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We investigate the effects ultralight bosonic field dark matter may have on the dynamics of unstable
differentially rotating neutron stars prone to the bar-mode instability. To this aim we perform numerical
simulations in general relativity of rotating neutron stars accreting an initial spherically symmetric bosonic
field cloud, solving the Einstein-(complex, massive) Klein-Gordon-Euler and the Einstein-(complex)
Proca-Euler systems. We find that the presence of the bosonic field can critically modify the development
of the bar-mode instability of neutron stars, depending on the total mass of the bosonic field and on the
boson particle mass. In some cases, the accreting bosonic field can even quench the dominant l ¼ m ¼ 2

mode of the bar-deformation by dynamically forming a mixed (fermion-boson) star that retains part of the
angular momentum of the original neutron star. However, the mixed star undergoes the development of a
mixed bar that leads to significant gravitational-wave emission, substantially different to that of the isolated
neutron star. Our results indicate that dark-matter accretion in neutron stars could change the frequency of
the expected emission of the bar-mode instability, which would have an important impact on ongoing
searches for continuous gravitational waves.
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I. INTRODUCTION

Differential rotation is expected to occur in neutron stars.
It can be present in proto-neutron stars (PNS) formed in
core-collapse supernova (CCSN) explosions, in the tran-
sient post-merger remnants that form after binary neutron
star (BNS) mergers, and in x-ray binary systems where
accretion can trigger high-amplitude oscillation (axial
fluid) r-modes that might impact the neutron star rotation.
In addition, rotating neutron stars are also expected to be
subject to various types of nonaxisymmetric instabilities
(for reviews see [1,2] and references therein). For suffi-
ciently high values of the ratio of the rotational kinetic
energy T and the gravitational potential energy W, namely
β≡ T=jWj≳ 0.27, neutron stars are subject to the dynami-
cal bar-mode instability. Through this instability the star is
deformed into a bar by virtue of the nonlinear growth of the
l ¼ 2 oscillation mode (l being the spherical harmonic
index) which leads to the emission of high-frequency (kHz)
gravitational waves [3–5]. As the degree of differential
rotation increases, rotating stars are dynamically unstable
against bar-mode deformation even for values of β of order
0.01 [6–10]. Moreover, highly differentially rotating

neutron stars can also become unstable to a dynamical
one-arm (m ¼ 1, spiral) instability [11,12]. At lower
rotation rates secular nonaxisymmetric instabilities can
also appear, driven by gravitational radiation (through the
Chandrasekhar-Friedman-Schutz mechanism) or by vis-
cosity (the latter, however, not being a generic instability in
rotating neutron stars).
Interestingly, this phenomenology might not be exclusive

of rotating compact bodies composed only of fermionic
matter. Recently we have shown through numerical-
relativity simulations of spinning bosonic stars [13,14] that
those hypothetical objects can also be affected by the same
type of dynamical bar-mode instabilities that operate
in rapidly rotating neutron stars. Bosonic stars are self-
gravitating compact objects that can be constructed by
minimally coupling a complex, massive bosonic field, either
scalar or vector, to Einstein’s gravity [15–17]. They can form
dynamically from incomplete gravitational collapse through
the gravitational cooling mechanism [18,19] and are com-
posed of ultralight bosonic fields that could account for (part
of) dark matter. The fields’ particles have masses that range
from 10−10 to 10−22 eV and have been motivated by string
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theory [20,21] and by simple extensions of the Standard
Model of particles [22]. Such stars could be detected through
their gravitational-wave emission inmergers [23] or through
their effective shadow [24,25]. Both, linear analysis and
numerical simulations have shown that spherical bosonic
stars are dynamically robust [26–31] (see [32] for a review).
However, spinning bosonic stars can undergo bar-mode
deformation [13,14], during which the angular momentum
of the star is emitted and the star decays into a nonspinning
configuration. In particular, spinning scalarmini-boson stars
without self-interaction terms in the potential and some
spinning vector boson star models are bar-mode unstable.
Mechanisms to stabilize unstable bosonic stars, either in
spherical symmetry or in the rotating case, have been studied
recently. Those include combinations of independent
bosonic fields only interacting through gravity, such as
l—boson stars [33–35] and multistate, multifield boson
stars [36–39] as well as the addition of self-interaction terms
in the potential [40,41]. In the former two cases the
combination of a stable bosonic star with an unstable one
stabilizes the mixture, even in the spinning case.
These recent findings provide a theoretical motivation to

study what could be the possible impact of adding a
bosonic field to a rapidly rotating neutron star, particularly
regarding the development of the bar-mode instability of
the star. In addition to neutron stars and boson stars,
macroscopic composites of fermions and bosons, dubbed
fermion-boson stars, have also been proposed [42–51].
Such mixed configurations could form from the condensa-
tion of some primordial gas containing both types of
particles or through episodes of accretion. These mixed
configurations conform an extended parameter space that
depends on the combination of the number of fermions and
(ultralight) bosons. While hypothetical there have been
proposals to endow these compact objects with potential
astrophysical relevance. For example, in [52] spherically
symmetric fermion-boson stars have been proposed to help
explain the tension in the measurements of neutron star
masses and radii reported in recent multimessenger obser-
vations and nuclear-physics experiments.
In this work we perform numerical-relativity simulations

of three unstable differentially rotating neutron stars with
an initial bosonic field distribution surrounding the star (the
field can be both scalar and vector). We explore the effects
of the field on the dynamics of the neutron stars by varying
the initial energy of the cloud, from a small fraction to a
mass comparable to that of the neutron star. In addition, we
also consider three different values of the bosonic particle
mass μ. Our simulations show that, in all cases, the bosonic
field is quickly accreted by the neutron star and conden-
sates into a nonspinning bosonic star within its rotating
fermion counterpart—a dark matter core. The impact of this
core on the development of the bar-mode instability is
noticeable. We find that the larger the bosonic total mass
and the lower μ, the instability takes longer to set in.

However, within the range of parameters of our study, the
bar-mode deformation of the neutron star seems an ina-
voidable outcome. On the other hand, the modification
in the dynamics of the composite star affects significantly
the associated gravitational-wave emission as compared
to the case of a bar-mode unstable neutron star without a
bosonic core.
This paper is organized as follows: in Sec. II we introduce

themattermodelwe employ and set up the basic equations of
motion to solve. Section III addresses the issue of initial data.
The numerical framework for our simulations is described in
Sec. IV while the results and analysis of those simulations
are presented in Sec. V. Finally, we outline our conclusions
and final remarks in Sec. VI. Throughout this work we use
units such that the relevant fundamental constants are equal
to one (G ¼ c ¼ M⊙ ¼ 1).

II. FORMALISM

A. Equations of motion

We assume that bosonic and fermionic matter are both
minimally coupled to Einstein’s gravity,

Rαβ −
1

2
gαβR ¼ 8πTαβ: ð1Þ

Therefore, the total stress-energy tensor describing the
matter content is given by the superposition of both
contributions, one coming from a perfect fluid and the
other from a scalar=vector complex field:

Tμν ¼ Tfluid
μν þ TðsÞ

μν ; ð2Þ

where superscript (s) stands for the spin of the bosonic
particle, i.e., 0 for the case of a scalar field and 1 for a vector
(Proca) field. The contribution for the perfect fluid reads

Tfluid
μν ¼ ½ρð1þ ϵÞ þ P�uμuν þ Pgμν; ð3Þ

where P is the pressure of the perfect fluid, ρ its rest-
mass density, ϵ its specific internal energy, and uμ¼
ðW=α;Wðvi − βi=αÞÞ is the fluid’s 4-velocity, W being the
Lorentz factor and vi the fluid 3-velocity as seen by
Eulerian observers. The contributions from the bosonic
field are specified in the Secs. II B and II C.
The evolution equations are given by Einstein’s equa-

tions (1), by the conservation laws of the fluid stress-energy
tensor and baryonic particles

∇μT
μν
fluid ¼ 0; ð4Þ

∇μðρuμÞ ¼ 0; ð5Þ

together with a choice of an equation of state (EoS) for the
fluid, and by the equations of motion for the bosonic field.
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For the construction of the initial data we consider a
polytropic EoS,

P ¼ KρΓ; ð6Þ

with K ¼ 100 and Γ ¼ 2. The equations of motion of the
bosonic field are the Klein-Gordon equation for a complex
scalar field ϕ,

∇μ∇μϕ ¼ μ2ð0Þϕ; ð7Þ

and the Proca equations for a complex vector field Aμ,

∇μF μν þ μ2ð1ÞA
ν ¼ 0: ð8Þ

In the previous equations∇μ is the covariant derivative with
respect to the metric gμν and μðsÞ is the mass of the particle
for the scalar field (s ¼ 0) or the vector field (s ¼ 1). We
consider the spacetime line element

ds2 ¼ gμνdxμdxν

¼ −ðα2 − βiβ
iÞdt2 þ 2γijβ

idtdxj þ γijdxidxj; ð9Þ

where α is the lapse function, βi is the shift vector, and γij is
the spatial metric. We employ the Baumgarte-Shapiro-
Shibata-Nakamura (BSSN) formulation of Einstein’s equa-
tions [53–55], references to which the reader is addressed
for details. The BSSN equations involve energy-momentum
source terms, namely the energy density E, the momentum
density ji measured by a normal observer nμ, and the spatial
projection of the stress-energy tensor Sij, which read

E ¼ nμnνTμν; ð10Þ

ji ¼ −γμi nνTμν; ð11Þ

Sij ¼ γμi γ
ν
jTμν; ð12Þ

where the unit normal vector is nμ ¼ 1
α ð1;−βiÞ and γμi is the

spatial projection operator. The source terms for the perfect
fluid read

Efluid ¼ ðρð1þ ϵÞ þ PÞW2 − P; ð13Þ

jfluidi ¼ ðρð1þ ϵÞ þ PÞW2vi; ð14Þ

Sfluidij ¼ ðρð1þ ϵÞ þ PÞW2vivj þ γijP: ð15Þ

B. Einstein-Klein-Gordon-Euler system

The stress-energy tensor associated with the scalar
field ϕ is

Tð0Þ
μν ¼ −

1

2
gμν∂αϕ̄∂αϕ − VðϕÞ þ 1

2
ð∂μϕ̄∂νϕþ ∂μϕ∂νϕ̄Þ;

ð16Þ

where for the potential of the scalar field we consider that of
a miniboson star [32],

VðϕÞ ¼ 1

2
μ2ð0Þϕ̄ϕ: ð17Þ

In the previous two equations the bar symbol denotes
complex conjugation. As customary, in order to write the
Klein-Gordon equation (7) as a first-order system we
introduce the scalar-field conjugate momentum

Π ¼ −
1

α
ð∂t − LβÞϕ: ð18Þ

The source terms for this system read

Eð0Þ ¼ 1

2

�
Π̄Πþ μ2ð0Þϕ̄ϕþ 1

2
λðϕ̄ϕÞ2 þDiϕ̄Diϕ

�
; ð19Þ

jð0Þi ¼ 1

2
ðΠ̄∇iϕþ Π∇iϕ̄Þ; ð20Þ

Sð0Þij ¼ 1

2
ð∇iϕ̄∇jϕþ∇jϕ̄∇iϕÞ

þ1

2
γij

�
Π̄Π−μ2ð0Þϕ̄ϕ−

1

2
λðϕ̄ϕÞ2−Dkϕ̄∇kϕ

�
: ð21Þ

The set of evolution equations for the scalar field are
described in [56].

C. Einstein-Proca-Euler system

The stress-energy tensor for a vector field Aμ is

Tð1Þ
μν ¼ −F λðμF̄ λ

νÞ −
1

4
gμνF λαF̄ λα

þ μ2ð1Þ

�
AðμĀνÞ −

1

2
gμνAλĀ

λ

�
; ð22Þ

where F μν ¼ ∇μAν −∇νAμ is the field strength, and the
index notation ðμ; νÞ indicates, as usual, index symmetri-
zation. We cast the splitting of the Proca 1—form Aμ into
its scalar potential Xϕ, its 3-vector potential X i, and the
3-dimensional electric Ei and magnetic Bi field, defined by

Xϕ ¼ −nμAμ; ð23Þ

X i ¼ γμiAμ; ð24Þ

Ei ¼ −i
γij

α
ðDjðαXϕÞ þ ∂tX jÞ; ð25Þ
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Bi ¼ ϵijkDjXk; ð26Þ

where ϵijk is the Levi-Civita tensor. The energy-momentum
source terms for this system read

Eð1Þ ¼ 1

2
γijðĒiEj þ B̄iBjÞ þ 1

2
μ2ð1ÞðX̄ϕXϕ þ γijX̄ iX jÞ;

ð27Þ

jð1Þi ¼ 1

2
μ2ð1ÞðX̄ϕX i þ XϕX̄ iÞ; ð28Þ

Sð1Þij ¼ −γikγjlðĒkEl þ B̄kBlÞ þ 1

2
γijðĒkEk þ B̄kBk

þ μ2ð1ÞX̄ϕXϕ − μ2ð1ÞX̄
kXkÞ þ μ2ð1ÞX̄ iX j: ð29Þ

The set of evolution equations for the Proca field are
described in [57].

III. INITIAL DATA

Weconstruct configurations describing a cloud of bosonic
matter surrounding a rotating neutron star (RNS) model.
As scalar spinning miniboson stars may develop nonax-
isymmetric instabilities, as shown in [13,14,40],we consider
purely spherically symmetric scalar field clouds with zero
angular momentum. However, for the vector field clouds
we construct also models with nonzero angular momentum.
To obtain physical initial data it is mandatory to solve
the Einstein Hamiltonian and momentum constraint
equations. Moreover, for the case of a vector field, an
additional constraint comes into play, the Gauss constraint
DiEi ¼ μ2ð1ÞXϕ, whereDi stands for the covariant derivative

with respect to the 3-metric γij. In this section we sche-
matically describe the procedure to construct constraint-
satisfying initial data for the physical situation we are
considering.
We begin by building highly differentially RNS models,

which we choose among the bar-mode unstable models
considered in [4]. We employ the RNS numerical code [58]
to construct such configurations. We then add a bosonic
cloud assuming a harmonic time dependence and a par-
ticular cloud “shape.” For spherically symmetric scalar
clouds we consider a Gaussian radial profile for the scalar
field, yielding

ϕðr; tÞ ¼ A0e
−r2

σ2eiωt; ð30Þ

where parameters A0 and σ are the amplitude and the width
of the Gaussian shell, respectively, and ω is the initial
frequency of the field. The ansatz for the vector field is
more involved as there are several field component
involved and we must also solve the Gauss constraint.
We address the interested reader to the appendix of [14] and

to [57] for specific details about the initial data for the
vector field case.
Once we have constructed a RNS model and the

surrounding bosonic cloud, we can evaluate the source
terms entering in the Hamiltonian and momentum con-
straints. Those are going to be simply the sum of the terms
from the fermionic matter (13) and the ones from either the
scalar field (19) or the vector field (23). Finally as initial
guess for the spacetime variables we consider those take the
values of the isolated RNS and we solve the constraint
equations with the updated matter source terms iteratively
until convergence is reached. This procedure is described in
more detail in the appendix of [14] and it relies on the so-
called conformally flat approximation (CFC) of the full
Einstein equations, as described in [59].
To characterize our initial models we compute several

physical quantities: the angular velocity of the fluid
Ω, the baryonic mass M0, the gravitational mass Mgrav,
the internal energy Eint, the angular momentum JNS, the
rotational kinetic energy T, and the gravitational binding
energy W of the RNS, respectively defined as

Ω ¼ uϕ

ut
; ð31Þ

M0 ¼
Z

d3xD
ffiffiffi
γ

p
; ð32Þ

Mgrav ¼
Z

d3xð−2T0
0 þ Tμ

μÞα ffiffiffi
γ

p
; ð33Þ

Eint ¼
Z

d3xDϵ
ffiffiffi
γ

p
; ð34Þ

JNS ¼
Z

d3xT0
φα

ffiffiffi
γ

p
; ð35Þ

T ¼ 1

2

Z
d3xΩT0

φα
ffiffiffi
γ

p
; ð36Þ

W ¼ M0 þ Eint þ T −Mgrav: ð37Þ

We note that in the previous equations we employ only the
stress-energy contribution from the perfect fluid but we
omit the subscript “fluid” to simplify the notation. We also
recall the notation for the ratio between the rotational and
binding energy β≡ T=jWj.
The bosonic cloud is instead characterized by the total

mass and angular momentum stored in it, which are
evaluated as:

Mcloud ¼
Z

d3xð−2T0
0 þ Tμ

μÞα ffiffiffi
γ

p
; ð38Þ

Jcloud ¼
Z

d3xT0
φα

ffiffiffi
γ

p
; ð39Þ
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where again we omit the subscript (s) which identifies the
scalar=vector field.
In Table I we summarize the parameters and the main

properties of the models we consider for this study. We
choose three RNS models, labeled D2, U7, and U13 (see
[4] and references therein for details), and different cloud
parameters for the scalar and Proca fields that surround
them. Since the models used in this work are constructed
using the CFC formalism, which is an approximation of
the full Einstein equations, the global quantities of our
RNS models show a small discrepancy with respect to
the original models generated by the RNS numerical code.
For instance, comparing the physical quantities (M0,Mgrav,
T, Eint) in Table I for model U13 with respect to those
shown in [4], a discrepancy of order 0.3% is observed,
which is expected for the 2PN error resulting from the CFC
approximation. The discrepancy becomes higher for more
compact neutron stars like model D2 where it is of order
1%. We note that the relative error in the evaluation of the
binding energyW is higher because it is a 1PN correction to
the energy of the system. In practice this means that while
the error is small forM0 andMgrav (e.g., 4 × 10−3 for model
U13, for values of M0 ∼Mgrav ∼ 1.5), this same error,
contributing to the error ofW through Eq. (37), is larger for
W itself (which has a value of W ¼ 7.452 × 10−2 for U13)
resulting in a 5% error, still consistent with its expected
post-Newtonian order. A similar effect is observed for β,
which is also a 1PN quantity.

IV. SUMMARY OF NUMERICAL ASPECTS

We employ the community-driven software platform
EinsteinToolkit [60–62] for the numerical evolutions, based
on the CACTUS framework and CARPET [63,64] for mesh-
refinement capabilities. We use the MCLACHLAN infra-
structure [65,66], which implements the BSSN formulation
of Einstein’s equations for evolving the spacetime vari-
ables. The evolution of the scalar field and the Proca field,
along with the computation of their contribution to the
stress-energy tensor are managed by a private code that we
tested and employed in previous works [13,14,35,39,67].
The code for the complex Proca field is an extension
of the one originally developed in [57] and currently
publicly available in the CANUDA repository [68] and
distributed within each new release of the EinsteinToolkit. We
employ GRHydro for the fluid dynamics and EOSOmni for
the EoS. The evolutions are carried out using a Γ-law
EoS P ¼ ðΓ − 1Þρϵ.
The Cartesian-coordinate-based numerical grid for our

simulations is discretized with five refinement levels, each
spanning a different spatial domain with a different
resolution. From the outermost to the innermost grid, the
spatial domains are f300; 240; 200; 100; 50g in units of the
total mass, and the corresponding (Δx ¼ Δy ¼ Δz) reso-
lutions of each level are f10; 5; 2.5; 1.25; 0.65g. We choose
a Courant factor such that the time step is Δt ¼ 0.25Δx,
whereΔx is the grid spacing of the innermost grid along the

TABLE I. Models of RNS with an accreting scalar/Proca cloud. From left to right the columns report: the name of the RNS model [4],
its central rest-mass density ρc, its baryon mass M0, its gravitational mass Mgrav, its angular momentum JNS, its kinetic energy T, its
binding energyW, the ratio between rotational and binding energy β, the type of bosonic cloud, the mass parameter of the scalar=vector
boson μ, the amplitude of the Gaussian profile A0, and the total mass stored in the cloud Mcloud. Most models have an l ¼ m ¼ 0
bosonic cloud and the amplitude of the Gaussian profile σ ¼ 60. Only the last model in the Table corresponds to a spinning l ¼ 1,

m ¼ �1 Proca cloud with angular momentum Jð1Þcloud ¼ �1.315. The width of the Gaussian cloud σ is also indicated.

l ¼ m ¼ 0, σ ¼ 60

RNS model ρcð10−4Þ M0 Mgrav JNS Tð10−2Þ Wð10−2Þ β Cloud μ A0ð10−3Þ Mcloud

U13 0.599 1.506 1.466 3.757 2.188 7.452 0.294 None � � � � � � � � �
U13-a 0.599 1.600 1.521 3.980 2.319 11.53 0.201 Scalar 1.0 1.1 0.628
U13-b 0.599 1.600 1.521 3.980 2.319 11.53 0.201 Scalar 0.5 2.2 0.629
U13-c 0.599 1.592 1.516 3.961 2.308 11.17 0.206 Scalar 0.33 3.2 0.578
U13-d 0.599 1.556 1.496 3.874 2.256 9.595 0.235 Scalar 0.33 2.5 0.346
U13-e 0.599 1.531 1.481 3.811 2.220 8.499 0.261 Scalar 0.33 1.8 0.176
U7 1.406 1.512 1.462 3.406 2.337 8.366 0.279 None � � � � � � � � �
U7-a 1.406 1.563 1.495 3.523 2.418 10.79 0.224 Scalar 0.5 1.7 0.368
D2 3.154 2.752 2.614 7.583 9.211 30.50 0.302 None � � � � � � � � �
D2-a 3.154 2.862 2.678 7.870 9.560 35.75 0.267 Scalar 0.33 1.9 0.222
D2-b 3.154 2.956 2.733 8.119 9.867 40.24 0.245 Scalar 0.5 1.6 0.372
D2-c 3.154 2.850 2.671 7.838 9.520 35.18 0.270 Scalar 1.0 0.6 0.205
U13-f 0.599 1.591 1.507 3.960 2.306 12.00 0.192 Proca 0.5 23 1.182
U13-g 0.599 1.541 1.488 3.836 2.234 8.766 0.255 Proca 1.0 3.0 0.505
U13-h 0.599 1.590 1.520 3.958 2.306 10.65 0.216 Proca 1.0 4.5 1.172

l ¼ 1, m ¼ �1, σ ¼ 40

U13-i 0.599 1.658 1.564 4.122 1.382 13.17 0.182 Proca 1.0 3.0 × 10−4 1.302
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x direction. We assume reflection symmetry with
respect to the equatorial plane (z ¼ 0). We employ radiative
(Sommerfeld) outer boundary conditions, which are imple-
mented in the NEWRAD code.

V. RESULTS

As stated before, the aim of this work is to investigate
numerically the potential effects of ultralight bosonic dark
matter accreting on to differentially RNS on the stability
properties of these objects. Our simulations start with a
transient phase during which the bosonic cloud accretes on
to the neutron star, with a timescale shorter than that of the
development of the dynamical bar-mode instability. After
the cloud has been accreted its effect on the dynamics of the
neutron star are significant, as we discuss next.

A. Dynamics

We perform long-term simulations (Oð100Þ ms) of the
full 16 models of Table I. However, for the sake of clarity in
the analysis we present results only for an illustrative subset
of models that best display the effects of the bosonic field
on the bar-mode instability (and on the gravitational
waveforms). We start discussing results for models U13,
U13-a, U13-b, and U13-c. For the last three models the
mass of the scalar cloud is roughly equal (Mcloud ≈ 0.6)
which allows us to isolate the effects of varying the particle
mass μ. Moreover, throughout this section we only discuss
the scalar-field case, since the conclusions we draw for this
case remain unaltered for a Proca-field cloud.
The columns of Fig. 1 display snapshots of the rest-mass

density ρ at the equatorial plane for those four models. Note
that except for the first row (initial data) the snapshots
selected in subsequent rows are different for each model.
The isolated RNS model U13 is depicted in the left column
while the next three columns show the evolution of models
U13-a, U13-b, and U13-c for which the scalar-field cloud is
built with correspondingly smaller values of the bosonic
particle mass, μ ¼ 1, μ ¼ 0.5, and μ ¼ 0.33, respectively.
The green contour visible in some of the snapshots of Fig. 1
indicates the level surface of constant bosonic energy
density Eð0Þ which contains 95% of the total mass of the
bosonic cloud. We note that during the accretion process
the bosonic cloud loses mass through the mechanism
known as gravitational cooling [18,19]. On the one hand,
in models U13-b and U13-c the amount of scalar field
expelled is about 5% of the total stored in the cloud, which
means that most of the mass of the cloud accretes on to the
RNS in a short timescale, less than 10 ms. On the other
hand, model U13-a undergoes the highest mass loss, losing
almost half of the initial bosonic mass by the end of the
simulation (at which time the process still continues). The
evaluation of the surface containing 95% of the total mass
for model U13-a is affected by the mass released through
gravitational cooling during the accretion process, and for

this reason we obtain surfaces which are far from being
spheroidal. The differences observed in the dynamical
evolution of the bosonic cloud in models U13a, U13b,
and U13c, can be understand by recalling the stability
properties of spherically-symmetric boson stars. Such stars
have a maximum mass ofMmax ¼ 0.633=μ (see, e.g., [69]),
separating the stable and unstable branches in the mass-
frequency existence plot. We relate the different behavior of
model U13-a with the fact that the mass stored in the cloud
(Mcloud ¼ 0.628) is very close to the maximum allowed
mass for a boson star with μ ¼ 1. As a result, the dynamical
process leads to the simultaneous ejection of a large amount
of mass from the cloud and the gradual formation of a
spherical boson star residing in a more stable region in the
parameter space (away from the maximum). On the other
hand, models U13-b and U13-c are already initially well
inside the corresponding boson-star stable region and, thus,
they do not radiate a lot of scalar field to reach stability.
All models are subject to nonaxisymmetric instabilities

throughout the evolution. We note that we do not impose
any ad-hoc perturbation on the initial data to trigger those
but the only source of perturbation is the discretization error
of the finite-difference approximations of the partial deriv-
atives of the equations we solve. The presence of the
accreting scalar field leads to different dynamics. For the
purely RNS model U13, shown in the leftmost column of
Fig. 1, the development of an m ¼ 2-dominated instability
is apparent at around t ≈ 10 ms (second row). This
dynamical timescale is similar to that reported in [4] for
the same model. This leads to the appearance of a bar-like
deformation during which the star sheds mass and angular
momentum and finally settles into a perturbed stable
configuration. During this process the maximum value
of the rest-mass density ρ moves from the end-points of the
bar toward the center of the star, whose morphology
changes from toroidal to spheroidal.
When a scalar field is included, the evolution of the RNS

is modified but the star continues to undergo nonaxisym-
metric instabilities with different timescales and features.
The most salient characteristic of all models involving an
accreting scalar field is that no bar is formed and the
dominant mode of the deformation shifts from m ¼ 2 to
m ¼ 1, i.e., those models mostly develop a one-arm
instability. This morphological change can be identified
by the appearance of a rotating over-density blob (see,
e.g., the third snapshots from the top in the last two
columns of Fig. 1). Eventually, when angular momentum
is radiated away through gravitational waves, this over-
density blob collapses into a spheroidal RNS. In addition,
the timescale of the m ¼ 1 instability increases with
respect to the isolated RNS case: for U13-a (μ ¼ 1.0) it
occurs at t ≈ 15 ms, for U13-b (μ ¼ 0.5) at t ≈ 25 ms, and
finally for U13-c (μ ¼ 0.33) at t ≈ 40 ms. We note that the
timescale increases as we decrease the value of μ when
keeping the same total initial mass in the cloud. We
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tentatively identify the reason for this behavior with the
fact that as the cloud becomes more diluted so does the
entire configuration, hence the fermionic part gets increas-
ingly less compact and the instability takes longer to
set in.
A more quantitative representation of the fundamental

properties of the instabilities that develop in our systems
can be obtained by monitoring the evolution of the volume-
integrated azimuthal Fourier mode decomposition of the
fermion energy density, evaluated as

Cm ¼
Z

d3xEfluidðxÞeimφ: ð40Þ

We point out that when odd modes (such as m ¼ 1) start to
grow, the center-of-mass of the object is displaced from the
origin of the Cartesian grid. As explained in [8] we take into
account this displacement to properly evaluate Cm and the
computation of the angular momentum JNS and Jcloud
during the evolution. To this end we evaluate the coor-
dinates of the center-of-mass of the entire object and we

FIG. 1. Time evolution of the rest-mass density ρ (in cgs units) at the equatorial plane. The four columns correspond, respectively, to
the isolated RNS model U13 (left), model U13-a with μ ¼ 1.0 (center-left), model U13-b with μ ¼ 0.5 (center-right), and model U13-c
with μ ¼ 0.33 (right). The contour in green indicates the level surface of constant bosonic energy density Eð0Þ which contains 95% of the
total mass of the bosonic cloud. The center of the computational grid is highlighted with a white dot.
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redefine the azimuthal coordinate φ with respect to this
center instead of the center of the numerical grid, as we
explain in [14].
Quantities Cm defined in Eq. (40) monitor the departure

from axisymmetry in the fermion density. In Fig. 2 we
show, for the same models discussed in Fig. 1, the time
evolution of the absolute value of the mode decomposition
for the first four Fourier modes, m ¼ f1; 2; 3; 4g, normal-
ized to the total energy C0. In all cases we observe an
exponential growth of the different modes. As discussed
above we can clearly see that in the case of an isolated RNS
(model U13; top-left panel of Fig. 2) only the even modes
m ¼ 2 and m ¼ 4 are significantly excited initially, the
dominant one being the m ¼ 2 bar-mode. At later times
the amplitude of both modes decay, especially that of the
m ¼ 4 mode which shows a steeper rate, and by the end of
the simulation the dominant modes are the m ¼ 2 and
m ¼ 1. However, their late-time amplitudes are about two
orders of magnitude smaller than that of them ¼ 2mode at
maximum amplitude (attained around t ¼ 20 ms). We note
that the response of the different modes observed in our
simulation of model U13 is in perfect agreement with what
was found in [4] (see, in particular, their Fig. 7).
The remaining panels of Fig. 2 show the time evolution

of jCmj for models U13-a, U13-b, and U13-c. In the
presence of a scalar field all modes are excited to significant
levels, with the m ¼ 1 becoming dominant in all cases. We

observe the same excitation also when we depict the
Fourier mode decomposition of the bosonic energy density,
evaluated in the same fashion as in Eq. (40). We note that
in models U13-b and U13-c the odd modes are excited in
both the boson and fermion sectors in such a way that,
collectively, they give rise to an even distribution of the
total energy density in the form of a “mixed bar” (one end
of the bar made of bosonic matter, the other of fermionic
matter). This morphology guarantees the conservation of
the total linear momentum for the case of comparable
masses of both sectors. This dynamics is illustrated in
the left and center panels of Fig. 3. The panels exhibit two
late-time snapshots of the bosonic energy density Eð0Þ
and the fermionic rest-mass density ρ on the equatorial
plane for model U13-b. The fermionic contribution is
shown in orange isocontours. These two panels illustrate
how the two different matter components rotate around the
Cartesian origin with a π phase difference, in such a way
that the center-of-mass of the total object remains close to
the center of the computational grid. This means that the
total linear momentum is approximately conserved as the
mixed bar compensates the excitation of the dominant
m ¼ 1 modes in both matter constituents. This is further
demonstrated in the right panel of Fig. 3 which displays the
time evolution of the x-component of the center-of-mass of
both the bosonic and fermionic energy density parts
(depicted in red and blue, respectively) as well as the total

FIG. 2. Time evolution of the azimuthal mode decomposition of the fermion energy density, from m ¼ 1 to m ¼ 4, for the same
models shown in Fig. 1. Top-left panel: model U13; top-right panel: model U13-a; bottom-left panel: model U13-b; bottom-right panel:
model U13-c.
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energy density (i.e., the sum of the two, depicted in black).
The evolution shown spans the time interval indicated in
the left and center panels of the figure. A very similar result
is observed for the y-component of the center-of-mass. The
red and blue curves clearly reveal a constant π phase
difference between the two matter components as long as
the mixed bar persists, while the black curve shows that the
total center-of-mass stays close to the origin.
A similar behavior occurs for model U13-c. For both

models, U13-b and U13-c, the maximum displacement of
the center-of-mass from the origin is about 3 times smaller
than the resolution of our finest grid. On the other hand, for
model U13-a we observe a small displacement of the
center-of-mass which starts to be significant at t ≈ 30 ms.
We tentatively associate the different behavior of model
U13-a with respect to models U13-b and U13-c with the
larger ejection of scalar field during the accretion process,
the formation of a more compact bosonic star core, and the
transfer of angular momentum to the scalar component due
the dragging of the neutron star. A larger amount of angular
momentum is then expected to be emitted in the form of
gravitational waves for model U13-a, as we discuss below.
We turn now to briefly discuss the dynamics of models

with constant boson particle mass μ and varying initial
cloud mass Mcloud. Those models are U13-c, U13-d, and
U13-e in Table I, all with μ ¼ 0.33 and correspondingly
decreasing Mcloud. Time snapshots on the equatorial plane
of the rest-mass density ρ for these models, also including
the purely RNS model U13, are plotted in Fig. 4. As in
Fig. 1 the green contour visible in most snapshots corre-
sponds to the surface containing 95% of the bosonic energy
density which allows to better evaluate the effects of the
scalar field on the dynamics of the neutron stars. Model
U13-e, plotted in the second column from the left, is the one
with less initial bosonic mass Mcloud. During its early
evolution the neutron star develops the bar-mode insta-
bility, as in the no-scalar-field model U13 plotted in the first

column, and in a very similar timescale of Oð10 msÞ.
However, at late times an m ¼ 1 spiral mode develops in
the energy profile (see the last two snapshots of the second
column) which is not present in model U13. This transition
from an initial m ¼ 2-dominated neutron star to a final
m ¼ 1-dominated one is still in effect as the initial mass of
the bosonic cloud increases, as shown in models U13-d
and U13-c plotted in the third and fourth columns of
Fig. 4, respectively. As Mcloud increases the transition
accelerates—the m ¼ 2 barlike deformation quickly dis-
appears while the m ¼ 1 bloblike deformation becomes
dominant.

B. Gravitational-wave emission

We characterize the gravitational-wave emission by
computing the mode decomposition of the Newman-
Penrose scalar Ψ4 in spin-weighted spherical harmonics
with spin−2. We extract the coefficientsΨl;m

4 for l ¼ 2 and
m¼ 1, 2 at three different radii, namely r ¼ f100; 150;
200g. These extraction radii are both far enough from
the source (to be in the wave zone) and not too close to
the outer boundary of our numerical grid (to avoid
unphysical effects from spurious numerical reflections).
We interpolate with a third-order polynomial fit the values
from the three different extraction radii to obtain rΨ2;m

4 . The
waveforms for models U13, U13-e, U13-d, and U13-c, the
last three having the same bosonic particle mass (μ ¼ 0.33)
and increasing initial boson cloudmass, are shown in Fig. 5.
We display the (retarded) time evolution of the real part of
rΨ2;m

4 for m ¼ 1, 2. The waveforms shown in the top-left
panel of Fig. 5 correspond to model U13, which has no
accreting bosonic field. As expected, the dominant contri-
bution to the waveform is the l ¼ m ¼ 2 mode, reflecting
the distinct bar-mode deformation this model undergoes.
The m ¼ 1 mode is hardly excited for this model, its
amplitude being a few orders of magnitude smaller than

FIG. 3. The left and middle panels show two time snapshot of an equatorial cut of Eð0Þ for model U13-b and of the rest-mass density ρ.
The latter is indicated by the orange contours. The maximum of the fermionic energy and its center-of-mass are located inside the
smallest contours. These two snapshots reveal the transient formation of a mixed (fermionic-bosonic) bar. In the right panel we show the
time evolution (spanning the time interval depicted in the left and center panels) of the x-component of the center-of-mass evaluated for
the bosonic and fermionic contribution, to highlight the π phase difference, and for the total object.
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that of the m ¼ 2 mode. By the end of the simulation the
amplitude of the m ¼ 2 waveform has not yet decreased
substantially.
As we discussed in the previous section, the presence of

an accreting bosonic cloud has a major impact on the
dynamics of the stars. This is also imprinted on the
waveforms. From Fig. 5 we observe that the more massive
the scalar-field cloud, the larger (smaller) the amplitude of
the m ¼ 1 (m ¼ 2) gravitational-wave mode. Indeed, by
the end of our simulations them ¼ 1 amplitude of the most

massive case, U13-c, becomes comparable to the amplitude
of the m ¼ 2 mode (see bottom-right panel). For model
U13-e (top-right) the m ¼ 1 mode is still largely sup-
pressed. Therefore, the fact that by increasing Mcloud the
appearance of the bar-mode instability becomes less clear
as the spiral-mode instability becomes more prominent, has
a recognizable manifestation on the gravitational-wave
signals as well.
By direct inspection of Fig. 5 we can also observe that

the frequency of the m ¼ 2 mode seems to significantly

FIG. 4. Time evolution of the rest-mass density ρ (in cgs units) at the equatorial plane. The green isocontour indicates the level surface
of constant bosonic energy density which contains 95% of the total mass of the bosonic cloud. From left to right the columns correspond
to model U13, U13-e, U13-d, and U13-c. The last three models have the same value of the bosonic particle mass (μ ¼ 0.33) but the total
mass stored in the cloud increases from left to right.
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increase as the mass stored in the cloud is larger. Moreover,
a noticeable feature of the waveforms is the presence of
beating patterns in the oscillations. This is a clear sign of
the existence and superposition of more than one signifi-
cant oscillation frequency of comparable values. We
compute those frequencies by performing fast Fourier
transforms of the gravitational-wave time series rΨ2;m

4 .
The associated magnitudes are depicted in Fig. 6 for the
same four models of Fig. 5. We show two types of modes in
this figure, namely the l ¼ m ¼ 2 and the l ¼ 2, m ¼ 0
modes, to emphasize the possible contribution of quasir-
adial oscillations (l ¼ 0) to the frequency pattern. The top-
left panel of Fig. 6 shows the main frequencies that are
excited during the evolution of model U13. The first thing
to notice is that the spectrum for this model, and those of
the other models, present the same essential features, with a
fundamental mode and a series of overtones. We note the
presence of a double-peaked feature at fGW ≈ 505 Hz and
fGW ≈ 555 Hz. We identify the former with the fundamen-
tal bar-mode frequency (see below). The proximity of the
two frequencies could explain the beating pattern shown in
the blue curve of Fig. 5. For the same model [4] did not
observe such beating and only reported a single frequency

of 457 Hz, in broad agreement with our value, given the
different resolutions employed in the two simulations and
the length of the time series (much shorter in the case of [4])
which limits the accuracy of the computation of the
frequency. As a consistency check we have verified that
the same frequency pattern is obtained when evolving the
same U13 model but constructing the initial data with
the Hydro_RNSID numerical code. Details on this comparison
are provided in Appendix.
While the value of the β parameter of the U13 model is

high enough for the model to develop the nonaxisymmetric
bar-mode instability, the star is also subjected to axisym-
metric pulsating modes during its evolution. The frequency
spectrum of nonlinear axisymmetric pulsations of rotating
relativistic stars was studied in detail by [70]. Their
sequence of differentially rotating models with a fixed rest
mass of M0 ¼ 1.506 (same as that of U13) extends from
the nonrotating model to a model with β ¼ 0.223 (model
A10 in [70]). Hence, those models are stable against the
dynamical bar-mode deformation. Their frequency spec-
trum is dominated by the fundamental quasiradial (l ¼ 0)
F mode (and its first overtone), the fundamental quadru-
pole (l ¼ 2) mode (and its first two overtones), and three

FIG. 5. Real part of rΨ2;m
4 with m ¼ 1, 2 as a function of the retarded time for models U13 (top-left panel), U13-e (top-right panel),

U13-d (bottom-left panel), and U13-c (bottom-right panel). The curves are obtained after a third-order polynomial fit interpolation of the
corresponding waveforms from the three extraction radii we select.

IMPACT OF ULTRALIGHT BOSONIC DARK MATTER ON THE … PHYS. REV. D 106, 044008 (2022)

044008-11



inertial modes (see Table 2 and Fig. 1 in [70]). Along their
sequence, the frequency of the F mode decreases fairly
linearly with β. Extrapolating that trend to our U13 model,
with β ¼ 0.29, would yield a value of the F mode
frequency of ≈400 Hz (and of ≈450 Hz for β ¼ 0.28 as
used in [4]). To infer the actual frequency of the F mode
we monitor the time evolution of the rest-mass density ρ
at the center of the star for model U13. This particular
choice is motivated by the fact that as ρ at the center is
unaffected by even mode deformations (such as the bar)
we can isolate the effects of the quasiradial oscillations.
By evaluating the Fourier transform of ρ in the first 35 ms
we observe a wide peak for the F mode at around 407 Hz.
The limited time window does not allow us to better
resolve the frequency but our result is in broad agreement
with the value we extrapolated from [70]. In addition, we
repeat the same procedure for a fixed point on the
equatorial plane, namely at r ≈ 9 km, in order to obtain
the spectrum of frequencies of both the quasiradial
oscillations and the bar-mode instability. By subtracting
the magnitude of the Fourier transform at r ≈ 9 km and
at the center of the star, we eliminate from the former
the contribution of the quasiradial oscillations and we
isolate the frequency of the bar. This yields a frequency
peak at ≈500 Hz which is in close agreement with what
we infer from Fig. 6.

After the bar has mostly dissipated, we also observe the
appearance of a well-defined frequency at ≈785 Hz. We
interpret this frequency as associated with the actual l ¼ 0
quasiradial F mode oscillation of the new equilibrium
configuration reached by model U13 once the bar defor-
mation has disappeared. In addition, we speculate that the
secondary peak of ≈555 Hz depicted in the top-left panel
of Fig. 6 may have been originated by the coupling with
the frequency of the l ¼ 2, m ¼ 0 mode. However, the
presence of the fundamental quasiradial F mode may have
also helped triggering the double-peaked structure seen in
the figure.
The discrete modes we observe in the PSD are nonlinear

harmonics of linear pulsation modes, which is a general
property of nonlinear systems [71]. To lowest order, these
arise as linear sums and differences of different linear
modes, including self-couplings. For a system with eigen-
frequencies fi, the nonlinearity of the equations of motion
excites modes at frequencies fi � fj. Such nonlinear
harmonics have been noted in other types of oscillating
compact objects, as e.g., thick disks around black holes
[72,73] and pulsating relativistic stars [70]. In our case one
such harmonic appears at fGW ≈ 1 kHz, where we observe
the same double-peaked structure at a frequency which
corresponds, roughly, to twice the frequency of the funda-
mental mode (a self-coupling). In between those two modes

FIG. 6. Fourier transform of rΨ2;m
4 for m ¼ 0, 2 for models U13 (top-left panel), U13-e (top-right panel), U13-d (bottom-left panel)

and U13-c (bottom-right panel).
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the spectrum depicts two further combinations of inter-
mediate frequencies which may correspond to other non-
linear harmonics arising as linear sums or differences of the
bar-mode frequency and other modes. In the top-left panel
of Fig. 6 we highlight the peaks at fGW ≈ 730 Hz and
fGW ≈ 790 Hz which can be identified with linear combi-
nations of the peak at 505 Hz and the one at 290 Hz, namely
2 × 505 − 290 ¼ 720 Hz and 505þ 290 ¼ 795 Hz.
The presence of the scalar field which interacts gravi-

tationally with the baryonic matter and modifies the
evolution of the whole system makes the gravitational-
wave emission more complex, as we saw in Fig. 5. In
general, as we increase the scalar field contribution, the
m ¼ 2 amplitude becomes smaller, due to the fact that
the bar-mode instability tends to disappear. Moreover the
m ¼ 0 spectra in Fig. 6 become increasingly prominent,
due to the higher perturbation the neutron star undergoes
and the gravitational cooling process of the scalar cloud
which leads to a radially perturbed stationary configuration
(see also [18,19]). The model with the lightest scalar cloud
(top-right panel of Fig. 6) still displays a similar frequency
pattern than model U13, associated with the formation of
the bar. The dominant peak is now, however, at ≈1 kHz,

and an additional overtone is present at ≈1510 Hz. For the
last 2 models (U13-d and U13-c; bottom-left and bottom-
right panels of Fig. 6) the dominant contributions come
from the m ¼ 0 mode, where we observe the double peak
structure at around 500–550 Hz and at 730–790 Hz and the
appearance of a new peak at ≈865 Hz, which could be
roughly identified as the sum of the frequencies at 555 Hz
and 290 Hz. In model U13-c, in particular, the dominant
peak appears at this new overtone at ≈865 Hz.
In Fig. 7 we show the characteristic gravitational-wave

strain hchar at a distance D ¼ 10 kpc for models U13,
U13-e, U13-d, and U13-c compared with the designed
sensitivity curves of ground-base detectors Advanced LIGO
(aLIGO) [74], Advanced Virgo (AdV) [75], KAGRA [76],
and the future Einstein Telescope (ET) [77]. For burst-like
sources the characteristic GW strain is (see, e.g., [78])

hcharðfÞ ¼
1

πD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
dE
df

½f�
s

; ð41Þ

where D is the distance of the source and dE=df is the
energy spectrum of the gravitational waves. The interested

FIG. 7. Characteristic gravitational-wave strain against frequency for model U13 (top-left panel), U13-e (top-right panel), U13-d
(bottom-left panel) and U13-c (bottom-right panel), compared with the sensitivity curves of current second-generation detectors and the
planned Einstein Telescope. A source distance of D ¼ 10 kpc is assumed.
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reader is addressed to [14] for further details on the
definition of the energy spectrum. We note that for the
reasons explained in Appendix we cut the contribution at
high frequencies of the m ¼ 0 mode in the evaluation
of hchar.
The spectra shown in Fig. 7 closely parallel the Fourier

transforms depicted in Fig. 6. For the U13 model (no scalar
field cloud) the maximum of hchar is at fGW ≈ 505 Hz
which is the main peak of them ¼ 2mode shown in Fig. 6,
linked to the bar-mode instability. For models U13-e and
U13-d, the maxima in the spectra are at around 555 Hz
which we associate with the m ¼ 0 mode that is excited
by quasiradial oscillations of the neutron star. Moreover
the overtones at higher frequencies become more relevant.
Finally for model U13-c, which is the one with the
largest amount of scalar field, the m ¼ 0 overtone at
frequency fGW ≈ 860 Hz becomes the maximum of the
characteristic strain.
We evaluate the matched-filtering signal-to-noise ratio

(SNR) squared for an optimally oriented detector, averaged
over all possible source directions as [78]

ρ2optimal ¼
Z

∞

0

dðln fÞ hcharðfÞ
2

fSnðfÞ
; ð42Þ

where SnðfÞ is the power spectral density (PSD) of the
detector noise. We consider the SNR averaged over all
possible detector orientations and sky localizations, which
is simply hρ2i ¼ ρ2optimal=5. We define the horizon distance
as the distance at which SNR ¼ 8. We report in Table II this
quantity for the four models shown in Fig. 7 and for the
four gravitational-wave detectors considered. For second-
generation detectors, the signal studied in this paper could
be detectable up to distances of about 1 Mpc while ET
could observe it up to a distance of a few tens of Mpc.
Interestingly, Table II shows that the horizon distance of the
signal increases, in most cases, as the amount of scalar field
in the models becomes larger, to almost reach a factor two
in model U13-c with respect to model U13.
The LIGO-Virgo-KAGRA (LVK) Collaboration has

conducted various searches of continuous signals generated

by nonaxisymmetric neutron stars, including r-modes and
other types of instabilities (see, e.g., [79] for the most recent
search employing O3 data). The results reported in our
work might be relevant for those studies. Taking our
findings at face value the potential detection of such
continuous signals in an unexpected range of frequencies
could hint at the possible presence of dark matter in neutron
stars. On the other hand, a lack of detections could also
convey information about the composition and dynamics
of such composite stars, since the frequencies of the
gravitational-wave emission could be outside the LVK
sensitivity range.

VI. CONCLUSIONS

We have investigated the effects ultralight bosonic field
dark matter may have on the dynamics of unstable differ-
entially rotating neutron stars prone to the bar-mode
instability. We have found that the presence of the bosonic
field can critically modify the development of the bar-mode
instability of neutron stars, depending on the total mass of
the bosonic field and on the boson particle mass. This, in
turn, implies that dark-matter accretion in neutron stars
could change the frequency of the expected gravitational-
wave emission from the bar-mode instability, which
would have an impact on ongoing searches for continuous
gravitational waves. In this paper we have focused on
ultralight bosonic dark matter but our results could be
extrapolated to other dark matter models.
The kind of composite (fermion-boson) stars we have

studied in this work remain an intriguing possibility. Dark
matter can pile up in neutron stars, either by accretion
during the life of the supernova progenitor star, by capture
during the evolution of the neutron star itself, or both. A
number of theoretical works have explored such scenarios
in the context of fermion-boson stars (see, e.g., [45,46,52]).
In the case dark matter is accreted before the formation of
the neutron star, a similar ratio between the bosonic and
fermionic components in all composite stars should be
expected. On the other hand, if dark matter is captured
during the neutron star evolution, older stars might have a
higher bosonic contribution than younger ones. In this
situation, one could expect that in BNS mergers the
contribution of the bosonic field could be large enough
to have an impact in the dynamics. Concerning rotation,
highly differentially rotating composite stars might form as
a result of the merger of two such fermion-boson stars [80],
or of one neutron star with a boson star. Current simulations
are, however, still unable to prove this as the latter are
restricted to head-on collisions [81,82]).
Our results have been obtained from a large set of

numerical simulations in general relativity of rotating
neutron stars accreting an initial spherically symmetric
bosonic field cloud, solving the Einstein-(complex, mas-
sive) Klein-Gordon-Euler and the Einstein-(complex)
Proca-Euler systems. For our purely neutron star models

TABLE II. Horizon distances of the gravitational-wave signal
studied in this work for models U13, U13-e, U13-d, and U13-c
with increasing bosonic contribution, evaluated for the ground-
based detectors Advanced Virgo (AdV), Advanced LIGO
(aLIGO), KAGRA, and Einstein Telescope (ET).

Horizon distance (Mpc)

Model AdV aLIGO KAGRA ET

U13 0.747 1.460 0.872 14.791
U13-e 0.813 1.690 0.994 16.880
U13-d 1.037 2.245 1.318 22.371
U13-c 0.860 2.695 1.425 24.403
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(no bosonic field) a bar-like deformation appears and we
observe, as expected, the exponential growth of the Fourier
density modes of the star, with the m ¼ 2 mode being the
dominant one. Incorporating the bosonic field leads to
different dynamics and mode excitation, with the m ¼ 1
becoming now the dominant mode. In some of our models,
the accreting bosonic field can effectively quench the
dominant l ¼ m ¼ 2 mode of the bar-deformation by
dynamically forming a mixed (fermion-boson) star that
retains part of the angular momentum of the original
neutron star. Interestingly, the mixed star undergoes the
development of a mixed bar that leads to significant
gravitational-wave emission, substantially different to that
of the isolated neutron star. The timescale of the instability
is also affected by the presence of dark matter, being
significantly delayed as the amount of bosonic field
increases. We note, however, that our setup is such that
the unstable neutron star accretes a large amount of bosonic
field in a short period of time. It might be possible that in
another region of the parameter space of the problem the
bar-mode instability could actually be quenched without
triggering the m ¼ 1 deformation, e.g., for different neu-
tron star models or further exploring different bosonic
masses. It would also be interesting to perform evolutions
of equilibrium sequences of stationary, rotating fermion-
boson star models to address their stability in a more
controlled system. Given the absence of such models
presently, this is a task we defer for the future.
We have also found that the differences in the evolution

of the composite stars due to the presence of the bosonic
field are imprinted in the gravitational-wave emission. This
was studied by computing the Newman-Penrose scalar Ψ4

to evaluate the gravitational-wave frequency for our mod-
els. Those quantities are affected by the presence of the
bosonic field, yielding complex gravitational-wave signals
in which different modes contribute and leading, in
particular, to a remarkable increase of the dominant
frequency. The signals studied in this work are within
reach of current ground-base detectors up to distances of
about 1 Mpc. This increases to a few tens of Mpc for third-
generation detectors as the ET. Therefore, the results
reported might be of some interest for searches of con-
tinuous signals from neutron stars, routinely carried out by
the LVK Collaboration in every scientific run. The potential
detection of such continuous signals in an unexpected
range of frequencies could hint at the possible presence of
dark matter in neutron stars.
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APPENDIX: COMPARISON BETWEEN XCFC
AND Hydro_RNSID INITIAL DATA

The initial data for the evolutions reported in this work
have been constructed using the numerical code introduced
in [59] in polar spherical coordinates and assuming the
conformal flatness condition for the Einstein equations.
We developed a private thorn, which is a component of the
EinsteinToolkit software, to read and linearly interpolate the
initial data into the Cartesian grid used for the evolutions.
In this Appendix we show a brief comparison of the

results obtained evolving the neutron star model U13 up to
t ≈ 80 ms, making use of our initial data thorn and
Hydro_RNSID which is part of the official release of the
EinsteinToolkit. The main dynamical features of the two
evolutions are essentially identical, with the appearence
of the bar-mode instability at around t ≈ 10 ms. The main
difference we observe is in the gravitational-wave emission,
specifically in the l ¼ 2, m ¼ 0 component of Ψ4.
In Fig. 8 we compare the frequency spectrum obtained

for model U13 using our thorn (left panels) and Hydro_RNSID

(right panels). In the top plots, where we show only the
frequencies up to fGW ¼ 1500, we can appreciate that
the main peaks connected to the bar-mode instability and to
the quasiradial oscillations are essentially the same with the
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two approaches, validating the results obtained in this
work. The frequency range of the bottom plots extends to
4 kHz. This is to highlight the presence of high-frequency
noise in the m ¼ 0 component of Ψ4 when using the CFC
initial data (left panel). This feature is not present if we use
the Hydro_RNSID initial data (right panel). We suspect that
the reasons behind this difference might be the poor
interpolation into the Cartesian grid and the low resolution
used in the angular coordinate of our initial data models,
which is 5 times coarser than the one employed in

Hydro_RNSID. These two factors do not influence the
evolutions in a significant way but they do induce a
stronger initial perturbation on the CFC initial data which
triggers stronger quasiradial oscillations in the star from the
beginning of the simulation. This effect is visible in the
gravitational-wave emission but was not evident from
the time snapshots of the energy density on the equatorial
plane. For this reason, as we write in the main text, we
depict in Fig. 7 the evaluation of hchar without the
contribution of the m ¼ 0 mode at high frequencies.

[1] K. Glampedakis and L. Gualtieri, Astrophys. Space Sci.
Libr. 457, 673 (2018).

[2] V. Paschalidis and N. Stergioulas, Living Rev. Relativity 20,
7 (2017).

[3] M. Shibata, T. W. Baumgarte, and S. L. Shapiro, Astrophys.
J. 542, 453 (2000).

[4] L. Baiotti, R. de Pietri, G. M. Manca, and L. Rezzolla, Phys.
Rev. D 75, 044023 (2007).

[5] F. Löffler, R. De Pietri, A. Feo, F. Maione, and L. Franci,
Phys. Rev. D 91, 064057 (2015).

[6] M. Shibata, S. Karino, and Y. Eriguchi, Mon. Not. R.
Astron. Soc. 334, L27 (2002).

[7] A. L. Watts, N. Andersson, and D. I. Jones, Astrophys. J.
618, L37 (2005).

[8] P. Cerdá-Durán, V. Quilis, and J. A. Font, Comput. Phys.
Commun. 177, 288 (2007).

FIG. 8. Fourier transform of rΨ2;m
4 for m ¼ 0 and m ¼ 2 for model U13. The left panels correspond the evolutions performed using

our CFC initial data code while the right panels are the ones using Hydro_RNSID. The frequency range in the top row extends up to
1500 Hz while in the bottom row it goes up to 4 kHz. The agreement between the two approaches, as seen in the top panels, is
remarkable.

FABRIZIO DI GIOVANNI et al. PHYS. REV. D 106, 044008 (2022)

044008-16

https://doi.org/10.1007/978-3-319-97616-7_12
https://doi.org/10.1007/978-3-319-97616-7_12
https://doi.org/10.1007/s41114-017-0008-x
https://doi.org/10.1007/s41114-017-0008-x
https://doi.org/10.1086/309525
https://doi.org/10.1086/309525
https://doi.org/10.1103/PhysRevD.75.044023
https://doi.org/10.1103/PhysRevD.75.044023
https://doi.org/10.1103/PhysRevD.91.064057
https://doi.org/10.1046/j.1365-8711.2002.05724.x
https://doi.org/10.1046/j.1365-8711.2002.05724.x
https://doi.org/10.1086/427653
https://doi.org/10.1086/427653
https://doi.org/10.1016/j.cpc.2007.04.001
https://doi.org/10.1016/j.cpc.2007.04.001


[9] G. Corvino, L. Rezzolla, S. Bernuzzi, R. De Pietri, and B.
Giacomazzo, Classical Quantum Gravity 27, 114104
(2010).

[10] S. Yoshida and M. Saijo, Mon. Not. R. Astron. Soc. 466,
600 (2017).

[11] J. M. Centrella, K. C. B. New, L. L. Lowe, and J. D. Brown,
Astrophys. J. Lett. 550, L193 (2001).

[12] M. Saijo and S. Yoshida, Mon. Not. R. Astron. Soc. 368,
1429 (2006).

[13] N. Sanchis-Gual, F. Di Giovanni, M. Zilhão, C. Herdeiro, P.
Cerdá-Durán, J. Font, and E. Radu, Phys. Rev. Lett. 123,
221101 (2019).

[14] F. Di Giovanni, N. Sanchis-Gual, P. Cerdá-Durán, M.
Zilhão, C. Herdeiro, J. A. Font, and E. Radu, Phys. Rev.
D 102, 124009 (2020).

[15] D. J. Kaup, Phys. Rev. 172, 1331 (1968).
[16] R. Ruffini and S. Bonazzola, Phys. Rev. 187, 1767 (1969).
[17] R. Brito, V. Cardoso, C. A. Herdeiro, and E. Radu, Phys.

Lett. B 752, 291 (2016).
[18] E. Seidel and W.-M. Suen, Phys. Rev. Lett. 72, 2516 (1994).
[19] F. Di Giovanni, N. Sanchis-Gual, C. A. R. Herdeiro, and

J. A. Font, Phys. Rev. D 98, 064044 (2018).
[20] A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper,

and J. March-Russell, Phys. Rev. D 81, 123530 (2010).
[21] A. Arvanitaki and S. Dubovsky, Phys. Rev. D 83, 044026

(2011).
[22] F. F. Freitas, C. A. R. Herdeiro, A. P. Morais, A. Onofre,

R. Pasechnik, E. Radu, N. Sanchis-Gual, and R. Santos,
J. Cosmol. Astropart. Phys. 12 (2021) 047.

[23] J. Calderón Bustillo, N. Sanchis-Gual, A. Torres-Forné,
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