumvents the Hamiltonian framework has been
presented in [8].

III. HOLOGRAPHIC c-THEOREM AND
HIGHER-CURVATURE GRAVITIES

The theory of gravity Ibgrav that is induced on the brane
may admit solutions that are asymptotically AdS, and
indeed, this can always be achieved with a brane tension
T below a critical value. In this case, the theory may be
thought of as putatively dual to a CFTd−1 (at least at planar
level). A necessary condition for this theory to be well
defined is that it satisfies a c-theorem. One of our goals is to
show that, not only the CFTd−1 dual to the theory Ibgrav
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satisfies this condition, but also that all the higher-curvature
terms in this effective action separately do so.
In this section we review the holographic proof of the

c-theorem, and the characterization of higher-curvature
gravities which satisfy it. Most of the content here is a
compilation of previous results, but we also make a few
observations which do not seem to have appeared explicitly
in the literature before.

A. RG flow geometry and c-function

The holographic c-theorem involves a domain-wall type
ansatz

ds2 ¼ e2AðrÞ½−dt2 þ dx2� þ dr2; ð3:1Þ

which, in the presence of a matter stress-energy tensor Tab
satisfying the null energy condition (NEC), produces a
profile for AðrÞ which makes the solution interpolate
between two asymptotically AdSd regions [14,15].
From the dual CFT perspective, these correspond to UV
and IR fixed points, where the metric function is asked to
behave as

Aðr → þ∞Þ ¼ r
LAdSUV

; Aðr → −∞Þ ¼ r
LAdSIR

; ð3:2Þ

where LAdSUV, LAdSIR characterize the AdS curvature radii
at each end of the geometry. Since the central charge of a
holographic CFT is in general proportional to a power of
the AdS curvature radius measured in Planck units, these
geometries appear to adequately represent holographic RG
flows when going from r → þ∞ to r → −∞.
The idea of the holographic c-theorem8 is then

to construct a function cðrÞ—the RG monotone or
“c-function”—which monotonously decreases along the
flow. A weak version of the theorem would require that
cUV > cIR, whereas a strong one (which we will aim for)
demands monotonicity along the entire flow,

c0ðrÞ ≥ 0 ∀ r: ð3:3Þ

A natural way of constructing a candidate cðrÞ is to find
an expression for c0ðrÞ that is proportional to the combi-
nation Tt

t − Tr
r. Then, if the matter stress-tensor satisfies the

NEC, this combination is negative semidefinite,

Tt
t − Tr

r ≤
NEC

0; ð3:4Þ

and hence any c0ðrÞ ∝ −ðTt
t − Tr

rÞ with a non-negative
proportionality constant does the job. In this article we will

always assume that matter is minimally coupled to gravity,
so that the NEC does not involve any curvature terms.
If we denote the equations of motion of a given higher-

curvature theory with Lagrangian L by

Eab ≡ 1ffiffiffiffiffiffi−gp δ

δgab

Z
ddx

ffiffiffiffiffiffi
−g

p
L; ð3:5Þ

then the combination Et
t − Er

r evaluated on (3.1) will in
general be a complicated combination of terms involving
AðrÞ and its higher-order derivatives, making the identi-
fication of cðrÞ cumbersome (or directly impossible).
An important simplification occurs for theories with

equations of motion that become second-order in deriva-
tives of AðrÞ and are at most linear in A00ðrÞ when evaluated
on (3.1). This condition can be most easily implemented,
for general families of higher-curvature theories, at the level
of the action [21]. Indeed, let

I½A� ¼
Z

ddx
ffiffiffiffiffiffi
−g

p
L½A� ð3:6Þ

be the on-shell action from the evaluation of the corre-
sponding higher-curvature action on the metric (3.1). It is
easy to show that the Euler-Lagrange equation of AðrÞ is
proportional to the tt component of the field equations
evaluated on (3.1), namely,

δI½A�
δA

¼ −2ðd − 1Þeðd−1ÞAðrÞEt
tjA: ð3:7Þ

It follows that, whenever I½A� is second-order in derivatives
of AðrÞ and linear in A00ðrÞ, so is Et

t.
The additional independent equation, corresponding to

Er
r, is related to Et

t by the Bianchi identity

∂rEr
rjA þ ðd − 1ÞA0ðrÞEr

rjA ¼ ðd − 1ÞA0ðrÞEt
tjA: ð3:8Þ

This immediately implies that Er
r does not contain terms

involving derivatives of AðrÞ higher than one (since it is the
scalar constraint9) and that the combination Et

t − Er
r is

second-order in derivatives and linear in A00ðrÞ.
Throughout the paper, when speaking about theories
satisfying the holographic c-theorem, we will be referring
to theories that satisfy these reduced-order properties.10

For theories of the above type, it is straightforward to
construct a function cðrÞ such that [14,40,41]

8Here we will use the term c-theorem to refer to monotonicity
theorems in general dimensions, often called the c-theorem,
“F-theorem” and “a-theorem” in two-, three-, and four-dimen-
sional CFTs [31–34].

9The explicit form of the equation Er
r can be obtained from the

on-shell action of ds2 ¼ e2AðrÞ½−dt2 þ dx2� þ NðrÞ2dr2 by vary-
ing with respect to the lapse function NðrÞ [35].

10These requirements are identical to the ones satisfied by
higher-curvature gravities which produce generalized Friedman
equations of second order for the scale factor when evaluated on a
Friedmann-Lemaître-Robertson-Walker ansatz with flat spatial
slices—see, e.g., [35–39].
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c0ðrÞ ¼ −
π

d−3
2

8Γ½d−1
2
�GN

Tt
t − Tr

r

A0ðrÞd−1 ; ð3:9Þ

where, as required, the right-hand side is positive semi-
definite, including for even d [41]. As observed in [19,41],
cðrÞ can be obtained for these theories from the Wald-like
[42] formula

cðrÞ≡ π
d−1
2

2Γ½d−1
2
�A0ðrÞd−2

∂L
∂Rtr

tr
; ð3:10Þ

where the Lagrangian derivative components are evaluated
on (3.1). By construction, cðrÞ coincides at the fixed points
with the holographic central charges c.

B. Constraints on theories

When trying to construct theories that satisfy simple
holographic c-theorems, Lovelock gravities [43–45] are
natural candidates, as they have second-order equations on
general backgrounds. The n-th order Lovelock density is

LðnÞ
Lovelock ≡ X2n

≡ ð2nÞ!
2n

δ½b1a1 δ
b2
a2 � � � δb2n�a2n R

a1a2
b1b2

� � �Ra2n−1a2n
b2n−1b2n

: ð3:11Þ

When d is even, the density with n ¼ d=2 is a topological
invariant. All the higher order densities (with n>ðd−1Þ=2
when d is odd, and with n > d=2 when d is even) vanish
identically. Hence, Lovelock theories are too restricted to
provide a nontrivial family of order-n densities in arbitrary
dimensions.
A different set can be obtained using the Schouten tensor

Sab ¼
1

d − 2

�
Rab −

1

2ðd − 1Þ gabR
�

ð3:12Þ

as a building block. The general relation

Rabcd ¼ Cabcd − 2ðga½cSd�b þ gb½dSc�aÞ ð3:13Þ

and the fact that the Weyl tensor vanishes on the RG flow
ansatz (3.1), suggests considering the family [46]

PðnÞ ¼ δ½b1a1 δ
b2
a2 � � � δbn�an S

a1
b1
� � � Sanbn : ð3:14Þ

This vanishes for n > d because the totally antisymmetric
product of Kronecker deltas is identically zero in that case,
but it has been shown that a simple limiting procedure11 can

be applied to PðnÞ, which gives nontrivial densities for
additional orders and dimensions [47] (see also [48,49]).
One may also systematically consider all the densities of

a given curvature order for fixed d, with arbitrary relative
coefficients, and identify the combinations that satisfy the
aforementioned conditions. At quadratic order, this selects
the Gauss-Bonnet density

X4 ¼ R − 4RabRab þ RabcdRabcd ð3:15Þ

and the Weyl-square term CabcdCabcd, which identically
vanishes on (3.1). The cubic case was studied in [41] for
general d. At that order there exist eight independent
densities (there are fewer for low enough d), and the
holographic c-theorem imposes two constraints on them,
leaving six independent densities that satisfy all the
requirements.
Hence, in general, for fixed d and n there will be several

independent densities satisfying the holographic c-theorem.
However, it is natural to expect that the functional on-shell
dependence on AðrÞ for fixed d and n is unique—in
particular, given j order-n densities satisfying the c-theorem,P

j αjLj, we would have

Et
tjA − Er

rjA ¼
�X

j

cjαj

�
· FnðA; A0; A00Þ; ð3:16Þ

where the dependence on the gravitational couplings fully
factorizes. This always allows us to change the basis of
densities so that a single one of them contributes nontrivially
to Et

t − Er
r, while all the others produce a vanishing con-

tribution—e.g., the Weyl-square density at quadratic order.
As for the explicit form of Et

t, Er
r and FnðA; A0; A00Þ when

evaluated on (3.1) for individual nontrivial densities, a
quick inspection of various cases strongly suggests that
these are always given by

Et
tjA ∝ A0ðrÞ2ðn−1Þ½ðd − 1ÞA0ðrÞ2 þ 2nA00ðrÞ�;

Er
rjA ∝ ðd − 1ÞA0ðrÞ2n; ð3:17Þ

up to an overall factor, and

FnðA; A0; A00Þ ¼ 2nA0ðrÞ2ðn−1ÞA00ðrÞ; ð3:18Þ

for general n and d. The functional dependence of the
c-function is thencðrÞ ∝ A0ðrÞ2n−d. This sort of “uniqueness”
has been argued to hold for general curvature orders in d ¼ 3
in [21], and has been recently proven in [50]. In the same
references, one can find a characterization of all the densities
of any curvature order in d ¼ 3 that satisfy the c-theorem and
which are constructed from general contractions of the metric
and the Riemann tensor.
Several other properties have been observed to hold

for gravities in three dimensions that satisfy a c-theorem.

11The idea involves computing PðnÞ for some d̄ greater than the
dimension of interest d, dividing by ðd̄ − dÞ and then taking the
limit d̄ → d of the resulting expression.
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At quadratic order, the resulting theory is the new massive
gravity of [18]—more on this below. At higher curvature
orders, theories of this kind arise from an order-by-order
expansion [25,50,51] of a Born-Infeld-type gravity [25],
which in turn satisfies the holographic c-theorem by itself
[51,52]. In addition, it has been found that certain theories
that satisfy the holographic c-theorem—some of which
involve explicit covariant derivatives—are equivalent to
Chern-Simons gravities [53]. More recently, theories of this
kind have been related to truncations of certain infinite-
dimensional Lie algebras [49]. It has also been shown that
theories of this kind never propagate the scalar mode that is
present in the linearized spectrum of generic higher-
curvature theories [50]. This feature is likely valid for
general d.

IV. HOLOGRAPHIC c-THEOREM
FOR INDUCED GRAVITY

We will now prove one of our main results: all the
densities in the action of holographically induced gravity, at
arbitrary order n and in general dimension d, belong in the
class of theories whose dual CFTs satisfy a holographic
c-theorem.
Before we proceed, let us emphasize that this is not the

same as the monotonicity theorem—the g-theorem—for
the theory that is dual to the brane in the doubly holo-
graphic construction. The latter is dual to the entire system
of the induced gravity on the brane plus the cutoff CFTd
coupled to it. The holographic g-theorem proven for this
system in [16] amounts to showing that, as the brane moves
deeper into the bulk, its curvature decreases—in CFT
terms, flowing to the IR reduces the number of degrees
of freedom that are dual to the brane. This is not what we
are doing. After deriving the induced gravitational action
Ibgrav, we take this theory on its own and disregard its
coupling to the CFTd. Then, our proof of a c-theorem for
the putative dual CFTd−1 is no longer related to the
properties of the brane moving in the bulk.
To prove the c-theorem we shall assume that our

gravitational theory is coupled to a matter sector that
satisfies the NEC and that this condition can be readily
translated, via the field equations, into a condition on the
curvature terms as shown in the previous section. For this
purpose we assume that matter is minimally coupled to
gravity, so that no curvature terms enter the NEC. This
assumption is consistent but technically unnatural, and it
could be interesting to investigate if it can be relaxed.
That the entire theory Ibgrav might satisfy a holographic

c-theorem might not be unexpected, given its origin in a
“good” theory (Einstein-AdS in dþ 1 dimensions, plus a
brane) but it is less obvious that the separate order-n
densities should also do it.
We will give two proofs of this result, the first one

applying an induction method to the algorithm described in

Sec. II, and the second one using the counterterms adapted
for conformally flat boundaries obtained in [54].

A. Inductive algorithm proof

An examination of the terms LðnÞ obtained in Sec. II,
evaluated on the RG-flow metric (3.1), suggests that the
following expression may be valid for general orders and
dimensions,

LðnÞjA ¼ −Cn
d − 1

d − 2n
ðA0Þ2ðn−1Þ½dðA0Þ2 þ 2nA00�;

where Cn ≡ l2n−1 ð2n − 3Þ!!
ð2nÞ!! : ð4:1Þ

Remarkably, this expression, if correct, directly implies that
each and all of the LðnÞ satisfy a holographic c-theorem. We
will now prove that (4.1) is indeed correct.
We proceed by induction.We assume that (4.1) is true for

all orders k < n, and then we perform the algorithm of
Sec. II to see that it is also valid for order n.
From (2.11), the induction hypothesis implies that, for all

k < n, we have

ΠðkÞjA ¼ −Ckðd − 1ÞðA0Þ2ðk−1Þ½dðA0Þ2 þ 2kA00�: ð4:2Þ
Then, following equations (3.7) and (3.8),withEab ¼ Πab=2,
we obtain

Πtt
ðkÞjA¼−Cke−2AðA0Þ2ðn−1Þ½ðd−1ÞðA0Þ2þ2nA00�¼−Πxixi

ðkÞ jA
ð4:3Þ

Πrr
ðkÞjA ¼ Ckðd − 1ÞðA0Þ2n: ð4:4Þ

Now, using Eqs. (2.11) and (2.13) we can compute LðnÞjA.
The result reads

LðnÞjA ¼ 1

d − 2n
ΠðnÞjA ð4:5Þ

¼−
l

2ðd−2nÞ
Xn−1
k¼1

�
1

d−1
ΠðkÞΠðn−kÞ−ΠðkÞ

abΠab
ðn−kÞ

�
A

ð4:6Þ

¼−
d−1

d−2n
ðA0Þ2ðn−1Þ½dðA0Þ2þ2nA00�l

2

Xn−1
k¼1

CkCn−k:

ð4:7Þ
Finally, using the identity

l
2

Xn−1
k¼1

CkCn−k ¼
l2n−1

2

Xn−1
k¼1

ð2k − 3Þ!!ð2ðn − kÞ − 3Þ!!
ð2kÞ!!ð2ðn − kÞÞ!!

¼ l2n−1 ð2n − 3Þ!!
ð2nÞ!! ¼ Cn; ð4:8Þ
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it follows that LðnÞjA indeed reduces to the form (4.1), which
means that all the order-n Lagrangians appearing in the
effective action Ibgrav satisfy holographic c-theorems.
It would appear that the proof breaks down at n ¼ d=2

for even d, but as discussed in Sec. II A, these divergences
are easily avoided artifacts.

B. Proof with conformally flat counterterms

Instead of computing the general brane effective action,
and then evaluating it on the conformally flat metric (3.1),
we can directly compute the effective action for a con-
formally flat brane. For this, we can use (minus) the
counterterms for an AdSdþ1 bulk with a conformally flat
boundary, recently obtained in [54].12 For n ≤ d=2 these are

LðnÞjc:flat ¼ ð−1Þnl2n−1 ð2n − 3Þ!!ðd − nÞ!
ðd − 2Þ!ðd − 2nÞ PðnÞ; ð4:9Þ

where PðnÞ is the product of Schouten tensors defined in
(3.14), along with the necessary dimensional regularization
prescription for the n ¼ d=2 term.
Since we have seen in the previous section that the PðnÞ

satisfy the holographic c-theorem, (4.9) directly proves our
result. Indeed, when evaluated on the metric (3.1), the
expression above coincides with (4.1), since

PðnÞjA ¼ ð−1Þnþ1

ð2nÞ!!
ðd − 1Þ!
ðd − nÞ! ðA

0Þ2ðn−1Þ½dðA0Þ2 þ 2nA00�:

ð4:10Þ
For n > d=2, the limiting procedure of [47], described in

the previous section, gives nontrivial densities when
applied to PðnÞ. When we evaluate these densities on
(3.1), they also match our results above.

V. STRUCTURE OF COUNTERTERM
DENSITIES IN THREE DIMENSIONS

Now we take a closer look at the explicit structure of the
densities LðnÞ for n ≥ 2. We shall first study the case d ¼ 3,
and then d ≥ 4.
As argued in, e.g., [21,50,55], in d ¼ 3 the most general

higher-curvature density constructed from contractions of
the metric and the Riemann tensor is a function of the three
densities13

R≡gabRab; R2≡RabRab; R3≡Rb
aRc

bR
a
c: ð5:1Þ

This follows from the fact that all Riemann curvatures are
Ricci curvatures due to the vanishing of the Weyl tensor,
along with the existence of Schouten identities which relate

terms involving higher-order contractions of the Ricci
tensor to the ones above. In three dimensions, conformal
flatness is equivalent to the vanishing of the Cotton
tensor,

Cabc ≡ 2∇½cRajb� þ
1

2
∇½bjRgajc�: ð5:2Þ

Then, the metric (3.1) used for holographic RG flows
has Cabc ¼ 0.

A. Quadratic order

As mentioned in the introduction, in d ¼ 3 the density
LðnÞ coincides, up to an overall factor, with the quadratic
term in the new massive gravity [18]. This is given by

L̄2 ¼ RabRab −
3

8
R2; ð5:3Þ

where the overbar in L̄ simply indicates that we remove
the overall factors containing l from the expressions in
(2.16)–(2.18). NMG is known to satisfy a holographic
c-theorem [19]. An additional property of L̄2 is that, when
linearized around maximally symmetric backgrounds, it
propagates no scalar mode. Moreover, the equations of
motion of L̄2 have second-order trace [20].

B. Cubic order

To cubic order, and up to an overall factor, (2.17) gives

L̄3 ¼
11

8
RR2 −

15

64
R3 − 2RacRbdRabcd

þ 1

4
Rab∇a∇bR − Rab□Rab þ 1

4
R□R: ð5:4Þ

Integrating by parts and substituting the three-dimensional
Riemann tensor in terms of Ricci tensors, this can be
rewritten as

L̄3 ¼∇ −
29

8
RR2þ4R3þ

49

64
R3þ3

8
R□R−Rab□Rab; ð5:5Þ

where we have introduced the notation

¼∇∶equal up to total derivatives: ð5:6Þ
If we use that

CabcCabc ¼∇ − 2Rab□Rab þ 3

4
R□Rþ 6R3 − 5RR2 þ R3;

ð5:7Þ

then (5.5) can be further rewritten as

L̄3 ¼∇ S3½Rab� þ T3½Cabc � � � ;∇a�; ð5:8Þ

12We are grateful to I. Papadimitriou for bringing these results
to our attention.

13In [21], the notationR2,R3 is used for the same contractions
as in (5.1) but with the Ricci tensor replaced by its traceless part.
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where

S3½Rab�≡R3 þ
17

64
R3 −

9

8
RR2; ð5:9Þ

and

T3½Cabc � � � ;∇a�≡ 1

2
CabcCabc: ð5:10Þ

On the one hand, S3 is the cubic generalization of NMG
identified in [19] as the most general density of that order—
not involving covariant derivatives of the Ricci tensor—
which satisfies a holographic c-theorem. On the other hand,
T3 involves explicit covariant derivatives of the Ricci
tensor. However, since it is proportional to the Cotton
tensor, which identically vanishes on (3.1), it has no effect
on the holographic RG flow. Then, L̄3 satisfies a holo-
graphic c-theorem.

As it turns out, this density has interesting additional
properties. On the one hand, as observed in [53], the
criterion that cubic extensions of NMG do not propagate a
scalar mode usually present in the spectrum of higher-
curvature gravities, and that they admit a Chern-Simons
formulation, restricts them to a general linear combination
of S3 and T3. Hence, L̄3 satisfies these two requirements—
the first one is in fact implied when the holographic
c-theorem is required, as shown in [50].
On the other hand, T3 had been previously singled out in

[20] using yet a different criterion: it is the cubic density
with the lowest-order traced field equations in three
dimensions. Indeed, it is the only cubic theory whose
equations of motion have a trace which only contains terms
involving up to three derivatives of the metric.14

C. Quartic order

At quartic order, evaluating (2.18) for d ¼ 3 gives

L̄4 ¼ −
83

16
R2

2 − 17RR3 þ
1155

64
R2R2 −

3635

1024
R4 −

31

4
R2□Rþ 57

16
R2□R − 10Rbc∇aRbc∇aRþ 53

16
R∇aR∇aR

þ 1

2
Rab∇aRcd∇bRcd þ

9

32
□R□Rþ 1

2
R□2Rþ 5

16
Rab∇aR∇bR −

11

2
Ra

cRbc∇b∇aRþ 61

16
RabR∇b∇aR

−
3

32
∇b∇aR∇b∇aR −

1

2
Rbc∇aR∇cRab −

47

4
RabR∇c∇cRab þ

3

4
∇b∇aR□Rab þ

1

2
Rab□∇b∇aR

−
11

2
R∇cRab∇cRab þ 12RabRcd∇d∇bRac −

27

2
RabRcd∇d∇cRab −

3

2
□Rab

□Rab þ 28Ra
cRab

□Rbc

− 2Rab
□

2Rab − 4Rab∇bRcd∇dRa
c þ 4Rab∇cRbd∇dRa

c þ 16Rab∇dRbc∇dRa
c: ð5:11Þ

Again, when we decompose it as

L̄4¼∇ S4½Rab� þ T4½Cabc � � � ;∇a�; ð5:12Þ
where

S4½Rab�≡ 5

4
R3R −

15

16
R2

2 −
45

64
R2R2 þ

205

1024
R4; ð5:13Þ

and

T4½Cabc � � � ;∇a�≡þRCabcCabc −
11

2
Ra
bCaefCbef

þ 23

4
RacRbd∇aCbcd −

17

2
RebRe

c∇aCbac

þ 5

2
RRbc∇aCbac −

5

4
CbcdRac∇aRbd

−
11

2
Re
cCbac∇aRbe: ð5:14Þ

Similarly to the cubic case, we find that S4 is the quartic
generalization of NMG—algebraic in the curvature—
which nontrivially satisfies a holographic c-theorem
[19,21]. On the other hand, we see that T4 is a linear
combination of terms which always involve at least one
Cotton tensor and therefore identically vanish when evalu-
ated on the RG-flowmetric (3.1). Again, this makes evident
that L̄4 satisfies a holographic c-theorem.
Motivated by the cubic case, we have tried to express T4

as one of the theories identified in [53] by the criterion
that they admit a Chern-Simons description, but we
have not succeeded in doing so. It seems that such
identification only works for the quadratic and cubic terms.
Similarly, while T3 had the property of possessing a
reduced order for the trace of its equations of motion, this
is no longer the case for T4, whose traced equations are of
order six.

D. Higher orders

It seems, then, that of all the special properties that we
identified for S3 and T3 in d ¼ 3, only those that refer to
the holographic c-theorem extend to higher orders. Of
course we have already given a general proof that all the

14Note that S3 does not have equations of motion with a
reduced-order trace, which means that the c-theorem property
and the reduced-order trace one are not directly connected, even
though there are cases in which they do coincide, such as NMG
itself and the T3 density.
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LðnÞ satisfy this theorem, but we can aim at distinguishing a
finer structure of how this happens.
We decompose the L̄n into terms Sn and Tn such that

the Sn contain all of the nonvanishing contribution to the
c-function, and the Tn vanish identically on the RG-flow
metric (3.1). For the lowest orders we have seen that this
separation can be performed in such a way that Sn is
algebraic in the curvature, that is,

L̄n¼∇ Sn½Rab� þ Tn½∇a; Rab�: ð5:15Þ

In fact, in d ¼ 3 this decomposition can be performed in all
n. This follows from the results in [21,50], which show that,
at every n, there always exists a density Cn½Rab� which
nontrivially satisfies the c-theorem.
For the cubic and quartic terms, we have found that the

Tn are proportional to the Cotton tensor. It is unclear
whether this is the case also for the quintic term, since the
expressions are exceedingly complicated. On the other
hand, the structure of Sn½Rab� is uniquely constrained not
only in n ¼ 3, 4, as we have seen, but also in n ¼ 5. Up to
that order, there is a single order-n algebraic density Cn
which nontrivially satisfies the holographic c-theorem [21],
and so Sn½Rab� must be proportional to it. The proportion-
ality constant can be found by evaluating both L̄n and Cn on
the RG-flow metric (3.1). For the quintic case, we obtain
S5 ¼ 5

64
C5, where

C5¼
61R5

960
−
7R3R2

12
þ2R2R3

15
þ7RR2

2

5
−
16R2R3

15
: ð5:16Þ

However, degeneracies start to appear at order 6. From
that order on, there exist densities that are algebraic in the
Ricci tensor and which trivially satisfy the holographic
c-theorem [21]. These have been characterized in a precise
manner. As shown in [50], there is a unique sextic density
of this type,15

Ωð6Þ ¼
1

3
½R6 − 9R4R2 þ 8R3R3 þ 21R2R2

2

− 36RR2R3 − 3R3
2 þ 18R2

3�; ð5:17Þ

with the important property that, at any order n ≥ 6, all the
densities algebraic in curvature that vanish on the RG flow
geometry are proportional to Ωð6Þ. Then, by taking Lgeneral

n−6
to be the most general density that is algebraic in the
curvature, we have that Lgeneral

n−6 · Ωð6Þ is the most general
density of that type at order n that vanishes on RG flows.
This implies that the characterization of the terms in

(5.15) is ambiguous for n ≥ 6, since we can redefine

S0
n ¼ Sn þ Ln−6Ω6; T 0

n ¼ Tn − Ln−6Ω6 ð5:18Þ

where Ln−6 is an arbitrary order-(n − 6) density algebraic in
the curvature. Still, it is possible that a particular separation
exists such that Tn≥6 does not involve any Ω6 and vanishes
exclusively due to the presence of Cotton tensors in all its
terms. If that is the case, one can use this criterion to give a
unique definition for Sn≥6.
As far as we know, there are two different proposals for

special order-n densities that nontrivially satisfy the holo-
graphic c-theorem. The first results from the expansion of
the Born-Infeld-like extension of NMG presented in [25],
and in the following subsection we find hints that this may
indeed coincide with Sn≥6 as defined by the above criterion.
The second corresponds to a basis of densities selected by
the fact that they satisfy a simple recursive formula which
relates the order-n representative to the order-(n − 1) and
order-(n − 2) ones [50].

E. Born-Infeld gravities and counterterms

An interesting generalization of NMG with a Born-
Infeld-type Lagrangian was proposed in [25]. The
Lagrangian is

LBI−NMG ¼ α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδba þ βGb

aÞ
q

; ð5:19Þ

whereGab is the Einstein tensor and α, β are constants. This
theory satisfies the holographic c-theorem [51], and when
expanded at low curvatures it also generates higher-deriva-
tive densities which nontrivially satisfy it at any truncated
order [52]. As we have seen, this property is shared by the
effective gravitational action induced on the braneworld.
Following [50] we can expand LBI−NMG order by order,

to find higher-curvature densities BðnÞ which, on the RG
flow metric (3.1), give

BðnÞ½α;β�jA¼ αð−βÞn ð2n−5Þ!!
ð2nÞ!! ðA0Þ2ðn−1Þ½3ðA0Þ2þ2nA00�:

ð5:20Þ

Remarkably, if we take α ¼ 2=l and β ¼ −l2, then this
result coincides, for all n, with the RG flow of the order-n
braneworld density (4.1) in d ¼ 3, namely

LðnÞjA ¼ BðnÞ½2=l;−l2�jA: ð5:21Þ

This result is highly nontrivial, since the coincidence occurs
also for the relative factors between the different order-n
Lagrangians, and not only for the functional dependence in
A and its derivatives, which might have been expected. It is
then natural to conjecture that the d ¼ 3 counterterm
Lagrangian may be resummed as

15This is more easily written in terms of contractions of the
traceless Ricci tensor R̃2 ≡ R̃b

aR̃a
b, R̃3 ≡ R̃b

aR̃c
bR̃

a
c , where

R̃ab ≡ Rab − 1
3
gabR, namely, Ωð6Þ ¼ 6R̃2

3 − R̃3
2.
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L ¼ 2

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðδba − l2Gb

aÞ
q

þ T ½Cabc � � � ;∇a�; ð5:22Þ

where again

T ½Cabc � � � ;∇a�jA ¼ 0: ð5:23Þ

An even stronger conjecture would be that the whole tower
of counterterms (including T ) could be written as a Born-
Infeld-like action. The idea that Born-Infeld type actions
may act as suitable AdS counterterms has been considered
before in [56–58].

VI. STRUCTURE OF COUNTERTERM
DENSITIES IN HIGHER DIMENSIONS

Let us now move to d ≥ 4. The expressions become
considerably more involved than in three dimensions, but
we can still infer a similar general structure based on the
lowest orders. For the following discussion, it will be useful
to keep in mind that the Weyl tensor Cabcd identically
vanishes on the RG-flow geometry (3.1).

A. Quadratic order

Up to an overall factor, the quadratic term reads

L̄2 ¼ RabRab −
d

4ðd − 1ÞR
2; ð6:1Þ

which is the d-dimensional generalization of NMG. Since it
can be rewritten as a linear combination of the Weyl tensor
squared and the quadratic Lovelock density, namely,

L̄2 ¼
d − 2

4ðd − 3Þ ½CabcdCabcd − X4�; ð6:2Þ

it is easy to see why it also fulfills a holographic c-theorem.
Similar to the d ¼ 3 case, L̄2 propagates no scalar mode
when linearized around maximally symmetric backgrounds
[59,60]. Moreover, L̄2 also belongs to the set of quadratic
theories which have the property of possessing equations
of motion whose trace is second-order, since for d ≥ 4,
that set is given by an arbitrary linear combination
of CabcdCabcd and the quadratic Lovelock density X4

[20,23,61].

B. Cubic order

The cubic density was written in (2.17) above. Observe
first that integrating by parts this can be rewritten as

L̄3 ¼∇ þ 3dþ2

4ðd−1ÞRRabRab−
dðdþ2Þ
16ðd−1Þ2R

3−2RabRacbdRcd

−
d

4ðd−1Þ∇aR∇aRþ∇cRab∇cRab: ð6:3Þ

Now, following inspiration from the three-dimensional
case, we can try to rewrite L̄3 as a linear combination of
densities with special properties. We find that, indeed, L̄3

can be written for general d ≥ 4 as

L̄3 ¼
d − 2

16ðd − 3ÞN 6 þ Ξþ Δ; ð6:4Þ

whereN 6, Ξ, and Δ are distinguished for different reasons.
On the one hand, N 6, which is defined as

N 6 ≡ −24RabcdRcdbeRe
a −

3ðdþ 2Þ
d − 1

RRabcdRabcd

−
24d
d − 2

RabcdRacRbd −
16dðd − 1Þ
ðd − 2Þ2 RabRbcRc

a

þ 12ðd3 − 2d2 þ 6d − 8Þ
ðd − 2Þ2ðd − 1Þ RRabRab

−
d4 − 3d3 þ 10d2 þ 4d − 24

ðd − 2Þ2ðd − 1Þ2 R3; ð6:5Þ

is the cubic quasitopological density [20,23,24]. This
satisfies a number of interesting properties. First, it can
be written as

N 6 ¼
d − 2

d − 5
½4W1 þ 8W2 − X 6�; ð6:6Þ

where W1 ≡ Cab
cdCcd

efCef
ab, W2 ≡ CabcdCebcfCa

ef
d

and X6 is the cubic Lovelock density. This expression
makes manifest that N 6 satisfies the holographic
c-theorem [41]. N 6 identically vanishes in d ¼ 4 but it
is nontrivial for d ≥ 5. It is in fact the term involving N 6

(actually X6) the one which makes L̄3 be nontrivial
when evaluated on (3.1) for d ≥ 5 (d ≥ 6). In addition,
N 6 is one of the few cubic densities which possess
second-order traced equations for general d ≥ 5 [23].16

Finally, N 6 only propagates the usual massless graviton
when linearized around maximally symmetric back-
grounds and it admits particularly simple black hole
solutions [23,24].
On the other hand, Ξ is the piece which contains the

terms involving explicit covariant derivatives. It is explic-
itly given by

Ξ≡ ðd − 2Þ2
4ðd − 3Þðd − 6Þ

�
Σþ 2ðd − 3Þ

3ðd − 2Þ2 Θ
�
; ð6:7Þ

16For d ¼ 5; 6 there are two independent densities which
possess second-order traced equations whereas for d ≥ 7 there
exist three.
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where Σ and Θ were previously identified again in [20] as the two only densities which possess field equations whose trace
is third-order in derivatives for d ≥ 4. They are given, respectively, by17

Σ ¼ −
3d − 2

2
RabcdRcdefR

ef
ab þ

8d
3
Rab
cdR

ce
bfR

df
ae þ 4d

d − 2
RabcdRacRbd þ

4ðd − 4Þ
d − 2

RabRbcRc
a

−
2d

3ðd − 1Þ2 R
3 −

dðd − 3Þ
ðd − 2Þðd − 1Þ∇aR∇aRþ 4ðd − 3Þ

d − 2
∇aRbc∇aRbc; ð6:9Þ

and

Θ ¼ þ2ðd2 − 4ÞRabcdRcdefR
ef
ab − 4ðd2 − 4ÞRab

cdR
ce
bfR

df
ae − 12ðd − 2ÞRabcdRacRbd − 16RabRbcRc

a

þ d2 − dþ 2

ðd − 1Þ2 R3 þ 6d
d − 1

∇aR∇aR − 24∇aRbc∇aRbc: ð6:10Þ

Both Σ and Θ nontrivially fulfill the holographic c-theorem when evaluated on (3.1). However, the combination
appearing in the density Ξ trivially satisfies the holographic c-theorem for general d, as it becomes a total derivative when
evaluated on (3.1).
Finally, Δ is a density which does not involve explicit covariant derivatives, which is trivial when evaluated on the

holographic c-theorem ansatz for general d and which does not satisfy any additional special property involving a reduced
order for its traced equations. It is given by

Δ≡ 1

d − 3

�ðd − 10Þðd − 2Þ
24

RabcdRcdefR
ef
ab þ

36 − dð10þ 7dÞ
4ðd − 2Þðd − 1Þ RR

abRab þ
3ðd − 2Þ

2
RabcdRcdbeRe

a

þ 3ðd − 2Þðdþ 2Þ
16ðd − 1Þ RRabcdRabcd þ

dþ 8

2
RabcdRacRbd þ

11d − 16

2
RabRbcRc

a

þ 2ðd − 2Þ
3

Rab
cdR

ce
bfR

df
ae þ −28þ dð21d − 16Þ

24ðd − 2Þðd − 1Þ2 R3

�
: ð6:11Þ

As mentioned earlier, the general set of cubic theories
constructed from arbitrary contractions of the metric
and the Riemann tensor satisfying the holographic
c-theorem property was obtained in [41]. Δ is one of the
5 independent densities which contribute trivially to the
c-function.
In view of the three-dimensional case, it is natural to

wonder whether all terms appearing in Ξ and Δ may be
rewritten in a simplified way in terms of the Weyl tensor—
so that the fact that they vanish when evaluated on (3.1)
becomes manifest.

An alternative decomposition of L̄3, found in [54], is

L̄3¼Sab

�
Scdþ

1

d−3
∇c∇d

�
Cacbdþ3ðd−4ÞPð3Þ: ð6:12Þ

Since the Weyl tensor and Pð3Þ are explicit in this form, it
makes manifest that L̄3 satisfies the holographic c-theorem.

C. Higher orders

Going to higher orders complicates the expressions
considerably. We presented the result for the general-d
quartic density in (2.18). We have verified that, analogously
to the d ¼ 3 case, it is also possible to write L̄4 as a sum of a
term which does not involve explicit covariant derivatives
and which nontrivially satisfies the c-theorem, plus another
one which does contain covariant derivatives and is
trivial when evaluated on (3.1). It is then natural to expect
that the n-th order density in d dimensions can always be
written as

L̄n ¼ Sn½Rabcd� þ Tn½Rabcd;∇a�; ð6:13Þ

17Similarly to the case of N 6 in d ¼ 5, the combination inside
the brackets in (6.7) vanishes identically in d ¼ 6, and then one
finds

Ξjd¼6 ≡þ 2

9
RabcdRcdefR

ef
ab −

8

9
RabcdRacRbd −

4

3
RabcdRacRbd

þ 10

9
RabRbcRc

a þ
1

450
R3 −

3

10
∇aR∇aR

þ ∇aRbc∇aRbc: ð6:8Þ
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where Sn½Rabcd� is linear in A00ðrÞ when evaluated on (3.1)
and does not involve higher-derivative terms, and where
Tn½Rabcd;∇a� vanishes (or it is a total derivative) for the
same ansatz.

VII. CONCLUSIONS AND OUTLOOK

Let us close with a few observations and possible future
directions.

A. Computation of higher order counterterms

We have implemented the algorithm of [4] in
Mathematica to obtain the quartic and quintic counterterms
for pure AdSdþ1 gravity. It would be interesting to see if the
methods of [5,8] allow easier computation of higher orders.
Formulating the algorithm on a basis of Weyl and Schouten
tensors may also reveal finer structures in the counterterms.

B. Higher-curvature gravities in the bulk

We have seen that starting from Einstein gravity in the
(dþ 1)-dimensional bulk, the effective d-dimensional
higher-curvature theories induced on the brane satisfy
holographic c-theorems. What would happen if the bulk
gravitational theory were itself a higher-curvature theory?
It seems likely that the c-theorem we have proven is an
imprint of the healthy dynamics of bulk Einstein gravity:
good parents raise good children. In that case, we would
expect it to fail for a general higher-curvature bulk theory.
Natural exceptions to be expected are Lovelock gravities
[43,44], which also have second order equations. In fact, it
has been suggested in [62] that in that case the counterterm
at a given order is a linear combination of the same Einstein
gravity-induced counterterm plus a new piece proportional
to the d-dimensional Lovelock density of the correspond-
ing order. Hence, for instance, L3 would be a linear
combination of (2.17) plus the cubic Lovelock density
X6, and so on. It would then follow that these modified
brane actions also satisfy holographic c-theorems, since the
Lovelock terms satisfy the required conditions—namely,
second-order on-shell action and linearity in A00ðrÞ when
evaluated on the (3.1) ansatz. On a different front, it would
be interesting to study possible implications or connections
of the present results, both for Einstein gravity and higher-
curvature bulk theories, to the “kounterterm” holographic
renormalization approach, which requires Weyl-flat boun-
daries and (in even d) vanishing Euler class [54,63,64].

C. Counterterms as Born-Infeld gravities
in higher-dimensions?

In Sec. V E, we showed that the order-n counterterm
Lagrangian Ln coincides, when evaluated on the holo-
graphic c-theorem metric ansatz (3.1), with the general
term resulting from the expansion of the Born-Infeld-type
generalization of NMG [25]. This suggests that the
full three-dimensional counterterms Lagrangian might be

rewritten in such a Born-Infeld form plus a possible term
which would vanish when evaluated on the RG-ansatz
metric (3.1). A possible d-dimensional generalization of
these observations is far from obvious at the moment, but a
quick inspection of some low-dimensional cases suggests
that the modified Born-Infeld-like Lagrangian

LðdÞ
BI ¼ α½det ðδba þ βGb

aÞ� 1
d−1 ð7:1Þ

also fulfills a simple holographic c-theorem. Moreover,
when (7.1) is evaluated on-shell (on (3.1) ) and expanded
order by order, we find densities BðnÞjA with the same
functional dependence on A as in the on-shell counterterm
Lagrangians (4.1). We have found, however, no straight-
forward way to define α and β such that the relative
(overall) coefficients match our findings in Eq. (4.1). It
would be interesting to analyze this possibility in more
detail and, more generally, to study the properties of the
Lagrangian defined by (7.1).

D. Holographic c-theorem gravities and scalar modes

We have seen that the counterterm Lagrangians of the
lowest orders often satisfy additional properties besides
the holographic c-theorem. One of them is the absence of
the scalar mode that generically appears in the linearized
spectrum around maximally symmetric backgrounds of
higher-curvature theories—see, e.g., [60]. Many higher-
curvature theories which satisfy the holographic c-theorem
also seem to share this property. In fact, it has recently been
proven in [50] that in d ¼ 3 all the higher-curvature
theories that satisfy a holographic c-theorem propagate
no scalar mode. It would be interesting to prove or disprove
this for d ≥ 4. Observe that the class of theories which do
not propagate the scalar mode is larger than the class of
theories that admit a holographic c-theorem, so the ques-
tion is whether or not the latter class is fully contained
within the former.
In the case considered in this work, it seems natural that

the higher-curvature gravities holographically induced on
the brane should propagate no scalar mode when linearized
around maximally symmetric backgrounds. This fact is true
in d ¼ 3 to all orders, as we have just said, and in general d
at least for n ¼ 2. After all, these theories are induced from
Einstein gravity in AdSdþ1. And from the bulk perspective
and to linear order, it was shown already in [12] that one
can choose an axial TT gauge for the (massless spin-2)
dþ 1-dimensional graviton to induce an almost massless
spin-2d-dimensional graviton on the brane, plus an infinite
tower of massive spin-2 modes.
On a similar note, it was recently shown in [65] that the

effective action of wedge holography (with two branes
instead of one), which has the same structure as the brane
effective action, could be described as a ghost-free multi-
gravity. Again, the important point here was the fact that the
bulk is Einstein gravity, so the brane effective action should
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not have ghosts. It could be interesting to investigate the
absence of scalar modes in this approach.
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