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In a strong electromagnetic field, gravitational waves are converted into electromagnetic waves of the
same frequency, and vice versa. Here, we calculate scattering and conversion cross sections for a planar
wave impinging upon a Reissner-Nordström black hole in electrovacuum, using the partial-wave expansion
and numerical methods. We show that, at long wavelengths, the conversion cross section matches that
computed by Feynman-diagram techniques, and at short wavelengths, the essential features are captured by
a geometric-optics approximation. We demonstrate that the converted flux can exceed the scattered flux at
large scattering angles, for highly-charged black holes. In the short-wavelength regime, the conversion
effect may be understood in terms of a conversion phase that accumulates along a ray. We compute the
scattering angle for which the converted and scattered fluxes are equal, as a function of charge-to-mass
ratio; and we show that this scattering angle approaches 90° in the extremal limit.
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I. INTRODUCTION

The Gertsenshteı̆n-Zel’dovich (GZ) effect [1,2] is the
conversion of electromagnetic waves into gravitational
waves, and vice versa, in the presence of a strong magnetic
field. It is a classical (i.e., nonquantum) phenomenon that is
nevertheless extremely weak, since it involves coupling to
gravity. In a uniform transverse magnetic field B⊥, electro-
magnetic waves (EWs) are converted into gravitational
waves (GWs), and vice versa, over a length scale of
L ¼ π

2
cffiffiffiffiffiffiffiffiffi

4πϵ0G
p

B⊥
≈ 1.77 Mpcð B⊥

1 GaussÞ−1. The effect is poten-
tially significant in the early Universe [3–5], where the
combination of cosmic magnetic fields and primordial
gravitational waves could generate distortions of the
cosmic microwave background (CMB) spectrum [6].
The interconversion of EWs and GWs in various

nonuniform electromagnetic field configurations has been
studied from a theoretical perspective. In 1977, De Logi
and Mickelson [7] applied Feynman perturbation tech-
niques to study “catalytic” conversion in static electromag-
netic fields. The low-energy graviton-to-photon (g → γ)
conversion cross section in the Coulomb field of a fixed
charge Q in SI units is [7,8]

dσ
dΩ

g→γ ¼ GQ2

4πϵ0c4
cot2ðθ=2Þðcos4ðθ=2Þ þ sin4ðθ=2ÞÞ: ð1Þ

The first (second) term in parentheses is associated with the
cross section for generating an electromagnetic wave of the
same (opposite) handedness as the incident gravitational
wave [7]. The conversion cross section exhibits a θ−2

divergence in the forward direction, distinct in character
from the more familiar Rutherford divergence (θ−4). The
dominant contribution is from the photon-pole (‘t-pole’)
Feynman diagram, rather than the ‘seagull’ diagram of
Compton scattering [8].
A macroscopic realization of a fixed charge is the

Reissner-Nordström (RN) black hole, of massM and charge
Q. In classical field theory, a RN black hole can support
charges of up toQmax¼M

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4πϵ0G

p
≈ 1.7×1020ðM=M⊙ÞC.

On the other hand, astrophysical black holes are unlikely
to possess a charge any greater than 1C per solar mass,
some twenty orders of magnitude lower, due to charge-
neutralization effects [9].
The conversion of EW and GWs by a RN black hole has

been addressed by many authors since 1974 [10–27].
Johnston et al. showed that an uncharged massive particle
falling into a RN black hole will generate EM waves [10];
and conversely, that an infalling charged particle will
generate GWs [12]. Gerlach [14] and Sibgatullin [15]
showed that, in the high-frequency (geometric-optics)
regime, there is a beating between electromagnetic and
gravitational modes, associated with a periodic transfer of
energy. Moncrief [17–19] reduced the coupled system of
electromagnetic and gravitational perturbation equations on
the RN spacetime to a pair of decoupled second-order
ODEs, for each parity and angular harmonic. Olson and
Unruh [16] studied the odd-parity sector in the WKB
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regime. Matzner [23] addressed the conversion of a
incident planar wave via the partial-wave approach, focus-
sing particularly on the l ¼ 2 mode. Fabbri [28] also
addressed scattering and conversion cross sections. Breuer
et al. [26] calculated the conversion scattering cross section
under the Born approximation. Chandrasekhar [24]
extended the work of Moncrief, clarifying the phase
relationship between odd and even parity perturbations.
Gunter [25] calculated phase shifts, conversion factors and
quasi-normal mode frequencies. Torres del Castillo [29,30]
derived asymptotic expressions for Maxwell and Weyl
scalars from Hertz-Debye potentials. More recently, the
γ → γ and g → g scattering cross sections were calculated
by Crispino et al. in Refs. [31,32], and scalar-field
scattering was examined in Ref. [33]. The construction
of the metric perturbation and vector potential in Regge-
Wheeler gauge was described in Refs. [34,35].
In this work, we calculate the scattering and conversion

cross sections for a monochromatic planar wave impinging
upon a RN black hole, using both the partial-wave method
and a geometric-optics approximation. The scattering
scenario is described by a pair of dimensionless parameters,
Mω and Q=M. We focus particularly on the differential
cross section for the conversion of an incident electromag-
netic wave to an outgoing gravitational wave, which is
equal to the cross section for the opposite process.
The article is organized as follows. After introducing the

linearized Einstein-Maxwell system in Sec. II A, we review
the separation of variables method achieved byMoncrief for
the RN black hole in Sec. II B. The partial-wave expressions
for the scattering amplitudes and cross sections are sum-
marized in Sec. II C. Notes on the numerical method in
Sec. II D are followed by a description of the geometric
optics approximation in Sec. II E. The key results are
presented in Sec. III, and we conclude with a discussion
in Sec. IV. Throughout, we adopt units such that
G ¼ c ¼ 4πϵ0 ¼ 1, and∇μ denotes the covariant derivative.

II. METHOD

A. The linearized Einstein-Maxwell system

Following the standard approach of Refs. [1,2,10,14,19],
we start by assuming that the dynamical variables can be split
into the sum of background and perturbation terms, so that
themetric and vector potential take the form gμν ¼ gμν þ hμν
and Aμ ¼ Aμ þ αμ, respectively. At linear order, the field
equations for the Einstein-Maxwell system (Gμν ¼ 8πG

c4 Tμν

and ∇νFμν ¼ Jμ) in electrovacuum are [13,14]

□h̄μν þ 2Rσ
μ
γ
νh̄σγ − 2Rðμγh̄νÞγ − gμνRγδh̄γδ þ Rh̄μν

¼ −
16πG
c4

δTμν; ð2aÞ

□αμ − Rν
μαν ¼ δSμ. ð2bÞ

Here the trace-reversed metric perturbation h̄μν ¼ hμν −
1
2
hgμν and perturbed vector potential αμ are in Lorenz gauge:

∇μh̄μν ¼ 0 ¼ ∇μαμ. Covariant derivatives are taken with
respect on the background spacetime, and the d’Alembertian
is□ ¼ gμν∇μ∇ν. HereRμνγσ,Rμν, andR denote theRiemann
tensor, theRicci tensor and theRicci scalar of thebackground
spacetime. The source term δSμ in the electromagnetic
field equation is [14] δSμ ≡ 2gνγδΓσ

ν½μFγ�σ , where δΓσ
μν ¼

gσγð∇ðμhνÞγ − 1
2
∇γhμνÞ is the perturbation in the Christoffel

connection due to the metric perturbation, and Fγσ is the
background electromagnetic field tensor. The source term in
the gravitational field equation δTμν is given in Refs. [13,14].
In the following sections, we consider the linearized
Einstein-Maxwell system for the specific case in which
the background spacetime and field tensor correspond to a
charged black hole.

B. Perturbations of the Reissner-Nordström spacetime

ARN black hole of massM and chargeQ is described by
the line element

ds2 ¼ −fðrÞdt2 þ f−1ðrÞdr2 þ r2dΩ2; ð3Þ

where fðrÞ ¼ 1–2M=rþQ2=r2 ¼ ð1 − rþ=rÞð1 − r−=rÞ
with r� ¼ M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
, and dΩ2 ¼ dθ2 þ sin2 θdϕ2

denotes the line element on the unit 2-sphere S2.
Moncrief [17–19] showed that the set of coupled

equations governing the metric perturbation and vector
potential is amenable to a separation of variables.
Assuming harmonic time dependence (e−iωt), and separat-
ing with spin-weighted spherical harmonics, sYm

l ðθÞ, the
dynamical degrees of freedom are encapsulated by a pair of

radial functions Zðe=oÞ
1ωl ðrÞ and Zðe=oÞ

2ωl ðrÞ for each parity
(e=o), which are governed by a decoupled pair of second-
order ordinary differential equations, viz.,

�
d2

dr2�
þ ω2 − Vðe=oÞ

sl ðrÞ
�
Zðe=oÞ
sωl ðrÞ ¼ 0: ð4Þ

Here s ∈ f1; 2g, and the symbol e (o) denotes even
(odd) parity. The tortoise coordinate r� is defined by
dr�=dr ¼ 1=fðrÞ. Moncrief’s odd-parity potential is

VðoÞ
sl ðrÞ ¼ fðrÞ

�
Λþ 2

r2
−
qs
r3

�
1þ 6M − qs

Λr

��
; ð5Þ

where Λ≡ ðl − 1Þðlþ 2Þ and

q1 ¼ 3M −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 þ 4ΛQ2

p
; ð6aÞ

q2 ¼ 3M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 þ 4ΛQ2

p
: ð6bÞ
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(N.B. Here q1 and q2 are defined in the opposite order to
in Refs. [24,25], in order to simplify the subsequent
expressions.)
Chandrasekhar [24,36] showed that Moncrief’s even-

parity potential can be written as

VðeÞ
sl ðrÞ ¼ VðoÞ

sl ðrÞ þ 2qs
d
dr�

�
fðrÞ

rðqs þ ΛrÞ
�
; ð7Þ

and odd and even-parity functions are related by [24,25,36]

½ΛðΛþ 2Þ ∓ 2iωqs�Zðe=oÞ
sωl

¼
�
ΛðΛþ 2Þ þ 2q2s

rðΛrþ qsÞ
fðrÞ � 2qsfðrÞ

d
dr

�
Zðo=eÞ
sωl :

ð8Þ
Here, the upper (lower) sign is associated with the first
(second) choice of parity in the superscript.
The relationship between the master variables Zðe=oÞ

sωl ðrÞ
and the metric perturbation and vector potential is sum-
marized in Eqs. (1), (3), and (10) of Ref. [30] (see also
Chapter 5 in Ref. [36]).
We now define the modes that are ingoing at the

horizon (i.e., in the limit r → rþ and r� → −∞) in the
standard way,

Zinðe=oÞ
sωl ðrÞ ¼

�e−iωr� ; r� → −∞;

Að−;e=oÞ
slω e−iωr� þ Aðþ;e=oÞ

slω eþiωr� ; r� → þ∞;

ð9Þ

where the coefficients Að�;e=oÞ
slω are complex amplitudes

such that jAð−;e=oÞ
slω j2− jAðþ;e=oÞ

slω j2¼1. It follows from Eq. (8)

that the coefficient Að−;e=oÞ
slω does not depend on parity

Að−;eÞ
slω ¼ Að−;oÞ

slω ≡ Að−Þ
slω; ð10Þ

whereas the coefficients Aðþ;e=oÞ
slω are parity dependent,

Aðþ;eÞ
slω

Aðþ;oÞ
slω

¼ ΛðΛþ 2Þ þ 2iωqs
ΛðΛþ 2Þ − 2iωqs

: ð11Þ

The reflection coefficient Rðe=oÞ
s is

Rðe=oÞ
s ≡ Aðþ;e=oÞ

slω

Að−Þ
slω

: ð12Þ

The electromagnetic (H) and gravitational (Q) perturba-
tions are derived from the radial functions [17–19]

Hðe=oÞ ≡ cos αZðe=oÞ
1ωl − P sin αZðe=oÞ

2ωl ; ð13aÞ

Qðe=oÞ ≡ P sin αZðe=oÞ
1ωl þ cos αZðe=oÞ

2ωl ; ð13bÞ

where P ¼ þ1 for even parity and P ¼ −1 for odd parity.
Here [17–19],

cos2α ¼ q2
q2 − q1

; sin2α ¼ −q1
q2 − q1

;

sinð2αÞ ¼ −2 ffiffiffiffiffiffiffiffiffiffiffiffiffi−q1q2
p
q2 − q1

¼ −2QΛ1=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 þ 4ΛQ2

p : ð14Þ

The conversion coefficient Cðe=oÞ is

Cðe=oÞ ¼
				 12 sinð2αÞðRðe=oÞ

1 −Rðe=oÞ
2 Þ

				2: ð15Þ

This is the fraction of the incident wave [in an lω mode of
parity (e=o)] that is converted from electromagnetic to
gravitational, and vice versa [36,37].

C. Scattering amplitudes

The amplitudes for planar wave scattering by a RN
black hole are summarized below. A full derivation is given
in Ref. [38] (see also Refs. [23,39] for details). Here f is
the helicity-preserving amplitude, and g is the helicity-
reversing amplitude. The superscripts si and sf refer to the
spins of the initial and final fields, with s ¼ 1 for an
electromagnetic wave and s ¼ 2 for a gravitational wave.
For example, fð11Þ is the amplitude for scattering a circular-
polarized incoming electromagnetic wave to an outgoing
electromagnetic wave of the same handedness, and gð12Þ is
the amplitude for converting an incoming electromagnetic
wave (si ¼ 1) to an outgoing gravitational wave (sf ¼ 2) of
the opposite handedness.
The amplitudes are

fðsisfÞðθÞ ¼ π

iω

X∞
l¼lmin

½ðSðe;sisfÞl þ S
ðo;sisfÞ
l Þ − 2δsisf �

× −siY
si
l ð0Þ−sfYsi

l
ðθÞ; ð16aÞ

gðsisfÞðθÞ ¼ π

iω

X∞
l¼lmin

ð−1Þl½ðSðe;sisfÞl − S
ðo;sisfÞ
l Þ�

× −siY
si
l ð0Þ−sfYsi

l
ðπ − θÞ; ð16bÞ

where lmin ≡maxðsi; sfÞ and δsisf is the Kronecker delta.
Here SY

m
l ðθÞ are spin-weighted spherical harmonics. The

associated cross section is

dσ
dΩ

si→sf ¼ jfðsisfÞðθÞj2 þ jgðsisfÞðθÞj2: ð16cÞ

The scattering coefficients in Eqs. (16) are
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Sðe=o;11Þl ¼ ð−1Þlþ1ðcos2 αRðe=oÞ
1 þ sin2 αRðe=oÞ

2 Þ; ð17aÞ

Sðe=o;22Þl ¼ ð−1Þlþ1ðsin2 αRðe=oÞ
1 þ cos2 αRðe=oÞ

2 Þ; ð17bÞ

Sðe=o;12Þl ¼ Sðe=o;21Þl ¼ ð−1Þlþ1
1

2
sinð2αÞðRðe=oÞ

1 −Rðe=oÞ
2 Þ;
ð17cÞ

where sin2 α, cos2 α, and sinð2αÞ are defined in Eq. (14),
and the reflection coefficients in Eq. (12). The square

magnitude of the scattering coefficient Sðe=o;12Þl is equal to
the conversion coefficient Cðe=oÞ of Eq. (15).
In this work, we focus on the conversion cross sections

(si ≠ sf). The γ → g and g → γ conversion cross sections
are equal, dσ

dΩ
1→2 ¼ dσ

dΩ
2→1. In the Schwarzschild limit

(Q → 0 ⇒ α → 0), the conversion cross sections vanish
½fð12Þ ¼ gð12Þ ¼ 0]. In this same limit, the helicity-reversing
amplitude vanishes in the electromagnetic case [gð11Þ ¼ 0],
but not in the gravitational case [gð22Þ ≠ 0].

D. Numerical method

In order to numerically construct the scattering cross
sections (16c), i.e., the scattering amplitudes (16a) and
(16b) for the different processes (γ → γ, g → g, and γ → g),

we need the scattering coefficients S
ðe=o;sisfÞ
l (17). For this

purpose:
(1) We have constructed the functions Zðe=oÞ

sωl ðrÞ, the

coefficients Að�;e=oÞ
slω as well as the reflection coef-

ficientsRðe=oÞ
s . To do this, we numerically integrated

the second-order ordinary differential equations (4)
using the Runge-Kutta method. In order to initialize
the process, we start with a Frobenius series ex-
pansion of the solution that is regular on the future
horizon [Eq. (9)]. We determined the coefficients

Að�;e=oÞ
slω by comparing the numerical solution at large

r with the solutions to asymptotic expansions with
ingoing and outgoing behavior at spatial infinity.
The numerical results were independently per-
formed for the two parities for each spin. To check
the robustness and consistency of our numerical
calculations, we have used the Chandrasekhar rela-
tions (8) and (11).

(2) We summed 120 l-modes to construct the scattering
amplitudes (16a) and (16b) for the different proc-
esses. The series representations of the scattering
amplitudes in Eqs. (16a) and (16b) suffer of a lack of
convergence with l. This is due to the long-range
nature of the electromagnetic and gravitational field
interactions, or in other words, the 1=r falloff in
Newtonian/Coulomb potentials, which leads to a
divergence of the cross sections in the θ → 0 limit.
To handle this, we have used the method described

in the Appendix of Ref. [40] to accelerate the
convergence of the mode sum. All numerical cal-
culations were performed with the software package
Mathematica.

E. Rays and the geometric-optics approximation

In the short-wavelength (high-frequency) regime, wave
propagation is typically well described by a geometric-
optics approximation, in which null geodesics (‘rays’) play
a central role. Introducing the ansatz αμ ¼ ReAsμeiΦðxÞ=ϵ
for the vector potential in Lorenz gauge in vacuum,
standard geometric-optics in vacuum (e.g., Box 5.6 in
Ref. [41]) yields that (i) the gradient of the phase kμ ≡∇μΦ
is tangent to a null geodesic, (ii) the amplitude A is
inversely proportional to the cross-sectional area of ray
bundles, and (iii) the polarization vector sμ is parallel
transported along each ray.
Gerlach [14,22] and Sibgatullin [15] have applied

the geometric-optics method to address the problem of
the conversion of EM and GWs in a background field in the
short-wavelength regime, starting with the linearized
Einstein-Maxwell equations in Eqs. (2). These authors find
that, in an arbitrary electromagnetic field, there are two
coupled phenomena: (i) a periodic exchange of energy
between electromagnetic and gravitational fields, and
(ii) Faraday rotation of the polarization planes. In general,
the Faraday rotation necessitates the introduction of Euler
angles and a somewhat sophisticated analysis [22].
However, in cases in which the configuration of the ray
and the background electromagnetic field is such that the
Maxwell scalar ϕ0 has a constant complex phase along
the ray, then phenomenon (ii) is not present [15] and the
analysis of (i) is straightforward. This is precisely the case
for rays around a Reissner-Nordström black hole, as we
now shall describe.
The relevant Maxwell scalar is defined as ϕ0 ≡ Fμνkμmν,

where Fμν is the background field and mμ is a transverse,
parallel-transported complex null vector satisfyingm ·m ¼
m · k ¼ 0,m·m�¼1 and k ·∇mμ¼0 (here a · b≡ gμνaμbν).
As standard,mμ is constructed from a pair of real transverse
unit spacelike vectors, mμ ¼ 1ffiffi

2
p ðeμ1 þ ieμ2Þ, where e1 · e1 ¼

e2 · e2 ¼ 1, e1 · e2 ¼ 0 ¼ ei · k, and k ·∇eμi ¼ 0 (here
i ∈ f1; 2g). Now, without loss of generality (due to
spherical symmetry), consider a ray in the equatorial
plane (θ ¼ π=2). We can choose the vector eμ2 to be the
unit, spacelike vector orthogonal to the equatorial plane,
eμ2 ¼ ½0; 0; ðgθθÞ−1=2; 0�. This vector is parallel-transported
along the ray, that is, it satisfies the preceding conditions.
It is quick to see thatFμνeν2 ¼ 0 for the RN black hole, since
the background field is radial. Consequently ϕ0 is real, and
the Faraday rotation phenomenon is absent. The remaining
orthogonal vector eμ1 ≡ sμ lies in the equatorial plane.
A key result in Refs. [14,15] is that, along a ray, the

(normalized) EM and GW amplitudes Aγ and Ag obey
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Aγ ¼ AðλÞ sin χðλÞ; ð18aÞ

Ag ¼ AðλÞ cos χðλÞ; ð18bÞ

where χ is the conversion phase, defined by an integral
along the ray,

χðλÞ ¼
ffiffiffiffiffi
G
c4

r Z
Fμνkμsνdλ: ð19Þ

For a RN black hole, there is only one nontrivial component
of the background field, Ftr ¼ −Frt ¼ Q=r2, and so
Eq. (19) becomes (with G ¼ c ¼ 1)

χðλÞ ¼ Q
Z ðktsr − krstÞ

r2
dλ: ð20Þ

A ray in the equatorial plane has a tangent vector
kα ≡ dxα=dλ ¼ ½E=f; _r; 0; Eb=r2�, where E and b are
constants of motion associated with time-translation and
axial symmetries of the spacetime. Without loss of general-
ity, we scale the affine parameter λ such that E ¼ 1, so that
b has the interpretation of an impact parameter of the ray.
The null condition gμνkμkν ¼ 0 yields the energy equation,
_r2 ¼ 1 − fðrÞb2=r2 ≡Uðr; bÞ. The photon orbit radius rc
(see Fig. 1) and critical impact parameter bc follow from
the conditions Uðr;bÞ ¼ ∂rUðr; bÞ ¼ 0, yielding

rc ¼
1

2
M


3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9−8ðQ=MÞ2

q �
; bc ¼

rcffiffiffiffiffiffiffiffiffiffiffi
fðrcÞ

p : ð21Þ

The orbital equation for a ray with impact parameter b is

�
du
dϕ

�
2

¼ M2

b2
− u2ð1 − 2uþ ðQ=MÞ2u2Þ≡ βðuÞ; ð22Þ

where u≡M=r, and the deflection angle for a ray, Θ, can
be expressed formally as an integral,

Θ ¼ 2

Z
u1

0

duffiffiffiffiffiffiffiffiffi
βðuÞp − π; ð23Þ

where u1 is the first positive root of the polynomial βðuÞ
in Eq. (22).
To determine the conversion phase χ in a similar

form, we note that expression (20) is invariant under
sμ → s̃μ ¼ sμ þ κðλÞkμ, where κðλÞ is an arbitrary function.
Hence it is not necessary to solve the parallel-transport
differential equation directly. Instead, we may simply insert
a spatial unit spin vector of the form s̃μ ¼ ½0; s̃r; 0; s̃ϕ� and
impose the algebraic constraints gμνs̃μs̃ν ¼ 1 and s̃μkν ¼ 0

to determine that s̃r ¼ b=r. Consequently,

χ ¼ 2Q
M

Z
u1

0

uduffiffiffiffiffiffiffiffiffi
βðuÞp : ð24Þ

In general, Eqs. (23) and (24) may be expressed in terms of
elliptic integrals.
In the special case of an extremal black hole,Q ¼ M, we

find that a certain linear combination of (23) and (24) has
an elementary solution, viz.,

FIG. 1. Parallel rays impinging upon a Reissner-Nordström black hole from the right. In the geometric-optics approximation (high-
frequency/short-wavelength limit), the part of the wave incident along ray (a) is half-converted from gravitational waves to
electromagnetic waves (or vice versa), and the part of the wave along ray (b) is totally converted. Ray (c) emerges at the same
angle as ray (b), generating an interference effect (‘orbiting’) in the cross sections. The dashed black circle shows the photon orbit.

CONVERSION OF ELECTROMAGNETIC AND GRAVITATIONAL … PHYS. REV. D 106, 044002 (2022)

044002-5



2χ − Θ ¼ π þ 2

Z
u1

0

ð2u − 1Þduffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

b2 − ðuð1 − uÞÞ2
q ¼ 0; ð25Þ

where u1ð1 − u1Þ ¼ M=b, and the integral is performed
with the substitution v ¼ uð1 − uÞ. Thus for an extremal
black hole (Q ¼ M) there is a remarkably straightforward
linear relationship between the deflection angle and the
conversion phase,

χ ¼ 1

2
Θ: ð26Þ

The classical scattering cross section is the ratio of
the area on the initial wave front of a family of rays,
δA ¼ 2πbδb, to the solid angle into which they are
scattered, δΩ ¼ 2π sin θjdΘj, that is,

dσ
dΩ

				
cl:

¼ b
sin θjdΘ=dbj ; ð27Þ

where ΘðbÞ is the deflection function. Implicit in Eq. (27),
however, are the assumptions that ΘðbÞ is an invertible
function (i.e., that there is a single ray associated with a
given scattering angle), and that there is no conversion.
Below, we seek an extended approximation that remedies
both deficiencies.1

To obtain a (numerical) geometric-optics approximation
to the scattering and conversion cross sections, we took the
following steps:
(1) Define a time function Tðb; xi; rfÞ (with xi; rf ≫ M

fixed parameters, with xi; rf ∼ 1000M sufficient for
our purposes) corresponding to the coordinate time
that it takes for a ray starting on a planar wave front,
a perpendicular distance xi from the origin, to reach
to a radius r ¼ rf after scattering [N.B. TðbÞ
diverges as b → bc and is undefined for b < bc].

(2) Define the deflection function Θðb; xi; rfÞ in a
similar way, from the ϕ coordinate at r ¼ rf.

(3) Solve the parallel-transport equation kμ∇μsν ¼ 0 to
calculate the t and r components of the spin vector,
starting with initial conditions such that sμkν ¼ 0

and gμνsμsν ¼ 1 (relations which are preserved
along the ray).

(4) Calculate the conversion phase χðb; xi; rfÞ from the
integral along the ray using Eq. (20).

(5) For a given scattering angle θ, define
pseudoamplitudes

fðscatÞgeo ¼
X∞
k¼1

Ake−iωTðbkÞð−1Þk cos χk; ð28aÞ

fðconvÞgeo ¼
X∞
k¼1

Ake−iωTðbkÞ sin χk; ð28bÞ

where

Ak ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bk
sinðθÞj dΘk

db j

s
:

(6) The geometric-optics approximations for the scatter-
ing and conversion cross sections are given by the
square-magnitudes of the amplitudes,

dσ
dΩ

γ→γ

geo
¼ dσ

dΩ
g→g

geo
¼ jfðscatÞgeo j2; ð29aÞ

dσ
dΩ

γ→g

geo
¼ dσ

dΩ
g→γ

geo
¼ jfðconvÞgeo j2: ð29bÞ

In principle, the sum in Eq. (28) is taken over all rays that
emerge at angle θ, in other words, rays with deflection
angles Θ1 ¼ θ;Θ2 ¼ 2π − θ;Θ3 ¼ 2π þ θ;… and corre-
sponding impact parameters b1, b2, b3 etc. In practice, we
sum the contributions from only the primary (k ¼ 1) and
secondary (k ¼ 2) rays, as this is sufficient to reproduce the
orbiting oscillation visible in the results.
The divergences in the cross sections in the small-angle

limit (θ → 0) may be understood in terms of rays in the
weak field (b ≫ M). Using the Einstein deflection angle,
Θ ∼ 4M=b ≪ 1, and the conversion phase for a ray in
Minkowski spacetime, χ ∼ 2Q=b ≪ 1, the scattering and
conversion cross sections scale as

dσ
dΩ

γ→γ

geo
¼ dσ

dΩ
g→g

geo
∼
16M2

θ4
; ð30aÞ

dσ
dΩ

γ→g

geo
¼ dσ

dΩ
g→γ

geo
∼
4Q2

θ2
; ð30bÞ

at small angles.

III. RESULTS

Figure 2 shows helicity-preserving and helicity-reversing
conversion cross sections at low frequencies. The cross
sections computed via the partial-wave series in Eq. (16)
(solid) are compared with the approximation obtained via
Feynman-diagram expansions (dashed). More precisely, we
compare our numerical results with the cross sections in
Eq. (3.19) of De Logi and Mikelson [7],

1The classical cross section (27) also fails where the denom-
inator vanishes, i.e., for glories (θ ¼ nπ) and for rainbows
(Θ0 ¼ 0). To handle these cases, a more sophisticated semi-
classical analysis is required; this is not pursued here.

MOHAMED OULD EL HADJ and SAM R. DOLAN PHYS. REV. D 106, 044002 (2022)

044002-6



jf0j2 ¼
1

4
Q2 cot2ðθ=2Þð1þ cos θÞ2; ð31aÞ

jg0j2 ¼
1

4
Q2cot2ðθ=2Þð1 − cos θÞ2. ð31bÞ

The sum of these terms yields Eq. (1), after restoring
dimensionful constants.
In Fig. 2, the comparison is made in the low frequency

regime (2Mω ¼ 0.1) for three charge-to-mass ratios:
Q ¼ 0.01 M, 0.5 M, and 0.8 M. In each case, the con-
version cross sections are well described by the approxi-
mation in Eq. (31). Consistent closed-form results were
also obtained via the Born approximation in Ref. [26], and
again by Feynman-diagram techniques in Ref. [8].
At higher frequencies, the conversion cross section

develops additional structure. Figure 3 shows the conver-
sion cross section at higher frequencies (2Mω ¼ 0.1, 1, and
6) at Q ¼ 0.5 M and 0.8 M. The dominant contribution is
from the helicity-preserving amplitude, and the helicity-
reversing amplitude diminishes asMω increases. Relatedly,
the phase difference between the odd and even parity
modes at fixed ðlþ 1=2Þ=ω, given in Eq. (11), diminishes
as ω increases. In other words, a circularly-polarized

incident EW (GW) generates an elliptically-polarized
GW (EW) in general, but the elliptical polarization
becomes essentially circular at high frequencies.
For Mω≳ 1, Fig. 3 shows regular spiral-scattering

(‘orbiting’) oscillations in the cross sections. In the semi-
classical interpretation, these are due to the interference
between rays scattered by angles θ, 2π − θ, 2π þ θ, 4π − θ,
etc., [see Fig. 1 and rays (b) and (c)]. The relative phase
difference associated with the first and second ray is
determined by their path difference; as this increases in
a nearly linear fashion with θ, the oscillations are regular.
Making the crude, but effective, approximation that the rays
circulate on the photon orbit yields an approximate angular
width of π=ðωbcÞ, with bc given in Eq. (21).
Figure 4 compares the conversion cross section (γ ↔ g)

with the scattering cross sections (γ → γ and g → g). At
small angles, the conversion cross section exhibits a θ−2

divergence in the forward direction, whereas the scattering
cross sections exhibit a θ−4 divergence, as anticipated in
Eq. (30). The conversion cross section is exactly zero in
the backward direction θ ¼ π, but the scattering cross
sections are not zero, due to the nonzero amplitudes
gð22Þ (for Q ≥ 0) and gð11Þ (for Q > 0 only) [31]. At large
angles, regular spiral-scattering oscillations are present for
Mω≳ 1. Notably, the conversion cross section can actually
exceed the scattering cross section at large scattering
angles, as is evident in Fig. 4(d).
Figure 5 shows the scattering and conversion cross

sections for a nearly-extremal black hole, with a charge-
to-mass ratio Q=M ¼ 0.99. At small angles, the scattering
cross section (∼θ−4) dominates over the conversion cross
section (∼θ−2). However, for larger angles θ ≳ 91°, the
conversion cross section is larger than the scattering cross
section. In other words, for an incident electromagnetic
wave, the energy flux in gravitational waves will exceed
that in electromagnetic waves at large angles (and vice
versa, for an incident gravitational wave). The three
plots show that this effect is rather insensitive to the
wave frequency. A satisfying physical explanation for this
universality comes from the geometric optics approach
devised by Gerlach [14], which associates a conversion
factor with each ray (see Fig. 1 and Sec. II E).
Figure 6 compares the geometric-optics approximation

(Sec. II E) in Eqs. (28)–(29) (dashed) with the partial-wave
cross sections (solid), showing a good qualitative agree-
ment. In the geometric-optics approach, the orbiting oscil-
lations arise from interference between the primary ray,
scatted by an angle θ, and the secondary ray, scattered by an
angle 2π − θ (see Fig. 1). The conversion cross section
arises from the accumulated conversion phase χ along a ray.
At θ ≈ 91°, the conversion phase along the primary ray is
χ ¼ π=4, implying that half of the energy in the incident
wave has been converted [see Eq. (18)]. It is at this angle
that, we see the conversion cross section become greater
than the scattering cross sections.

FIG. 2. Comparison of helicity-preserving and helicity-reversing
conversion scattering amplitude with asymptotic approximation at
low frequency (2Mω ¼ 0.1) for Q ¼ 0.01 M; 0.5 M, and 0.8 M.
The solid line shows the cross section computed from the partial-
wave series, Eq. (16), and the dashed line shows the Feynman-
expansion result, Eq. (31), of Ref. [7].
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FIG. 3. Helicity-preserving and helicity-reversing conversion cross amplitude forQ ¼ 0.5 M (left panel) andQ ¼ 0.8 M (right panel)
at higher frequencies (2Mω ¼ 0.1, 1, and 6).

(a)

(b)

(c)

(d)

FIG. 4. Scattering and conversion cross sections on the Reissner-Nordström black hole spacetime. The plots compare the scattering
cross sections, labeled γ → γ in the electromagnetic-wave case and g → g in the gravitational-wave case, with the conversion cross
section labeled γ ↔ g. The cross section for conversion of an electromagnetic wave to a gravitational wave is equal to the cross section
for the conversion of a gravitational wave to an electromagnetic wave. Left: Lower frequency 2Mω ¼ 1 for (a) Q ¼ 0.5 M and
(b) Q ¼ 0.8 M. Right: Higher frequency 2Mω ¼ 6 for (c) Q ¼ 0.5 M and (d) Q ¼ 0.8 M.
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Having established the validity of the geometric optics
approximation (in the regime Mω ≫ 1 and away from
the poles), we can now compute the scattering angle for
which scattering and conversion are equal (in the short-
wavelength limit) by examining the conversion phase χ in
more detail. This angle was calculated numerically via the
method of Sec. II E. Figure 7 shows the angle at which
χ ¼ π=4 (solid line), as a function of black hole charge,
corresponding to half conversion. The line for total con-
version (χ ¼ π=2) is also shown [dashed].
In the extremal limitQ ¼ M, the numerical data supports

the simple linear relationship between the conversion
phase χ and the deflection angle Θ derived in Eq. (26).

The implication is that, for an extremal black hole, the
converted energy will exceed the scattered energy for
angles greater than 90°, in the high-frequency regime to
which the geometric-optics approximation applies. (A
caveat here is that the geometric optics approximation
which we have used in Sec. II E breaks down for angles
close to θ ¼ 180°, as it is no longer valid to consider pairs
of distinct rays, but instead a one-parameter family).

IV. DISCUSSION AND CONCLUSION

In this work, we have calculated the scattering and
conversion cross sections for planar electromagnetic and
gravitational waves impinging upon a charged black hole.

(a)

(b)

(c)

FIG. 5. Scattering and conversion cross sections for a near-
extremal Reissner-Nordström black hole (Q ¼ 0.99M) at three
frequencies: (a)Mω ¼ 1, (b)Mω ¼ 2, and (c)Mω ¼ 4. The γ → γ
andg → g scattering cross sections (black and red) are almost equal
(see Ref. [32]). The γ ↔ g conversion cross section (blue dot-
dashed) exceeds the scattering cross section for angles θ ≳ 91°.

FIG. 6. The geometric-optics approximation. The solid lines
show the scattering and conversion cross sections calculated via
the partial-wave expansion. The dashed lines show the geometric-
optics approximation of Eqs. (28)–(29), obtained by solving
transport equations along null rays.

FIG. 7. The scattering angle of the ray corresponding to half
conversion (χ ¼ π=4) and total conversion (χ ¼ π=2) of electro-
magnetic waves into gravitational waves (and vice versa) in the
short-wavelength limit (Mω ≫ 1), as a function of charge-to-
mass ratio. The curves shown are contours of the conversion
phase χ that arises in the geometric-optics approximation (see
Sec. II E).
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Accurate numerical results were obtained by summing
partial-wave series for the amplitudes, summarized in
Sec. II C. In the long-wavelength regime (Mω ≪ 1), we
found that the conversion cross section matches the
Feynman-expansion result [see Eq. (1), Eq. (31), and
Fig. 2]. In the short-wavelength regime (Mω ≫ 1), the
scattering and conversion cross sections are well described
by a (numerically-calculated) geometric-optics approxima-
tion developed in Sec. II E. This approximation involves
calculating Gerlach’s conversion phase χ (introduced in
Ref. [14]) along the primary and secondary null rays
(see Fig. 6).
A key finding of this work is that the converted flux can

exceed the scattered flux at large angles, if the black hole is
sufficiently charged. In other words, the conversion of
electromagnetic waves to gravitational waves with the same
frequency—and vice versa—is substantial for parts of the
wave front that pass close to the circular photon orbit of a
highly-charged black hole. Figure 5 shows this phenome-
non for the case Q ¼ 0.99 M. In the short-wavelength
regime, the (numerical) geometric-optics analysis implies
that the converted flux can exceed the scattered flux at large
angles if Q≳ 0.6 M. The scattering angle beyond which
the converted flux exceeds the scattered flux is shown in
Fig. 7 (blue solid line); it reaches a minimum of 90° in the
extremal case (Q ¼ M).
If the incident wave is circular polarized, the outgoing

scattered and converted waves are elliptically polarized,
in general. At low frequency, the effect is encapsulated
by the nonzero helicity-reversing conversion amplitude,
g0 in Eq. (31) [7,8]. In the partial wave expansion,
elliptical polarization arises from the difference in phase

shifts between odd- and even-parity perturbations [see
Eq. (16b)]. We have demonstrated here that the helicity-
reversing amplitudes diminish rapidly asMω increases (see
Fig. 3), such that in the short-wavelength limit the scattered
and converted flux is essentially circular-polarized, with the
same handedness as the incident wave.
Here, we have investigated gravitoelectrical conversion in

the idealized setting of a charged black hole in vacuum.
Astrophysical black holes are not expected to sustain sizable
charge-to-mass ratios Q=M [9]. Conversion in the more
realistic setting of a black hole magnetosphere coupled to an
accretion disk was recently examined in Ref. [42].
An obvious extension of this work is to the rotating

charged scenario: the Kerr-Newman black hole. The
scattering of a scalar field by a Kerr-Newman black hole
was studied in [43]. For electromagnetic and gravitational
perturbations, a separation of variables has not been
achieved, and alternative approaches [44] are necessary
to solve the coupled equations in full. On the other hand,
the geometric-optics approximation should be straightfor-
ward, as the geodesic equations for null rays are (Liouville)
integrable.
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