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We present a calculation of the Detweiler redshift factor in binary black hole simulations based on its
relation to the surface gravity. The redshift factor has far-reaching applications in analytic approximations,
gravitational self-force calculations, and conservative two-body dynamics. By specializing to nonspinning,
quasicircular binaries with mass ratios ranging from mA=mB ¼ 1 to mA=mB ¼ 9.5 we are able to recover
the leading small-mass-ratio (SMR) prediction with relative differences of order 10−5 from simulations
alone. The next-to-leading order term that we extract agrees with the SMR prediction arising from self-
force calculations, with differences of a few percent. These deviations from the first-order conservative
prediction are consistent with nonadiabatic effects that can be accommodated in an SMR expansion. This
fact is also supported by a comparison to the conservative post-Newtonian prediction of the redshifts.
For the individual redshifts, a reexpansion in terms of the symmetric mass ratio ν does not improve the
convergence of the series. However we find that when looking at the sum of the redshift factors of both back
holes, zA þ zB, which is symmetric under the exchange of the masses, a reexpansion in ν accelerates its
convergence. Our work provides further evidence of the surprising effectiveness of SMR approximations in
modeling even comparable mass binary black holes.
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I. INTRODUCTION

With the planned launch of the space-based gravitational
wave detector LISA [1] in the next decade, there is a
pressing need to improve the modeling of sources of
milliHertz gravitational waves. A promising source of such
waves are extreme mass-ratio inspirals (EMRIs), which
are the inspiral of stellar-mass compact objects into
supermassive black holes. Such systems are expected
to have mass ratios ϵ ∼ 10−4 − 10−6, providing a natural
small parameter for approximating their evolution.
Meanwhile, intermediate-mass ratio inspirals (IMRIs) with
ϵ ∼ 10−2 − 10−4 may exist, sourcing gravitational waves
which are detectable by LISA when both components are
supermassive black holes, or by ground-based detectors
when the binary is composed of a stellar mass object and an
intermediate-mass black hole. Accurate modeling of the
gravitational waves produced by these IMRIs is crucial for
their detection and interpretation by current generation
detectors like LIGO [2], Virgo [3], and KAGRA [4], and
by future third-generation detectors such as Einstein
Telescope [5] and Cosmic Explorer [6,7].
Both EMRIs and IMRIs are of special interest as probes of

the strong gravity (e.g. [8,9]). Gravitational waves from such
systems are in the detectable regime only while the binary
orbit is highly relativistic, and numerical relativity (NR)

simulations of such systems are challenged by the large
ratio of scales that must be resolved and the large inspiral
timescales required for practical signals (e.g. [10–12]). As
such, the small mass-ratio (SMR) approximation, based on
the gravitational self-force (GSF) expansion of the metric
perturbation in integer powers of the mass ratio ϵ, is currently
the most practical method to solve Einstein’s equation
for these systems [13,14]. Recently, gravitational wave
fluxes [15] and waveforms [16] from nonspinning EMRIs
have been computed to second order in the SMR expansion,
a landmark result for LISA source modeling.
As the mass ratio becomes less extreme, as in the case of

IMRIs, one expects the SMR approximation to require
higher orders in the expansion to maintain the accuracy
of the approximation. However, little is known about the
convergence properties of the SMR expansion. It is
possible that at some intermediate mass ratio the SMR
series fails to converge to the exact solution at finite mass
ratio. The numerical relevance of higher order terms in the
series and its convergence properties can be assessed by
comparing to the exact solution provided by NR.
The first task in such comparisons is to identify pairs of

coordinate-invariant quantities whose invariant functional
relation can be used as a benchmark. Starting with [17], a
great body of work comparing different quantities to NR
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(see [18] for a review) suggests that the SMR approxima-
tion is applicable all the way down to comparable mass
binaries when reexpanding the SMR series in terms of the
symmetric mass ratio ν. In particular, an analysis of the
gravitational wave phase in [19] showed that, at least for
most of the inspiral, Oðν2Þ corrections to the phase
evolution seem to be small.
In this work we use as the basis of comparison a local

measure of the binary dynamics which has been studied
extensively in GSF calculations, the redshift factor z [20].
In an EMRI, z corresponds intuitively to the ratio between
the rate of passage of proper time at infinity to proper time
on the smaller body’s worldline. For a point particle
moving under conservative dynamics, this quantity is a
pseudoinvariant [20,21], meaning that is invariant under
perturbative coordinate transformations that respect the
symmetries (or averaged symmetries) of the orbit. This
property makes it an ideal reference quantity to compare
between different perturbative approaches and between
different gauge choices.
In addition to providing an essential benchmark for

approximation methods, the redshift is closely related to the
interaction Hamiltonian for the two bodies in the
conservative GSF approximation [22]. It also plays a
central role in the first law of binary black hole mechanics,
which relates the local redshift to the energy and angular
momentum measured at infinity [23]. This connection has
been used to compute the OðνÞ corrections to the binding
energy in [24], showing agreement with NR simulations
at moderate mass ratios, and to compute the conservative
ISCO shift in agreement with a previous GSF calculation
[25]. As a more practical application, it has been used to
inform the conservative sector of effective-one-body mod-
els, e.g. [26–28], that can ultimately be used to generate
waveforms.
The redshift factor was first calculated for circular,

nonspinning binaries, to first order in the SMR approxi-
mation using the GSF expansion of the metric, and to
second order in the post-Newtonian (PN) approximation for
generic mass ratios [20]. The formalism for computing the
redshift factor in the SMR limit was later extended to
eccentric orbits [21] and then to fully generic orbits in a
Kerr background [22]. It has been used to compare GSF
calculations in different gauges [29,30], and has been
computed for eccentric equatorial orbits in Kerr [31].
Meanwhile, analytical PN predictions for the redshift factor
were extended to 3PN, directly from the 3.5PN metric [32];
and 4PN, using the 4PN binding energy in combination
with the first law [23,33–36]; and comparisons made
between GSF and PN predictions for both circular and
eccentric orbits, e.g. [37]. First-order GSF results, which
are valid at all orders in the PN approximation, have been
used to numerically generate high-order PN predictions
e.g. [20,37]. Using a PN expansion of the GSF perturbation
(a double expansion), accurate analytical formulas for the

first order redshift have been provided. These include
the redshift to 21.5PN order for circular orbits in a
Schwarzschild background [38] and lower orders for
eccentric orbits and a spinning secondary. Similar expan-
sions exist for a Kerr background (e.g. [36,39,40]), and we
refer the reader to the Black Hole Perturbation Toolkit
repository [41] for the latest results.
In this work we make the connection between these

different approximations for the redshift factor and NR
simulations. This was first explored in [42], which provided
a prescription to calculate the redshift in NR simulations
using the extracted surface gravity on each black hole, and
used it to test the validity of the first law of binary dynamics
in a fully dynamical binary spacetime. In addition, in [43]
the redshift was extracted from quasiequilibrium initial data
solutions using this surface gravity prescription, to test the
zeroth and first law of binary mechanics, and found to agree
remarkably well with PN and first order GSF predictions.
Our work continues to explore the intersection between the
full nonlinear NR solutions, which in our case include
nonadiabatic effects from inspiral, and the SMR approxi-
mation. Our strategy will be similar to that in [19], starting
from a set of nonspinning and quasicircular NR simulations
at different mass ratios, we perform fits across mass ratios
at a fixed orbital frequency to test whether NR data alone
can recover the SMR prediction. We are also able to
estimate the value of higher-order coefficients in an
SMR expansion, and assess the validity of the adiabatic
approximation by comparing to the conservative PN and
SMR predictions for z.
We find that a polynomial fit of order N ¼ 5 to the NR

redshift captures all variability in the data. The fit recovers
the leading SMR prediction (geodesic) to one part in 10−5,
without requiring any input from geodesic or perturbation
theory. The next-to-leading order coefficient agrees well
with the existing conservative SMR prediction to a few
percent. We argue that this deviation is consistent with the
size of nonadiabatic effects, which we estimate from the
quantity _Ω=Ω2. Moreover our result shows that these
nonadiabatic effects can be accommodated in the SMR
expansion. A comparison to the conservative PN prediction
also supports this conclusion, with no improvement in
agreement with successive PN orders past 2PN, when
radiation-reaction becomes relevant at 2.5PN. Finally, we
confirm that a reexpansion in ν does not accelerate the
convergence of the individual redshift series, but we
propose a new symmetric combination of redshift factors
on the large and small black holes, Z ≔ zA þ zB. Fits of this
symmetric quantity converge very rapidly with ν, demon-
strating once again the compelling result that reexpansions
of low-order SMR predictions using ν rather than ϵ can be
accurate even at equal masses. We extract the SMR
coefficients of Z from our numerical simulations and
compare them with the predictions from perturbation
theory for both black holes, showing again a few percent
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deviation of order OðνÞ from the purely conservative
prediction, consistent with the measurement of nonadia-
batic effects.
Conventions In this study we use Greek indices for

spacetime quantities and Latin indices from the middle of
the alphabet for spatial quantities. We denote the compo-
nent masses as ma, using the Latin index a ¼ A, B to refer
to each of the binary black holes: the primary component
(larger mass) is labeled A and the secondary (smaller
mass) B. The total mass ism¼mAþmB. Since we consider
the mass ratio as a small parameter, we define the small
mass ratio ϵ ≔ mB=mA ≤ 1, and unconventionally define
the inverse mass ratio as q ≔ mA=mB ¼ 1=ϵ with q ≥ 1.
The symmetric mass ratio is ν ¼ mAmB=ðmA þmBÞ2, and
note ν ≤ 1=4. The mass unit of the numerical simulations
is M, and is very nearly equal to the initial ADM mass of
the simulations. Numerical indices and k are used to
indicate the order in ϵ of the SMR expansion.

II. REDSHIFT FACTOR

A. Redshift factor for circular orbits

The key property of pseudoinvariance of the redshift
factor is precise only when the binary spacetime has a
global helical Killing vector field (HKVF). This HKVF
takes the form

Kμ ¼ ∂
μ
t þ Ω∂μϕ: ð1Þ

Here ∂μt is a vector field that is timelike outside the history
T of some sphere, Ω is a constant corresponding to the
orbital frequency, and ∂μϕ is spacelike with integral curves of
length 2π [44]. For an asymptotically flat spacetime, ∂μt and
∂
μ
ϕ limits to asymptotic timelike and rotational Killing
vector fields, respectively. When considering a binary in a
spacetime with an exact HKVF, and where the secondary is
treated as a point particle, the orbit of the particle coincides
with the integral curves of the HKVF. In this case the
redshift factor is [20]

zB ¼ 1

ut
; ð2Þ

where uμ is the four-velocity of the particle.
For example, consider the circular orbit of a point

particle of mass mB around an Schwarzschild black hole
of mass mA. We are interested in the limit of small mass
ratio. At leading order, the point particle behaves like a test
mass: the worldline corresponds to an affinely parametrized
geodesic of the Schwarzschild metric gμν. Then the redshift
of the test mass is related to the orbital frequency of the
circular geodesic by

zSMR
B;0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3ðmAΩÞ2=3

q
: ð3Þ

At linear order in the mass ratio, the metric becomes
gμν ¼ g0μν þ ϵhμν where hμν is the metric perturbation
due to the presence of the small mass on the background
metric g0μν. For a point particle gμν diverges on the worldline
and so does the redshift. Instead, the redshift is defined
from the geodesic motion in an effective metric

g̃μν ¼ g0μν þ ϵhRμν; ð4Þ

where hRμν is a certain regular piece of the retarded metric
perturbation [45]. The regular metric perturbation can be
further split into dissipative (time antisymmetric) and
conservative (time symmetric) pieces [45]. The dynamics
due to the conservative part alone retains the symmetry of
the HKVF, and one can calculate from it an invariant OðϵÞ
contribution to the redshift given by [20]

zSMR
B;1 ¼ −

1

2
½1 − 3ðmAΩÞ2=3�hR;consμν uμ0u

ν
0: ð5Þ

This conservative, first order SMR term has been calculated
with very high precision using GSF codes in various
gauges. It can be calculated for any (stable and unstable)
circular orbit labeled by its invariant Ω. To compare to our
NR results we use the 4PN accurate formula for z in [43]
and the 21.5PN analytic formula for zSMR

B;1 ðmAΩÞ provided
by [38].

B. Redshift factor and surface gravity

A different but equivalent approach to calculating a
redshift is to consider the surface gravity when the small
particle is a black hole. If one insists in the existence of a
global HKVF in our binary spacetime, this can only be
achieved by having equal amounts of asymptotically
ingoing and outgoing radiation, in which case the space-
time is not asymptotically flat [46]. In such scenario Kμ is
proportional to the Killing horizon generators and the
surface gravity (uniform across each horizon [47]) is
given by [48]

Kμ∇μKνjHa
¼ κaKν: ð6Þ

The problem with this construction is that, without
asymptotic flatness, there is no natural normalization of
Kμ and the value of κ is free. One way around this is to
consider the small mass-ratio limit, with no incoming
radiation needed to preserve the HKVF. In this limit, using
matched asymptotic expansions, one can show the redshift
in Eq. (5) corresponds to [49]

zB ¼ 4mBκB: ð7Þ
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Briefly, imagine near the small black hole, using coordinates
such that the geometry is described by the stationary, tidally
perturbed, Schwarzschild black hole in [50]. In the limit
of large separation, v is the usual Eddington-Finkelstein
advanced-time coordinate. One can show that at this level of
approximation, ∂=∂v are the generators of the perturbed
horizon. Thus, the generators of the local symmetry kμ ¼
ð∂=∂vÞμ must be proportional to the generators of the global
symmetry Kμ. If we define the redshift by the constant of
proportionality between these normalizations of the HKVF,

kμ ¼ 1

z
Kμ; ð8Þ

where κ̄B denotes the effective surface gravity from equation
kμ∇μkνjHB

¼ κ̄Bkν and using Eqs. (6) and (8), one has

zB ¼ κB
κ̄B

: ð9Þ

More physically, we can understand this construction as
comparing the rate of passage of proper time between two
inertial observers. The first is at rest and asymptotically far
from the binary. The second is comoving with the smaller
black hole, close enough to neglect the curvature scale of
the larger black hole but far enough from it (in the so-called
buffer region) so that the divergent piece of the metric
perturbation goes to zero and the metric perturbation is
dominated by hRμν [42]. This construction is more suitable to
our numerical spacetime since it makes no explicit refer-
ence to a worldline and it also allows us to define a redshift
for the larger black hole.
We also define the redshift of the primary from Eq. (9)

applied to black holeA. A first order correction to the surface
gravity of the larger black hole due to an orbiting “moon” in
corotation was found in [51]. Using Eq. (9) to translate it into
a redshift and neglecting the numerically small contribution
from the small spin required by corotation, we have

zSMR
A;0 ¼ 1; ð10Þ

zSMR
A;1 ¼ −

ðmAΩÞ2=3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3ðmAΩÞ2=3

p : ð11Þ

This can be easily derived when assuming the integral
version of the first law [23,48] and our mapping between
the redshift and the surface gravity, which together give
mAzA þmBzB ¼ MB − 2ΩJB. Expanding both sides of the
equation in ϵ one has

zSMR
A ¼ 1þ ϵ½ESMR

0 − 2ðmAΩÞLSMR
0 − zSMR

B;0 �
þ ϵ2½−ESMR

0 þ ESMR
1 − 2ðmAΩÞLSMR

1 − zSMR
B;1 �

þOðϵ3Þ; ð12Þ

where E ¼ ðMB −mÞ=μ and L ¼ JB=ðμmÞ are the specific
binding energy and angular momentum of the binary. Their
first order corrections are directly related to zSMR

B;1 [17]. Note
how this assumption also gives a second order correction
to the surface gravity of the larger black hole in terms of
known quantities, which we state here for the first time and
test using NR simulations.

C. Redshift factor in NR simulations

The connection (9) between surface gravity and the
redshift factor provides our starting point for defining a
redshift factor za for the two black holes in NR simulations.
We use this relation in our simulations, although in reality
the emission of gravitational waves means that there is
no global HKVF; the best we can hope for is a slowly
evolving, approximate HKVF. Thus Eq. (9) is only strictly
true in the adiabatic limit, where the system evolves
through a sequence of conservative spacetimes labeled
by Ω. This is a good approximation during the inspiral
phase of our simulations, while Ω evolves “slowly” on the
orbital timescale, but it fails as the secondary approaches
the innermost stable circular orbit (ISCO). As a measure of
the nonadiabaticity of the system, we track the evolution
of the quantity _Ω=Ω2, which remains Oð10−2Þ through
much of each simulation, as discussed in Sec. IVA.
Moreover, in a numerical simulation we do not track the

event horizons of the black holes, and what we consider to
be the horizon should be the dynamical horizon H of the
type defined in [52]. However, in the adiabatic approxi-
mation, they can be approximated by Killing horizons. As a
first implementation of our NR definition of the redshift,
we proceed from Eq. (9), deriving a practical expression for
the surface gravity assuming the adiabatic approximation.
Regardless of whether the evolution is adiabatic, we can
take the result as our operational definition of the redshift
factor in NR.
To begin with, in our numerical spacetime it is useful to

express the HKVF in terms of 3þ 1 quantities

Kμ ¼ Nnμ þ βμ þΩ∂μϕ; ð13Þ

where N is the lapse, nμ is the normal vector to the surface
of constant time Σt, and βμ is the shift. The overall
normalization of the Killing field is fixed by our choice
of inertial frame at infinity. In that frame Kμ ¼ ð1; 0; 0;ΩÞ.
On H we calculate null normals lμ with the following
default normalization

lμ ¼ nμ þ sμffiffiffi
2

p ; ð14Þ

where sμ is the unit normal to the 2-sphere St corresponding
to the intersection of H with Σt. We fix the rescaling
freedom of the null normals lμ → αlμ by having them
match the Killing field (13) on the horizon. Matching the
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time component one finds α ¼ ffiffiffi
2

p
N. The rescaled null

normals are

ξμ ¼ Nðnμ þ sμÞ: ð15Þ
Equipped with this choice of null normals we calculate the
surface gravity pointwise on H. Consistent with the
adiabatic approximation, we neglect the term ξμ∇μ lnN.
The result, expressed with spatial quantities on Σt, is

κξ ¼ si∂iN − NKijsisj; ð16Þ

where Kij is the extrinsic curvature of Σt. This is consistent
with Eq. (10.10) in [53], when the evolution of the lapse
along the generators is neglected.
Since the horizons are not precisely Killing, κξ varies

across each black hole horizon. Figure 1 depicts the scaled
surface gravity κξ on the horizons for a quasicircular,
nonspinning binary simulation with q ¼ 8, illustrating the
variance of this quantity around its average. As a final step
we average κξ across each horizon at every time step,

hκξi ¼
1

A

Z
κξdA: ð17Þ

With the averaged surface gravity, we then calculate the
redshift of each black hole using

za ¼
hκξia
κ̄a

: ð18Þ

where in our simulations κ̄a ¼ 1=ð4maÞ is the
Schwarzschild surface gravity calculated from the quasi-
local areal mass ma ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aa=16π

p
.

III. NUMERICAL SIMULATIONS

In this section, we present the binary black hole
simulations used in this study and our extracted redshift
quantities za on each black hole. Equally important in
our comparisons to PN and SMR approximations is the
estimation of an appropriate pseudoinvariant orbital

frequency Ω. Before presenting za as a function of Ω,
we discuss several definitions of Ω, ultimately selecting a
corotating frame frequency Ωco derived directly from the
extrapolated gravitational waves [54].

A. Simulations used in this study

We extract the redshift factor from a sequence of non-
spinning binary black hole simulations, with mass ratios
varying from q ¼ 1 to q ¼ 15. These simulations were
carried out with the SpEC code [55,56] and are summarized
in Table I. SpEC is a pseudospectral code that uses the
extended conformal thin-sandwich method for initial data
[57–59], damped harmonic gauge [60–62] for the evolution,
and excision to remove the interior of each black hole [63].
Our simulations use one of two types of initial data: super-
imposed Kerr-Schild (SKS) [64] or superposed harmonic
Kerr (SHK) [65] which has the advantage of reducing the
initial junk radiation at the expense of not being able to
resolve high spins. This initial data uses the improvements
described in [66] to reduce the center ofmass (CoM)motion.
However, residual CoM motion remains in our simulations,
and the drift of the CoM introduces oscillations into our
extracted redshifts, as discussed below in Sec. III C. These
binaries are initialized in quasicircular orbits after using
iterative eccentricity reduction [67–69], so that initial the
orbital eccentricity is e0 ≲ 10−3.
We make use of data after the relaxation time t0 at which

junk radiation has sufficiently decayed [55]. For each
simulation we record the coordinate centers x⃗a of the
apparent horizons and the Christodoulou masses ma of the
black holes, with a ¼ A, B. We take as the value for each
mass the time average between t0 and t0 þ 4000M, and use
these masses to calculate the mass ratio q ¼ mA=mB. We
use the average of the surface gravity over the apparent
horizons to compute the redshift factor through Eq. (18).
We also make use of the gravitational wave emission from

our simulations to construct gauge-invariant measures of the
orbital frequency as described in Sec. III B. From each
simulation, thegravitationalwaves are extracted at finite radii
and extrapolated to infinity, as described in [72]. For our
analysis, we choose the fourth-order polynomial in inverse
areal radius r for our extrapolation, which is more accurate
than lower order polynomials during the early inspiral [72].
The retarded time is chosen according to Eq. (12) in [55].
The gravitational wave strain is further corrected for the
center ofmassmotion of the binary, using themethod of [70].
Nearly all our simulations have multiple resolutions

(Levs), and where appropriate we plot results from our
two highest resolutions. We repeat our analysis with both
these resolutions and incorporate the range of results in our
error estimates for the results presented in Sec. IV.

B. Orbital frequency

A reliable extraction of the orbital frequency, which
provides a gauge-invariant parametrization of the orbit,

FIG. 1. Scaled surface gravity κξ on each of our q ¼ 8 black
hole horizons.
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is as important as extracting the redshift. The reason is that
even though zðtÞ and ΩðtÞ are pseudoinvariant quantities in
the presence of a HKVF, their functional relation to t is not
(because t itself is gauge dependent). Instead, considering
zðΩÞ guarantees the same functional relation independent
of the gauge.
In the presence of a HKVF an invariant definition of Ω is

provided by the Killing condition. However such a binary
spacetime, as discussed earlier, would be eternally rotating at
a constant frequency. In the presence of dissipationΩ evolves
in time and we cannot rely on the HKVF to define it. We do
not attempt to define a new invariant frequency measure in
thiswork. Instead, we consider four different definitions ofΩ
that have been used in previous NR analysis and base our
choice in the intuitive requirements that Ω should coincide
with the HKVF Ω in the limit of a perfect circular orbit and
should be insensitive to gauge ambiguities.
We consider the following definitions of Ω, based on:
(i) The coordinate motion of the black hole centers,

Ωcoor ≔
jr⃗ × _r⃗j
r2

; ð19Þ

where r⃗ ¼ x⃗B − x⃗A is the relative position vector
between the two black holes.

(ii) The time derivative of the l ¼ 2, m ¼ 2 mode of the
gravitational wave phase Φ22 (sometimes denoted
by ϖ),

Ω22 ≔
1

2

dΦ22

dt
: ð20Þ

(iii) The definition of the corotating frame, for which the
time-dependence of the waveform is minimized, and
using the angular frequency of this frame,

Ωco ≔ ωz; ð21Þ

where ω is calculated according to formula (7c)
in [54] (see reference for details on the calculation).
We use the built in function for it in Scri [71].

(iv) The flux relation for circular orbits:

Ωcirc ≔
_E
_L
; ð22Þ

where the energy flux _E and angular momentum flux
_L are calculated from the extrapolated (N ¼ 4) and
CoM corrected strain and using all the available
modes (up to l ¼ 8).

TABLE I. Properties of the SpEC simulations used in this analysis. The subscript zero denotes the reference time (time at which junk
radiation has sufficiently decayed). The orbital frequency at that time isMΩ0. The approximate number of orbital cycles before merger
is Ncycles. The center of mass position jδxCoMj and velocity jvCoMj have been estimated using the estimate_avg_com_motion
function from Scri [70,71]. The parameters shown correspond to the highest resolution setting (Lev).

q Type MΩ0 Ncycles e0 jδxCoMj jvCoMj Highest levs SXS ID

1 SKS 0.01233 27.96 1.355 × 10−4 3.1363 × 10−6 1.5145 × 10−8 5,6 SXS:BBH:2513
1 SHK 0.01453 20.78 2.4 × 10−3 7.409 × 10−7 1.923 × 10−8 4,5 ExtCCE:0001
1.5 SKS 0.01250 28.98 5.77 × 10−5 0.001803 7.129 × 10−6 2,3 SXS:BBH:2331
2 SHK 0.01554 20.70 2.408 × 10−4 0.0002893 1.815 × 10−6 2,3 SXS:BBH:2497
2 SKS 0.01842 15.45 2.890 × 10−4 0.001761 5.1151 × 10−6 2,3 SXS:BBH:2425
3 SHK 0.01707 20.44 9.64 × 10−5 0.001900 4.287 × 10−6 2,3 SXS:BBH:2498
3.5 SKS 0.01477 27.76 2.665 × 10−4 0.01348 4.126 × 10−5 4,5 SXS:BBH:2483
4 SKS 0.01600 25.67 8.702 × 10−4 0.03156 1.613 × 10−5 4,5 SXS:BBH:2485
4 SHK 0.01824 20.07 8.25 × 10−5 0.001338 2.075 × 10−6 4,5 ExtCCE:0010
4.5 SKS 0.01616 27.37 8.289 × 10−4 0.0165 3.399 × 10−5 4,5 SXS:BBH:2484
5 SKS 0.01589 29.13 2.236 × 10−4 0.0233 3.217 × 10−5 4,5 SXS:BBH:2487
5.5 SKS 0.01592 30.81 4.442 × 10−4 0.03242 4.0443 × 10−5 4,5 SXS:BBH:2486
6 SKS 0.01588 32.62 5.864 × 10−4 0.022980 4.0374 × 10−5 4,5 SXS:BBH:2489
6.5 SKS 0.01599 34.43 7.263 × 10−4 0.037534 3.9212 × 10−5 4,5 SXS:BBH:2488
7 SKS 0.01577 36.16 3.612 × 10−4 0.02493 1.4183 × 10−5 4,5 SXS:BBH:2491
7.5 SKS 0.01597 37.89 5.524 × 10−4 0.04963 3.694 × 10−5 4,5 SXS:BBH:2490
8 SKS 0.01584 39.53 6.688 × 10−4 0.05589 5.876 × 10−5 5 SXS:BBH:2493
8.5 SKS 0.01594 41.31 8.578 × 10−4 0.04370 3.00178 × 10−5 5 SXS:BBH:2492
9 SKS 0.01583 43.16 2.010 × 10−4 0.02375 3.5280 × 10−5 4,5 SXS:BBH:2495
9.5 SKS 0.01585 44.93 1.584 × 10−4 0.03413 3.8326 × 10−5 1,4 SXS:BBH:2494

14a SHK 0.02292 27.70 3.814 × 10−4 0.0016026 1.747 × 10−6 2,3 SXS:BBH:2480
15a SHK 0.02317 27.94 3.692 × 10−4 0.001791 2.815 × 10−6 2,3 SXS:BBH:2477

aThe q ¼ 14 and q ¼ 15 simulations are used in the PN comparisons but are not included in the fits for the reason discussed
in Sec. IVA.
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In Fig. 2 we compare these using Ωco as a baseline. In
this and all our figures, the shading of the curves ranges
from lighter to darker as we move from lower q to higher q.
The four definitions coincide early in the inspiral. The
largest deviations correspond to ΔΩcoor, with relative
differences growing much faster than the others. This
may be expected, since the definition is based on the
gauge-dependent quantity r⃗ defined with respect to the
simulation coordinates. The relative differences between
Ω22, Ωcirc, and Ωco are below 0.01% for all of the inspiral
(before the ISCO frequencyMΩISCO ¼ 6−3=2). We also see
that Ω22 approaches Ωco for more equal mass ratios. In
contrast, Ωcirc approaches Ωco for smaller mass ratios
(larger q). This is a desired behavior, since at a fixed
frequency we expect smaller departures from circularity at
smaller mass ratios (larger q). We speculate that the reason
thatΩco better limits to the expected behavior at small mass
ratios is that at these mass ratios, where emission from
higher angular harmonics is more important, it better
captures the overall phase evolution of the binary than
the leading l ¼ 2, m ¼ 2 mode. For this reason we use Ωco
as the orbital frequency in our SMR analysis. However we
have checked that using Ω22 or Ωcirc does not substantially
change any of the results presented here. Results of the
analysis using Ωcoor are shown in Appendix A, and while
this choice of frequency shows larger discrepancies with
our preferred choice Ωco, it does not change our main
conclusions.

C. Correcting CoM-induced redshift oscillations

One challenge encountered by our analysis is that our
simulations exhibit center of mass (CoM) motion that
induces small oscillations in the extracted redshift. These

oscillations in zBðmAΩcoÞ are illustrated in Fig. 3 for a
subset of our simulations which clearly display this affect.
The oscillations are quite small, and to display them we first
subtract out the geodesic predictions zSMR

0 . Nevertheless
they contaminate our SMR analysis, which requires high
precision. They do not appear to be due to orbital
eccentricity: they grow during the simulations, although
orbital eccentricity is expected to decay; further they are
generally larger than e20 effects we would expect from our
initial eccentricities. We also plot the upper and lower
envelopes of the oscillation in Fig. 3, as well as our final
corrected values for the redshift, using the procedure
described below.
First, we argue that these oscillations are due to the CoM

motion. As discussed in Sec. II C the redshift factor relies
on a normalization of the approximate HKVF at asymptotic
infinity, which requires a choice of an asymptotic inertial
frame. In the PN approximation this frame is centered with
respect to the binary’s center of mass in the limit of large
separation, and in the SMR approximation it is centered
around the larger black hole. By contrast, in our NR
simulations we cannot a priori precisely select the asymp-
totic inertial frame, and it is in general different for each
simulation. Different asymptotic inertial frames in general
measure a different redshift (provided there is a map of
asymptotic quantities onto the horizon, which there is if one
assumes a HKVF).
The coordinate motion of the Newtonian center of mass

illustrates the CoM motion. We can see the binary drifting
away from the origin while exhibiting epicyclic motion for
our q ¼ 8.5 simulation in the inset of Fig. 4. This motion is

FIG. 2. Relative difference between the corotating frequency
Ωco and the other measures of the orbital frequency: Ωcoor (dash-
dotted), Ωcirc (dotted), Ω22 (dashed). Differences are shown for
the range of mass ratios covered by our simulations at the highest
resolution.

FIG. 3. Uncorrected redshifts (thin lines), displaying the CoM
motion-induced oscillations. Also plotted are the corrected red-
shifts (thick lines) and upper and lower envelopes (dashed lines),
found using the sampling method. The envelopes are quadratic
splines through the zðmAΩcoðtiÞÞ points defined by
ΩcoorðtiÞ − ΩB;coorðtiÞ ¼ 0. The amplitude of the oscillations is
larger for higher q (smaller mass ratio). The modulations in the
envelope are consistent with the residual eccentricity.
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a clear sign that the Killing field in Eq. (13) is not centered
with respect to the simulation’s inertial coordinates.
Further, Fig. 5 shows correlation between the amplitude
of the redshift oscillations and the average displacement
from the origin of the simulation coordinates. The

amplitude for both black holes in each simulations is
plotted, and can be differentiated by the fact that the larger
black holes always display smaller amplitude oscillations.
The average displacement is found by fitting xCoMðtÞ and
yCoMðtÞ to an low degree polynomial, which smooths over
the epicycles, and taking the norm jxCoMðtÞ2 þ yCoMðtÞ2j.
The amplitude of the redshift oscillations is the difference
between the upper and lower envelopes of the oscillations.
For the smaller black hole, the amplitude grows nearly
linearly with the displacement of the CoM, almost inde-
pendent of the mass ratio. For the larger black hole, the
amplitude also also grows close to linearly, and we can
observe a small dependence on the mass ratio. The
oscillations in Fig. 5 are due to further modulations in
the envelopes, and we find that these secondary modu-
lations are consistent with the orbital eccentricity.
Although there are rigorous methods to correct for the

CoM effects on the waveform [73], these do not apply to
the redshift data, since the latter is measured on the
apparent horizons rather than at asymptotic infinity. An
equivalent method to correct for the redshift would require
an invariant notion of the surface gravity on a dynamical
horizon, the definition of which is beyond the scope of this
work. Instead we apply an empirical method to remove the
oscillations. To estimate any possible bias introduced by
our chosen method, we compared it with a q ¼ 4 simu-
lation with the same initial parameters but with highly
reduced CoM displacement. We found minimal differences
between these case, below the error due to the choice of Ω.
This comparison is in Appendix B.
To remove the oscillations we tried three different

methods. Our preferred method is a sampling method
which finds the upper and lower envelopes of the oscil-
lations and takes their mid-line as the corrected version of
the redshift. For this approach, we find the envelopes by
solving for the roots ti of the function

ΩcoorðtiÞ − Ωa;coorðtiÞ; ð23Þ

for each black hole, where

Ωa;coor ¼
jx⃗a × _x⃗aj

x2a
: ð24Þ

Sampling the redshift at ti gives us points that empirically
track the envelopes remarkably well. As seen in Fig. 4,
these roots select out those instants in the orbit when we
expect the coordinate velocity to be aligned or antialigned
with the overall CoM drift. However, the magnitude of the
redshift oscillations is larger than expected from consid-
ering these modulations to be caused by CoM velocity,
and so this does not offer a complete explanation for the
practical success of this method. With the points ti in hand,
we use quadratic interpolation to get the envelopes. The
value of z at any other t is given by the midline between the

FIG. 5. Instantaneous average displacement of the CoM plotted
against the amplitude of the oscillations in the redshifts for both
the larger and smaller black holes. The larger black hole displays
smaller amplitudes in all cases. The residual oscillations in these
curves correspond to modulations in the amplitude which are well
correlated with the residual eccentricity (see Table I).

FIG. 4. Trajectory of the smaller black hole center x⃗B and CoM
x⃗CoM in simulation coordinates. The points marked with dots
correspond to the “minima” of the redshift while the crosses
correspond to the “maxima.” One can see from the figure that
they roughly match the points where the small black hole’s
velocity is maximized and minimized by picking up a contribu-
tion from the average CoM drift velocity.
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two interpolants. This procedure can be visualized in
Fig. 6 for the mass ratio q ¼ 8.5, which has noticeable
redshift oscillations, as a function of both mAΩco and
mAΩcoor.
In addition to the sampling method, we tried removing

the oscillations in z using a rolling average over an orbital
cycle and a rolling linear fit over an orbital cycle. We find
that the sampling method performs best, and we use it for
our fiducial analysis, but we present the other methods and
a comparison between them and our q ¼ 4 SHK simulation
in Appendix B. For all of the methods we use the local
measure of the orbital frequency Ω ¼ Ωcoor to correct the
redshift. This choice was made because the oscillations
were found to correlate with Ωcoor better than with Ωco.
However, when analyzing the corrected zðtÞ as a function
of ΩðtÞ, we choose Ω ¼ Ωco. The difference between the
two choices (Ωco vs Ωcoor) is shown in the upper panel of
Fig. 6 after subtracting zSMR

0 . Our choice of zðmAΩcoÞ is
further justified by the behavior at large frequency, where
we expect the redshift to decrease as the smaller black hole
plunges into the larger, as occurs in the geodesic limit.
Figure 3 shows the resulting envelopes for a range of

mass ratios as a function of mAΩco. We observed that SKS
simulations show more oscillations than the SHK. This is
expected since SKS initial data has more junk radiation
which can add initial momentum to the binary than seen in
SHK simulations [65]. For the SKS simulations, oscilla-
tions also tend to be more prominent for lower mass ratios
(higher q). The small modulations on the envelopes, more
noticeable at low frequencies, are well correlated with the
presence of small initial eccentricity.

Figures 7 and 8 show the corrected redshift curves that
are used in the SMR analysis alongside the SMR pre-
dictions. The lower panels in those figures show the
resulting curves after subtracting the leading SMR pre-
diction and dividing by the mass ratio. Note that the GSF
predictions give za as a function of the dimensionless
frequency mAΩ, not the natural frequency MΩ of the
simulations. Thus when plotting multiple simulations
together, a fixed mAΩco represents a later portion of the
simulation for more equal-mass binaries than for lower
mass ratios. Meanwhile, our methods cannot capture the
plunge dynamics near ISCO. Therefore, the range of
frequencies we can treat is limited by when our equal-
mass simulations approach the ISCO frequency. On the
other hand, we can provide results to higher frequencies
when plotting against mΩco. Similarly, the lowest frequen-
cies we can access are controlled by the lowest frequencies
achieved across our simulations, which is limited by the
simulations with lowest mass ratio (highest q).
In the upper panel of Fig. 7 we see the clear clustering

of the curves toward the test particle predictions as we
move to smaller mass ratios (larger q). In the lower panel,

FIG. 6. Visualization of how the sampling works for the
q ¼ 8.5 SKS simulation (with noticeable oscillations). Upper
panel: raw redshift data and the corresponding envelopes ob-
tained using the sampling method. We show the results for both
zBðmAΩcoÞ and zBðmAΩcoorÞ. Bottom panel: ΩB;coor and Ωcoor as
a function of mAΩcoor. The intersection of ΩB;coor with the
diagonal gives the ti used to generate the envelopes. Quartic
splines are constructed from ΩcoðtiÞ and ΩcoorðtiÞ.

FIG. 7. Upper panel: corrected zB for all mass ratios in Table I
and the leading (geodesic) SMR prediction. The two highest
resolutions for each simulation are plotted in the figure. Bottom
panel: corrected zB after subtracting the leading (geodesic) SMR
prediction and multiplying by the expected q scaling. zSMR

1

(dashed line) is the prediction from self-force calculations. The
two highest resolutions for each simulation are plotted in the
figure.
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we similarly see the convergence of these curves to the
known first SMR correction computed from GSF at low
mass ratios, with the difference between each simulation
and the dashed curve illustrating as-yet-unknown second-
order and higher SMR corrections. Meanwhile, in Fig. 8 we
again see the convergence in the upper panel to the leading-
order, trivial prediction zSMR

A;0 ¼ 1 for the larger black hole.
The lower panel shows simultaneously the convergence to
the first SMR correction of zA, and the remarkable fact that
higher order corrections are numerically very small. In the
next section, we show that these extracted redshift factors
have a consistent SMR expansion in powers of the small
mass ratio ϵ, compare them to PN and GSF predictions, and
measure both nonadiabatic corrections to these predictions
and unknown, higher order terms in the SMR expansion.

IV. RESULTS

A. SMR limit in NR and PN comparisons

As discussed in Sec. II A, the redshift factor for a point
particle on a circular orbit is a well-defined invariant of the
conservative dynamics. In a PN expansion, one can derive

it from the 3.5PN metric [74] after neglecting the radiation
reaction terms at 2.5PN and 3.5PN order and using the
definition

za ¼
dτa
dt

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνðxaÞuμauνa

q
; ð25Þ

where xa is the coordinate location of each point particle. In
the SMR approximation, the conservative redshift is given
by the time-symmetric component of the GSF metric
perturbation sourced by the circular geodesic of frequency
Ω. When comparing both conservative approximations, PN
and SMR successfully converge to one another in their
respective domains of validity.
In NR simulations such splitting between conservative

and dissipative dynamics is not available, and our redshift
definition in Eq. (18) can only coincide with the
conservative redshift in the adiabatic approximation. A
measure of the nonadiabaticity in our simulations is given
by the quantity _Ω=Ω2. Figure 9 shows the value of this
quantity for the range of frequencies and mass ratios used in
this analysis. Nonadiabatic effects grow with frequency and

FIG. 8. Upper panel: corrected zA for all mass ratios in Table I
and the leading SMR prediction. The two highest resolutions for
each simulation are plotted in the figure. Bottom panel: corrected
zA after subtracting the leading (geodesic) SMR prediction and
multiplying by the expected q scaling. zSMR

1 (dashed line) is the
prediction from [51] (after neglecting the small spin). The two
highest resolutions for each simulation are plotted in the figure.

FIG. 9. Upper panel: nonadiabaticity as measured by _Ω=Ω2

using Ω ¼ Ωco. As expected, it grows with frequency and is
smaller for lower mass ratios. Bottom panel: same parameter
rescaling by q ¼ ϵ−1. The overlapping of the curves at low
frequency indicates that _Ω=Ω2 ∼OðϵÞ. We also show the
OðϵÞSMR prediction from expanding _Ω ¼ ðdE=dtÞð∂E=∂ΩÞ−1
to first order in ϵ. We used the energy flux data for circular orbits
provided by [41].
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they vanish in the SMR limit as expected. The bottom panel
of Fig. 9 confirms that they scale asOðϵÞ. From this, we see
that nonadiabatic corrections to the SMR predictions are
expected to arise at OðϵÞ, at a level of several percent. To
confirm this expectation, we compare our numerical red-
shifts to PN predictions and their SMR limit.
Figures 10 and 11 show the NR redshifts as a function of

the mass ratio at a reference mAΩ ¼ 0.025 and the
corresponding PN predictions from Eq. (4.2) in [43] (upper
panels). We plot each PN order separately as well as their
residuals zNRa − zPNa (bottom panels). We selected this mAΩ
as the smallest frequency that allows us to also show the
q ¼ 14 and q ¼ 15 redshifts after their relaxation times,
since these simulations start at a higher frequency.
Figure 10 shows no improvement in the 3PN and 4PN

residuals over the 2PN. These PN predictions are
conservative, and so this is not surprising. Dissipative
effects, arising first at the 2.5PN order, can begin to
contaminate the extracted zB in our NR simulations, and
so we cannot expect our residuals to improve past 2PN at

finite mass ratios. However, a known feature of the 3.5PN
equations of motion for circular, nonspinning binaries is
that in the limit ϵ → 0 the 2.5PN and 3.5PN terms, entering
at order OðνÞ, vanish [74]. One is left with the “even” PN
terms which contain Oðν0Þ terms. Thus, the even PN series
alone must converge to the geodesic limit. This means that
as we approach ϵ ¼ 0, radiation-reaction is suppressed and
the residuals between zNRB and zPNB should match the
residuals between zSMR

B;0 and zPNB from analytic theory.
These last are marked for each PN order with a star on
the vertical axis of the bottom panel of Fig. 10. We can see
that the trend in the residuals is indeed consistent with their
expected value at ϵ ¼ 0. This shows that the NR data
approaches the SMR prediction for smaller ϵ. Further, we
expect that NR simulations with an even smaller mass ratio
than those presented here would follow the trend in our
residuals, so that eventually the 3PN and 4PN predictions
would out perform 2PN. We also note that for the finite
mass ratios and for all frequencies of our analysis, the 2PN
prediction for zB always outperforms the SMR prediction
from GSF.

FIG. 10. Upper panel: redshift of the smaller black hole across
mass ratios, PN predictions (solid lines) and SMR predictions
(dashed lines). Bottom panel: PN residuals as a function of the
mass ratio for the smaller black hole. The points marked with a
star correspond to the expected PN minus SMR value at ϵ ¼ 0.
Dots correspond to highest resolution data while crosses are the
lower available resolution data.

FIG. 11. Upper panel: reference quantity ðzA − 1Þϵ−1 of the
larger black hole across mass ratios (points), PN prediction (solid
lines) and SMR predictions (dashed line). Bottom panel: PN
residuals as a function of the mass ratio for the smaller black hole.
The points marked with a star correspond to the expected PN
minus SMR value at ϵ ¼ 0. Dots correspond to highest resolution
data while crosses are the lower available resolution data.
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For the larger black hole the situation is slightly different.
When ϵ ¼ 0 all PN orders other than 0PN vanish and zA ¼ 1
(the black hole is at rest). Thus we show the residuals for zA
after subtracting the 0PN result and multiplying by ϵ−1 in
Fig. 11. In the limit ϵ → 0, ðzSMR

A − 1Þϵ−1 converges to a
finite value for each PN order. These are againmarked with a
star on thevertical axis of the bottom panel of Fig. 11. Except
for the q ¼ 14 and q ¼ 15, the trend in these residuals is
again consistent with the first-order SMR prediction in [51]
as well as the second-order prediction in Eq. (12). The figure
also shows the PN prediction converging toward the SMR
prediction in the limit of small mass ratio.
The residuals for the q ¼ 14 and q ¼ 15 depart from the

general trend. These simulations are clear outliers. Although
they were carried out at lower resolution settings than our
other simulations at high q, one can argue that the nearly
equal residualsΔzA betweenLevs 2 and 3 indicates this is not
due to resolution effects. Closer investigation of the data
reveals a transient effect which occurs at early times
t ∼ 1000M, and which results in a small, persistent shift
in the redshifts on the larger black holes. This shift is present
to some degree in all simulations, with an increased effect
with higher q. The direction of the shift differs depending on
the initial data type, SKS or SHK. For these reasons the effect
is much more pronounced for our highest q simulations,
q ¼ 14 andq ¼ 15, which are of SHK type.While the nature
of this early transient is uncertain, it coincides with the time
when the initial junk radiation reaches the larger black hole
after reflecting from the outer boundary. It may be that much
higher resolution is needed on the horizons of our highest q
simulations. Due to their clear departure from the trends of
the residuals of the other simulations, we omit the q > 9.5
simulations from our SMR fits in Sec. IV B. In the future,
higher resolution simulations at high q, and alternative initial
data prescriptions, may provide key confirmation of our
findings at lower q.
We stress that the results of these PN comparisons are

consistent with the appearance of dissipative effects at
2.5PN. To account for dissipation effects of OðϵÞ, when
comparing to conservative SMR predictions in the next
section we must adopt an agnostic strategy. Instead of
subtracting the successive SMR predictions to our NR data
and analyzing their residuals, we fit the NR redshift data
directly to a series expansion in ϵ, only afterward compar-
ing the resulting coefficients of the fit to the SMR adiabatic
prediction. As we shall see, the leading SMR prediction is
recovered to great accuracy, which allows us to repeat the
fit after calibrating with the leading order prediction. This is
not the case at the next-to-leading order.

B. Extracting the SMR approximation
from NR for the smaller black hole

In the SMR approximation the redshift of the small black
hole is written as a series expansion in integer powers of the
mass ratio ϵ of the form

zB ¼
XN
k¼0

ϵkzkðmAΩÞ: ð26Þ

The leading term in this series, zSMR
0 ðmAΩÞ, corresponds to

the smaller black hole’s “effective” center of mass moving
on a circular geodesic, and is given by Eq. (3). To find the
linear correction zSMR

1 ðmAΩÞ, one typically solves the
linearized Einstein equation sourced by the circular geo-
desic. This first-order redshift is given by Eq. (5). Going
beyond linear order implies solving successive higher order
approximations to the Einstein equation.
Note that outside of the radius of convergence of

Eq. (26), there is no guarantee that a fit of the data to a
power series should recover the SMR approximation. In
other words, we should be cautious in extrapolating the NR
data to ϵ ¼ 0 and drawing conclusions about the SMR
coefficients from this. Only if Eq. (26) converges to the
exact result for all mass ratios we are guaranteed to recover
the “true” coefficients from NR fits. Our results suggest that
this is in fact the case. To validate our extrapolation method
we provide convergence tests in Appendix C.
In order to extract the SMR coefficients from our NR

data we do the following: at a fixed mAΩ, we perform a
least squares fit of the redshift to Eq. (26) for different
values of N. Figure 12 shows the results of these fits for the
(lowest available) reference frequency, mAΩ ¼ 0.018. The
N ¼ 1, 2, 3 fits clearly leave behind features in the data,
seen as structures in the residuals in the middle panel of
Fig. 12. The residuals for the N ¼ 4, 5 fits meanwhile do
not seem to favor one over the other.
It is tempting to select N ¼ 4 to avoid overfitting the

data. However, a more careful study of the convergence
of the fit coefficients with N shows that they converge
exponentially for our highest resolution simulations up
until N ¼ 5. Beyond this, we do not see convergence with
increasing N. In addition, we employ several metrics of
goodness of fit (AIC, BIC, and the adjusted R-squared
tests). These show improvement until N ¼ 4, with no
improvement beyond this. Our final, decisive criterion is
seen in the inset of the top panel of Fig. 12: we continue to
see convergence of the fitted zB to the geodesic prediction
in the ϵ → 0 limit until N ¼ 5. For these reasons, we
conclude that N ¼ 5 terms are required in our SMR fit. We
present our convergence tests in Appendix C.
Figure 13 shows the extracted values of the coefficients

for N ¼ 5 fit for zBðmAΩÞ. The error bands correspond to
the largest of: the range in variation in these coefficients
obtained by repeating the fit using a lower resolution
while keeping N ¼ 5 and in repeating the fit at the highest
high resolution but using N ¼ 4; and the one-sigma
deviation obtained from the high resolution (N ¼ 5) least
squares fit. These fits are one of the primary results of
our study.
Remarkably, for the range of frequencies analyzed here,

the leading order coefficient zNR0 of the fit agrees at the level
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of a 10−5 relative difference with zSMR
0 . The next coef-

ficient, zNR1 , deviates from the SMR prediction at the level
of nonadiabatic contributions which are 2%≲ _Ω=Ω2 ≲
10% for the equal mass binary. We see that zNR2 , which
is currently unavailable from GSF calculations, agrees at
the same level with the SMR prediction generated from the
3PN series. We also find that higher order coefficients
alternate in sign and decrease in magnitude.

C. Result of calibrating the fits for zB with zSMR
0

The agreement between zNR0 and zSMR
0 suggests that we

can use the leading SMR result to calibrate our fit by fitting
instead the residuals after subtracting zSMR

0 . This is equiv-
alent to forcing the fits through the SMR prediction at
ϵ ¼ 0. This calibration is further justified by noting that
nonadiabatic effects are not expected to have an effect at
leading order, _Ω=Ω2 ¼ OðϵÞ.
Figure 14 shows the fit to ðzNR0 − zSMR

0 Þϵ−1. The intercept
of the new fit corresponds to zNR1 . The extracted coefficients
as a function of mAΩ after this calibration are given in
Fig. 15. The error bars are estimated in the same way as for

the uncalibrated fit. After calibrating the fit, the predicted
coefficients don’t change significantly, however the error
bands are significantly reduced. From the calibrated fit one
can more confidently see that there is a deviation from the
zSMR
1 conservative prediction. This percent-level deviation
is consistent with nonadiabatic effects of the same order.
This is also the reason why we do not further calibrate our
fits using zSMR

1 . Finally, although they agree within the NR

error bars, the difference between zNR2 and zSMRð3PNÞ
2 and

zNR3 and zSMRð3PNÞ
3 is also consistent with this nonadiabatic

effect. The higher order terms zNR4 and zNR5 extracted here
show a clear departure from their corresponding 3PN
prediction. Although we do not have the same level of
confidence in our fits to these higher-order coefficients, we
speculate that they are consistent with an alternating,
convergent series even for ϵ ¼ 1. However, more accurate
measurements of higher-order coefficients would be
required to establish that. As an aside, we point out that
this alternating-in-sign behavior is reproduced by the SMR

FIG. 12. Upper panel: NR fits for N ¼ 2, 3, 4, 5 at a fixed
mAΩ ¼ 0.018 (solid lines) and the SMR predictions (dashed
lines). Middle panel: residuals of the N ¼ 2, 3. Bottom panel:
residuals of the N ¼ 4, 5. Shaded area corresponds to the
difference between the two highest resolutions available.

FIG. 13. Upper two panels: extracted coefficients from the NR
fit (colored bands) and the SMR predictions. Dashed line
corresponds to the 21.5PN formula for zSMR

B;1 . Dotted lines
represent the SMR coefficient generated from the 3PN redshift
series. Bottom panel: difference between the leading order SMR
prediction and the extracted zNR0 coefficient from the NR fit with
N ¼ 5. The color bands correspond to a conservative error
estimated by the range of repeated calculations using: a lower
resolution, N ¼ 4 fit and one-sigma deviation from the N ¼ 5 fit.
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expansion of the conservative 3PN redshift series, shown as
dashed lines in Fig. 15. There, as opposed to the NR result,
successive higher order coefficients increase in magnitude.

D. Reexpansion in the symmetric mass ratio ν

Previous comparisons between the SMR approximations
and NR have suggested that a reexpansion of the SMR
series in terms of the symmetric mass ratio ν can extend the
regime of validity of the SMR series to comparable-mass
binaries. Especially promising are indications that OðϵÞ
predictions provide good agreement with NR results. A
common feature of the quantities for which the ν reex-
pansion is effective is the symmetry under the exchange
mA ↔ mB (e.g. binding energy, periastron advance, gravi-
tational wave phase). The quantities zAðmAΩÞ and
zBðmAΩÞ separately do not have this property. However
the sum of the two Z ≔ zA þ zB as a function of mΩ is
invariant under this transformation. Moreover, Ref. [43]
shows the first law implies that the redshift factors take
the schematic form za ¼ fðν; xÞ � gðν; xÞ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4ν
p

, with þ
selecting the larger body and − the smaller. This suggests
that the direct sum of the two redshifts cancels part of the

ν dependence. These facts motivate us to explore the simple
sum Z in our simulations, and expand it in terms of ν as

ZðmΩÞ ≔ zA þ zB ¼
XN
k¼0

νkZk: ð27Þ

We verified that an attempt to fit za to an integer power
series in ν shows no convergence, which is justified by the
expected functional dependence of za on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ν

p
, as

discussed above and in [43].
The coefficients Z0 and Z1 are known in the SMR

approximation and are given by Eqs. (3), (5), (10) and (11)
after reexpanding them in terms of mΩ. This requires
taking into account an extra OðϵÞ term from expanding
mA ¼ mð1 − ϵÞ þOðϵ2Þ in zSMR

B;0 ðmAΩÞ. This is exactly
canceled by the first order term zSMR

A;1 ðmΩÞ due to the first
law equality

FIG. 14. Upper panel: calibrated NR fits for N ¼ 3, 4, 5 at a
fixed mAΩ ¼ 0.018 (solid lines) and the SMR prediction (dashed
line). Middle panel: residuals of the N ¼ 3, 4 fits. Bottom panel:
residuals of the N ¼ 4, 5 fits. Shaded area corresponds to the
difference between the two highest resolutions available.

FIG. 15. Upper two panels: extracted coefficients from the
calibrated NR fit (colored bands) and the SMR predictions (dotted
lines) generated from the 3PN series. Bottom panel: relative
difference between the zSMR

1 prediction and the extracted zNR1
coefficient. The color bands correspond to a conservative error
estimated by the range of repeated calculations using: a lower
resolution, N ¼ 4 fit and one-sigma deviation from the N ¼ 5 fit.
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∂zB
∂mA

¼ ∂zA
∂mB

; ð28Þ

which is a convenient feature of Z.
In Fig. 16 we show Z as a function of the symmetric

mass ratio at a reference mΩ ¼ 0.022 (the lowest available
for all mass ratios to have achieved relaxation time). The
distinct linear trend in the data is a clear indication that the
OðνÞ term alone captures most of the variation across all
mass ratios, including the equal mass case, and that Oðν2Þ
corrections are very small. From this and a convergence
study of the coefficients Zk (Appendix C), we conclude that
N ¼ 2 terms are sufficient for fitting our data.
Figure 17 shows the NR-predicted value of the coef-

ficients truncating the series at N ¼ 2 for a range of
frequencies up to the geodesic ISCO frequency, as well
as the SMR predictions and our estimated error bands. This
lower-order polynomial fit for Z is more stable to variations
in the data, it gives comparable results even if we do not
correct for the CoM-induced oscillations discussed in
Sec. III C, and so we also show the results of the fit if

we do not correct for the oscillations (thin lines). The
midline trend of the oscillating, uncorrected coefficients is
consistent with our corrected results.
We find good agreement between our fit coefficients and

the leading Oðν0Þ prediction (bottom panel) up to a few
cycles before merger, where we expect the quasicircular
approximation to break down. Similarly note the smallness
of the Oðν2Þ coefficient and good agreement with its PN
predicted value. Finally, note how NR predicted OðνÞ
coefficient approaches the SMR prediction toward the more
adiabatic region of the inspiral (lower frequencies) while
the disagreement grows toward the less adiabatic region
(higher frequencies). The percent-level deviations from the
conservative prediction are again consistent with the non-
adiabaticity of the system as measured by _Ω=Ω2 in Fig. 9.

V. CONCLUSIONS

In this work we give a detailed analysis of the Detweiler
redshift factor as extracted from NR simulations using the
surface gravity on apparent horizons. We find that CoM
motion imprints small oscillations in the extracted redshifts,
and demonstrate a method for removing these effects.
With our corrected redshift factors, we give a detailed
analysis showing that the NR results admit a consistent
SMR expansion including good agreement with analytic

FIG. 17. Upper panel: extracted coefficients from the NR fit
(colored bands) and the SMR predictions (dashed and dotted
lines). Bottom panel: difference between the leading order SMR
prediction and the extracted ZNR

0 coefficient from the NR fit with
N ¼ 2. The color bands correspond to a conservative error
estimated by the range of repeated calculations using: a lower
resolution, N ¼ 1 fit and one-sigma deviation from the N ¼ 2 fit.FIG. 16. Upper panel: NR fits for N ¼ 1, 2 at a fixed mΩ ¼

0.022 (solid lines) and the SMR predictions (dashed lines).
Bottom panel: residuals of the N ¼ 1, 2 fits (blue and orange)
and the residuals with respect to the SMR prediction (black). The
SMR residuals follow a linear trend, illustrating the missingOðνÞ
nonadiabatic contribution. Shaded area corresponds to the differ-
ence between the two highest resolutions available.
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predictions and a clear measurement of the imprint of
nonadiabatic effects on the redshift beginning at OðϵÞ.
By fitting the NR redshift to a series expansion in ϵ we

recover with great accuracy the leading (geodesic) coef-
ficient of the SMR approximation, when fitting the data to a
N ¼ 5 polynomial. This gives us confidence in our SMR
extraction procedure and allowed us to estimate the value of
higher order coefficients. In particular, we provide a
prediction for the Oðϵ2Þ term in the SMR expansion,
which has not been predicted by GSF methods to date.
When considering the symmetric quantity Z ≔ zA þ zB,
a reexpansion in ν is very effective, with the OðνÞ term
capturing most variability in the data. In all cases, the
disagreement that we observe at first order with the
conservative SMR predictions is consistent with percent-
level nonadiabatic effects at the same order.
Similar analysis of the SMR limit in NR have been done

in the past. Some of the earliest analyses treated quantities
measured locally by the trajectories, such as the periastron
advance [17] or other ratios of orbital frequencies [75], but
which can in principle bemeasured from gravitational waves
at infinity. Many others considered quantities encoded
directly in the gravitational waves, such as the binding
energy [24] and the gravitational wave phase [19]. In
contrast, the redshift in our simulations is computed from
quantities measured on the black hole horizons, providing a
direct point of comparison with local self-force calculations.
In the past, most analysis have dealt with direct compar-

isons between NR and conservative SMR predictions at
fixed mass ratios. In all cases the SMR approximation
worked remarkably well after reexpanding in terms of the
symmetric mass ratio, even in the presence of dissipation.
Our results further illuminate previous studies by showing
the extent to which nonadiabatic effects are important when
comparing to NR simulations. In particular, this analysis
shows that they appear as percent contributions at first
order in the SMR expansion of the redshift. However, some
caution is merited in interpreting these nonadiabatic
effects, since there is currently no preferred definition
of the redshift factor in the presence of dissipation. In
particular we already made use of the connection between
the redshift and the surface gravity which is strict only in
the adiabatic approximation when defining our surface
gravity in Eq. (18).
Recently, the two-timescale expansion [76] has provided

a framework for the first direct calculation of the second
order GSF, which was used to calculate the binding energy
and energy flux [15,77] for circular orbits in a
Schwarzschild background to post-adiabatic accuracy.
Both are in good agreement with NR. Using these results
in combination with the Bondi-Sachs mass-loss formula,
the corresponding (postadiabatic) waveforms were gener-
ated in [16]. As suggested in [76], this formalism can
potentially be used to calculate the second order local GSF.
With it, one could calculate the first order correction to the

orbital frequency and the second order redshift. Our work
can provide a comparison for these results in the future.
There are a number of avenues to extend our results. In

recent years there has been progress on formalizing and
calculating the gauge invariant redshift for eccentric orbits,
with comparisons between SMR and PN. A similar analysis
to the one presented here will be given for eccentric orbits
in a forthcoming paper. Another natural and important
extension of this work would be to investigate the redshift
factor of spinning black holes in NR simulations, first
for circular and then eccentric and precessing orbits. The
redshift factor contains important information about the
conservative dynamics of these generic orbits, through its
relation to the interaction Hamiltonian between the two
bodies [22]. Especially interesting would be the develop-
ment of an improved measure of the redshift factor in
numerical spacetimes, perhaps one that can account for the
nonadiabatic effects we have measured. A possible direc-
tion here is the calculation of the best approximate HKFV
in the simulation, as is done in SpEC to measure black hole
spins use approximate axial Killing vectors [55,64,78].
Finally, a limitation of our analysis is that it neglects

departures from noncircularity due to radiation-reaction.
The effect of radiation-reaction on the redshift is not
considered in the GSF and PN calculations with a
HKVF (exact or averaged in the case of eccentric binaries)
used in our comparison, which can partly explain the
disagreement we found at first order. A future comparison
in the light of two-timescale calculations [76], which
necessarily take into account the secular change to Ω,
can help better understand the limitations of assuming a
HKVF. The work in [79] also showed that for a consistent
matching between the adiabatic inspiral and the transition
regime one should take into account the secular change to
Ω during the adiabatic inspiral due to radiation-reaction.
We hope to extend the NR-SMR comparison to the
transition dynamics in future work.
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APPENDIX A: RESULTS USING mΩcoor

In Sec. III B we discussed the different choices ofΩ used
to compare our results to analytic approximations and
extract the SMR expansion for zaðmAΩÞ. Figure 18 shows
the results of our SMR fits when applied usingΩcoor, a local
measure of the orbital frequency constructed from the
coordinate centers of the black holes. We see that the
leading order term zNR0 ðmAΩcoorÞ is in worse agreement
with the prediction from geodesic theory than our fiducial
analysis, differing by 10−4 rather than ≲10−5 throughout
the range of our analysis. We take this as evidence that
gauge-invariant frequency choices based on gravitational
waves are preferred for understanding the SMR limit of NR
simulations and for comparison to analytic results. Broadly
speaking however, the SMR coefficients extracted with this
choice follow the same patterns as our fiducial analysis, and

both the first and second order SMR coefficients agree with
analytic approximations up to the dissipative effects not
captured by conservative predictions. This analysis shows
clear evidence of these nonadiabatic corrections to the first
SMR correction to geodesic theory as our fiducial analysis,
with the same sign an approximate size.

APPENDIX B: CENTER OF MASS CORRECTION
VALIDATION: COMPARISON
OF SHK AND SKS CASES

To estimate the potential bias introduced by the sampling
method to correct for the CoM induced oscillations we
have compared the q ¼ 4 SKS with jvj ≈ 1.6 × 10−5 and
jδxCoMj ¼ 0.032 to the q ¼ 4 SHK with jvj ≈ 2 × 10−6 and
jδxCoMj ¼ 0.001. Figure 19 shows the trajectory of the
CoMwith respect to the simulations coordinates for each of
these simulations (using highest resolution data). It is clear
from here that the SHK initial data does better at keeping
the binary centered in these coordinates, and it has
negligible redshift oscillations. We can therefore use the
SHK as a ground truth reference for our approaches for
correcting the redshift.
In addition to the sampling method, we tried two

additional methods for correcting za:
(i) Rolling average. The corrected redshift at any

mAΩðtÞ is given by

FIG. 18. Equivalent to Fig. 13 using zBðmAΩcoorÞ instead.

FIG. 19. Trajectory of the q ¼ 4 CoM motion from r⃗CoM ¼
ðmAx⃗A þmBx⃗BÞ=ðmA þmBÞ for the SHK initial data (dashed)
and the SKS initial data (solid). The CoM drift is an order of
magnitude smaller for the SHK data. See Table I for an estimate
of the CoM coordinate velocities.
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zðtÞ ¼ 1

T

Z
tþT=2

t−T=2
zðt0Þdt0: ðB1Þ

where T is the oscillation period T ¼ 1=ð2πΩÞ.
(ii) Rolling linear fit. The corrected redshift at any

mAΩðtÞ is given by

zðtÞ ¼ aðtÞ þ bðtÞmAΩðtÞ; ðB2Þ

where a and b are the coefficients of a linear fit to the
redshift data over a window size of one period T
centered at t, and thus vary as we scan over t.

Figure 20 shows the how these two methods and our
fiducial method for correcting the redshift factor via
sampling and averaging the envelopes compare. We plot
the difference between the zaðmAΩcoÞ extracted from the
SKS simulation, with and without corrections, and the SHK
simulation. We see that the sampling method and rolling

linear fit both perform similarly, keeping to the midline of
the uncorrected result and remaining close to the SHK
redshift for all frequencies. The sampling method is
preferred as it further smooths over the small residual
modulations seen in the rolling linear fit. Meanwhile, the
rolling average remains very close to the SHK results at
lower frequencies (earlier times), but diverges strongly at
later times, which is why we do not prefer it.
We also show the same comparisons for zaðmAΩcoorÞ in

Fig. 21, where the agreement between SKS and SHK
is even better. This again illustrates that the sampling
method performs better than the other methods we tried.
Interestingly, the difference between the comparisons for
each frequency parametrization indicate that the local
orbital dynamics of the two cases is very similar, but that
their orbital frequencies measured asymptotically from the
gravitational waves features a slight offset. This in turn may
be due to the differences in CoM motion.

FIG. 20. Upper panel: comparison between different methods
to correct for the redshift oscillations as a function of Ωco for
black hole A. The corrections shown have been applied to the
SKS q ¼ 4 simulation and are compared against the SHK q ¼ 4.
Lower panel: the same comparison as above for black hole B.

FIG. 21. Upper panel: comparison between different methods
to correct for the redshift oscillations as a function of Ωcoor for
black hole A. The corrections shown have been applied to the
q ¼ 4 SKS simulation and are compared against the q ¼ 4 SHK.
Lower panel: the same comparison as above for black hole B.
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APPENDIX C: CONVERGENCE TESTS TO
SELECT SMR FIT ORDERS N

When fitting the NR data to the power series in Eq. (26)
we need to make a choice of N. If it is too low the fit will
not capture all the “real” features in the data, as it is clear
from the N ¼ 2 residuals in Fig. 12. Conversely, if N is too
large we will start to fit the noise in the data and
extrapolation of the SMR approximation will not be
reliable anymore. An optimal N ¼ 5 was selected by
looking at the convergence of the coefficients zNRk
with N. For completeness we also calculated the AICc
and BIC metrics for model selection and the (unbiased)
adjusted R-squared.
Figure 22 shows the values of the model selection

metrics as well as the convergence of the coefficients with
N, for both high- and low-resolution simulations. This is
shown at a reference frequency mAΩ ¼ 0.018, but the
qualitative behavior of these metrics is similar for all
frequencies analyzed.
All metrics clearly reject fits with N < 4. For N > 4,

the values of AICc, BIC and log ð1 − R̄2Þ are not as

informative. Confidence intervals for these metrics tend
to increase for smaller sample size (n ¼ 20 in our case) and
the number of fit parameters (N). We can see how they vary
when using the lower resolution data as an estimate of their
variance. The N ¼ 5 values for these metrics are too close
to the N ¼ 4 to discard that model. To establish an upper
bound on N, we look instead at the convergence of each of
the coefficients with N. Since we are interested in testing
whether we can recover the SMR approximation from NR,
it is relevant to consider whether zNRk converges with N.
The convergence of zNRk should also serve as a test to
prevent overfitting. With the high resolution data, the
convergence is exponential and the relative differences
between resolutions are minimized for N ¼ 5. Following
these criteria, we have selected N ¼ 5 in our fits for zB.

FIG. 22. Upper panel: AICc and BIC values. Bottom panel:
value of 1 − R̄2 and the convergence of the coefficients with N.
Calculated at a fixed mAΩ ¼ 0.018. Dots indicate results using
higher resolution data and crosses correspond to the result using
lower resolution data.

FIG. 23. Upper panel: convergence of fit coefficient zNR0 with N
as a function of mAΩ, illustrated using the relative differences
δNzNR0 between successive N fits. The lowest relative differences
between the fit with N coefficients and N − 1 coefficients is
achieved for N ¼ 5. Lower panel: convergence of ZNR

0 fit
coefficient of N for the fit of ZðmΩcoÞ to a series expansion
in ν. The lowest relative differences in this case are achieved
for N ¼ 2.
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Nevertheless the N ¼ 4 result is used to establish the error
bands in our final results, as discussed in the main text.
Figure 23 shows the value of

δNzNR0 ≔ ðzNR0;N − zNR0;N−1Þ=zNR0;N ðC1Þ
for N ≤ 6, as a function of mAΩ. Similar results are
obtained for the higher order coefficients. They all show
convergence for N ≤ 5. At the same time, it is zNR0;N¼5 that
comes closest to the zSMR

0 prediction. Figure 12 shows in

detail the shift of the intercept for different choices ofN at a
reference mAΩ ¼ 0.018, illustrating this result.
Finally, we show the convergence of the coefficients of

the expansion of ZðmΩÞ in Fig. 17. Here the relative
differences δNZ show a sharp drop going from N ¼ 1 to
N ¼ 2, with the latter displaying a noisiness which may be
due to numerical truncation. Going beyond this to N ¼ 3
results in an increase in the relative differences, so we
cannot achieve convergence with our dataset beyond
N ¼ 2.
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