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We develop a thermodynamical model of fermionic dark matter halos at finite temperature.
Statistical equilibrium states may be justified by a process of violent collisionless relaxation in the
sense of Lynden-Bell or from a collisional relaxation of nongravitational origin if the fermions are
self-interacting. The most probable state (maximum entropy state) generically has a “core-halo”
structure with a quantum core (fermion ball) surrounded by an isothermal atmosphere. The quantum
core is equivalent to a polytrope of index n ¼ 3=2. The Pauli exclusion principle creates a quantum
pressure that prevents gravitational collapse and solves the core-cusp problem of the cold dark matter
model. The isothermal atmosphere (which is similar to the Navarro-Frenk-White profile of cold dark
matter) accounts for the flat rotation curves of the galaxies at large distances. We numerically solve
the equation of hydrostatic equilibrium with the Fermi-Dirac equation of state and determine the
density profiles and rotation curves of fermionic dark matter halos. We impose that the surface
density of the dark matter halos has the universal value Σ0 ¼ ρ0rh ¼ 141 M⊙=pc2 obtained from the
observations. For a fermion mass m ¼ 165 eV=c2, the “minimum halo” has a mass ðMhÞmin ¼
108 M⊙ and a radius ðrhÞmin ¼ 597 pc similar to dwarf spheroidals like Fornax. This ultracompact
halo corresponds to a completely degenerate fermion ball at T ¼ 0. This is the ground state of the
self-gravitating Fermi gas. For ultracompact dark matter halos with a mass ðMhÞmin < Mh <
ðMhÞCCP ¼ 6.73 × 108 M⊙ (canonical critical point), the quantum core is surrounded by a tenuous
classical isothermal atmosphere. Dark matter halos with a mass Mh > ðMhÞCCP are dominated by the
classical isothermal atmosphere. They may be purely gaseous (similar to the Burkert profile) or
harbor a fermion ball. The gaseous solution is stable in all statistical ensembles. The core-halo
solution is canonically unstable (having a negative specific heat) but, for small dark matter halos with
a mass ðMhÞCCP < Mh < ðMhÞMCP ¼ 1.08 × 1010 M⊙ (microcanonical critical point), it is micro-
canonically stable. By maximizing the entropy at fixed mass and energy we find that the mass of the
quantum core scales with the halo mass as Mc=ðMhÞmin ¼ 1.47½Mh=ðMhÞmin�3=8. This relation is
equivalent to the “velocity dispersion tracing” relation according to which the velocity dispersion in
the core v2c ∼ GMc=Rc is of the same order as the velocity dispersion in the halo v2h ∼ GMh=rh. We
provide therefore a justification of this relation from thermodynamical arguments. The fermion ball
represents a large quantum bulge which is either present now or may have, in the past, triggered the
collapse of the surrounding gas, leading to a supermassive black hole and a quasar. When
Mh > ðMhÞMCP, the quantum core-halo solution is microcanonically unstable. Large dark matter
halos may undergo a gravothermal catastrophe leading ultimately to the formation of a small out-of-
equilibrium condensed core or, in the case of very large dark matter halos with Mh > MOV, to a
supermassive black hole when the core mass overcomes the Oppenheimer-Volkoff (OV) limit. The
isothermal halo is left undisturbed and is in agreement with the Burkert profile. Our model has no
free parameter (the mass m ¼ 165 eV=c2 of the fermionic particle is determined by the minimum
halo) so it is completely predictive. It predicts that the Milky Way should harbor a fermionic dark
matter bulge of mass Mc ¼ 9.45 × 109 M⊙ and radius Rc ¼ 240 pc in possible agreement with the
observations. We also consider another model involving a larger fermion mass m ¼ 54.6 keV=c2. In
this model, a fermion ball of mass Mc ¼ 4.2 × 106 M⊙ and radius Rc ¼ 6 × 10−4 pc could mimic the
effect of a supermassive black hole at the center of the Milky Way (Sagittarius A�). In bigger
galaxies, the fermion ball should be replaced by a supermassive black hole of mass MBH ¼
2.10 × 108 M⊙ which could account for active galactic nuclei. For an even larger fermion mass
m ¼ 386 keV=c2, a supermassive black hole of mass MBH ¼ 4.2 × 106 M⊙ should be formed in the
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Milky Way instead of a fermion ball. However, models with a fermion mass m ¼ 54.6 keV=c2 predict
that ultracompact dark matter halos of mass ∼108 M⊙ should contain a fermionic core of mass
Mc ∼ 104 M⊙ and radius Rc ∼ 5mpc similar to intermediate mass black holes, a prediction which
may be challenged by observations.

DOI: 10.1103/PhysRevD.106.043538

I. INTRODUCTION

The cold dark matter (CDM) model of cosmology is
remarkably successful in explaining the large scale structure
of the Universe but it experiences several difficulties at the
scale of DM halos: (i) classical CDM simulations lead to a
universal cuspy density profile—the Navarro-Frenk-White
(NFW) profile [1] which decreases as r−3 at large distances
and diverges as r−1 at the center, while observations rather
favor corelike centers—the Burkert [2] profile which also
decreases as r−3 at large distances but tends to a constant at
the center; (ii) the number of subhalos obtained in CDM
simulations is much larger than the number of satellites
observed in the Galaxy [3–5]; (iii) dissipationless CDM
simulations predict that the majority of the most massive
subhalos of the Milky Way are too dense to host any of its
bright satellites; (iv) the stellar velocity dispersionsmeasured
in CDM simulations are larger than those observed in the
satellites of the Galaxy [6]. These problems are called the
core-cusp problem [7], the missing satellites problem [3–5]
and the “too big to fail” problem [8]. They are responsible for
the small-scale crisis ofCDM[9]. To solve these problemone
solutionmight be to take into account baryonic feedback that
can transform cusps into cores [10–12]. A possible alter-
native is to take into account the quantum (or wave) nature of
the particles. Indeed, quantummechanics creates an effective
pressure which can balance gravitational attraction and lead
to cores instead of cusps. Moreover, the quantum Jeans
length is finite even at T ¼ 0 (contrary to the classical Jeans
length) and this may solve the missing satellites problem
and other small-scale problems experienced by the classical
CDM model.
If the DMparticle is a boson,1 like an ultralight axion [14],

the quantum pressure is due to the Heisenberg uncertainty
principle which is equivalent to an anisotropic pressure or
to a quantum potential. If the bosons are self-interacting,
there is an additional (isotropic) pressure arising from
the self-interaction. At T ¼ 0, bosons form Bose-Einstein
condensates (BECs). Newtonian self-gravitating BECs
are described by the Schrödinger-Poisson (SP) if they are
noninteracting or by the Gross-Pitaevskii-Poisson (GPP)
equations if they are self-interacting [15]. Numerical simu-
lations of the SP equations [16–24] show that Bose-Einstein
condensate dark matter (BECDM) halos typically have a

core-halo structure with a quantum core (soliton) surrounded
by an extended halo made of quantum interferences. The halo
typically has a NFWor Burkert density profile decreasing as
r−3. It can be approximated in certain cases by an isothermal
density profile decreasing as r−2 (see Sec. III C of [25]). The
halo leads to approximately flat rotation curves and the
quantum core solves the core-cusp problem. This core-halo
structure results from a process of gravitational cooling
[26–29] or from a collisional relaxation of nongravitational
origin if the bosons are self-interacting.
If the DM particle is a fermion,2 like a sterile neutrino,

the quantum pressure is due to the Pauli exclusion principle
which creates an effective isotropic pressure. Fermionic
DM halos are described by the Fermi-Dirac distribution at
finite (effective) temperature which may be justified by
Lynden-Bell’s theory of violent relaxation [31,32] as
argued in [33,34]. They typically have a core-halo structure
with a quantum core (fermion ball) surrounded by an
isothermal halo [32]. An isothermal halo is not very
different from the NFWor Burkert profile and may provide
a good approximation of it in certain cases.3 The isothermal
halo leads to flat rotation curves and the quantum core
solves the core-cusp problem. This core-halo structure
results from a process of violent collisionless relaxation
[31,32] or from a collisional relaxation of nongravitational
origin if the fermions are self-interacting (see Sec. II).4

The analogy between bosonic and fermionic DM halos
suggests that (i) the process of gravitational cooling is

1See the Introduction of Ref. [13] for a short review and an
exhaustive list of references on bosonic DM.

2See the Introduction of Ref. [30] for a short review and an
exhaustive list of references on fermionic DM.

3It is shown in Figs. 5 and 6 of [25] that the isothermal profile
is almost indistinguishable from the empirical Burkert profile up
to a few halo radii. This is even more true if we account for tidal
effects by using the fermionic King model [33,34]. It is shown in
[33] that the critical (marginal) King profile triggering the
gravothermal catastrophe at the turning point of energy is
relatively close to the Burkert profile (see Fig. 1). It may therefore
provide a physical justification of this empirical profile. Obser-
vations reveal that many real DM halos are close to the point of
marginal stability (see Fig. 8 of [35]) as predicted in [33,34].

4Fermions and bosons behave antisymmetrically regarding
their collisional relaxation. The Pauli blocking fðη0 − fÞ for
fermions has the tendency to slow down the relaxation and the
Bose enhancement fðη0 þ fÞ for bosons, leading to the formation
of “granules” or “quasiparticles”, has the tendency to accelerate
the relaxation. Gravitational encounters (“collisions”) are com-
pletely negligible in fermionic DM halos. In bosonic DM halos,
they manifest themselves on a secular timescale of the order of
the age of the Universe (see [36] and references therein).
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similar to the process of violent relaxation (they may even
correspond to the same phenomenon); (ii) the NFW profile
(excluding the cusp) and the Burkert profile, which are
similar to the isothermal profile, may be physically justified
by Lynden-Bell’s theory of violent relaxation; (iii) the
fermion ball in the fermionic model is the counterpart of the
soliton in the BEC model.
A problem of considerable interest in the physics of

quantum (fermionic and bosonic) DM halos is to construct
core-halo profiles of DM halos and predict the quantum
core mass—halo mass relation McðMhÞ. One can then
compare theoretical predictions with direct numerical
simulations and observations.
In a previous paper [25], we have developed a predictive

model of BECDM halos in the case where the bosons have
a strong repulsive self-interaction so that the Thomas-Fermi
(TF) approximation can be implemented. We considered a
generalized GPP equation5 which provides a parametriza-
tion of the complicated processes of violent relaxation and
gravitational cooling. With respect to the ordinary GPP
equation, this new wave equation includes an effective
thermal term and a source of dissipation. We determined
the equilibrium states of this equation and obtained core-
halo profiles with a quantum core and an isothermal halo
similar to those observed in direct numerical simulations of
BECDM. We obtained the core mass—halo mass relation
McðMhÞ from an effective thermodynamical approach by
maximizing the entropy at fixed mass and energy. We
showed that this relation is equivalent to the velocity-
dispersion tracing relation stating that the velocity dispersion
in the core v2c ∼GMc=Rc is of the same order as the velocity
dispersion in the halo v2h ∼ GMh=rh. We could therefore
provide a justification of this relation from thermodynamical
arguments (maximum entropy principle) [25]. In subsequent
papers [38–40], we derived the core mass—halo mass
relationMcðMhÞ from a simple analytical model again based
on a maximum entropy principle and we obtained a general
formula for McðMhÞ valid for noninteracting bosons, for
bosons with a repulsive or attractive self-interaction, and for
fermions. We showed that the velocity dispersion tracing
relation is fulfilled in all cases. In the present paper, we adapt
the bosonicmodel developed in [25] to the case of fermions.6

In the recent years, three types of studies have been
conducted in the context of fermionic DM:

(i) Chavanis and coworkers studied phase transitions in
the self-gravitating Fermi gas in Newtonian gravity
[32,34,41–45] and general relativity [46–48]. They
showed that three possibilities can arise in the caloric

curve depending on the size of the system (measured
by the so-called “degeneracy parameter” μ). For
small systems μ < μCCP, no phase transition occur.
For intermediate size systems μCCP < μ < μMCP,
phase transitions can occur in the canonical ensem-
ble but not in the microcanonical ensemble. For
large systems μ > μMCP, both canonical and micro-
canonical phase transitions can occur. They also
showed that above the Oppenheimer-Volkoff (OV)
limit N > NOV, a new turning point of energy
appears in the caloric curve and triggers a general
relativistic instability leading to the formation of a
black hole by gravitational collapse.

(ii) deVega and coworkers [49–54] constructedmodels of
DM halos in Newtonian gravity adopting a fermion
mass of the order of 1 keV=c2. This mass determines
a minimum halo of mass ðMhÞmin ¼ 0.39 × 106 M⊙
and size ðrhÞmin ¼ 33 pc corresponding to Willman I
assumed to be completely degenerate. They argued
that larger halos are nondegenerate (without quantum
core) so they coincide with the well-known classical
isothermal sphere [55].

(iii) Argüelles and coworkers [56–62] constructed gen-
eral relativistic models of DM halos adopting a
fermion mass of the order of 48 keV=c2 and applied
these models to the Milky Way. Their system has a
core-halo structure made of a small quantum core
(fermion ball) surrounded by an isothermal atmos-
phere. Reviving the original idea of Bilic and
coworkers [63–67], they argued that the fermion
ball could mimic a supermassive black hole (SMBH)
that is purported to exist at the center of the Galaxy.

In the present paper, we develop a general model valid
for fermions of arbitrary mass m. Then, we consider
specifically the case of a “small” mass m ¼ 165 eV=c2

or m ∼ 1 keV=c2 and the case of a “large” mass m ¼
54.6 keV=c2 or m ¼ 386 keV=c2 and discuss the connec-
tion with previous works. A brief and synthetic presenta-
tion of our results is given in Ref. [68] that the readers may
consult in a first reading. The present paper provides a
justification and a detailed description of these results.
The paper is organized as follows. In Sec. II, we explain

why fermionic DM halos may be in a maximum entropy
state described by the Fermi-Dirac distribution at finite
(effective) temperature. In Sec. III, we recall basic results
concerning the thermodynamics of a self-gravitating Fermi
gas in a box. In Sec. IV, we consider the nondegenerate
limit of the self-gravitating Fermi gas which explains the
external structure of large DM halos. In Sec. V, we consider
the completely degenerate limit of the self-gravitating
Fermi gas which explains the structure of ultracompact
DM halos and the cores of large DM halos. In Sec. VI, we
consider partially degenerate DM halos. We show that they
have a core-halo structure with a quantum core (fermion
ball) surrounded by an isothermal halo. The isothermal halo

5This equation was introduced heuristically in [37] and
justified with more precise arguments in [29] from a coarse
graining of the Wigner-Poisson equations.

6The fact that the results obtained for bosons can be transposed
to fermions was mentioned in [25]. Conversely, some of the
results obtained here for fermions can be exported to bosons and
can complete the discussion given in [25].
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leads to flat rotation curves and the quantum core solves the
core-cuspproblem.Wedetermine the core-halomass relation
McðMhÞ from thermodynamical arguments. In Sec. VII, we
consider astrophysical applications of our model for a
fermion mass m ¼ 165 eV=c2. We evidence a bifurcation
above a canonical critical point ðMhÞCCP ¼ 6.73 × 108 M⊙
between purely gaseous states and core-halo states contain-
ing a fermion ball. For the core-halo states, we also evidence
a transition at a microcanonical critical point ðMhÞMCP ¼
1.08 × 1010 M⊙. We argue that small DM halos withMh <
ðMhÞMCP should contain a large quantum bulge while large
DMhaloswithMh > ðMhÞMCP should rather contain a small
out-of-equilibrium quantum core resulting from a gravother-
mal catastrophe arrested by quantum effects. For very
large DM halos, when the core mass Mc passes above the
Oppenheimer-Volkoff limit MOV, quantum mechanics can-
not prevent gravitational collapse and the gravothermal
catastrophe leads to the formation of a SMBH. The iso-
thermal halo is left undisturbed and is in agreement with the
Burkert profile (see Fig. 1). We argue that the Milky Way
should contain a large fermionic bulge of massMc ¼ 9.45 ×
109 M⊙ and radius Rc ¼ 240 pc in possible agreement with
the observations. In Sec. VIII, we consider another model
with a fermionmassm ¼ 54.6 keV=c2 in which the fermion
ball couldmimic a SMBHat the center of theMilkyWay.We
argue that, for larger DM halos or for a larger fermion mass,
the fermion ball should be replaced by a true SMBH. In
Sec IX,we propose possible solutions to an apparent paradox
related to the universal surface density ofDMhalos. InSec.X
we discuss the difference between isothermal and quantum
cores and their formation process. In Sec. XII, we summarize
our main results and conclude.

II. FORMATION AND EVOLUTION OF DMHALOS

In this section, we recall basic elements of kinetic theory
related to the formation and the evolution of fermionic DM

halos in order to justify our thermodynamical approach (we
refer to [36] for a more detailed discussion).
It is well known that self-gravitating systems experience

two successive types of relaxation:
(i) In a first regime, gravitational encounters can be

neglected and the evolution of the system is de-
scribed by the Vlasov (or collisionless Boltzmann)
equation. The Vlasov-Poisson equations experience
a complicated process of collisionless violent relax-
ation as described by Lynden-Bell [31] in the context
of stellar systems. Through violent relaxation, the
system reaches a quasistationary state (virialized
state) on the coarse-grained scale which is a stable
stationary solution of the Vlasov equation. The
Vlasov-Poisson equations admit an infinite number
of stationary solutions. In addition, all spherical
distribution functions (DFs) of the form f ¼ fðϵÞ
with f0ðϵÞ < 0, where ϵ ¼ v2=2þΦðrÞ is the en-
ergy of a particle, are dynamically (Vlasov) stable in
Newtonian gravity [69].7 Lynden-Bell proposed de-
termining the “most probable state” of the system
resulting from a collisionless relaxation by using
arguments of statisticalmechanics and thermodynam-
ics. This equilibrium state is obtained by maximizing
a mixing entropy while taking into account all the
constraints of the Vlasov equation. In the single-level
approximation, the Lynden-Bell entropy is similar to
the Fermi-Dirac entropy and the constraints of the
Vlasov equation reduce to the conservation of mass
and energy. In addition, if the particles are fermions,
the Lynden-Bell exclusion principle f̄ ≤ η0, where η0
is the initial DF, coincides with the Pauli exclusion
principle f ≤ 2m4=h3 up to a numerical factor of
order unity (see footnote 34 of [33]). In order to select
the most probable structure arising from a violent
collisionless relaxation, one has therefore to maxi-
mize the Lynden-Bell (or Fermi-Dirac) entropy at
fixed mass and energy. The extremization problem
leads to the Lynden-Bell (or Fermi-Dirac) DF. Then,
we have to make sure that the equilibrium state is an
entropy maximum (most probable state), not an
entropy minimum or a saddle point.8
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FIG. 1. Normalized density profiles in logarithmic scales (zoom
of Fig. 18 in [33]). Solid line: Critical (marginal) King profile;
Dotted line: Modified Hubble profile; Dashed line: Burkert
profile. The critical King profile is relatively close to the Burkert
profile for r ≲ 5rh [33].

7This is no more true in general relativity (see the discussion
in [30]).

8If several stable equilibrium states (entropy maxima) are
found for the same values of mass and energy, they may all be
equally relevant. Indeed, metastable states (local entropy
maxima) have a very long lifetime and are as much relevant
as fully stable states (global entropy maxima). Their selection is
related to a notion of basin of attraction and cannot be decided
simply by comparing their entropies. Finally, we note that the
predictive power of Lynden-Bell’s theory is limited by the
problem of incomplete relaxation; the system may reach a
dynamically stable stationary state of the Vlasov equation that
is not a maximum entropy state.
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(ii) In a second regime, collisions must be taken into
account.9 The collisional relaxation of the system
is described by a kinetic equation such as the
gravitational Boltzmann, Landau or Lenard-Balescu
equation.10 If the particles are fermions, the colli-
sional relaxation leads to a statistical equilibrium
state described by the ordinary Fermi-Dirac distri-
bution which maximizes the Fermi-Dirac entropy at
fixed mass and energy. This corresponds to the
“most probable state” of the system resulting from
a collisional relaxation. This is also a stable sta-
tionary solution of the kinetic equation.11

In the two situations described above we are led to
maximizing the Lynden-Bell or Fermi-Dirac entropy at
fixed mass and energy. We stress that the justification of
this maximization problem is different in the collisionless
(Lynden-Bell) and collisional (Fermi-Dirac) regimes. If the
system is collisionless, the temperature is effective. We also
note that the proper thermodynamical ensemble to consider
is the microcanonical ensemble. Indeed, the system is
assumed to be isolated so that the energy and the mass
are conserved. This remark is important since statistical
ensembles may be inequivalent for systems with long-range
interactions such as self-gravitating systems [43,73,74].
If the particles interact only via (weak) two-body gravi-

tational encounters, the collisional relaxation time is extre-
mely long, scaling as tR ∼ ðN= lnNÞtD [69], where N is the
number of particles and tD ∼ R=v ∼ 1=

ffiffiffiffiffiffi
Gρ

p
∼ 0.1 Gyrs is

the dynamical time (wehave takenR ∼ 20.1 kpc, ρ ∼ 7.02 ×
10−3 M⊙=pc3 and v ∼ 146 km=s in a galaxy of mass M ∼
1012 M⊙ like theMilkyWay). For fermionic DM halos,N is
huge (N ∼ 1075 for keV fermions) so the relaxation time is
much larger than the age of the Universe tU ∼ 13.8 Gyrs by
many orders ofmagnitude (the Pauli blocking even increases
this relaxation time). In that case, the system is essentially
collisionless and only the Lynden-Bell type of relaxation is
relevant. However, in order to be more general, we consi-
der the possibility that the particles have a (strong) self-
interaction that can cause a faster collisional evolution of

nongravitational origin. This allows us to consider the
possibility of a collisional relaxation (especially in the core
of the system where the density is high and the relaxation
time short) towards a Fermi-Dirac equilibrium state on a
timescale smaller than the age of the Universe. For example,
if the particles have a cross section per unit mass σm ≡
σ=m ¼ 1.25 cm2=g consistent with the Bullet Cluster con-
straint [75] we get tself ∼ 1=ðρσmvÞ ∼ 3.66 Gyrs < tU. In
that case, fermionic DM halos behave similarly to globular
clusters with additional quantum effects. Because of colli-
sions and evaporation, they follow a series of equilibria
towards configurations of higher and higher central density.
If the equilibriumstate becomes thermodynamically unstable
(after a turning point of energy), a fermionic DM halo may
experience a phase transition from a gaseous phase to a
condensed phase (with a quantum core and an isothermal
envelope) associated with a form of gravothermal catastro-
phe [76] stopped by quantum degeneracy [32]. This may be
followed by a dynamical instability of general relativity
origin leading to the formation of a SMBH [46–48].

III. SELF-GRAVITATING FERMI GAS IN A BOX

In this section we consider the statistical mechanics of a
self-gravitating Fermi gas in a box. We summarize the main
results obtained in our previous papers [32,41–43] and
detail the theoretical framework that will be needed in the
present study.

A. Theoretical framework

We consider a gas of nonrelativistic fermions interacting
via Newtonian gravity. Let fðr; v; tÞ denote its distribution
function (DF) in phase space giving the mass density of
fermions with position r and velocity v at time t. The mass
density in configuration space is ρ ¼ R

fdv. The total mass
of the system is

M ¼
Z

fdrdv ð1Þ

and its total energy is

E ¼
Z

f
v2

2
drdv þ 1

2

Z
ρΦdr; ð2Þ

where the first term is the kinetic energy and the second
term is the gravitational energy (E ¼ Ekin þW). We
introduce the Fermi-Dirac entropy

S
kB

¼−
η0
m

Z �
f
η0
ln

f
η0
þ
�
1−

f
η0

�
ln

�
1−

f
η0

��
drdv; ð3Þ

where

η0 ¼
2m4

h3
ð4Þ

9We consider collisions of all sorts. They may correspond to
weak gravitational encounters or strong (hard corelike) collisions
if the particles have a self-interaction, leading to the notion of
self-interacting dark matter (SIDM) halos. DM halos may also
experience a stochastic forcing due to the presence of baryons or
other external sources that can induce a secular relaxation of the
system (see Appendix B of [25]).

10See the introduction of Ref. [70] for a short review and
an exhaustive list of references on the kinetic theory of self-
gravitating systems.

11Actually, because of evaporation and because of its inter-
action with nearby galaxies, the system is tidally truncated and
the Fermi-Dirac distribution must be replaced by the fermionic
King distribution [71,72]. This DF can be derived from a kinetic
theory based on the fermionic Landau equation [72]. The
fermionic King model has been studied in [34] in Newtonian
gravity and in [60–62] in general relativity.
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is the maximum value of the DF fixed by the Pauli
exclusion principle (the factor 2 accounts for the multi-
plicity 2sþ 1 of quantum states for particles of spin
s ¼ 1=2). The Fermi-Dirac entropy is equal to the loga-
rithm of the number of microstates, specified by the precise
position and velocity fri; vig of all the fermions, corre-
sponding to a given macrostate specified by the DF fðr; vÞ
giving the density of fermions around the point ðr; vÞ in
phase space.
In the microcanonical ensemble, the statistical equilib-

rium state of a self-gravitating gas of fermions is obtained
by maximizing the Fermi-Dirac entropy S at fixed energy E
and mass M. One has therefore to solve the optimization
problem

maxfSjE;M fixedg: ð5Þ

This thermodynamic approach is justified in a mean field
approximation which is exact in a proper thermodynamic
limit N → þ∞ (see Sec. 7.1 of [43] and Appendix B
of [46]).
An extremum of entropy at fixed energy and mass is

determined by the variational principle

δS
kB

− βδEþ α

m
δM ¼ 0; ð6Þ

where β ¼ 1=ðkBTÞ and α ¼ μ=ðkBTÞ are Lagrange multi-
pliers (T is the temperature and μ is the global chemical
potential). This leads to the Fermi-Dirac distribution

f ¼ η0
1þ e½mv2=2þmΦðrÞ−μ�=kBT

: ð7Þ

The density of particles ρ ¼ R
fdv and the pressure P ¼

1
3

R
fv2dv are related to the gravitational potential ΦðrÞ by

ρðrÞ ¼ 4π
ffiffiffi
2

p
η0

ðβmÞ3=2 I1=2½λe
βmΦðrÞ�; ð8Þ

PðrÞ ¼ 8π
ffiffiffi
2

p
η0

3ðβmÞ5=2 I3=2½λe
βmΦðrÞ�; ð9Þ

where λ ¼ e−βμ and InðtÞ denotes the Fermi integrals

InðtÞ ¼
Z þ∞

0

xn

1þ tex
dx: ð10Þ

We recall the identity

I0nðtÞ ¼ −
n
t
In−1ðtÞ ðn > 0Þ; ð11Þ

which can be established from Eq. (10) by an integration by
parts. Eliminating λeβmΦðrÞ between Eqs. (8) and (9), we

obtain the equation of state PðρÞ of the nonrelativistic
Fermi gas at finite temperature in parametric form (see also
Appendix A).
Combining the condition of hydrostatic equilibrium

∇Pþ ρ∇Φ ¼ 0 ð12Þ

with the Poisson equation

ΔΦ ¼ 4πGρ; ð13Þ

we obtain the fundamental differential equation of hydro-
static equilibrium

∇ ·

�∇P
ρ

�
¼ −4πGρ: ð14Þ

Together with the barotropic equation of state PðρÞ
specified by Eqs. (8) and (9) this equation determines
the density profile of the self-gravitating Fermi gas at
statistical equilibrium.
Alternatively, substituting the density-potential relation

from Eq. (8) into the Poisson equation (13), we obtain a
differential equation determining the gravitational potential

ΔΦ ¼ 16π2
ffiffiffi
2

p
Gη0

ðβmÞ3=2 I1=2½λeβmΦðrÞ�; ð15Þ

which is called the Fermi-Poisson equation or the finite
temperature Thomas-Fermi equation. The density is then
obtained from Eq. (8). The two equations (14) and (15) are
equivalent.
We now assume that the system is spherically symmetric

and introduce the dimensionless variables

ψ ¼ βmðΦ −Φ0Þ; k ¼ λeβmΦ0 ; ð16Þ

and

ξ ¼
�
16π2

ffiffiffi
2

p
Gη0

ðβmÞ1=2
�1=2

r; ð17Þ

where Φ0 is the central value of the gravitational potential.
We can then rewrite the density and the pressure under the
form

ρðrÞ ¼ 4π
ffiffiffi
2

p
η0

ðβmÞ3=2 I1=2½ke
ψðξÞ�; ð18Þ

PðrÞ ¼ 8π
ffiffiffi
2

p
η0

3ðβmÞ5=2 I3=2½ke
ψðξÞ�: ð19Þ

On the other hand, Eqs. (14) and (15) lead to the fermionic
Emden equation
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1

ξ2
d
dξ

�
ξ2

dψ
dξ

�
¼ I1=2ðkeψÞ ð20Þ

with the boundary conditions

ψð0Þ ¼ ψ 0ð0Þ ¼ 0: ð21Þ

This equation determines the structure of the system as a
function of the parameter k. For k → þ∞, the system is
nondegenerate; this corresponds to the gaseous phase (see
Sec. IV). For k → 0, the system is completely degenerate;
this corresponds to the condensed phase (see Sec. V). For
intermediate values of k, the system is partially degenerate;
it typically has a core-halo structure with a quantum core
(fermion ball) surrounded by a classical isothermal halo
(see Sec. VI).12 Some density profiles are plotted in Fig. 2
for different values of k.
As is well known, self-gravitating systems at nonzero

temperature have the tendency to evaporate. Therefore,
there is no equilibrium state in a strict sense and the
statistical mechanics of self-gravitating systems is essen-
tially an out-of-equilibrium problem. However, the evapo-
ration rate is small in general and the system can be found
in a quasi-equilibrium state for a relatively long time. In
order to describe the thermodynamics of the self-gravitat-
ing Fermi gas rigorously, we shall use an artifice and
enclose the system within a spherical box of radius R.13 The
box typically represents the size of the cluster under

consideration (see Sec. VI). In that case, the solution of
Eq. (20) is terminated by the box at the normalized radius

α ¼
�
16π2

ffiffiffi
2

p
Gη0

ðβmÞ1=2
�1=2

R: ð22Þ

Since α is the value of ξ at the box radius R we can write

ξ ¼ α
r
R
: ð23Þ

Let us first calculate the normalized inverse temperature

η ¼ βGMm
R

: ð24Þ

For a spherically symmetric distribution of matter, the
Poisson equation (13) is equivalent to Newton’s law

dΦ
dr

¼ GMðrÞ
r2

; ð25Þ

where MðrÞ ¼ R
r
0 ρðr0Þ4πr02dr0 is the mass contained

within the sphere of radius r. Applying Newton’s law at
r ¼ R and using Eqs. (16), (23), and (24), we get

η ¼ αψ 0
kðαÞ: ð26Þ

This equation relates the dimensionless box radius α and
the concentration variable k to the dimensionless inverse
temperature η.
On the other hand, according to Eqs. (22) and (24), α and

k are linked to each other by the relation

α2
ffiffiffi
η

p ¼ μ ð27Þ

or, more explicitly [using Eq. (26)]

α5ψ 0
kðαÞ ¼ μ2; ð28Þ

where

μ ¼ η0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
512π4G3MR3

p
ð29Þ

is the so-called degeneracy parameter [43].14 We shall give
a physical interpretation of this parameter in Sec. VI.
The calculation of the energy is a little more intricate.

The kinetic energy of a nonrelativistic gas can be written as

Ekin ¼
3

2

Z
Pdr: ð30Þ
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FIG. 2. Normalized density profiles of fermionic DM halos for
different values of k (k ¼ 10−8; 10−6; 10−4; 10−2 from bottom to
top). The dashed line corresponds to a completely degenerate
fermion ball. The upper curve corresponds to a nondegenerate
isothermal DM halo.

12See Ref. [32] for a description of this core-halo configuration
and some analytical approximations. See also Sec. Vof Ref. [25]
for similar results obtained in the case of bosonic DM halos
which can be directly exported to the case of fermionic DM halos.

13A more rigorous approach would be to use a truncated model
(fermionic King model) like in [33,34].

14It should not be confused with the chemical potential which
is denoted by the same symbol. In principle, no confusion should
arise.
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Using Eq. (19), we obtain

EkinR
GM2

¼ α7

μ4

Z
α

0

I3=2½keψkðξÞ�ξ2dξ: ð31Þ

In order to determine the potential energy, we can use the
virial theorem (see, e.g., [30])

2Ekin þW ¼ 3PbV; ð32Þ
where Pb ¼ PðRÞ is the pressure on the boundary of the
box and V ¼ 4

3
πR3 is the volume of the spherical box.

Using the expression of the pressure from Eq. (19) at the
box radius R, we get

WR
GM2

¼ 2α10

3μ4
I3=2½keψkðαÞ� − 2EkinR

GM2
: ð33Þ

Introducing the normalized energy

Λ ¼ −
ER
GM2

ð34Þ

and combining Eqs. (31) and (33), we finally obtain

Λ ¼ α7

μ4

Z
α

0

I3=2½keψkðξÞ�ξ2dξ − 2α10

3μ4
I3=2½keψkðαÞ�: ð35Þ

The expression of the entropy is derived in Appendix B.
Finally, using Eqs. (16), (18), (24), (25), (29), and (C7) the

normalized density and velocity profiles can be written as

ρðrÞ
M=R3

¼ μ

4πη3=2
I1=2½keψðξÞ�; ð36Þ

v2ðrÞ
GM=R

¼ 1

η
ξψ 0ðξÞ: ð37Þ

B. Caloric curves and ensemble inequivalence

Using the foregoing formulas, we can obtain the caloric
curve ηðΛÞ of the self-gravitating Fermi gas for a specified
value of μ as follows. For a given value of k, we can solve
the ordinary differential equation (20) with the initial
conditions (21) until the value of α at which the relation
(28) is satisfied. Then, Eqs. (26) and (35) determine the
normalized inverse temperature η and the normalized
energy Λ of the configuration. By varying the parameter
k from 0 to þ∞, we can determine the full caloric curve
ηðΛÞ for the specified value of the degeneracy parameter μ
(see Fig. 3). We can then study the occurrence of phase
transitions as a function of μ. This study has been made in
detail in [43].15 Below, we summarize the main results of
this study that will be useful in the following.
We have to be careful that, for self-gravitating systems

(which have a long-range interaction), the statistical

ensembles are inequivalent. In the previous section, we have
worked in themicrocanonical ensemble. This is the statistical
ensemble associated with isolated systems where the energy
E is fixed. By contrast, systems in contact with a heat bath
fixing the temperature T are described by the canonical
ensemble. In the canonical ensemble, the statistical equilib-
rium state of a self-gravitating gas of fermions is obtained by
minimizing theFermi-Dirac free energyF ¼ E − TS at fixed
massM. One has therefore to solve the optimization problem

minfFjM fixedg: ð38Þ
One can easily show that the equilibrium states in the

microcanonical and in the canonical ensembles are the
same; an extremum of free energy at fixed mass is also an
extremum of entropy at fixed mass and energy, and
conversely [77]. However, their stability may be different
in the two ensembles. An equilibrium state that is canoni-
cally stable is always microcanonically stable (a minimum
of free energy at fixed mass is always a maximum of
entropy at fixed mass and energy), but the converse is
wrong; a maximum of entropy at fixed mass and energy is
not necessarily a minimum of free energy at fixed mass
[77]. For example, equilibrium states with a negative
specific heat are always unstable in the canonical ensemble
while they may be stable in the microcanonical ensemble.
This corresponds to the concept of ensemble inequivalence
for systems with long-range interactions [43,73,74]. As a
result, we may miss important solutions if we use the
canonical ensemble instead of the microcanonical one.16
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4
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2
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FIG. 3. Caloric curves (series of equilibria) of the self-
gravitating Fermi gas for different values of μ.

15Very similar results apply to the case of tidally-truncated
systems described by the fermionic King model [33,34].

16In particular, as shown in [38] and further discussed in
Sec. VII, the core-halo solution that possibly describes real DM
halos is unstable in the canonical ensemble while it is stable in the
microcanonical ensemble. This suggests that the microcanoncal
ensemble is more adapted to DM halos than the canonical
ensemble. Since DM halos are isolated instead of being in
contact with a thermal bath, the use of the microcanonical
ensemble is physically justified [33,34].
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The self-gravitating Fermi gas presents two critical
points, one in each ensemble; the function ΛðηÞ becomes
multivalued at the canonical critical point μCCP and the
function ηðΛÞ becomes multivalued at the microcanonical
critical point μMCP whose values are [43]

μCCP ¼ 83; μMCP ¼ 2670: ð39Þ

For μ < μCCP the series of equilibria ηðΛÞ is monotonic
(see the curve μ ¼ 10 in Fig. 3; see also Fig. 11 below). The
equilibrium states are stable in both canonical and micro-
canonical ensembles.
For μ > μCCP the series of equilibria ηðΛÞ presents turning

points of temperature (see the curves μ ¼ 102–105 in Fig. 3;
see also Figs. 12 and 14 below). Following the series of
equilibria towards higher and higher density contrasts, and
using the Poincaré-Katz [78,79] criterion, one can show that
the equilibrium states are canonically stable before the first
turning point of temperature ηc (gaseous phase) and after
the last turning point of temperature η� (condensed phase).
They are canonically unstable in between. In the canonical
ensemble, the system undergoes an isothermal collapse at ηc
from the gaseous phase to the condensed phase and an
explosion at η� from the condensed phase to the gaseous
phase.The first-order phase transition that is expected atηt (at
which the free energy of the two phases coincides) does not
take place in practice because of the very long lifetime of
metastable states for systems with long-range interactions
scaling as eN [80].
Forμ > μMCP the series of equilibria ηðΛÞ presents turning

points of energy (see the curvesμ ¼ 104 and105 in Fig. 3; see
also Fig. 14 below). Following the series of equilibria
towards higher and higher density contrasts, and using
the Poincaré-Katz [78,79] criterion, one can show that the
equilibrium states aremicrocanonically stable before the first
turning point of energy Λc (gaseous phase) and after the last
turning point of energy Λ� (condensed phase). They are
microcanonically unstable in between. In themicrocanonical
ensemble, the system undergoes a gravothermal catastrophe
at Λc from the gaseous phase to the condensed phase and an
explosion at Λ� from the condensed phase to the gaseous
phase. The first-order phase transition that is expected at Λt
(at which the entropy of the two phases coincides) does not
take place in practice because of the very long lifetime of
metastable states for systems with long-range interactions
scaling as eN [80].
For μ → þ∞ we recover the series of equilibria ηðΛÞ of a

classical isothermal self-gravitating gas (see Fig. 6 below). It
has a snail-like structure (spiral). Using the Poincaré-Katz
[78,79] criterion, one can show that the equilibrium states
become (and remain) unstable after the first turning point of
temperature in the canonical ensemble and after the first
turning point of energy in the microcanonical ensemble.
For μCCP < μ < μMCP (see the curves μ ¼ 102 and 103 in

Fig. 3; see also Fig. 12 below) all the equilibrium states are

stable in the microcanoncal ensemble while the equilibrium
states between the first turning point of temperature ηc and
the last turning point of temperature η� (core-halo solution)
are unstable in the canonical ensemble. They have a core-
halo structure and a negative specific heat. The region of
negative specific heat that is allowed in the microcanonical
ensemble is replaced by a phase transition in the canonical
ensemble. This corresponds to a region of ensemble
inequivalence.17

We now apply these results to DM halos. We have
explained that metastable states (local entropy maxima)
are as much relevant as fully stable states (global entropy
maxima) since they are robust and long-lived. Therefore, we
shall not make a distinction between fully stable and
metastable states in our study. We shall treat them on the
same footing.

IV. NONDEGENERATE LIMIT: EXTERNAL
STRUCTURE OF LARGE DM HALOS

Let us first consider the nondegenerate limit of the self-
gravitating Fermi gas which describes the external structure
(envelope) of large DM halos.

A. Isothermal equation of state

In the nondegenerate limit T → þ∞ (or T ≫ TF where
TF ∼ ℏ2ρ2=3=m5=3kB is the Fermi temperature) the
Fermi-Dirac DF (7) reduces to the Maxwell-Boltzmann
distribution

f ¼ η0eβμe−βm½v2
2
þΦðrÞ�: ð40Þ

In that case, the density and the pressure are given by

ρ ¼ η0eβμ
�
2π

βm

�
3=2

e−βmΦðrÞ; ð41Þ

P ¼ η0eβμ
�
2π

βm

�
3=2 1

βm
e−βmΦðrÞ; ð42Þ

leading to the classical isothermal equation of state

PðrÞ ¼ ρðrÞ kBT
m

: ð43Þ

17The physical nature of the core-halo solution is very different
in the two ensembles. In the canonical ensemble, the degenerate
core represents a “germ” or a “critical droplet” (in the language
of phase transitions and nucleation) that the system must form
to pass from the gaseous phase to the condensed phase. This is a
saddle point of free energy at fixed mass. The probability to form
this configuration is very low, scaling with the number of parti-
cles as e−N . This is a rare event. This explains why metastable
gaseous states have a very long lifetime scaling as eN [43,80]. By
contrast, in the microcanonical ensemble, the core-halo solution
is fully stable and corresponds to the most probable state of the
system for the corresponding energy. It is therefore expected to be
physically selected by the system.
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The fundamental differential equation (14) of hydrostatic
equilibrium takes the form

−
kBT
m

Δ ln ρ ¼ 4πGρ: ð44Þ

It describes the balance between the gravitational attraction
and the thermal pressure. It is equivalent to the Boltzmann-
Poisson equation

ΔΦ ¼ 4πGη0eβμ
�
2π

βm

�
3=2

e−βmΦðrÞ ð45Þ

obtained by combining Eqs. (13) and (41). Equations (44)
and (45) can be reduced to the Emden equation (D5) [55].

B. Flat rotation curves

The differential equation of hydrostatic equilibrium (44)
has no simple analytical solution and must be solved
numerically. However, its asymptotic behavior is known
analytically [55,69]. The density of a self-gravitating iso-
thermal halo decreases as

ρðrÞ ∼ kBT
2πGmr2

ð46Þ

for r → þ∞, corresponding to an accumulatedmassMðrÞ ∼
2kBTr=ðGmÞ increasing linearly with r. This leads to flat
rotation curves

v2ðrÞ ¼ GMðrÞ
r

→ v2∞ ¼ 2kBT
m

; ð47Þ

in agreement with the observations [69].

C. Thermal core radius

The isothermal density profile has not a compact support
so it extends to infinity. Furthermore, its total mass is infinite
[69]. As a result, self-gravitating systems have no statistical
equilibrium state in an unbounded domain. In practice,
the isothermal equation of state is not valid at arbitrarily
large distances and the expansion of the halo is limited by
tidal effects [33,34,81] or by incomplete relaxation [31,82]
(see Sec. XI).
From the scaling of Eq. (44) we can define a character-

istic radius

r0 ¼
�

kBT
4πGρ0m

�
1=2

ð48Þ

that we shall call the thermal core radius.18 It represents the
typical radius of an isothermal halo of central density ρ0.
The halo mass Mh, the halo radius rh, the temperature T

and the circular velocity vh at the halo radius are defined in
Appendix C. For an isothermal profile they are given by
(see Appendix D)

rh
r0

¼ 3.63;
Mh

ρ0r3h
¼ 1.76; ð49Þ

kBT
Gmρ0r2h

¼ 0.954;
v2h

4πGρ0r2h
¼ 0.140: ð50Þ

We note that the dimensionless inverse temperature has the
value

ηv ¼
βGMhm

rh
¼ 1.84: ð51Þ

This is essentially a consequence of the virial theorem.
Equation (51) will be called the “virial condition”.
The density and circular velocity profiles of a purely

isothermal halo are plotted in Figs. 2–6 of [25]. The
isothermal profile is relatively close to the empirical
(observational) Burkert profile [2] up to r=rh ¼ 6.

D. The constant surface density

It is an observational evidence that the surface density of
DM halos is independent of their mass and size and has the
universal value [83–85]

Σ0 ¼ ρ0rh ¼ 141þ83
−52 M⊙=pc2: ð52Þ

This result is valid for all the galaxies even if their sizes and
masses vary by several orders of magnitude (up to 14 orders
of magnitude in luminosity). The reason for this univer-
sality is not known but it is crucial to take this result into
account in any modeling of DM halos. Therefore, we shall
assume this relation as an empirical fact.19

E. Halo mass-radius relation

Substituting the constraint (52) of a constant surface
density into Eqs. (49) and (50), we obtain the relations

Mh ¼ 1.76Σ0r2h;
kBT
m

¼ 0.954GΣ0rh; ð53Þ

v2h ¼ 1.76GΣ0rh; ρ0 ¼
Σ0

rh
: ð54Þ

They determine the halo mass, the halo temperature, the
halo velocity, and the halo central density as a function
of the halo radius. The halo mass scales with the size as
Mh ∝ r2h and the temperature as kBT=m ∝ rh (basically,

18This is the scale radius that is used in Eq. (D4) to obtain the
Emden equation (D5). We add the word “thermal” to avoid
confusion with the quantum core radius considered later (see the
discussion in Sec. X).

19In Refs. [86–91] we have explained this universal value,
without adjustable parameter, from a logotropic model of DM
halos.
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these scalings stem from the universality of the surface
density of DM halos Mh=r2h ∼ Σ0 and from the virial
theorem kBT=m ∼ v2h ∼ GMh=rh ∼GΣ0rh).
For a halo of mass Mh ¼ 1011 M⊙, similar to the halo

that surrounds our Galaxy, we find rh ¼ 20.1 kpc, ρ0 ¼
7.02 × 10−3 M⊙=pc3, ðkBT=mÞ1=2 ¼ 108 km=s, and vh ¼
ðGMh=rhÞ1=2 ¼ 146 km=s (we also have v∞ ¼ 153 km=s).
We stress that these results are independent of the character-
istics of the DM particle. The corresponding density and
velocity profiles are plotted in Figs. 4 and 5.
Remark: The (effective) temperature of the DM halos

depends on the fermion mass m and on the halo mass Mh

through the law kBT ¼ 0.719Gm
ffiffiffiffiffiffiffiffiffiffiffiffi
Σ0Mh

p
. Let us consider a

halo mass Mh¼1011M⊙ as above. For m¼165eV=c2 (see
Sec. V C), we get T ¼ 0.247 K. For m ¼ 1 keV=c2

(see Sec. V C), we get T¼1.50K. For m ¼ 54.6 keV=c2

(see Sec. VIII), we get T ¼ 81.9 K. These values, which
are of the order of the Kelvin scale, are much more
physical that those obtained in the case of bosonic DM,
which are of the order of T ∼ 10−25 K for a boson mass
m ∼ 10−22 eV=c2 [25].

F. Classical isothermal gas in a box

Let us finally derive the equations determining the
caloric curve of a self-gravitating isothermal gas in a box.
The density profile (41) can be written as

ρðrÞ ¼ ρ0e−βmðΦðrÞ−Φ0Þ; ð55Þ

where ρ0 is the central density and Φ0 is the central
potential. The Boltzmann-Poisson equation (45) then
becomes

ΔΦ ¼ 4πGρ0e−βmðΦ−Φ0Þ: ð56Þ

If we assume that the system is spherically symmetric and
introduce the dimensionless variables

ρ ¼ ρ0e−ψðξÞ; ψ ¼ βmðΦ −Φ0Þ; ð57Þ

and

ξ ¼ ð4πGβmρ0Þ1=2r ð58Þ

into Eq. (56), we obtain the Emden equation (D5). If we
denote by α the value of ξ at the edge of the box, we have

α ¼ ð4πGβmρ0Þ1=2R and ξ ¼ α
r
R
: ð59Þ

Introducing the inverse normalized temperature from
Eq. (24) and applying Newton’s law (25) at r ¼ R, we get

η ¼ αψ 0ðαÞ: ð60Þ

To compute the energy, we proceed as follows. The kinetic
energy of an isothermal gas is

Ekin ¼
3

2
NkBT: ð61Þ

Using the virial theorem from Eq. (32) we can compute the
gravitational energy. We find

W ¼ −2Ekin þ 3PbV ¼ −3NkBT þ 4πR3ρðRÞkBT
m

: ð62Þ

The total energy is E ¼ Ekin þW. Introducing the normal-
ized energy from Eq. (34) we obtain

Λ ¼ 3

2αψ 0ðαÞ −
e−ψðαÞ

ψ 0ðαÞ2 : ð63Þ

The expression of the entropy is derived in Appendix B.
The caloric curve ηðΛÞ of the classical self-gravitating gas
[76,79,92] is represented in Fig. 6. It has the form of a spiral
(see Sec. III B). It leads to an isothermal collapse [93] in the
canonical ensemble above ηc ¼ 2.52 and to a gravothermal
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FIG. 4. Density profile of a classical isothermal DM halo of
mass Mh ¼ 1011 M⊙ (Milky Way).

0.1 1 10 100
r (kpc)

10
0

10
1

10
2

10
3

v 
(k

m
/s

)

M
h
 = 10

11
 M

s

(Milky Way)

FIG. 5. Rotation curve of a classical isothermal DM halo of
mass Mh ¼ 1011 M⊙ (Milky Way).
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catastrophe [76] in the microcanoncal ensemble above
Λc ¼ 0.335.
Remark: The equations of this section can be recovered

from the general equations of Sec. III by taking the
nondegenerate limit k → þ∞ and replacing the Fermi
integrals by their asymptotic expressions

InðtÞ ∼
1

t
Γðnþ 1Þ; ðt → þ∞Þ: ð64Þ

V. COMPLETELY DEGENERATE LIMIT:
MINIMUM HALO (GROUND STATE) AND

QUANTUM CORE OF DM HALOS

We now consider the completely degenerate limit of the
self-gravitating Fermi gas which describes (i) ultracompact
dwarf spheroidals (dSphs) like Fornax or Willman I and
(ii) the quantum core of bigger DM halos.

A. Polytropic equation of state

In the completely degenerate limit T ¼ 0 (or T ≪ TF),
the Fermi-Dirac DF (7) reduces to the step function

fðr; vÞ ¼ η0 v ≤ vFðrÞ;
fðr; vÞ ¼ 0 v ≥ vFðrÞ; ð65Þ

where

vFðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
μ

m
−ΦðrÞ

�s
ð66Þ

is the Fermi velocity.20 The density and the pressure are
explicitly given by

ρ ¼
Z

fdv ¼
Z

vF

0

η04πv2dv ¼ 4π

3
η0v3FðrÞ; ð67Þ

P ¼ 1

3

Z
fv2dv ¼ 1

3

Z
vF

0

η0v24πv2dv ¼ 4π

15
η0v5FðrÞ: ð68Þ

Eliminating the Fermi velocity between these two expres-
sions, we find that the equation of state of a cold Fermi gas
is [55]

P ¼ 1

20

�
3

π

�
2=3 h2

m8=3 ρ
5=3: ð69Þ

This is a polytropic equation of state P ¼ K1ρ
5=3 of index

γ ¼ 5=3 (i.e., n ¼ 3=2). The fundamental differential
equation of hydrostatic equilibrium determining the density
profile of a fermion ball at T ¼ 0 with the equation of state
(69) reads [see Eq. (14)]

1

8

�
3

π

�
2=3 h2

m8=3 Δρ
2=3 ¼ −4πGρ: ð70Þ

It describes the balance between the gravitational attraction
and the quantum pressure. It is equivalent to the Thomas-
Fermi equation

ΔΦ ¼ 16

3
π2Gη0

�
2

�
μ

m
−Φ

��
3=2

ð71Þ

obtained by combining Eqs. (13) and (67) with Eq. (66).
Equations (70) and (71) can be reduced to the Lane-Emden
equation (E5) of index n ¼ 3=2.

B. Mass-radius relation

The density profile of a fermion ball at T ¼ 0 (corre-
sponding to a polytrope of index n ¼ 3=2) has a compact
support: the density vanishes at a finite distance r ¼ R
representing the radius of the object (see Fig. 7 below). The
radius, the mass and the central density of the object satisfy
the relations (see Appendix E)

R ¼ 0.359
h

m4=3G1=2ρ1=60

; ð72Þ

M ¼ 0.699ρ0R3; ð73Þ

MR3 ¼ 0.00149
h6

G3m8
: ð74Þ

Similarly, the halo mass, the halo radius and the central
density satisfy the relations (see Appendix E)

rh ¼ 0.223
h

m4=3G1=2ρ1=60

; ð75Þ
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FIG. 6. Caloric curve of the classical self-gravitating gas.

20The Fermi energy is given by ϵFðrÞ¼ 1
2
mv2FðrÞ¼μ−mΦðrÞ.

It is equal to the local chemical potential μðrÞ ¼ μ −mΦðrÞ.
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Mh ¼ 1.99ρ0r3h; ð76Þ

Mhr3h ¼ 2.45 × 10−4
h6

G3m8
: ð77Þ

Therefore

M
Mh

¼ 1.46;
R
rh

¼ 1.61; ð78Þ

yielding GM=R ¼ 0.907GMh=rh.

C. Minimum halo

The foregoing equations determine the ground state
(T ¼ 0) of the self-gravitating Fermi gas. This fermion
ball corresponds either to the smallest and most compact
DM halo of the Universe (which has no isothermal
atmosphere) that we call the “minimum halo”, or to the
quantum cores of larger DM halos (which are surrounded
by an isothermal atmosphere) [38]. We consider here the
first possibility (minimum halo). Using Eqs. (75)–(77) and
the constraint from Eq. (52), we obtain [38]

ðrhÞmin ¼ 1.50

�
ℏ6

G3m8Σ0

�
1=5

; ð79Þ

ðMhÞmin ¼ 4.47

�
ℏ12Σ3

0

G6m16

�
1=5

; ð80Þ

ðρ0Þmax ¼ 0.667

�
Σ0m4=3G1=2

ℏ

�
6=5

; ð81Þ

ðv2hÞmin ¼ 2.98

�
Σ4
0G

2ℏ6

m8

�
1=5

: ð82Þ

These equations determine the radius, the mass, the central
density and the velocity of the minimum halo as a function
of the fermion massm and the universal surface density Σ0.
In practice, they are used the other way round in order to
determine the fermion mass m. Assuming that the mass
ðMhÞmin of the minimum halo is known, we obtain

m ¼ 1.60
ℏ3=4Σ3=16

0

G3=8ðMhÞ5=16min

: ð83Þ

If we take ðMhÞmin ¼ 108 M⊙ we findm ¼ 165 eV=c2. We
then obtain ðrhÞmin ¼ 597 pc, ðρ0Þmax ¼ 0.236 M⊙=pc3,
and ðvhÞmin ¼ 26.8 km=s. Using Eq. (78), we also have
Mmin ¼ 1.46 × 108 M⊙ and Rmin ¼ 961 pc. The corre-
sponding density and velocity profiles are plotted in
Figs. 7 and 8.

The Fermi temperature is defined by

kBTF ¼
ℏ2ρ2=3

m5=3 : ð84Þ

It can be obtained qualitatively by equating Eqs. (43) and
(69). For the minimum halo, using Eq. (81), it reads

kBTF ¼
�
ℏ6Σ4

0G
2

m3

�
1=5

: ð85Þ

For m ¼ 165 eV=c2, we get TF ¼ 5.15 × 10−3 K. We note
that the minimum halo is determined by the condition
T ∼ TF, where T is the temperature given by Eq. (53).
Remark: The choice of the mass ðMhÞmin ¼ 108 M⊙

(Fornax) for the minimum halo is a little bit arbitrary and
open to criticism. We shall adopt this value, however, in
order to be consistent with our other papers [25,38,40,94].
Nevertheless, our model is perfectible. If a more relevant
minimum halo mass is considered, our analytical results
remain valid but the numerical applications must be

0 0.2 0.4 0.6 0.8 1
r (kpc)

0

0.05

0.1

0.15

0.2

0.25

ρ(
M

s/p
c3 )

M
h
 = 10

8
 M

s

ρ0

R

ρ0/4 r
h

(Fornax)

m = 165 eV/c
2

FIG. 7. Density profile of a completely degenerate DM halo of
mass Mh ¼ 108 M⊙ (Fornax). We have taken m ¼ 165 eV=c2.
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reconsidered. For example, if we take a minimum halo
mass ðMhÞmin¼ 0.39×106 M⊙ corresponding to Willman I
(as in Refs. [49–54] and Refs. [34,95]) we obtain m∼
1 keV=c2. We then obtain ðrhÞmin ∼ 33 pc (in very good
agreement with the measured value reported in Ref. [49]),
ðρ0Þmax ∼ 4.3 M⊙=pc3, and ðvhÞmin ¼ 6.35 km=s. It is also
possible that the concept of a “minimum halo” which is
completely degenerate is wrong (see Sec. VIII). In that
case, our general results remain valid but the fermion mass
cannot be obtained from the considerations of this section.

D. Quantum core of DM halos

The relations from Eqs. (72)–(83) apply to the minimum
halo which is a pure fermion ball without isothermal
atmosphere. The relations from Eqs. (72)–(74) also apply
to the quantum core of larger DM halos. If we normalize the
core mass Mc by the minimum halo mass ðMhÞmin and the
core radius Rc by the minimum halo radius ðrhÞmin, we get

Mc

ðMhÞmin

�
Rc

ðrhÞmin

�
3

¼ 6.09: ð86Þ

We can check that Eq. (86) is verified for the minimum
halo for which Mc ¼ 1.46ðMhÞmin and Rc ¼ 1.61ðrhÞmin
[see Eq. (78)].

E. Maximum mass due to general relativity

The maximum mass and the minimum radius of a
fermion ball at T ¼ 0 set by general relativity are

MOV ¼ 0.384

�
ℏc
G

�
3=2 1

m2
; ROV ¼ 8.73

GMmax

c2
: ð87Þ

They were first determined by Oppenheimer and Volkoff
[96] in the context of neutron stars. For a fermion of
mass m ¼ 165 eV=c2, we obtain MOV ¼ 2.30 × 1013 M⊙
and ROV ¼ 9.61 pc. For m ¼ 1 keV=c2, we get MOV ¼
6.26 × 1011 M⊙ and ROV ¼ 0.262 pc. The maximum
mass is much larger than the typical core mass of any
DM halo. Assuming that a fermion ball at T ¼ 0 describes
the quantum core of a DM halo, we conclude that such
cores are nonrelativistic sinceMc ≪ Mmax in general. Since
themaximummass ismuch larger than the coremass, gravity
can be treated within a Newtonian framework.21

F. Energy of a fermion ball

Let us finally derive the energy of a completely degen-
erate fermion ball.
A nonrelativistic fermion ball at T ¼ 0 is equivalent to a

polytrope of index n ¼ 3=2 [see Eq. (69)]. Its kinetic
energy is given by [see Eq. (30)]

Ekin ¼
3

2

Z
Pdr ¼ 3

2
K1

Z
ρ5=3dr: ð88Þ

It gravitational energy is given by the Betti-Ritter formula
[55]

W ¼ −
6

7

GM2

R
ð89Þ

with the mass-radius relation from Eq. (74). The virial
theorem reduces to [see Eq. (32)]

2Ekin þW ¼ 0 ð90Þ
since the pressure vanishes on the boundary of the fermion
ball. Therefore, the total energy E ¼ Ekin þW of the
fermion ball is

E ¼ −Ekin ¼
W
2
¼ −

3

7

GM2

R
: ð91Þ

This is the minimum energy Emin of the self-gravitating
Fermi gas (ground state). Using the mass-radius relation
(74), we obtain

Emin ¼ −3.750
G2m8=3

h2
M7=3: ð92Þ

Considering the box model of Sec. III and introducing the
normalized energy from Eq. (34) we get

Λmax ¼ 0.0642μ2=3: ð93Þ
Remark: The equations of this section can be recovered

from the general equations of Sec. III by taking the com-
pletely degenerate limit k → 0 and replacing the Fermi
integrals by their asymptotic expressions

InðtÞ ∼
ð− ln tÞnþ1

nþ 1
; ðt → 0Þ: ð94Þ

VI. PARTIALLY DEGENERATE DM HALOS:
CORE-HALO STRUCTURE

To study partially degenerate DM halos with a core-halo
structure, we shall use the box model of Sec. III. In order to
apply this model to real DM halos, we identify the massM
with the halo mass Mh and the box radius R with the halo
radius rh:

M ¼ Mh; R ¼ rh: ð95Þ
We first have to determine the relation between the
degeneracy parameter μ and the halo mass Mh.

A. Relation between the degeneracy parameter μ
and the halo mass Mh

Sufficiently large DM halos are dominated by their
classical isothermal envelope (the quantum core of mass

21This statement is valid for the fermion mass m ¼ 165 eV=c2
that we consider here. It is only marginally valid for the larger
fermion mass m ¼ 48 keV=c2 considered in Sec. VIII.
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Mc ≪ Mh does not affect their external structure). As a
result, the halo mass is related to the halo radius by [see
Eq. (53)]

Mh ¼ 1.76Σ0r2h: ð96Þ

Using this relation, the degeneracy parameter defined by
Eq. (29) can be written as

μ ¼ 1.18
G3=2m4M5=4

h

ℏ3Σ3=4
0

: ð97Þ

Normalizing the halo mass Mh by the minimum halo mass
ðMhÞmin given by Eq. (80) we obtain

μ ¼ 7.66

�
Mh

ðMhÞmin

�
5=4

: ð98Þ

This equation relates the degeneracy parameter μ to the halo
mass Mh. As a result, the canonical and microcanonical
critical points given by Eq. (39)may be expressed in terms of
the halo mass by using ðMhÞCCP ¼ ðμCCP=7.66Þ4=5ðMhÞmin

and ðMhÞMCP ¼ ðμMCP=7.66Þ4=5ðMhÞmin yielding

ðMhÞCCP ¼ 6.73ðMhÞmin ¼ 30.1

�
ℏ12Σ3

0

G6m16

�
1=5

; ð99Þ

ðMhÞMCP ¼ 108ðMhÞmin ¼ 483

�
ℏ12Σ3

0

G6m16

�
1=5

: ð100Þ

Taking ðMhÞmin ¼ 108 M⊙ (Fornax), corresponding to a
fermion mass m ¼ 165 eV=c2, we get

ðMhÞCCP ¼ 6.73× 108 M⊙; ðMhÞMCP ¼ 1.08× 1010 M⊙:

ð101Þ

If we take ðMhÞmin ¼ 0.39 × 106 M⊙ (Willman I) instead,
corresponding to a fermion mass m ∼ 1 keV=c2, we get
ðMhÞCCP ¼ 2.62 × 106 M⊙ and ðMhÞMCP¼4.21×107M⊙.
We note that ðMhÞCCP and ðMhÞMCP are very sensitive to the
value ofm since it occurs in their expressions [see Eqs. (99)
and (100)] with the power 16=5.
Remark: We can also write the degeneracy parameter μ

under the form [43]

μ ¼ 17.3

�
R

RFðMÞ
�
3=2

; ð102Þ

where RFðMÞ is the (Fermi) radius of a completely degen-
erate fermion ball of mass M given by Eq. (74). The con-
dition R > Rc imposes R>RFðMÞ, hence μ > μmin ¼ 17.3.
Applying this inequality to real DM halos, using Eq. (98),
we find thatMh > 1.92ðMhÞmin. Up to a factor of order unity,
we recover the fact that theground state of the self-gravitating

Fermi gas (T ¼ 0) determines the existence of a minimum
halo mass ðMhÞmin.

B. Virial condition

We have seen in Sec. IV that the normalized inverse
temperature of an isothermal DM halo is ηv ¼ 1.84.22

Therefore, if we want to make the connection between the
box model and real DM halos, we should consider a value of
η equal to 1.84. It is reassuring to note that ηv ¼ 1.84 is
smaller than ηc ≃ 2.52, corresponding to the maximum
inverse temperature of the classical isothermal spiral, imply-
ing that there always exists a gaseous (nondegenerate)
equilibrium state with ηv ¼ 1.84. Actually, we should not
give too much importance on the precise value of ηv. It is
sufficient to consider that ηv is of the order of unity.
Therefore, we shall take

ηv ∼ 1: ð103Þ
The intersectionsbetween the series of equilibria ηðΛÞ and the
line level η ¼ ηv ∼ 1 determine the possible equilibrium
states of our system of self-gravitating fermions. We can
generically have three kinds of solutions: (i) a gaseous
solution (G) which is purely isothermal without quantum
core; (ii) a core-halo solution (CH) with a quantum core
(fermion ball) surrounded by a classical isothermal atmos-
phere; (iii) a condensed solution (C) which is an essentially
quantum object with a tenuous isothermal atmosphere.
The gaseous solution has been discussed in Sec. IV. The
condensed solution is not physical in the case of large DM
halos because it would imply that the halo is completely
degenerate,which is not the case. This solutiononly applies to
the minimim halo (see Sec. V). The core-halo solution is the
most important one for our purposes. It is similar to the
gaseous solution at sufficiently large distances but it contains
a small nucleus (fermion ball) at its center. An important
question is to determine the coremassMc as a function of the
halo mass Mh.

C. The Mc −Mh relation for the CH solution

The core mass-halo mass relation McðMhÞ can be
obtained from the box model as follows. The halo mass
Mh determines the value of the degeneracy parameter μ. We
can then plot the series of equilibria ηðΛÞ parametrized by
the concentration parameter k (see Figs. 11, 12, and 14
below). For μ > μCCP, the intersections between the caloric
curve ηðΛÞ and the virial condition η ¼ ηv ∼ 1 determine
three solutions G, CH, and C (see Fig. 9 for an illustration).
We select the core-halo solution and compute the corre-
sponding concentration parameter k ¼ kCHðμ; ηvÞ. The
density profile of the core-halo solution is then given by
Eq. (18). Its central density is

22Coincidentally, this value turns out to be very close to the
value η2 ¼ 1.84 corresponding to the minimum inverse temper-
ature of the classical isothermal spiral (see Sec. IV F).
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ρ0 ¼
4π

ffiffiffi
2

p
η0

ðβmÞ3=2 I1=2ðkÞ: ð104Þ

Introducing the dimensionless variables defined in
Sec. III A, we get

4πρ0R3

M
¼ μ

η3=2
I1=2ðkÞ: ð105Þ

Now, the core-halo configuration can be decomposed into
a fermion ball at T ¼ 0 and a classical isothermal atmos-
phere. For a completely degenerate fermion ball, represent-
ing the quantum core of the DM halo, the relation between
the core mass and the central density is given by [see
Eqs. (72)–(74)]

Mc ¼ 8.01
ℏ3ρ1=20

G3=2m4
: ð106Þ

Combining Eqs. (105) and (106) we obtain

Mc

M
¼ 4.07

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I1=2ðkÞ

p
μ1=2η3=4

: ð107Þ

Recalling that M ¼ Mh, η ¼ ηv ∼ 1 and k ¼ kCHðμ; ηvÞ
we get

Mc

Mh
¼ 4.07

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I1=2½kCHðμ; ηvÞ�

p
μ1=2η3=4v

: ð108Þ

Together with the relation (98) between μ and Mh,
Eq. (108) determines the core mass-halo mass relation
McðMhÞ. In principle, the function I1=2½kCHðμ; ηvÞ� has to
be determined numerically as a function of μ. However, it
turns out that, for the CH solution, I1=2½kCHðμ; ηvÞ� changes
slowly (logarithmically) with μ. As a result, up to loga-
rithmic corrections (see Sec. VI D), it can be assumed to be
constant. Therefore, we obtain the scaling

Mc

Mh
∝

1

μ1=2
: ð109Þ

More precisely, recalling Eq. (98), Eq. (108) can be
written as

Mc

ðMhÞmin
¼ 1.47

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I1=2½kCHðμ; ηvÞ�

p
η3=4v

�
Mh

ðMhÞmin

�
3=8

: ð110Þ

If we take ηv ¼ 1 and I1=2ðkCHÞ ¼ 1, we get

Mc

ðMhÞmin
¼ 1.47

�
Mh

ðMhÞmin

�
3=8

: ð111Þ

This relation shows that the core mass Mc scales with the
halo mass asM3=8

h . The prefactor, obtained from our model,

is of order unity implying that Mc ∼Mh for the minimum
halo, as expected. Actually, for Mh ¼ ðMhÞmin we get
Mc ¼ 1.47ðMhÞmin in very good agreement with Eq. (78).
Returning to the original variables, using Eq. (80), we can
rewrite Eq. (111) as

Mc ¼ 3.75
ℏ3=2

m2

�
MhΣ0

G2

�
3=8

: ð112Þ

Once we have Mc by Eq. (111) or (112) we can get Rc by
Eq. (74) or (86) and ρ0 by Eq. (106). Explicitly,

Rc ¼ 4.51
ℏ2

Gm8=3M1=3
c

¼ 2.90
ℏ3=2

G3=4m2M1=8
h Σ1=8

0

; ð113Þ

ρ0 ¼ 0.0156
G3m8M2

c

ℏ6
¼ 0.219

G3=2m4M3=4
h Σ3=4

0

ℏ3
: ð114Þ

Remark: In this paper, we have defined the halo massMh
such that the density at the halo radius rh is equal to the
central density divided by 4 (see Appendix C). However,
other authors work in terms of a halo mass Mv defined in
another manner as explained in Sec. V C of [38]. The
relation betweenMh andMv is [see Eq. (146) of Ref. [38]]

Mh

M⊙
¼ 6.01 × 10−6

�
Mv

M⊙

�
4=3

: ð115Þ

Combining Eqs. (112) and (115), we obtain the core mass—
halo mass relation McðMvÞ. It exhibits the fundamental
scalingMc ∝ M1=2

v . This theoretical scaling, first obtained in
the form of Eq. (112) in Appendix H of [34], is consistent
with the scaling found numerically by Ruffini et al. [59]
(they find an exponent equal to 0.52 instead of 1=2).

D. Logarithmic corrections

In the previous section, we have assumed that I1=2ðkCHÞ
is approximately constant and we have taken I1=2ðkCHÞ ≃ 1.
A more precise expression of I1=2ðkCHÞ can be obtained as
follows: We see on Fig. 9 that kCH ∼ 1=μ for large values of
μ.23 Using the asymptotic expression I1=2ðkÞ ∼ 2

3
ð− ln kÞ3=2

of the Fermi integral I1=2ðkÞ for k → 0 [see Eq. (94)], we
obtain I1=2ðkCHÞ ∼ 2

3
ðln μÞ3=2. This behavior is confirmed

by the plot of Fig. 10. If we take this logarithmic correction
into account we have to multiplyMc [given by Eq. (111) or
(112)] by the factor

A ¼
ffiffiffi
2

3

r
ðln μÞ3=4: ð116Þ

23This is not rigorously the case but this approximation is
sufficient for our purposes since k arises in a logarithm.
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Similarly, Rc [given by Eq. (113)] has to be divided byA1=3

and ρ0 [given by Eq. (114)] has to be multiplied by A2.

E. Velocity dispersion tracing relation

The core mass—halo mass relation can also be obtained
from a simple analytical model of self-gravitating fermions
enclosed within a box as detailed in Sec. IVof [38]. In that
model, the fermion ball is represented by a polytrope of
index n ¼ 3=2 and the classical isothermal atmosphere is
assumed to be uniform. Under these approximations, one
can compute the energy and the entropy analytically. The
mass of the fermion ball Mc is then obtained by maximiz-
ing the entropy SðMcÞ for a given value of Eh, Mh, and rh.
This leads to a relationMcðMhÞ similar to that of Eq. (109)
with Eq. (116) [see Eq. (123) of Ref. [38]]. This relation is
obtained from a thermodynamical approach (maximum
entropy principle) determining the “most probable” core
massMc. It is furthermore shown in Sec. Vof [38] that this

relation is equivalent to the “velocity dispersion tracing”
relation [19,25,97]

v2c ∼ v2h or Mc ∼
Rc

rh
Mh ð117Þ

stating that the velocity dispersion in the core v2c ∼GMc=Rc
is of the same order as the velocity dispersion in the halo
v2h ∼GMh=rh. This is the reason why Eq. (111) is similar to
Eq. (169) of [38]. It is interesting to note that the prefactors
appearing in these relations are almost the same although
these relations are obtained from substantially different
calculations. Therefore, the present approach provides an
additional justification of the “velocity dispersion tracing”
relation from thermodynamical arguments.

VII. ASTROPHYSICAL APPLICATIONS

We now consider astrophysical applications of our
model and discuss several scenarios that are suggested
by the previous results.

A. Minimum halo with Mh = ðMhÞmin

The minimum halo has a mass ðMhÞmin ¼ 108 M⊙ and a
radius ðrhÞmin ¼ 597 pc. It corresponds to the ground state
(minimum energy state) of the self-gravitating Fermi gas. A
completely degenerate fermion ball at T ¼ 0 is equivalent
to a polytrope of index n ¼ 3=2 (see Figs. 7 and 8). This
solution is fully stable in all statistical ensembles.

B. Ultracompact DM halos
with ðMhÞmin < Mh < ðMhÞCCP

Ultracompact DM halos have a mass in the range
ðMhÞmin ¼ 108 M⊙ < Mh < ðMhÞCCP ¼ 6.73 × 108 M⊙.
Since μ < μCCP the caloric curve ηðΛÞ is monotonic (see
Fig. 11). There is only one equilibrium state with ηv ∼ 1.
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The quantum solution (Q) is thermodynamically stable in all
statistical ensembles.
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It corresponds to a completely degenerate fermion ball
surrounded by a tenuous classical isothermal atmosphere.
This quantum solution (Q) is thermodynamically stable in
all statistical ensembles.

C. Small DM halos with ðMhÞCCP < Mh < ðMhÞMCP

Small DM halos have a mass in the range ðMhÞCCP¼
6.73×108 M⊙<Mh< ðMhÞMCP¼1.08×1010M⊙. Speci-
fically, we consider a DM halo characterized by a degen-
eracy parameter μ¼103. It has a mass Mh¼4.93×109M⊙
[see Eq. (98)] and a radius rh ¼ 4.46 kpc [see Eq. (96)].
The corresponding caloric curve (see Sec. III A) is repre-
sented in Fig. 12. Since μCCP < μ < μMCP, the caloric curve
has an N-shape structure (see Sec. III B). The intersection
of this curve with the line ηv ∼ 1 (see Sec. VI B) determines
three solutions: a gaseous solution, a core-halo solution
and a condensed solution that we do not consider here
(see Sec. VI B). The gaseous solution has a concentration
parameter kG ¼ 206 (see Fig. 9). The corresponding
density profile is plotted as a dashed line in Fig. 13. It
represents a purely classical isothermal DM halo without
quantum core as investigated in Sec. IV. This solution lies
in the region of the caloric curve where the specific heat is
positive (C ¼ dE=dT > 0). It is thermodynamically stable
in all statistical ensembles (maximum entropy state at fixed
mass and energy and minimum free energy state at fixed
mass). The core-halo solution has a concentration param-
eter kCH ¼ 1.12 × 10−3 (see Fig. 9). The corresponding
density profile (see Sec. III A) is plotted as a solid line in

Fig. 13. It represents a DM halo with a quantum core
(fermion ball) of mass Mc ¼ 2.21× 109 M⊙, radius Rc ¼
389 pc and central density ρ0 ¼ 53.6 M⊙=pc3 [we have
used Eq. (111) to obtainMc, Eqs. (113) and (114) to obtain
Rc and ρ0, and we have taken into account the logarithmic
correction A ¼ 3.48 from Eq. (116)] surrounded by a
classical isothermal atmosphere. This core-halo solution
lies in the region of the caloric curve where the specific heat
is negative (C ¼ dE=dT < 0). It is thermodynamically
unstable in the canonical ensemble (saddle point of free
energy at fixed mass) but it is thermodynamically stable in
the microcanonical ensemble (entropy maximum at fixed
mass and energy) which is the relevant ensemble to
consider (see Sec. II).24

For small DM halos with ðMhÞCCP < Mh < ðMhÞMCP,
the gaseous solution and the core-halo solution are both
thermodynamically stable in the microcanonical ensemble
(maximum entropy state at fixed mass and energy).
Therefore, they are both likely to result from a natural
evolution in a thermodynamical sense. Let us consider
different scenarios of formation and evolution in line with
the general discussion given in Sec. II:
(1) The core-halo solution may arise naturally from a

process of violent collisionless relaxation (following
Jeans instability and free fall) since it is a maximum
entropy state in the sense of Lynden-Bell. This is a
fast process taking place on a dynamical timescale.
If the evolution is collisionless, the system remains
in that state.
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FIG. 12. Caloric curve of self-gravitating fermions for μ ¼ 103.
When ðMhÞCCP < Mh < ðMhÞMCP, the caloric curve has an
N-shape structure. In the canonical ensemble, the gaseous phase
and the condensed phase are stable while the core-halo phase is
unstable (it represents a “critical droplet” that the system must
create to pass from one phase to the other). In the microcanonical
ensemble, all the equilibrium states are stable. The system may
directly reach the core-halo phase through a process of collision-
less violent relaxation. It may also evolve collisionally, following
the arrows, from the gaseous solution to the core-halo solution.
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FIG. 13. Density profile of the core-halo solution
(kCH ¼ 1.12 × 10−3) for μ ¼ 103. For comparison, we have
represented in dashed line the gaseous solution which corre-
sponds to a classical isothermal halo (kG ¼ 206).

24The solutions G, CH, and C that we consider have different
energies but the same temperature. Indeed, the temperature is
more relevant than the energy to characterize a DM halo since,
according to the virial theorem, η ∼ 1. However, we stress that we
must analyze the thermodynamical stability of the system in the
microcanonical ensemble, not in the canonical ensemble.

PIERRE-HENRI CHAVANIS PHYS. REV. D 106, 043538 (2022)

043538-18



(2) The gaseous solution may also arise naturally from a
process of violent collisionless relaxation since it is a
maximum entropy state in the sense of Lynden-Bell.
Then, there are two possibilities:
(a) If the evolution is collisionless, the system

remains in that state.
(b) If the evolution is collisional, the system may

evolve along the series of equilibria (see
Fig. 12). Indeed, because of collisions25 and
evaporation the central density increases and the
energy decreases. The temperature first de-
creases in the region of positive specific heat
(C ¼ dE=dT > 0) then increases in the region
of negative specific heat (C ¼ dE=dT < 0).
The whole series of equilibria represented in
Fig. 12 is stable in the microcanonical ensemble.
Therefore, if the DM halo evolves adiabatically
under the effect of collisions, it can progressively
pass from the gaseous solution to the core-
halo solution. This is a slow relaxation taking
place on a secular timescale. This may be a
mechanism—alternative to violent relaxation—
which explains how the system reaches the core-
halo solution.

In conclusion, small DM halos with ðMhÞCCP < Mh <
ðMhÞMCP can be in two types of configuration:

(i) The gaseous solution coinciding with the classical
isothermal sphere. This simple solution is consistent
with the observations because we have shown in
Sec. III C of [25] that an isothermal DM halo is
almost indistinguishable from the observational
Burkert profile.

(ii) The core-halo solution made of a quantum core
(fermion ball) of mass Mc ¼ 2.21 × 109 M⊙ and
radius Rc ¼ 389 pc surrounded by a classical iso-
thermal atmosphere. The quantum core cannot
mimic a SMBH because it is too big (its radius Rc ¼
389 pc is much larger than its Schwarzschild radius
RS ¼ 2GM=c2 ¼ 2.11 × 10−4 pc). However, it can
represent a large quantum bulge made of DM. This
quantum bulge may possibly exist at present at the
center of certain galaxies or may have existed in the
past as a temporary state, and has disappeared since
then. Indeed, a large bulge may provide a favorable
environment for triggering the formation of a SMBH
that can then grow by accretion. The final outcome
of this scenario would then be a classical isothermal
halo containing either a quantum bulge (large
fermion ball) or a SMBH that would be the remnant
of the original bulge.

D. Large DM halos with Mh > ðMhÞMCP

Large DM halos have a mass Mh > ðMhÞMCP ¼
1.08 × 1010 M⊙. Specifically, we consider a DM halo
characterized by a degeneracy parameter μ ¼ 105. It has
a mass Mh ¼ 1.96 × 1011 M⊙ [see Eq. (98)] and a radius
rh ¼ 28.1 kpc [see Eq. (96)]. The corresponding caloric
curve (see Sec. III A) is represented in Fig. 14. Since
μ > μMCP, the caloric curve has a Z-shape structure similar
to a dinosaur’s neck (see Sec. III B). As before, the
intersection of this curve with the line ηv ∼ 1 (see
Sec. VI B) determines two physical solutions: a gaseous
solution and a core-halo solution. The gaseous solution has
a concentration parameter kG ¼ 2.05 × 104 (see Fig. 9).
The corresponding density profile is plotted as a dashed
line in Fig. 15. It represents a purely classical isothermal
DM halo of mass Mh and radius rh without quantum core
as investigated in Sec. IV. It lies in a region of positive
specific heat. It is thermodynamically stable in all statistical
ensembles (maximum entropy state at fixed mass and
energy and minimum free energy state at fixed mass).
The core-halo solution has a concentration parameter
kCH ¼ 1.38 × 10−5 (see Fig. 9). The corresponding density
profile (see Sec. III A) is plotted as a solid line in Fig. 15. It
represents a DM halo with a quantum core (fermion ball) of
mass Mc ¼ 1.29 × 1010 M⊙, radius Rc ¼ 216 pc and cen-
tral density ρ0 ¼ 1820 M⊙=pc3 [we have used Eq. (111) to
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FIG. 14. Caloric curve of self-gravitating fermions for μ ¼ 105.
For Mh > ðMhÞMCP, the caloric curve has a Z-shape structure
(dinosaur’s neck). In the microcanonical ensemble, the gaseous
phase G and G’ before the first turning point of energy and the
condensed phase C’ and C after the last turning point of energy
are stable. By contrast, the core-halo phase CH in the inter-
mediate branch between the first and the last turning points of
energy is unstable. The system can evolve collisionally in the
gaseous phase G and G’ up to the turning point of energy Ec and
collapse in the condensed phase C’ (see arrows). This corre-
sponds to the gravothermal catastrophe [76] arrested by quantum
effects. Another possibility is that the gravothermal catastrophe
triggers a dynamical instability of general relativistic origin
leading to the formation of a SMBH [98] (see Fig. 16 below).

25These collisions between DM particles are not two-body
gravitational encounters because the relaxation time would be too
long [33,34], but they can have another origin such as short-range
interactions (SIDM model) like in, e.g., Ref. [98].
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obtainMc, Eqs. (113) and (114) to obtainRc and ρ0, and we
have taken into account the logarithmic correction A ¼
5.10 from Eq. (116)] surrounded by a classical isothermal
atmosphere of mass ∼Mh and radius rh. Since this solution
is located between the first and the last turning points of
energy, it is thermodynamically unstable in all statistical
ensembles (saddle point of entropy at fixed mass and
energy and saddle point of free energy at fixed mass). Note
that it lies in a region of the caloric curve with a positive
specific heat, showing that a positive specific heat does not
necessarily imply that the system is stable.
For large DM halos with Mh > ðMhÞMCP ¼

1.08 × 1010 M⊙ the gaseous solution is thermodynamically
stable but the core-halo solution is thermodynamically
unstable. Therefore, the gaseous solution is likely to result
from a natural evolution in a thermodynamical sense while
the core-halo solution should not be observed.26 Let us
consider different scenarios of formation and evolution in
line with the general discussion given in Sec. II.
The gaseous solution may arise naturally from a process

of violent collisionless relaxation (following Jeans insta-
bility and free fall) since it is a maximum entropy state in
the sense of Lynden-Bell. This is a fast process taking place
on a few dynamical times. Then, there are two possibilities:
(1) If the evolution is collisionless, the system remains

in that state.

(2) If the evolution is collisional, the system may slowly
evolve along the series of equilibria (see Fig. 14).
The beginning of the collisional evolution is similar
to that described previously. The temperature first
decreases in the region of positive specific heat
(C ¼ dE=dT > 0) then increases in the region of
negative specific heat (C ¼ dE=dT < 0). However,
when the system reaches the turning point of energy
(corresponding to the minimum energy Ec) it be-
comes thermodynamically unstable and undergoes
the gravothermal catastrophe [76]. At that point,
there are several possibilities:
(a) We first assume that the gravothermal catastrophe

is eventually halted by quantum mechanics (Pau-
li’s exclusion principle) and that the system
reaches an equilibriumstate. This takes the system
from the gaseous phase (G’) to the condensed
phase (C’) in which only a fraction (typically
∼1=4) of the mass of the DM halo forms a
compact fermion ball while the rest of the mass
constitutes a hot halo. The hot halo has a uniform
density so that it is strongly held by the box (see
Fig. 16 in [43]). As discussed in [43,46], if we
remove the box, the halo should be expelled at
large distances in a process reminiscent of a
supernova explosion [99–101]. This is because
the collapse of the core heats the halo which thus
extends at large distances. Although this mecha-
nism could be at work for fermion stars such as
white dwarfs and neutron stars, it may not be
relevant for DM halos. Therefore, we shall prefer
the following scenarios.

(b) We assume that the gravothermal catastrophe is
eventually halted by quantum mechanics as be-
fore, but the systemdoes not reach the equilibrium
solution C’. It may reach an out-of-equilibrium
core-halo structure that is not described by the
Fermi-Dirac distribution. This out-of-equilibrium
state (CHout) may be made of a slowly evolving
quantum core surrounded by a classical atmos-
phere that is not as much extended as the classical
atmosphere of the equilibrium solution C’. Ac-
tually, in this scenario, the initial isothermal halo
(at criticality) is essentially left undisturbed. Since
the solution CHout is an out-of-equilibrium struc-
ture, we expect that the core-halo mass relation
McðMhÞ is different from the one predicted by
Eq. (111). In particular, the quantumcore resulting
from the gravothermal catastrophe should bemore
compact and more massive than the quantum core
composing theCHsolution. Theoccurrenceof this
CHout is due to the fact that the exchange of energy
between the core and the halo, and the process of
thermalization, may take a very long time. There-
fore, the equilibrium state C’ of scenario (a) may
not be reached on relevant timescales.
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FIG. 15. Density profile of the core-halo solution
(kCH ¼ 1.38 × 10−5) for μ ¼ 105. For comparison, we have
represented in dashed line the gaseous solution which corre-
sponds to a classical isothermal halo (kG ¼ 2.05 × 104).

26This statement could be alleviated by the following consid-
erations. On the one hand, the core-halo solution would be stable
if ηv is smaller than the value ηv ¼ 1 that we have somehow
arbitrarily chosen (see the dashed line in Fig. 14). For example,
the core-halo solution CH� located just after the last turning point
of energyΛ� is stable. On the other hand, it is always possible that
the process of incomplete relaxation [31,82] leads to a Vlasov
stable core-halo profile that is not of the Lynden-Bell (or Fermi-
Dirac) type. Indeed, we have seen that all DFs f ¼ fðϵÞ with
f0ðϵÞ < 0 are dynamically stable in Newtonian gravity even those
that are thermodynamically unstable.
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(c) Finally, we assume that the halo undergoes a
gravothermal catastrophe at Ec but we consider
another evolution in which quantum mechanics
cannot prevent gravitational collapse (the validity
of this hypothesis is considered in Sec. VII E).
This scenario, already advocated in Refs. [33,34],
is based on the SIDMmodel of Balberg et al. [98]
who developed the idea of an “avalanche-type
contraction” towards a SMBH initially suggested
by Zeldovich and Podurets [102], improved by
Fackerell et al. [103], and confirmed numerically
by Shapiro and Teukolsky [104–106]. The initial
stage of the gravothermal catastrophe is well
known. The core collapses and reaches high
densities and high temperatures while the halo
is not sensibly affected by the collapse of the core
and maintains its initial structure. Now, Balberg
et al. [98] argue that during the gravothermal
catastrophe, when the central density and the
temperature increase above a critical value, the
system undergoes a dynamical instability of gen-
eral relativistic origin leading to the formation of a
SMBH on a dynamical time scale. Only the
central region of the DM halo (not its outer part)
is affected by this collapse so the final outcome of
this scenario is a classical isothermal halo at
criticality containing a central SMBH.

In conclusion, large DM halos with Mh > ðMhÞMCP can
be in three types of configuration:
(1) A purely classical isothermal halo, G, without

quantum core.
(2) An out-of-equilibrium core-halo solution, resulting

from the gravothermal catastrophe, which is different
from the CH solution that is unstable or from the C’
solution that is unphysical. It is made of a compact
(small and massive) quantum core surrounded by a
classical isothermal atmosphere at criticality.

(3) A classical isothermal halo at criticality containing
a SMBH resulting from the gravothermal catastro-
phe followed by a dynamical instability of general
relativity origin.

It is also possible that, following the gravothermal
catastrophe, the system first forms a fermion ball then a
SMBH (see Secs. VII E and VIII D).
Remark: The scenarios (2) and (3) may be particularly

interesting especially if we account for tidal effects. Indeed,
it has been shown in [33,34] that the King profile at
criticality (i.e., at the verge of the gravothermal catastrophe)
is very close to the observational Burkert profile (see, e.g.,
Figs. 18 and 27 of [33] and Fig. 1). Therefore, the structure
of large DM halos could consist in a fermion ball or a
SMBH surrounded by an envelope with a marginal (criti-
cal) King profile unaffected by the collapse of the core
[33,34]. The conditions for forming a SMBH at the center
of a DM halo are discussed in Sec. VII E based on the
results of Alberti and Chavanis [46,47].

E. Criterion for the existence of a SMBH
at the center of a galaxy

According to the above scenario, the formation of a
SMBH at the center of a galaxy is possible only if the
system can experience the gravothermal catastrophe and
if, during core collapse, the core can reach sufficiently
high densities and high temperatures to trigger a general
relativistic dynamical instability leading to the formation of
a SMBH. This may happen in sufficiently large systems.
By contrast, in small systems, quantum mechanics (Pauli’s
exclusion principle for fermions) prevents the gravothermal
catastrophe and leads to a large fermion ball (bulge) instead
of a SMBH. In conclusion, a SMBH can form only if the
degeneracy parameter μ is sufficiently large so that the
gravothermal catastrophe is efficient. Therefore, we expect
that DM halos harbor a SMBH if μ ≫ μMCP ¼ 2670 i.e.,

Mh ≫ ðMhÞMCP ¼ 1.08 × 1010 M⊙; ð118Þ

and we expect that DM halos harbor a large quantum bulge
(fermion ball) in the opposite case.27

This result is qualitatively consistent with the conclusion
reached by Ferrarese [107] on the basis of observations.
She found that black holes can form only in sufficiently
large galaxies, above a typical mass ∼5 × 1011 M⊙. This
limit may correspond to the microcanonical critical point
ðMhÞMCP of our model. To facilitate further comparisons,
using Eq. (97), we rewrite this criterion as28

Mh ≫ ðMhÞMCP ¼ 483

�
ℏ3Σ3=4

0

G3=2m4

�
4=5

: ð119Þ

Actually, things are more complicated than the scenario
just exposed. Indeed, as shown by Alberti and Chavanis
[46,47], when general relativity is taken into account, the
caloric curves of the self-gravitating Fermi gas depend not
only on μ, but also on the value of the particle number N
with respect to NOV. When N < NOV, the caloric curve is
similar to the one reported in Fig. 14. In particular, there is
an equilibrium state for any value of the energy since
quantum mechanics (Pauli’s exclusion principle) can pre-
vent gravitational collapse even at T ¼ 0. By contrast,
when N > NOV, a new turning point of energy appears
[46,47] as shown in Fig. 16. In that case, there is no
equilibrium state below a minimum energy E00

c and the
system collapses towards a black hole. These results

27Large DM halos may contain a SMBH but they should not
contain a fermion ball because the core-halo solution is thermo-
dynamically unstable. By contrast, small DM halos may contain a
large quantum bulge (fermion ball) but they should not contain a
SMBH because the gravothermal catastrophe is inhibited by
quantum mechanics.

28Equation (119) is in good agreement with the criterion
H > 8.24 obtained in Appendix H of [34] where H is defined
by Eq. (E4) of that paper.
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suggest that the correct criterion for the existence of a
SMBH at the center of a galaxy is that μ ≫ μMCP (in order
to trigger the gravothermal catastrophe) and N > NOV (in
order to have a gravitational collapse towards a SMBH).
The first condition yields Eq. (119). It signals the instability
of the core-halo solution with respect to the gravothermal
catastrophe. If we approximate the second condition by
Mh > MOV, whereMOV is given by Eq. (87), we obtain the
condition

Mh > MOV ¼ 0.384

�
ℏc
G

�
3=2 1

m2
: ð120Þ

If ðMhÞMCP < Mh < MOV we expect that the halo experi-
ences the gravothermal catastrophe but does not form a
SMBH. It may rather form an out-of-equilibrium fermion
ball (scenario b). By contrast, if Mh > MOV, the halo may
form either an out-of-equilibrium fermion ball (scenario b)
or a SMBH (scenario c). A necessary condition to form a
SMBH is that MOV > ðMhÞMCP. This yields

m > 383
ℏ3=4Σ1=2

0 G1=4

c5=4
¼ 0.278 eV=c2: ð121Þ

This condition is always fulfilled in practice.
For m ¼ 165 eV=c2 we find that ðMhÞMCP ¼ 1.08 ×

1010 M⊙ and MOV ¼ 2.30 × 1013 M⊙. In that case, the
OV mass is very large, much larger than the mass Mh ¼
1011 M⊙ of a DM halo comparable to the Milky Way.
As a result, the gravothermal catastrophe should be stopped
by quantum mechanics and a SMBH cannot be formed.
This suggests that the Milky Way contains an out-of-
equilibrium fermion ball rather than a SMBH. However, if
we consider a larger fermion mass m ∼ 1 keV=c2 we find

ðMhÞMCP ¼ 3.38 × 107 M⊙ and MOV ¼ 6.26 × 1011 M⊙,
which are closer to the conditions required to form a SMBH
(see, however, the Remark below).
Remark: It is natural to expect that the gravitational

collapse at E00
c leads to a SMBH of mass MOV because the

instability of the DM halo occurs precisely at the moment
where the core mass becomes critical (Mc ¼ MOV) [46,62].
In that case, we find for m ¼ 165 eV=c2 and m ∼
1 keV=c2 that the SMBH mass would be MOV ¼ 2.30 ×
1013 M⊙ and MOV ¼ 6.26 × 1011 M⊙ respectively. These
very large masses are not consistent with the observa-
tions of SMBHs. The OV mass is more relevant if the
fermion has a larger mass m as considered in Sec. VIII.
For example, for m ¼ 54.6 keV=c2, we get MOV ¼ 2.10 ×
108 M⊙ which is of the order of the mass of SMBHs
observed in active galactic nuclei (AGNs).On the other hand,
for m ¼ 386 keV=c2 we get MOV ¼ 4.2 × 106 M⊙, which
is of the order of the mass of Sagittarius A�. In that case,
according to the scenario (3) discussed above, theMilkyWay
could consist in a SMBH of mass MOV ¼ 4.2 × 106 M⊙
(Sagittarius A�) resulting from the gravothermal catastrophe
surrounded by an envelope with a marginal King profile
similar to the Burkert profile (see Sec. VIII D).

F. Application to the Milky Way

We now specifically apply our fermionic model to the
MilkyWay.Weconsider aDMparticlemassm¼ 165 eV=c2

so that theminimumhalo has amass ðMhÞmin ¼ 108 M⊙ and
a radius ðrhÞmin ¼ 597 pc (see Sec. V). To be specific, we
consider a DM halo of massMh ¼ 1011 M⊙ (corresponding
to Mv ∼ 1012 M⊙) and radius rh ¼ 20.1 kpc similar to the
one that surrounds our Galaxy (see Sec. IV). Using Eq. (98)
we find that the corresponding degeneracy parameter is
μ ¼ 4.31 × 104. The corresponding caloric curve has a
Z-shape structure like in Fig. 14. The gaseous solution
corresponding to a purely classical isothermal halo, is plotted
as a dashed line in Figs. 17 and 18. Then, considering the
core-halo solution and using Eqs. (86), (106), (111), and
(116), we find that the DM halo should contain a quantum
core ofmassMc ¼ 9.45 × 109 M⊙, radiusRc ¼ 240 pc and
central density ρ0 ¼ 983 M⊙=pc3.

29 The density and veloc-
ity profiles given by Eqs. (36) and (37) are represented as
solid lines in Figs. 17 and 18. Clearly, the fermion ball is too
extended tomimic a blackhole. It ismore likely to represent a
large quantum bulge as discussed in Sec. VII C.
The halo mass Mh ¼ 1011 M⊙ is above the micro-

canonical critical point ðMhÞMCP ¼ 1.08 × 1010 M⊙. The
gaseous solution is thermodynamically stable and could
result from a process of violent relaxation. The core-halo
solution is thermodynamically unstable and should not be
observed. It should be replaced by an out-of-equilibrium
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FIG. 16. Caloric curve forMh > ðMhÞMCP and N > NOV (from
[46,47]). As energy decreases, the system first experiences a
gravothermal catastrophe at Λc leading to a fermion ball
stabilized by quantum degeneracy, then a gravitational collapse
atΛ00

c leading to a SMBH. They are both surrounded by a classical
isothermal envelope.

29Comparatively, for m ¼ 1 keV=c2 we get μ ¼ 4.42 × 107,
Mc ¼ 4.30× 108 M⊙, Rc¼5.84 pc, and ρ0¼3.71×106 M⊙=pc3.
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core-halo structure CHout with a compact quantum core as
discussed in Sec. VII D. However, since we are relatively
close to the microcanonical critical point, the core-halo
solution may be marginally relevant, especially if ηv is
smaller than expected, e.g., if we select the CH� solution of
Fig. 14 (see footnote 26).
Remark: We may wonder if there is evidence of a large

quantum bulge at the center of the Milky Way. If we make
the analogy with bosonic models of DM halos, the fermion
ball is the equivalent of the soliton [16,17]. The mass and
size of the fermion ball that we find correspond to the
typical mass and size of the solitons that have been
predicted theoretically or observed in numerical simula-
tions of BECDM [16,17]. In addition, De Martino et al.
[108] have suggested that a large soliton, forming a
quantum bulge of mass ≃109 M⊙ and radius ≃100 pc,
may be present at the center of the Milky Way and may
account for the observed dispersion velocity peak (see
the discussion in Sec. VII E. of [25]). If this result is
confirmed, we could argue that this quantum bulge may
correspond to a fermion ball rather than a bosonic soliton
since our model yields the same characteristic mass and
radius.30

G. Problems with a fermionic model involving
a mass m= 165 eV=c2 or m ∼ 1 keV=c2

In this section, we mention some problems with a
fermionic DM halo model involving a “small” fermion
mass m ¼ 165 eV=c2 or m ∼ 1 keV=c2:

(i) Argüelles et al. [60] show in their Figs. 3 and 4 that a
fermion mass m ∼ 0.6 keV=c2 is not consistent with
the structure of the Milky Way. A much larger mass
m ∼ 48 keV=c2 is necessary to reproduce the rota-
tion curve of the Milky Way. Therefore, the study of
Argüelles et al. [60] rules out the possibility to have
a large DM bulge of mass ≃109 M⊙ and radius
≃100 pc at the center of the Milky Way. This is in
contradiction with our claim and with the claim of
De Martino et al. [108] that a large DM bulge may
account for the dispersion velocity peak observed in
the Milky Way.31 It would be extremely important to
clarify this issue.

(ii) A warm dark matter fermionic particle with a mass
m < 3 keV=c2 is ruled out by cosmological obser-
vations [110,111]. Likewise, a boson of mass m ¼
1.44 × 10−22 eV=c2 which produces results similar
to a fermion of mass m ¼ 165 eV=c2 (the soliton in
the BEC model being the counterpart of the fermion
ball) is in tension with cosmological observations
such as the Lyman α forest (it is one or two orders of
magnitude smaller than the required value) [112].
This suggests that a minimum halo mass ðMhÞmin ¼
0.39 × 106 M⊙ (Willman I) leading to a fermion
mass m ∼ 1 keV=c2 and a boson mass m ¼ 9.22 ×
10−21 eV=c2 [95] may be more relevant than a
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FIG. 17. Density profile of the core-halo solution
(kCH ¼ 5.21 × 10−5) for a DM halo of mass Mh ¼ 1011 M⊙
(Milky Way) up to the halo radius rh ¼ 20.1 kpc. We have taken
m ¼ 165 eV=c2. For comparison, we have represented in dashed
line the gaseous solution which corresponds to a classical
isothermal halo (kG ¼ 8.85 × 103).

10
-2

10
-1

10
0

10
1

r (kpc)

10
1

10
2

10
3

v 
(k

m
/s

)

m = 165 eV/c
2

M
h
 = 10

11
 M

s 

(Milky Way)

FIG. 18. Velocity profile of the core-halo solution
(kCH ¼ 5.21 × 10−5) for a DM halo of mass Mh ¼ 1011 M⊙
(Milky Way) up to the halo radius rh ¼ 20.1 kpc. We have taken
m ¼ 165 eV=c2. For comparison, we have represented in dashed
line the gaseous solution which corresponds to a classical
isothermal halo (kG ¼ 8.85 × 103).

30In that case, we must also add a primordial black hole in the
model in order to account for the observation of a large central
mass at the center of the Milky Way corresponding to Sgr A�.

31As noted by C. Argüelles (private communication),
De Martino et al. [108] have to add “by hand” a Plummer
component of bulge stars to reduce the central dispersion
because otherwise the BECDM model overestimates the data.
On the other hand, Bar et al. [109] argue in their Sec. III that
the central mass component could well be due to ordinary
baryonic matter rather than a DM soliton.
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minimum halo mass ðMhÞmin ¼ 108 M⊙ (Fornax)
leading to a fermion mass m ¼ 165 eV=c2 and a
boson mass m ¼ 1.44 × 10−22 eV=c2 (see [38] for
the determination of the DM particle mass).

(iii) The OV mass MOV ¼ 2.30 × 1013 M⊙ or MOV ¼
6.26 × 1011 M⊙ associated with a fermion of mass
m ¼ 165 eV=c2 or m ∼ 1 keV=c2 seems to be too
large to be of much astrophysical interest (see the
discussion in Sec. VII E).

VIII. CAN A FERMION BALL MIMIC A SMBH?

A. Sagittarius A*

The detailed study of the motion of S-stars near the
Galactic center has revealed the presence of a very massive
central object, Sagittarius A* (Sgr A*). This central object
is usually associated with a SMBH of mass M ¼ 4.2 ×
106 M⊙ and Schwarzschild radius RS ¼ 4.02 × 10−7 pc.
Whatever the object may be, its radius must be smaller than
RP ¼ 6 × 10−4 pc (RP ¼ 1492RS), the S2 star pericenter
[113]. Similar objects are expected to reside at the center
of most spiral and elliptical galaxies, in active galactic
nuclei (AGN). Although it is commonly believed that these
objects are SMBHs [113–116], this is not yet established
on a firm observational basis in all cases. Some authors
have proposed that such objects could be fermion balls
[59,60,63,65–67] or boson stars [117,118] that could
mimic a SMBH.
Let us consider this possibility in the framework of the

fermionic model. More precisely, let us investigate if a
fermion ball can mimic a SMBH at the center of the Galaxy.

B. Standard Fermi-Dirac distribution

Bilic et al. [67] developed a general relativistic model of
fermionic DM halos at finite temperature with a fermion
massm ¼ 15 keV=c2 that describes both the center and the
halo of the Galaxy in a unified manner. The density profile
has a core-halo structure with a quantum core (fermion ball)
and a classical isothermal atmosphere. By using the usual
Fermi-Dirac distribution and choosing parameters so as to
fit observational data at large distances, they found a
fermion ball of mass Mc ¼ 2.27 × 106 M⊙ and radius
Rc ¼ 18 mpc.32 Unfortunately, its radius is larger by a
factor 100 than the bound RP ¼ 6 × 10−4 pc set by
observations [113]. This is why Bilic and coworkers
abandoned this fermion ball scenario (R. Viollier, private
communication). The same problem was encountered later
by Ruffini et al. [59] who developed a similar model with a
fermion mass m ∼ 10 keV=c2.
Let us check that their results are consistent with our

analytical box model. Following Bilic et al. [67], we take a

DM particle mass m ¼ 15 keV=c2. The corresponding
minimum halo (see Sec. V) has a mass ðMhÞmin ¼
54.0 M⊙ and a radius ðrhÞmin ¼ 0.439 pc. If we consider
a DM halo of mass Mh ¼ 1011 M⊙ and radius rh ¼
20.1 kpc similar to the one that surrounds our Galaxy
(see Sec. IV) we find that the corresponding degeneracy
parameter is μ ¼ 2.94 × 1012 [see Eq. (98)]. Considering
the core-halo solution and using Eqs. (86), (106), (111),
and (116), we find that this DM halo should contain a
quantum core of mass Mc ¼ 2.39 × 106 M⊙, radius Rc ¼
22.7 mpc and central density ρ0 ¼ 2.95 × 1011 M⊙=pc3 in
good agreement with the numerical results of Bilic et al.
[67] and Ruffini et al. [59]. The corresponding density and
velocity profiles given by Eqs. (36) and (37) are represented
in Figs. 19 and 20. They are in good agreement with Fig. 3
of Bilic et al. [67] and Figs. 1 and 3 of Ruffini et al. [59].
Therefore, our semianalytical model [see in particular
Eq. (111)] can reproduce their numerical results.
Let us now discuss the thermodynamical stability of

the core-halo solution considered by Bilic et al. [67]
and Ruffini et al. [59]. The caloric curve (see Sec. III A)
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32The fermion ball is weakly general relativistic because
Mc ¼ 2.27 × 106 M⊙ ≪ MOV ¼ 2.78 × 109 M⊙ [see Eq. (87)].
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corresponding to μ ¼ 2.94 × 1012 is similar to the one
represented in Fig. 21. For large values of μ, a spiral
appears in the caloric curve at the location of the “head” of
the dinosaur. As μ increases, the spiral winds more and
more before unwinding. For μ ≫ 1 the direct and reversed
spirals are very close to each other. The intersections of the
caloric curve with the line ηv ∼ 1 (see Sec. VI B) deter-
mines two physical solutions a before: a gaseous solution
and a core-halo solution. The gaseous solution represents a
purely classical isothermal DM halo of massMh and radius
rh without quantum core as investigated in Sec. IV (see
Figs. 4 and 5). This solution lies on the caloric curve in the
region of positive specific heat. This gaseous solution is
thermodynamically stable in all statistical ensembles (maxi-
mum entropy state at fixed mass and energy and minimum
free energy state at fixed mass). The core-halo solution
(see Sec. III A) represents a DM halo with a quantum core
(fermion ball) of mass Mc ¼ 2.39 × 106 M⊙, radius Rc ¼
22.7 mpc and central density ρ0 ¼ 2.95 × 1011 M⊙=pc3

surrounded by a classical isothermal atmosphere of mass
∼Mh ¼ 1011 M⊙ and radius rh ¼ 20.1 kpc. The corre-
sponding density and velocity profiles are plotted in
Figs. 19 and 20. Since this solution lies between the first
and the last turning points of energy, it is thermodynamically
unstable in all statistical ensembles (saddle point of entropy
at fixed mass and energy and saddle point of free energy at
fixed mass). This solution lies in a region of the caloric curve
with a positive specific heat.
The discussion about the thermodynamical stability

of the core-halo solution is essentially the same as in
Sec. VII D. The main differences are the followings:

(i) According to the Poincaré-Katz [78,79] criterion,
the system loses more and more modes of
stability, one at each turning point of energy,
as we progress clockwise into the spiral. How-
ever, when the spiral unwinds the modes of
stability are progressively regained. Indeed, one
mode of stability is regained at each turning point

of energy as we follow the spiral anticlockwise.33

As a consequence, the core-halo solutions that lie
on the spiral are very unstable since they have
several modes of instability. We note, however,
that the core-halo solution has only one mode of
instability as before.

(ii) The energy of the core-halo solution almost co-
incides with the energy of the gaseous solution.
This is because their external structure is exactly
the same. The core-halo solution only differs from
the gaseous solution by the presence of a small
core with a small mass, a small radius and a very
high density (see Fig. 19). The core and the halo
are separated by a large plateau where the density
is approximately constant.34 Therefore, when
μ ≫ μMCP, the core-halo solution almost coincides
with the gaseous solution except that it contains a
small nucleus (fermion ball). For smaller values of
μ, the plateau is reduces and finally disappears.
For example, in Fig. 15, the core-halo solution
does not show a very pronounced separation
between the quantum core and the halo. Further-
more, the halo is perturbed by the presence of the
core (unlike in Fig. 19). As a result, the energy of
the core-halo and gaseous solutions on the caloric
curve of Fig. 14 are relatively different (unlike
in Fig. 21).

In conclusion, the models of Bilic et al. [67] and
Ruffini et al. [59] that are based on the standard Fermi-
Dirac DF lead to DM halos with a core-halo structure
made of a small quantum core (fermion ball) of mass
Mc ¼ 2.39 × 106 M⊙ and radius Rc ¼ 22.7 mpc sur-
rounded by a classical isothermal atmosphere. The core
and the halo are separated by an extended plateau. The
quantum core describes a very compact central object not
very different from Sagittarius A*. However, the quantum
core is not small enough to account for the observational
constraints. Furthermore, this core-halo configuration is
thermodynamically unstable so it is not expected to result
from a natural evolution (in the sense of Lynden-Bell).
Therefore, the original models of Bilic et al. [67] and
Ruffini et al. [59] have to be rejected.35

C. Fermionic King model

More recently, Argüelles et al. [60] considered the
general relativistic fermionic King model accounting for
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FIG. 21. Caloric curve for Mh ≫ ðMhÞMCP.

33See [43] and Appendix C of [46] for a detailed discussion of
the Poincaré-Katz criterion.

34See Sec. Vof [25] for a detailed discussion of the structure of
quantum DM halos involving a quantum core, a plateau, and a
classical isothermal atmosphere. The core-halo profiles of DM
halos with a “small” μ do not show a plateau while an extended
plateau is present in DM halos with μ ≫ μMCP.35The claim that the core-halo solution of Refs. [59,67] is
thermodynamically unstable was first made in [25,34,46].
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a tidal confinement.36 They applied this model to the
Milky Way and determined the parameters by fitting the
core-halo profile to the observations. For a fermion mass
m ¼ 48 keV=c2 they obtained a fermion ball of massMc ¼
4.2 × 106 M⊙ and radius Rc ¼ RP ¼ 6 × 10−4 pc which,
this time, is consistent with the observational constraints.37

Let us see if their results are consistent with our
analytical box model. Following Argüelles et al. [60],
we take a DM particle mass m ¼ 48 keV=c2. The corre-
sponding minimum halo (see Sec. V) has a mass ðMhÞmin ¼
1.30 M⊙ and a radius ðrhÞmin ¼ 0.0683 pc. If we consider
a DM halo of mass Mh ¼ 1011 M⊙ and radius rh ¼
20.1 kpc similar to the one that surrounds our Galaxy
(see Sec. IV) we find that the corresponding degeneracy
parameter is μ ¼ 3.09 × 1014 [see Eq. (98)]. Considering
the core-halo solution and using Eqs. (86), (106), (111),
and (116), we find that this halo should contain a quantum
core of mass Mc ¼ 2.61 × 105 M⊙, radius Rc ¼ 2.13 mpc
and central density ρ0 ¼ 3.87 × 1013 M⊙=pc3. Our ana-
lytical results are not consistent with the results of
Argüelles et al. [60] because we find that the mass Mc
of the fermion ball is about 10 times smaller than their
value. Since our analytical model is consistent with the
results of Bilic et al. [67] and Ruffini et al. [59] that are
based on the usual Fermi-Dirac DF but not with the results
of Argüelles et al. [60] that are based on the fermionic King
model we deduce that the difference comes from the fact
that tidal effects—which are not taken into account in our
analytical model—are important (a priori, the difference
does not come from general relativity effects which are
small as we have indicated in footnote 37).
Therefore, in order to obtain accurate results, it is

important to use the fermionic King model [34,60] instead
of the usual fermionic model [43,59,67]. Argüelles et al.
[60] managed to fit the density profile and the rotation
curve of the Milky Way with the fermionic King distribu-
tion and argued that a fermion ball can mimic the effect of a
SMBH. This scenario is very attractive because it can
explain the whole structure of the galaxy, the supermassive
central object and the isothermal halo, by a single DF; the
fermionic King model [71,72].
Let us now discuss the thermodynamical stability of

the core-halo solution considered by Argüelles et al. [60].

The caloric curves of the fermionic King model in
Newtonian gravity for arbitrary values of μ were first
studied by Chavanis et al. [34]. The caloric curve corre-
sponding to a large value of μ (i.e., having the character-
istics of the Milky Way) is plotted in Fig. 30 of [34]. In that
paper, we have focused on the density profiles of the
solutions located in the region of the spiral (see Fig. 44 of
[34]). For a given energy in that region, we found a gaseous
solution G’, a core-halo solution CH’ and a condensed
solution C’. These results are reproduced in Figs. 22 and 23
for convenience. G’ corresponds to the classical isothermal
sphere. Since it lies before the first turning point of energy,
it is thermodynamically stable in the microcanonical
ensemble (maximum entropy state at fixed mass and
energy). C’ is also stable in the microcanonical ensemble
because it lies after the last turning point of energy.
However, this solution is not astrophysically relevant
because it has a too extended halo that is not consistent
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36The fermionic King model was heuristically introduced by
Ruffini and Stella [71] as a generalization of the classical King
model [81]. It was also introduced independently by Chavanis
[72] who derived it from a kinetic theory based on the fermionic
Landau equation. The nonrelativistic fermionic King model was
studied by Chavanis et al. [34] who showed that the density
profiles typically have a core-halo structure with a quantum core
(fermion ball) and a tidally-truncated isothermal halo leading to
flat rotation curves. They also studied the caloric curves and the
thermodynamical stability of the equilibrium states. The name
“fermionic King model” was introduced in [34,44].

37The fermion ball is weakly general relativistic because
Mc ¼ 4.2 × 106 M⊙ ≪ MOV ¼ 2.71 × 108 M⊙ [see Eq. (87)].
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with the structure of DM halos (see Fig. 23). CH’ is similar
to the solution found by Ruffini et al. [59] which was
claimed to reproduce the structure of the Milky Way. It
consists in a large nondegenerate isothermal atmosphere
harboring a small “fermion ball”with a high density, a large
mass and a small radius that could mimic a SMBH. Since
this solution lies between the first and the last turning points
of energy, it is thermodynamically unstable in the micro-
canonical ensemble (saddle point of entropy at fixed mass
and energy). Therefore, we concluded in [34] that this type
of solution is not likely to result from a natural evolution
and, consequently, we questioned the possibility that a
fermion ball could mimic a central SMBH.
However, in our analysis, we did not consider the stable

solution CH� located just after the turning point of energy
E�, believing that this solution would be unreachable by a
natural evolution or that it would look like the solution C’
which has a too extended halo. Recently, Argüelles et al.
[62] computed the caloric curves of the fermionic King
model in general relativity. For not too negative energies38

they obtained a caloric curve similar to the one represented
in Fig. 22. They confirmed the instability of the CH’
solution in the region of the spiral previously considered by
Chavanis et al. [34] but they also investigated the CH�
solution close to E� and showed that this solution actually
corresponds to the density profile obtained in their previous
work [60] which provides a good agreement with the
structure of the Milky Way.39 Since this solution is located
after the last turning point of energy it is thermodynami-
cally stable in the microcanonical ensemble. This is a
very interesting result because it shows that the core-halo
structure found by Argüelles et al. [60] is thermo-
dynamically stable and can, therefore, arise from a natural
evolution.
In conclusion, when we use the ordinary Fermi-Dirac

DF, the core-halo solution purported to reproduce the
structure of the Milky Way is thermodynamically unstable
but when we use the fermionic King model, this core-halo
solution is thermodynamically stable. Therefore, this core-
halo configuration may result from a natural evolution in
the sense of Lynden-Bell. This gives further support to the
scenario according to which a fermion ball could mimic a
SMBH at the center of the galaxies.

Remark: The discovery [62] that the CH� solution with a
compact fermion ball mimicking a SMBH is thermody-
namically stable is a very important result. However, it does
not prove that this structure will effectively arise from a
natural evolution. The reason is that violent relaxation is in
general incomplete [31,82]. In particular, the fluctuations
of the gravitational potential that are the engine of the
collisionless relaxation can die out before the system has
reached statistical equilibrium in the sense of Lynden-Bell.
Therefore, it is not clear if violent relaxation can produce
this type of structures with a very high central density.40 In
order to vindicate this scenario, the next step would be to
perform direct numerical simulations of collisionless fer-
mionic matter to see if they spontaneously generate fermion
balls with the characteristics of SMBHs. Indeed, it is not
clear why the system should spontaneously reach an
equilibrium state that is just in the bend after the turning
point of energy Λ�. The purely gaseous solution without a
quantum core, which is also a maximum entropy state, may
be easier to reach through a violent relaxation process and
is consistent with the observations. However, it does not
account for a massive central object at the center of the
galaxies. In that case, we either have to introduce a
primordial SMBH “by hand” or advocate a scenario of
gravitational collapse such as the one discussed in the
following section.

D. General relativistic collapse towards a SMBH

For a fermion mass m ¼ 48 keV=c2, the mass Mh ¼
1011 M⊙ of the Milky Way is larger than the OV mass
MOV ¼ 2.71 × 108 M⊙, so we have to take into account
general relativity effects in the caloric curve. As first shown
by Alberti and Chavanis [46,47] for box-confined systems,
and recovered by Argüelles et al. [62] for tidally-truncated
models, relativistic effects create a new turning point of
energy in the caloric curve at which the condensed branch
terminates (see Fig. 16). Below E00

c the system collapses
towards a black hole. As we have seen previously, two
stable equilibrium states are relevant in the structure of
DM halos; G’ equivalent to the classical isothermal sphere
and CH� which contains a fermion ball mimicking a
SMBH. Only direct numerical simulations can tell us
which metaequilibrium state will be reached in practice
from a violent collisionless relaxation. Since these numeri-
cal results are not available yet, we shall consider the two
possibilities. If the system were truly collisionless, the DM
halo would remain in the metaequilibrium state G’ or CH�
forever. In order to be more general, we consider below the
possibility that the system slowly evolves dynamically due

38For smaller energies, it becomes crucial to take general
relativity into account (see Sec. VIII D). In that case, a new
turning point of energy appears which was first evidenced by
Alberti and Chavanis [46,47] in the framework of the box model
(see Fig. 16). Below this critical energy the system collapses
towards a SMBH as discussed in Sec. VIII D.

39We note, however, that Argüelles et al. [62] considered a DM
halo with a mass about 10 times smaller than the mass of the
Milky Way. Therefore, it is not straightforward to compare their
results with those of their previous works [60]. It would be
interesting to repeat their study with the correct Milky Way mass
to see if their conclusion remains valid.

40It may be easier to form core-halo configurations with a very
high central density if the fermions are self-interacting and if the
Fermi-Dirac equilibrium state results from a collisional evolution
of nongravitational origin as discussed in Sec. II.
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to collisions and evaporation. There are then two situations
to consider:
(A) Suppose that violent relaxation selects G’. On a

secular timescale, the system follows the upper
series of equilibria from point G’ to the point of
minimum energy Ec. At that point, it becomes
thermodynamically unstable and undergoes a grav-
othermal catastrophe up to point C’ where the
collapse is stopped by quantum mechanics, leading
to the formation of a fermion ball. Then, if the
energy keeps decreasing, the system follows the
lower series of equilibria up to the point of minimum
energy E00

c where it becomes thermodynamically and
dynamically unstable (in a general relativistic sense)
and collapses towards a SMBH.41 As discussed in
[46], there are two possible evolutions: (i) If the
particle number N is below a critical value N0�, then
Λc < Λ00

c and the system is first arrested by quantum
mechanics (it forms a fermion ball) before becoming
unstable and collapsing towards a SMBH. (ii) If the
particle number N is above a critical value N0�, then
Λc > Λ00

c and the system directly collapses towards a
SMBH without forming a fermion ball. These two
possibilities are illustrated in Fig. 24.

(B) Suppose that violent relaxation selects CH� where
the fermion ball mimics a SMBH. On a secular
timescale, the system follows the series of equilibria
from point CH� to the point of minimum energy E00

c.
At that point, it becomes thermodynamically and
dynamically unstable (in a general relativistic sense)
and collapses towards a SMBH.

In the two cases, the ultimate fate of the system is to form
a SMBH surrounded by an envelope. This picture may be
just qualitative because it is not clear if the lower branch of
equilibrium states is astrophysically relevant. Indeed, we
have indicated that the envelope of the solutions C’ is too
much extended to match the characteristics of DM halos.
Therefore, the collisional evolution of the system from
point G’ or from point CH� up to the formation of a SMBH
at E00

c may involve out-of-equilibrium states CHout instead
of following the series of equilibrium states C’.
For a fermion mass m ¼ 48 keV=c2, the OV mass

MOV ¼ 2.71 × 108 M⊙ is too large to account for the
mass of a SMBH like Sgr A� at the center of the
Milky Way. Either the mass of the SMBH resulting from
gravitational collapse is smaller than MOV or there is no
gravitational collapse and Sgr A* is a fermion ball CH� as
suggested by Argüelles et al. [62]. Therefore, a fermion ball
is favored in medium size galaxies like the Milky Way.
However, for very large halos it is shown by Alberti
and Chavanis [46] that the condensed branch disappears
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FIG. 24. Caloric curve of the general relativistic Fermi gas in a
box as a function of the particle number N (adapted from [46]).
For N < NOV, the gravothermal catastrophe at Ec leads to a
fermion ball surrounded by a hot halo. For NOV < N < N0� the
system first takes a quantum core-halo structure resulting from
the gravothermal catastrophe at Ec (as before) then collapses
towards a SMBH at E00

c . For N > N0� the condensed branch
disappears so that only the collapse at Ec towards a SMBH is
possible. These caloric curves are valid for relatively small DM
halos. For larger halos a spiral develops in the head of the
dinosaur but the phenomenology remains the same.

41This requires that the core mass increases until it reaches the
critical OV value. The increase of the core mass may take place
through an accretion process.
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(see the last panel of Fig. 24).42 In that case, there is no
solution with a fermion ball such as CH� and the system
necessarily collapses towards a SMBH. Therefore, medium
size galaxies (N < N0�) like the Milky Way may harbor a
fermion ball of mass M ¼ 4.2 × 106 M⊙ while very large
galaxies (N > N0�) like ellipticals may harbor a SMBH of
mass MOV ¼ 2.71 × 108 M⊙ that could even grow by
accretion. This could account for the mass of SMBHs in
AGNs like the one recently photographed in M87
(Mh ∼ 1013 M⊙ and MBH ∼ 1010 M⊙).
For a fermion mass m ¼ 386 keV=c2, the OV mass

MOV ¼ 4.2 × 106 M⊙ is comparable to the mass of Sgr A�.
Furthermore, the caloric curve is similar to the one reported
in the last panel of Fig. 24 and there is no possibility to have
a CH� solution involving a fermion ball. In that case, the
Milky Way could have undergone a gravitational collapse
leading to a SMBH of mass MOV ¼ 4.2 × 106 M⊙. The
halo surrounding the SMBH is left undisturbed and could
correspond to a marginal classical King profile which gives
a good agreement with the Burkert profile (see Ref. [33]
and Fig. 1).

E. Potential problems with a DM model involving a
fermion mass m = 48 keV=c2 or m= 386 keV=c2

In Sec. V C we have determined the mass m of the
DM particle by arguing that the smallest halo observed
in the Universe (“minimum halo”) with a typical mass
M ∼ 108 M⊙ and a typical radius R ∼ 1 kpc (Fornax)
represents the ground state of the self-gravitating Fermi
gas at T ¼ 0. This yields m ¼ 165 eV=c2. This value
(previously given in Appendix D of [94]) is of the order
of magnitude of the fermion mass obtained by other authors
[119–121] using more detailed comparisons with observa-
tions.43 Alternatively, Argüelles et al. [60,62] determined
the mass of the fermionic DM particle in such a way that the
fermion ball that composes the core-halo structure of a
large DM halo like the Milky Way, obtained in the
framework of the fermionic King model, mimics the effect
of a SMBH at the center of the Galaxy. This leads to a much

larger mass m ¼ 48 keV=c2.44 In very recent works,
Becerra-Vergara et al. [122,123] showed that the gravita-
tional potential of a fermion ball (with a particle mass
m ¼ 56 keV=c2) leads to a better fit of the orbits of all the
17 best resolved S-stars orbiting Sgr A� (including the S2
and G3 objects) than the one obtained by the central
SMBH model.
A possible problem with this model is the following. If

the DM particle had a mass m ¼ 48 keV=c2, the minimum
halo (ground state) would be too small: it would have a
mass ðMhÞmin¼1.30M⊙ and a radius ðrhÞmin ¼ 0.0683 pc.
This would imply the formation of structures at very small
scales, up to ∼1 M⊙. Therefore, DM halos should exist up
to very small scales, like in the CDM model. Indeed,
(bosonic or fermionic) quantum models with a large
particle mass m behave essentially as classical CDM since
the quantum parameter ℏ=m ≪ 1. This is not what we
observe. There are apparently no DM halos with a mass
below ∼108 M⊙ (missing satellite problem) [3–5]. This is
why quantum models of DM with a small particle mass
have been introduced. Namely, they have been introduced
precisely in order to have a ground state (minimum halo)
with a typical mass M ∼ 108 M⊙ and a typical radius
R∼ 1 kpc, corresponding to dSphs like Fornax, not smaller.
Accordingly, a fermionic model with m ¼ 48 keV=c2 may
not be able to solve the missing satellite problem.
If we disregard this difficulty, another consequence of

the model of Argüelles et al. [60,62] is that dSphs should
have a very pronounced core-halo structure (since they do
not correspond to the ground state of the self-gravitating
Fermi gas). For example, a compact DM halo of mass
Mh ¼ 108 M⊙ (Fornax) should have a core-halo structure
with a small central fermion ball (possibly mimicking
an intermediate mass BH) and an atmosphere. Using
Eqs. (86), (106), (111), and (116), we find that this DM
halo should contain a quantum core of mass Mc ¼
1.57 × 104 M⊙, radius Rc¼5.42mpc and central density
ρ0¼1.40×1011M⊙=pc3.

45 The corresponding density and
velocity profiles are plotted in Figs. 25 and 26. To our
knowledge, this core-halo structure has not been observed in
ultracompact DM halos.46 dSphs are rather expected to42It would be interesting to determine precisely the condition

of disappearance of the condensed branch in the framework of
the relativistic fermionic King model, i.e., the value of N0�. In the
framework of the box model, we find N0� ∼ 3.73NOV [46] but the
prefactor may be substantially larger in more realistic models.

43Domcke and Urbano [119] model dSphs as completely
degenerate fermionic systems and find that m ¼ 200 eV=c2 pro-
vides the best fit to observations of velocity dispersion. Randall
et al. [120] show that self-gravitating fermions under full
degeneracy do not fit well the velocity dispersion data of some
local dwarfs and introduce by hand a Boltzmannian tail (i.e.,
finite temperature effects) in order to better reproduce the data.
They find good agreement for 70 eV=c2 < m < 400 eV=c2. Bar
et al. [121] study the globular cluster timing problem in Fornax
assuming that the core is a completely degenerate fermion ball.
They find m ¼ 135 eV=c2 but point out that this mass violates
the Lyman α limit.

44If we use the nonrelativistic mass-radius relation (74)
of a fermion ball at T ¼ 0 and take Mc ¼ 4.2 × 106 M⊙ and
Rc ¼ 6 × 10−4 pc, corresponding to the characteristics of the
massive object at the center of our Galaxy (see Sec. VIII A), we
get m ¼ 54.6 keV=c2.

45Interestingly, these values obtained from our semianalytical
model [see in particular Eq. (111)] are comparable to the values
obtained numerically in [61].

46Recently, C. Argüelles drew our attention to the works
[124–126] that report observations supporting the existence of
intermediate mass BHs (MBH ∼ 104–106 M⊙) in ultracompact
dwarf galaxies (Mh ∼ 109–1010 M⊙). However, these galaxies
are not DM dominated, so it is not clear if their massive cores
could correspond to fermion balls.
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correspond to pure fermion balls at T ¼ 0 (possibly sur-
rounded by a tenuous atmosphere). Therefore, they are
expected to have a profile similar to Figs. 7 and 8 instead
of Figs. 25 and 26. It would be extremely important to clarify
this issue by applying the model of Argüelles et al. [60] to
ultracompact halos in order to determine which of the two
scenarios (the scenario of Argüelles et al. [60,62] with
m ¼ 48 keV=c2 or the one developed in the present paper
withm ¼ 165 eV=c2 orm ∼ 1 keV=c2) is themost relevant.
There is also a problem related to the validity of the

Fermi-Dirac (or Lynden-Bell) DF as discussed further in
Sec. X. Indeed, for a large fermion mass m ≫ 1 keV=c2,
the DM halo is essentially classical except in a very small
quantum core (fermion ball). Away from the core, we
should recover the NFW profile leading to cusps. It is pre-
cisely in order to avoid these cusps that quantum models of
DM with a small particle mass m≲ 1 keV=c2 have been
introduced. A fermionic model with a mass m¼48 keV=c2

may not be able to solve the core-cusp problem.

IX. POSSIBLE SOLUTIONS TO AN APPARENT
PARADOX RELATED TO THE UNIVERSAL

SURFACE DENSITY OF DM HALOS

A. The apparent paradox

The mass-radius relation of a completely degenerate
fermion ball (ground state of the self-gravitating Fermi gas
at T ¼ 0) is given by [see Eq. (74)]

R ¼ 0.114
h2

Gm8=3M1=3 : ð122Þ

The radius decreases like M−1=3 as the mass increases.
Therefore, if we identify M with the halo mass Mh and R
with the halo radius rh, this result is in contradiction
with the universality of the surface density of DM halos
[see Eq. (52)] implying that the radius increases with the
mass asM1=2 [see Eq. (53)]. A similar problem arises in the
BECDM model [25].
This apparent paradox was pointed out by the author

at several occasions in the case of fermions and bosons
(see, e.g., Appendix F of Ref. [34], the Introduction of
Ref. [37] and Appendix L of [25]). It has also been recently
emphasized by Deng et al. [127] and Burkert [128] in the
case of bosons. A possible implication of this paradox is
that the quantum (fermionic and bosonic) models of DM
are ruled out because they are not consistent with the
constraint from Eq. (52). This is essentially the conclusion
reached by Deng et al. [127] and Burkert [128] for the
BECDM model. Below, we discuss several possible sol-
utions to this apparent paradox that were suggested in [25]
for bosonic DM and that can be straightforwardly adapted
to fermionic DM.
Remark: The constant surface density of DM halos Σ0 ¼

ρ0rh ¼ 141þ83
−52 M⊙=pc2 may be explained by the logo-

tropic model developed in [86–91] which involves a
logotropic envelope instead of an isothermal one. This
model not only explains why the surface density of DM
halos is constant but it also determines its universal value in
terms of the fundamental constants of physics according to
the relation Σth

0 ¼ 0.01955c
ffiffiffiffi
Λ

p
=G ¼ 133 M⊙=pc2 without

adjustable parameter. This relation is consistent with the
observational result. At the same time, in a cosmological
context, the logotropic model correctly accounts for the
accelerating expansion of the Universe with a single dark
fluid and suggests that the present ratio of dark energy and
dark matter is equal to the Euler number Ωth

de;0=Ωth
dm;0 ¼

e ¼ 2.71828… in agreement with the empirical value
Ωobs

de;0=Ωobs
dm;0 ¼ 2.669� 0.08 within the error bars.

B. Model I: Purely gaseous solution

A first possible solution to this problem is that DM halos
do not have a quantum core such as a fermion ball or such
as a soliton (in the BECDM model). Indeed, the DM halos
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FIG. 26. Velocity profile of a DM halo of mass Mh ¼ 108 M⊙
(Fornax) assuming that the fermion mass is m ¼ 48 keV=c2.
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could be in the purely gaseous phase corresponding to the
classical isothermal sphere (see Sec. IV). This solution is
always thermodynamically stable (maximum entropy state)
so it represents the most probable state of the system.
Furthermore, it is always possible to satisfy the constraint
from Eq. (52) by adapting the temperature [see Eq. (53)].
This leads to the mass-radius relation from Eq. (53). As
shown in [25], the classical isothermal distribution (without
quantum core) is fully consistent with the observational
Burkert profile and can therefore represent a satisfying
description of DM halos. It is nevertheless crucial to take
quantummechanics into account in the case of ultracompact
DM halos with a small mass, corresponding to dSphs like
Fornax. This leads to the Model I of Ref. [25] in which the
DM halos are purely isothermal (without quantum core)
except near the ground state. More precisely:

(i) At ðMhÞmin the DM halo is completely degenerate
(see Sec. V). The values of Mh and rh for this
minimum halo are consistent with the constraint
from Eq. (52).

(ii) Ultracompact DM halos with a mass ðMhÞmin ≤
Mh ≤ ðMhÞCCP have a quantum core surrounded by
a tenuous isothermal atmosphere. The presence of a
small isothermal halo allows us to satisfy the con-
straint fromEq. (52) as discussed in Sec.VI of [25] for
BECDMhalos. All the profiles constructed in Sec. VI
of [25] satisfy the constraint from Eq. (52). The same
results apply to fermionic DM halos.

(iii) DM halos with a mass Mh ≥ ðMhÞCCP are purely
isothermal without quantum core. Indeed, as shown
in [25] for BECDM halos, if we enforce the
constraint from Eq. (52) in Model I we find that

the core mass decreases as the halo mass increases
so that large DM halos are essentially classical
without quantum core.

This model leads to the mass-radius relation reported in
Fig. 16 of [25] and reproduced in Fig. 27 (adapted to
fermions). It coincides with the classical law from Eq. (53)
except at small halo masses. Quantum mechanics just
determines the ground state of DM halos at ðMhÞmin ¼
108 M⊙ and ðrhÞmin ¼ 597 pc.
This scenario does not account for the presence of a

compact object, such as a SMBH, at the center of the
galaxies. Of course, we can always add “by hand” a
primordial SMBH at the center of a classical isothermal
halo but this is almost assuming the result. In order to
explain self-consistently the presence of a SMBH at the
center of the galaxies, we can consider the following
scenarios.

C. Model II: Core-halo solution
with a large quantum bulge

Another possibility to solve the paradox of Sec. IX A and
“save” the quantum core-halo solution from Sec. VI is
to assume that the constraint from Eq. (52) should be
replaced by

Σ0 ¼ ρcrh ¼ 141þ83
−52 M⊙=pc2; ð123Þ

where ρc is not the true central density ρ0 but rather an
“apparent” central density. It corresponds to the density at
the separation between the quantum core and the classical
halo in configurations such as those from Fig. 17. Similarly,
rh is the radius at which ρc (instead of ρ0) is divided by 4.
The idea underlying this replacement is that observations
may not be able to resolve the presence of a quantum
bulge at the center of the galaxies. Therefore, we have to
distinguish between the true central density ρ0 (which is the
central density of the quantum core) from the apparent
central density ρc (which is the “central” density of the
classical isothermal halo surrounding the quantum core).
Similarly, we have to distinguish the halo radius rh which
typically corresponds to the distance where the apparent
central density ρc is divided by 4 from the core radius Rc
which is of the order of the distance where the core central
density ρ0 is divided by 4. The distinction between these
quantities is explicitly shown in Fig. 17. It is clear that the
radius of large DM halos is given by rh not by the quantum
core radius Rc. This leads to Model II of [25] in which the
DM halos of large mass have a core-halo structure. More
precisely:

(i) At ðMhÞmin the DM halo is completely degenerate
(see Sec. V). The values of Mh and rh for this
minimum halo are consistent with the constraint
from Eq. (52).

(ii) Ultracompact DM halos with a mass ðMhÞmin ≤
Mh ≤ ðMhÞCCP have a quantum core surrounded by
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FIG. 27. Mass-radius relation of fermionic DM halos. In Model
I, quantum mechanics (Pauli’s exclusion principle) is important
only close to the ground state (bullet) where the halos have the
form of a fermion ball surrounded by a tenuous isothermal
atmosphere. Larger DM halos are purely isothermal without a
quantum core. Note that the halo mass-radius relation from
Eq. (53) remains valid for large halos in Models II and III since
the quantum core mass Mc is always much smaller than the halo
mass Mh (see Sec. IV).
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a tenuous isothermal atmosphere. The presence of a
small isothermal halo allows us to satisfy the
constraint from Eq. (52) as discussed in Sec. VI
of [25] for BECDM halos. All the profiles con-
structed in Sec. VI of [25] satisfy the constraint
from Eq. (52). The same results apply to fermionic
DM halos.

(iii) Small DM halos with a mass ðMhÞCCP ≤ Mh ≤
ðMhÞMCP have a core-halo structure made of a large
quantum bulge surrounded by a classical isothermal
halo. The core massMc increases with the halo mass
Mh according to Eq. (111). The constraint from
Eq. (52) is satisfied provided that we replace the
central density ρ0 by the apparent central density ρc,
i.e., provided that we use Eq. (123). From the
outside (i.e., considering the external structure of
the DM halo and ignoring the quantum bulge), the
system looks like a classical isothermal sphere. This
leads to the mass-radius relation from Eq. (53) which
is consistent with the observations.

(iv) For large DM halos with a massMh ≥ ðMhÞMCP, the
quantum bulge is replaced either by a small out-of-
equilibrium quantum core or by a SMBH. In that
case, the replacement of Eq. (52) by Eq. (123) is
even more justified. What is relevant is not the
central density of the compact object but rather the
density of the classical halo at the contact with this
object.47

This model leads to the mass-radius relation from
Fig. 27. It coincides with the classical law from Eq. (53)
except at small halo masses. Quantum mechanics deter-
mines the ground state of DM halos at ðMhÞmin ¼ 108 M⊙
and ðrhÞmin ¼ 597 pc. It also implies the existence of a
large quantum bulge of mass Mc that increases with the
halo massMh according to Eq. (111). For very large halos,
the fermionic bulge is replaced by an out-of-equilibrium
compact quantum core or by a SMBH.
These arguments may solve, or alleviate, the problem

reported in Sec. IX A. The crucial point is to know if
observations are able to detect a large quantum bulge of
typical mass Mc ¼ 9.45 × 109 M⊙ and size Rc ¼ 240 pc
at the center of the Milky Way that is predicted by our
model. This possibility is discussed in the Remark of
Sec. VII F.

D. Model III: Core-halo solution mimicking a SMBH

Finally, we note that the apparent paradox reported in
Sec. IX A does not arise in the model of Argüelles et al.
[60,62] where the fermion ball mimics a SMBH of
negligible extent. Indeed, in that case, there is a clear
separation between the quantum core and the classical

isothermal halo as depicted in Fig. 19. It is clear that the
central density to consider in Eq. (52) is not the central
density ρ0 of the fermion ball but rather the density ρc of the
plateau that connects the fermion ball to the classical
isothermal halo. Similarly, the halo radius rh is not the
radius where the central density is divided by 4 (which
would coincide with the radius of the quantum core Rc) but
the radius where the density of the plateau is divided by 4.
In model III, the DM halo behaves from the outside as a

classical isothermal halo but harbors a tiny massive fermion
ball mimicking a SMBH. The halo mass-radius relation is
similar to that reported in Fig. 27 except that it starts at a
much smaller minimum halo mass ðMhÞmin ¼ 1.30 M⊙
corresponding to ðrhÞmin ¼ 0.0683 pc. This may be a
problem as discussed in Sec. VIII E.

X. THERMAL OR QUANTUM CORE?

In this paper, we have assumed that a fermionic DM halo
reaches a statistical equilibrium state described by the
Fermi-Dirac DF (see Sec. II). The same assumption was
made by other authors [49,62,67,119,120]. However, this is
a strong assumption and the establishment of a statistical
equilibrium state for self-gravitating systems is far from
trivial.
Let us first consider a collisionless system of classical

self-gravitating particles. According to the statistical theory
of Lynden-Bell [31], it should reach a Fermi-Dirac-like
DF, reducing to the classical isothermal DF in the dilute
limit. The corresponding density profile has a core due to
effective thermal effects (in the sense of Lynden-Bell).
However, this prediction is not consistent with numerical
simulations of classical collisionless self-gravitating sys-
tems. Indeed, such simulations lead to NFW profiles [1]
presenting a r−1 central cusp, not a core. This demonstrate
that, for classical collisionless self-gravitating systems, the
Lynden-Bell prediction does not work in the central part
of the system.48 Therefore, classical collisionless self-
gravitating systems are not in a maximum entropy state.
Since observations show that DM halos possess a core
rather than a cusp, we conclude that DM halos are either
quantum or collisional, two features that are not accounted
for in NFW numerical simulations [1].
Let us now consider a collisionless system of quantum

self-gravitating particles (fermions). If the fermion mass is
small (m≲ 1 keV=c2), as assumed in Sec. VII, DM halos
should harbor a large quantum bulge of radius Rc ≳ 240 pc
(Model II) according to the Lynden-Bell prediction. In that
case, the r−1 cusps are prevented by the Pauli exclusion
principle which forbids high densities. As a result, the

47The same comment holds if the quantum bulge in scenario
(iii) has led to the formation of a SMBH in the past by accretion
of the gas (see Sec. VII C).

48It does not work well neither in the outer part of the system
since it predicts a density profile decaying as r−2 instead of r−3.
However, we have previously argued that the difference is not
very strong and that it can even be reduced if we take into account
tidal effects (see Fig. 1) [33,34].
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classical cusp is replaced by a large quantum bulge. It is
possible that, for quantum systems with a small fermion
mass m≲ 1 keV=c2, the Lynden-Bell prediction works
well in the central part of the system. This is not in
contradiction with NFW numerical simulations [1] since
they do not take into account quantum mechanics.
Quantum effects may facilitate the collisionless relaxation
of the system towards a maximum entropy state. Therefore,
when m≲ 1 keV=c2, quantum effects may solve the core-
cusp problem.
By contrast, if the fermion mass is large (m≫1 keV=c2),

as assumed in Sec. VIII, the quantum core predicted by the
Lynden-Bell theory is very small (Rc ≤ 6 × 10−4 pc). In
the main part of the DM halo excluding the tiny fermion
ball at the very center (i.e., for r > Rc) the system is
essentially in the classical regime. In that case, we should
recover the NFW profile which displays a r−1 cusp while
Argüelles et al. [60] find a classical isothermal profile with
a thermal core. This is because their model assumes that the
Lynden-Bell DF is valid everywhere (even in the classical
region) while we have just seen that the Lynden-Bell DF is
not valid in a classical system. Therefore, when m ≫
1 keV=c2 (e.g., m ∼ 50 keV=c2), quantum effects cannot
solve the core-cusp problem if the system is collisionless.
One possibility to solve this problem and “save” the

scenario of Argüelles et al. [60] is to assume that the
fermions are self-interacting and that the evolution of DM
halos is collisional.49 In that case, the Fermi-Dirac DF is
established through a collisional relaxation of nongravita-
tional origin, not through a collisionless relaxation (see
Secs. II and XI). In the classical (nonquantum) regime,
collisions lead to an isothermal core of size rh instead of a
r−1 cusp. The classical core is due to thermal effects like in
the SIDM model. This is not in contradiction with NFW
numerical simulations [1] since they do not take into
account self-interaction and collisions among the particles.
In the quantumþ collisional regime, we should both have a
quantum core of size Rc and an isothermal core of size rh.
Therefore, quantum and/or thermal (collisional) effects
may solve the core-cusp problem. In particular, collisions
can establish a Maxwell-Boltzmann DF for classical
particles and a Fermi-Dirac DF for fermions.

XI. INCOMPLETE RELAXATION SAVED
BY SELF-INTERACTIONS?

We have seen that collisionless self-gravitating systems
like DM halos can achieve a form of statistical equilibrium
state on a coarse-grained scale through a process of violent
relaxation. As we have explained, the Lynden-Bell theory

of violent relaxation [31] can provide a justification of the
Fermi-Dirac DF for fermionic DM halos without the need
of gravitational encounters [33,34]. However, when
coupled to the Poisson equation, this DF has an infinite
mass. Therefore, there is no statistical equilibrium state for
self-gravitating systems in a strict sense. Away to cure this
problem is to take into account tidal effects and the
evaporation (loss) of particles when they reach sufficiently
high energies. This leads to the fermionic King DF [71,72]

f̄ ¼ η0
1 − eβη0ðϵ−ϵmÞ

1þ eη0ðβϵþαÞ ðϵ ≤ ϵmÞ; ð124Þ

f̄ ¼ 0 ðϵ ≥ ϵmÞ; ð125Þ

instead of the Fermi-Dirac DF (7). This truncated DF takes
into account the Pauli (or Lynden-Bell) exclusion principle
as well as tidal effects. It leads to a relevant model of
fermionic DM halos with a finite mass. The fermionic King
model has been studied in [33,34]. It can be derived from a
fermionic Kramers equation describing the process of
collisionless relaxation [130] by looking for a stationary
solution of this equation respecting the boundary condition
f ¼ 0 when ϵ ≥ ϵm [72,131].
There still remains the complicated problem of incomplete

relaxation [31,82]. In practice, the violent fluctuations of the
gravitational potential which are the engine of the collision-
less relaxation die away before the system has reached a
statistical equilibrium state in the sense of Lynden-Bell.
Therefore, it may be necessary to take into account other
processes of relaxation to guarantee that the system trully
relaxes towards a DF of the form of Eq. (124).50 This will be
the case if the system is submitted to external stochastic
perturbations (like a “cosmic noise”) from neighboring
galaxies or if the fermions are self-interacting. In this latter
case, the kinetic evolution of the system is governed by the
Boltzmann equation adapted to the case of fermions.
Although this equation is more complicated than the fer-
mionic Kramers equation, its study could explain the rapid
collisional relaxation of the system towards a DF similar to
Eq. (124). Probably the two processes (violent collisionless
relaxation and strong collisions due to self-interactions) are
responsible for the relaxation of the system towards the
truncated Fermi-Dirac DF (124). However, collisions due to
self-interactions continue to drive a secular evolution of the
system on a long timescale after the violent fluctuations of
the gravitational potential have died away. Therefore, self-
interactingDMhalosmayevolve secularly along the series of
equilibria characterized by the truncated Fermi-Dirac DF
(124), and possibly undergo a gravothermal catastrophe like

49In this respect, Yunis et al. [129] have taken into account
self-interaction in fermionic DM halos with m ¼ 48 keV=c2 and
shown that the extended hydrostatic equilibrium equations for
tidally-truncated systems (which account for such interactions)
do not spoil the rotation curve fittings for typical cross sections.

50In the absence of such processes, the system may reach a DF
which is a stable stationary solution of the Vlasov equation
different from the Lynden-Bell or fermionic King DF. However, it
is difficult to predict this DF from first principles (see, however,
[132,133] for some proposals).
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in the case of globular clusters. Self-interactions may there-
fore justify the assumptionsmade in ourmodel. Interestingly,
our model makes a connection between studies of fermionic
DM halos with a core-halo structure based on the Fermi-
Dirac DF and studies of SIDM halos with an isothermal DF
evolving secularly with time, and experiencing a gravother-
mal catastrophe and a core collapse possibly resulting in the
formation of a SMBH [98].

XII. SUMMARY AND CONCLUSIONS

In this paper, we have developed a predictive model of
fermionic DM halos. We have considered different scenar-
ios depending on the fermion mass m and on the DM halo
mass Mh. We have discussed the case of a collisionless
evolution and the case of a collisional evolution of non-
gravitational origin possibly due to SIDM assuming that
self-interactions do not dramatically alter the density profile
of fermionic DMhalos (see footnote 49 and Sec. XI). Below,
we recall our basic assumptions, summarize ourmain results,
present synthetic phase diagrams, and conclude.

A. Assumptions

We have used the following observational results:
(i) The surface density of DM halos has a universal

value Σ0 ¼ 141 M⊙=pc2 [83–85].51
(ii) There exists a minimum halo of mass ðMhÞmin ∼

108 M⊙ corresponding to dSphs like Fornax. Ob-
servations reveal that there is no DM halo below this
typical mass.52

We have made the following assumptions:
(i) We assumed that DM is made of fermions and that

DM halos are in a statistical equilibrium state of the
self-gravitating Fermi gas (see Sec. III). This stat-
istical equilibrium state may result from a process of
collisionless violent relaxation in the sense of
Lynden-Bell or, possibly, from a collisional relax-
ation of nongravitational origin if the fermions are
self-interacting (see Sec. II). Note that this is a strong
assumption. It is possible that DM halos are in an
out-of-equilibrium state (different from the Fermi-
Dirac DF) in which case predictions become more
complicated, or even impossible.

(ii) We assumed that the minimum halo of mass
ðMhÞmin ¼ 108 M⊙ (Fornax) is completely degen-
erate, i.e., it corresponds to the ground state of

the self-gravitating Fermi gas (see Sec. V). This
automatically determines the fermion mass m ¼
165 eV=c2.53 We then found that the radius of the
minimum halo is determined by the constraint from
Eq. (52) giving ðrhÞmin ¼ 597 pc [see Eqs. (79) and
(83)]. With this assumption, there is no free
(undetermined) parameter in our model. In this
sense, it is completely predictive.

(iii) We assumed that the external structure of large DM
halos [Mh ≫ ðMhÞmin] is described by the classical
isothermal distribution (see Sec. IV). This corre-
sponds to the nondegenerate Fermi-Dirac DF, or to
the approximate form of the Fermi-Dirac DF at
sufficiently large distances where the density is low.
This classical isothermal distribution is in agreement
with the Burkert profile (see Sec. III C of [25]).
Combining the properties of classical isothermal
spheres with the constraint from Eq. (52) we
obtained the mass-radius relation Mh ¼ 1.76Σ0r2h
[see Eq. (53)]. In principle, this relation is valid for
M ≫ ðMhÞmin. In practice, it is fulfilled as soon as
Mh is slightly larger than ðMhÞmin (see Fig. 27).

(iv) We considered the possibility that large DM halos, in
addition to their classical isothermal envelope of
mass Mh and radius rh, contain a quantum core
(fermion ball) of mass Mc and radius Rc. In other
words, we assumed that large DM halos may be
partially degenerate (see Sec. VI).

B. Methodology

The structure of fermionic DM halos, and the massMc of
the quantum core, are obtained by maximizing the Fermi-
Dirac entropy at fixed mass and energy (microcanonical
ensemble). To solve this problem, we proceeded as follows.
We considered the thermodynamics of a gas of self-
gravitating fermions in a box of radius R ¼ rh containing
a mass M ¼ Mh (see Sec. III). The caloric curve depends
on a unique parameter μ which is a measure of the massMh
of the DM halo [see Eq. (98)]. We then used the fact that the
DM halos are virialized so that the dimensionless inverse
temperature η ¼ βGMm=R is of order unity. The inter-
section between the line ηv ¼ 1 and the caloric curve ηðΛÞ
determines the possible equilibrium states of the system
consistent with the virial condition. For Mh < ðMhÞCCP
there is only one solution. However, forMh > ðMhÞCCP we
found two relevant solutions:

51If this observational result were not (exactly) valid, our
model could be generalized but it would depend on more
parameters.

52We have taken this value in order to be consistent with our
previous papers. It is possible that this mass is overestimated.
Some authors [49–54] (see also Refs. [34,95]) argue that the
minimum halo mass is ðMhÞmin ¼ 0.39 × 106 M⊙, correspond-
ing to Willman I. Numerical applications have also been given in
that case for a comparison.

53This prediction could be refined by adopting a possibly more
relevant value of the minimum halo mass but the order of
magnitude of m should be correct up to a factor 10. For example,
if we take ðMhÞmin ¼ 0.39 × 106 M⊙ (Willman I) we get m ∼
1 keV=c2 and ðrhÞmin ¼ 33 pc (see Sec. V C). A fermion mass in
the keV scale (or slightly larger) is more consistent with the
constraints coming from cosmological observations such as the
Lyman α forest (see Sec. VII G).
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(i) A purely gaseous solution (G) without quantum core
corresponding to the classical isothermal sphere
[55]. Its density profile is consistent with the
observational Burkert profile (see Sec. III C of
[25]). This corresponds to Model I of Sec. IX B.

(ii) A core-halo solution (CH) with a quantum core
surrounded by a classical isothermal halo. The core
is relatively large (Mc ¼ 9.45 × 109 M⊙ and Rc ¼
240 pc for the Milky Way) so it can represent a
quantum bulge. The core mass increases with the
halo mass asM3=8

h [see Eq. (111)]. This corresponds
to Model II of Sec. IX C.54

The gaseous solution is always thermodynamically
stable. The core-halo solution is thermodynamically stable
for Mh < ðMhÞMCP and unstable for Mh > ðMhÞMCP (as
explained before, we consider the thermodynamical stabil-
ity in the microcanoncal ensemble).
The formation of DM halos arises from a process of

violent collisionless relaxation. The metaequilibrium state
resulting from violent relaxation must be a maximum
entropy state in the sense of Lynden-Bell. It turns out that
the Lynden-Bell DF coincides with the Fermi-Dirac DF.
ForMh < ðMhÞMCP, the gaseous solution and the core-halo
solution are both entropy maxima in the sense of Lynden-
Bell. They could naturally arise from a process of violent
relaxation. For Mh > ðMhÞMCP, only the gaseous solution
is a maximum entropy state in the sense of Lynden-Bell.
Therefore, violent relaxation should lead to the gaseous
solution, not to the core-halo solution. Actually, there exist
stable core-halo solutions (CH�) close to the last turning
point of energy that may be physically relevant. Violent
relaxation may also lead to a dynamically (Vlasov) stable
quasistationary state, resulting from incomplete relaxation,
that is not a maximum entropy state.
If the DM halos are collisionless, they remain in the state

resulting from violent relaxation. If the DM halos are
collisional, they follow the series of equilibria determined
by the caloric curve towards states of higher and higher
central density. When Mh < ðMhÞMCP, the system can
evolve from the gaseous solution to the core-halo solution.
When Mh > ðMhÞMCP, the system can follow the series of
equilibria from the gaseous solution up to the point of
minimum energy Ec. At that point, it becomes thermody-
namically unstable and undergoes a gravothermal catas-
trophe. If the DM halo is small enough (Mh < MOV), the
gravothermal catastrophe stops when the core becomes
degenerate. In that case, gravitational collapse is prevented
by quantum mechanics (Pauli’s exclusion principle). The
system achieves a core-halo configuration with a small
quantum core. This state does not correspond to a state of

statistical equilibrium such as solution C’ which would
have a too extended halo [scenario (a)] but it could be an
out-of-equilibrium structure CHout [scenario (b)]. Alter-
natively, if the DM halo is large enough (Mh > MOV), the
gravothermal catastrophe can lead to the formation of a
SMBH by the mechanism discussed in Secs. VII D, VII E,
and VIII D [scenario (c)].
Remark: For small halos Mh < ðMhÞMCP, the core-halo

solution is stable (see Fig. 12) and the scaling Mc ∝ M3=8
h

from Eq. (111) is reliable. However, for large DM halos
Mh > ðMhÞMCP, this is no more the case because the core-
halo solution is unstable and is replaced by an out-of-
equilibrium core-halo solution (see Fig. 14). It is possible,
in that case, that DM halos of the same mass Mh may
contain cores of different masses Mc depending on their
evolution. In particular, when Mh > MOV, the core mass
Mc may evolve from a small valueM�

c corresponding to the
beginning of the condensed branch at Λ� up to the value
MOV corresponding to the end of the condensed branch at
Λ00
c at which it becomes unstable and collapses towards a

SMBH (see Fig. 16).

C. Results for m = 165 eV=c2

For a fermion mass m ¼ 165 eV=c2, we obtained the
following results:

(i) There exists a minimum halo of mass ðMhÞmin ¼
108 M⊙ and radius ðrhÞmin ¼ 597 pc corresponding
to the ground state (T ¼ 0) of the self-gravitating
Fermi gas. This DM halo is a purely quantum object
(fermion ball) without atmosphere. It is completely
degenerate. It is equivalent to a polytrope of index
n ¼ 3=2. It is fully stable. Quantum mechanics
(Pauli’s exclusion principle) determines the mini-
mum mass and the minimum radius of fermionic
DM halos.55 This minimum halo can be assimilated
with ultracompact dSphs like Fornax.

(ii) For ðMhÞmin ¼ 108 M⊙ <Mh < ðMhÞCCP ¼ 6.73×
108 M⊙, the caloric curve is monotonic (μ < μCCP;
see Fig. 11). There is only one solution with η ∼ 1: A
quantum object corresponding to a fermionic ball
surrounded by a tenuous isothermal atmosphere.
This equilibrium state is fully stable. This situation
may describe dSphs. Even if collisions allow the
system to evolve along the series of equilibria, no
instability occurs.

54de Vega and coworkers [49–54] only considered the gaseous
(nondegenerate) solution. A merit of our study is to have
evidenced a bifurcation above the canonical critical point μCCP
yielding a new branch of solutions possessing a quantum core.

55Actually, the mass and the size of the DM halos should be
determined by a theory of structure formation. The first stage of
this theory is the Jeans instability, leading to the formation of
clumps in the linear regime. When the density of the clumps has
grown significantly, we enter in the nonlinear regime of structure
formation where the overdensity regions experience free fall,
violent relaxation, nonlinear Landau damping, merging and
accretion, leading to the DM halos that we observe today.
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(iii) For ðMhÞCCP ¼ 6.73× 108 M⊙ <Mh < ðMhÞMCP ¼
1.08× 1010 M⊙, the caloric curve has an N-shape
structure (μCCP < μ < μMCP; see Fig. 12). There are
two physical solutions with η ∼ 1: A gaseous sol-
ution corresponding to a purely classical isothermal
halo without quantum core and a core-halo solution
with a quantum core surrounded by a massive
atmosphere. The fermion ball may mimic a large
bulge but not a SMBH because it is too much
extended (see Sec. VII F). The gaseous solution and
the core-halo solution are both stable. If the system
evolves adiabatically along the series of equilibria
under the effect of collisions, it can pass from the
gaseous solution to the core-halo solution without
collapsing. The gravothermal catastrophe is pre-
vented by quantum mechanics. This situation may
describe small and medium spiral galaxies. They
may have a core-halo structure made of a quantum
core (representing a bulge) and an isothermal atmos-
phere. The bulge may provide a favorable environ-
ment to induce the formation of a SMBH on a long
timescale by an accretion process (see Sec. VII C).

(iv) For Mh > ðMhÞMCP ¼ 1.08 × 1010 M⊙, the caloric
curve has aZ-shape structure (μ > μMCP; see Fig. 14).
There are two physical solutions for a given value of
η ∼ 1 as before. The gaseous solution is stable while
the core-halo solution is unstable (we must also keep
in mind the potentially relevant core-halo solution
CH�). In principle, only the gaseous solution may
result from a process of violent collisionless relaxa-
tion because the core-halo solution is not a maximum
entropy state in the sense of Lynden-Bell. If, starting
from the gaseous phase, the system evolves adiabati-
cally along the series of equilibria under the effect of
collisions, it can undergo a gravothermal catastrophe
at the point of minimum energy Ec. Then, there are
two possibilities:
(a) For ðMhÞMCP < Mh < MOV ¼ 2.30 × 1013 M⊙

the gravothermal catastrophe is stopped by quan-
tum degeneracy. This leads to a possibly out-of-
equilibrium small quantum core (different from a
large quantum bulge) surrounded by an envelope.
In that case, the core mass—halo mass relation
from Eq. (111) may not be valid anymore.

(b) For Mh > MOV ¼ 2.30 × 1013 M⊙ a new turn-
ing point of energy occurs in the caloric curve
[46,47] below which the condensed branch
disappears and the core of the DM halo collapses
towards a SMBH of mass MOV (presumably). If
MOV < Mh < M0� the DM halo may either
harbor a fermion ball or a SMBH. If Mh >
M0� there is no condensed branch at all and the
DM halo cannot harbor a fermion ball. It can just
harbor a SMBH of mass MOV.

This situation may apply to large spiral and elliptical
galaxies. Therefore, large spiral and elliptical galaxies are

expected to contain a small quantum core or a SMBH
resulting from the gravothermal catastrophe instead of a
large quantum bulge.56 During the gravothermal catastro-
phe, their envelope is left undisturbed and should corre-
spond to a marginal King profile (if we take into account
tidal effects) which is in good agreement with the Burkert
profile (see Refs. [33,34] and Fig. 1).
The main results of our study for m ¼ 165 eV=c2 are

summarized in the phase diagram of Fig. 28. The bullet cor-
responds to the minimum halo of mass ðMhÞmin¼108M⊙.
For ðMhÞmin¼108 M⊙<Mh< ðMhÞCCP¼6.73×108M⊙,
there is only one solution, the quantum solution. The
canonical critical point ðMhÞCCP ¼ 6.73 × 108 M⊙ deter-
mines a bifurcation between the branch of purely gaseous
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summarizing our main results. It displays the minimum halo
ðMhÞmin¼108 M⊙ (Fornax) where the DM halo is a pure fermion
ball without isothermal atmosphere (ground state). It also dis-
plays the canonical critical point ðMhÞCCP¼6.73×108 M⊙ at
which a bifurcation occurs between the gaseous branch (G) where
the DM halos are purely isothermal without quantum core and
the core-halo branch (CH) where the DM halos are made of
a quantum core (bulge) surrounded by a classical isothermal
halo. Finally, it displays the microcanonical critical point
ðMhÞMCP ¼ 1.08 × 1010 M⊙ above which the core-halo branch
becomes unstable [there may be, however, potentially relevant
core-halo solutions CH�]. In that case, the DM halos may
undergo a gravothermal catastrophe leading to the formation
of an out-of-equilibrium fermion ball ðCHÞout if Mh < MOV,
an out-of-equilibrium fermion ball or a central SMBH if
MOV < Mh < M0�, or a SMBH if Mh > M0� (see Fig. 29 for a
better illustration of these different cases when m ¼ 48 keV=c2).
We have located Fornax (dSph) and the Milky Way for reference.

56We have argued that the Milky Way may contain a large
quantum bulge in agreement with certain observations despite the
fact thatMh > ðMhÞMCP. This is because its massMh ¼ 1011 M⊙
is close to the microcanonical critical point ðMhÞMCP ¼ 1.08×
1010 M⊙, especially if the fermion mass is larger (recall that
ðMhÞMCP ¼ 4.21 × 107 M⊙ for m ∼ 1 keV=c2). Therefore, the
large quantum bulge may be (marginally) stable.
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solutions and the branch of core-halo solutions where the
core represents a large quantum bulge. This bifurcation is
associated with the occurence of a region of negative specific
heat in the caloric curve. The microcanonical critical point
ðMhÞMCP ¼ 1.08 × 1010 M⊙ determines the moment at
which the DM halo can experience a gravothermal catas-
trophe. For ðMhÞMCP < Mh < MOV the gravothermal catas-
trophe is stopped by quantum mechanics and the DM halo
harbors a possibly out-of-equilibrium small quantum core.
Therefore, the microcanonical critical point ðMhÞMCP ¼
1.08 × 1010 M⊙ determines the transition between DM
halos possessing a large quantum bulge and DM halos
harboring a small quantum core CHout (there are also
potentially relevant CH� solutions). This transition is asso-
ciated with the instability of the large quantum bulge
with respect to the gravothermal catastrophe. The mass
ðMhÞMCP ¼ 1.08 × 1010 M⊙ also determines the moment
at which the behavior of the core mass—halo mass relation
may change. On the other hand, the mass MOV ¼ 2.30 ×
1013 M⊙ determines themoment atwhich the core of theDM
halo may collapse towards a SMBH. ForMOV < Mh < M0�
theDMhalomayeither harbor a fermionball or a SMBH.For
Mh > M0� the DM halo can only harbor a SMBH.
For m ¼ 165 eV=c2, the value of MOV ¼ 2.30 ×

1013 M⊙ is very large and may not be astrophysical
relevant. The value of MOV is reduced if the fermion mass
is larger. For m ∼ 1 keV=c2 we find MOV ¼ 6.26 ×
1011 M⊙ but this value is still too large. It is comparable
to the mass the whole Milky Way instead of being
comparable to the mass of Sgr A�. Therefore, the fermionic
DM model with a mass m ¼ 165 eV=c2 or m ∼ 1 keV=c2

cannot account for the presence of a supermassive compact
object (either a SMBH or a fermion ball) of mass Mc ¼
4.2 × 106 M⊙ and radius Rc < 6 × 10−4 pc at the center of
the Milky Way. It rather predicts the existence of a large
fermion ball (bulge) of mass Mc ¼ 9.45 × 109 M⊙ and
radius Rc ¼ 240 pc (Model II), or no fermion ball at all
(Model I). In that case, in order to account for the
observation, we have to generalize the fermionic DM
model by introducing “by hand” a primordial SMBH
(Sgr A�) at the center of the Milky Way.
We note that the fermionic model developed in the

present paper is based on the same ideas as those deve-
loped in Ref. [25] for bosonic DM halos. The general
scenario is the same (the fermion ball replacing the soliton
in the BEC model) but the McðMhÞ relation and the
values of the characteristic masses and radii are different.
Therefore, a detailed comparison between the two models
may help determining whether DM is made of fermions or
bosons.

D. Results for m= 48 keV=c2

We have also considered the possibility suggested by
other authors [59,67] that the fermion ball may mimic a

SMBH at the center of the galaxies. This scenario requires a
larger particle mass m ¼ 48 keV=c2 (see footnote 44).
We have first considered the case of the usual Fermi-

Dirac DF. We have shown that our simple semianalytical
box model, leading to the relation from Eq. (111), repro-
duces the numerical results of Bilic et al. [67] and Ruffini
et al. [59]. However, the size of the fermion ball is too large
to satisfy the observational constraints corresponding to Sgr
A�. On the other hand, in line with our previous claims
[25,34,46], we showed that the core-halo solution in these
models is thermodynamically unstable. Therefore, it cannot
result from a process of violent relaxation.
We then mentioned the recent results of Argüelles et al.

[60,62] based on the fermionic King model. In a first
work, Argüelles et al. [60] obtained a density profile with a
core-halo structure that satisfies the observational con-
straints of Sgr A�. In a second work, Argüelles et al. [62]
showed that this solution is thermodynamically stable in
the microcanonical ensemble so that it is likely to result
from a process of violent relaxation. However, it is not
clear if the process of violent relaxation can lead to a core-
halo solution with such a high value of the central
density because of the problem of incomplete relaxation
[31,82].57 The purely gaseous solution (without quantum
core) whether stable or metastable may be reached more
easily. This issue can be settled only with direct numerical
simulations.
According to the work of Argüelles et al. [62], medium

size galaxies like the Milky Way may harbor a fermion
ball mimicking a SMBH of mass Mc ¼ 4.2 × 106 M⊙ and
radius Rc ¼ 6 × 10−4 pc. This corresponds to a stable
configuration CH� located on the condensed branch of
the caloric curve of the self-gravitating Fermi gas close to
the last turning point of energy E� (see Fig. 22). Using the
results of Alberti and Chavanis [46], we have argued that
larger galaxies cannot harbor a fermion ball because, above
a critical massMh > M0�, the condensed branch disappears
completely (see Fig. 24) and the system forms a SMBH of
mass ∼MOV (presumably). Therefore, if m ¼ 48 keV=c2,
very large galaxies are likely to contain a SMBH of mass
MOV ¼ 2.71 × 108 M⊙ possibly accounting for AGNs.
Medium size galaxies like the Milky Way may also follow
the branch of condensed states up to the turning point of
energy E00

c and undergo core collapse towards a SMBH.
However the mass of the SMBH should be much smaller
than MOV ¼ 2.71 × 108 M⊙ in order to account for the
characteristics of Sgr A�. This may be achieved with a
larger fermion mass. For a fermion mass m ¼ 386 keV=c2

the disappearance of the condensed branch and the collapse
of the core of the system towards a SMBH already occur in
galaxies like the Milky Way and lead to a SMBH of mass
MOV ¼ 4.2 × 106keV=c2 similar to Sgr A�.

57We have mentioned that this problem could be alleviated if
the fermions are self-interacting.
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We also mentioned potential difficulties with the
model of Argüelles et al. [62]. If the fermion mass is
m ¼ 48 keV=c2, the mass of the minimum halo (ground
state) is ðMhÞmin ¼ 1.30 M⊙. Therefore, there should exist
DM halos with a mass much below 108 M⊙, up to 1 M⊙.
On the other hand, under the same conditions, DM halos of
massMh ¼ 108 M⊙ such as dSphs like Fornax should have
a core-halo structure (see Figs. 25 and 26). As far as we
know, these two features are not observed (see, however,
footnote 46): There are no DM halos with a mass much
smaller than 108 M⊙ (Fornax) and the density profiles of
dSphs have not a core-halo structure (they look like Figs. 7
and 8 instead of Figs. 25 and 26). More precisely, the
fermionic DM model with a fermion mass m ¼ 48 keV=c2

predicts that dSphs of massMh ¼ 108 M⊙ should contain a
fermion ball of mass Mc ¼ 1.57 × 104 M⊙ and radius
Rc ¼ 5.42 mpc possibly mimicking an intermediate mass
BH (see Sec. VIII E). This is either a very important
prediction (if confirmed by observations) or the evidence
that this model is incorrect (if invalidated by observations).
The main results of our study for m ¼ 48 keV=c2 are
summarized in the phase diagram of Fig. 29.

E. The importance of the DM particle mass

There is a strong structural difference between the core-
halo density profile corresponding to a large fermion mass
m ¼ 48 keV=c2 or a small fermion mass m ¼ 165 eV=c2

when the fermionic model is applied to a DM halo of mass
Mh ¼ 1011 M⊙ (Milky Way). In the first case, the degen-
eracy parameter μ is very large (μ ¼ 3.09 × 1014) and the
core-halo profile presents a strong separation between the
quantum core and the classical halo (see Fig. 19). They
are separated by an extended plateau. Furthermore, the
fermion ball has a mass Mc ¼ 4.2 × 106 M⊙ and a radius
Rc ¼ 6 × 10−4 pc, mimicking a small SMBH (Sgr A�). In
the second case, μ is relatively small (μ ¼ 4.31 × 104) and
the separation between the core and the halo is mild with no
clear plateau between them (see Fig. 17). Furthermore, the
fermion ball has a mass Mc ¼ 9.45 × 109 M⊙ and a radius
Rc ¼ 240 pc mimicking a large quantum bulge, not a small
SMBH. Therefore, depending on the DM particle mass, the
fermionic model predicts very different types of structures.
Comparison with observations of the Milky Way should
determine which type of structure (a large quantum bulge or
a small quantum core mimicking a SMBH) is the most
relevant in the fermionic model. In this respect, we note that
the BECDM model also leads to core-halo configurations
in which the fermion ball is replaced by a soliton. For the
commonly adopted boson mass m ∼ 10−22 eV=c2 the core-
halo profiles obtained in direct numerical simulations
[16–24] do not show a very pronounced separation between
a core and a halo (there is no extended plateau) and look
similar to Fig. 17 rather than Fig. 19. In addition, the soliton
mimics a large quantum bulge rather than a SMBH. Such a
large quantum bulge seems to be necessary to account for
the dispersion velocity peak observed in the Milky Way
[108]. This may be a strong observational evidence for the
presence of a large quantum bulge (bosonic or fermionic) at
the center of the galaxies. Therefore, the comparison of the
fermionic and bosonic models tends to favor a fermion
mass of the order of m¼165 eV=c2 (or 1 keV=c2) instead
of m¼48 keV=c2. It would be interesting to consider
BECDM models with a boson mass much larger than m ∼
10−22 eV=c2 to see if they can lead to a soliton mimicking a
SMBH like in the model of Argüelles et al. [60,62] for
fermions. Considering a noninteracting boson for simplic-
ity, we find that its mass should bem¼ 1.84× 10−18 eV=c2

(see Sec. VA of [40]). However, for such a large mass,
BECDM is expected to behave like CDM and present a
central cusp instead of a core as demonstrated by Mocz
et al. [20] (see also the discussion in Sec. X). Similarly, for
a large fermion mass m ∼ 50 keV=c2 such as the one
considered in the models of Argüelles et al. [60,62], DM
should behave like CDM and may not be described by the
Lynden-Bell DF as assumed by these authors. The Lynden-
Bell DF may be valid only for a smaller fermion mass
m ∼ 1 keV=c2 where the cusps are prevented by the Pauli
exclusion principle. However, these difficulties may dis-
appear if DM is both quantum and self-interacting (see
the discussion in Sec. X). In that case, the Fermi-Dirac DF
may be justified by the self-interaction (collisions) of
the fermions, not by a process of collisionless violent
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summarizing our main results. The mass of the minimum halo
(ground state) is considerably reduced to ðMhÞmin ¼ 1.30 M⊙
leading to potential problems (see Sec. VIII E). For Mh <
MOV ¼ 2.71 × 108 M⊙, the DM halos should harbor a small
fermion ball mimicking a SMBH. For MOV < Mh < M0� they
may harbor either a small fermion ball, mimicking a SMBH, or a
true SMBH (for m ¼ 48 keV=c2 an ultracompact fermion ball in
the MilkyWay is preferred over a SMBH which would have a too
large mass, MOV ¼ 2.71 × 108 M⊙, larger than the mass of
Sgr A�). For Mh > M0� they can harbor only a SMBH of mass
MOV ¼ 2.71 × 108 M⊙ possibly accounting for AGNs. We have
located Fornax (dSph) and the Milky Way for reference.
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relaxation. The same remarks apply to the bosonic
model; one should consider a repulsive self-interaction
like in Ref. [25].
The comparison between the bosonic and fermionic

models that we have initiated in this paper and in
[15,25,34,38,39] may help determining the DM particle
mass and whether it is a fermion or a boson. We would like
to close this paper by suggesting that DM may be made of
different types of particles (fermions and bosons) with
different characteristics (mass, scattering length...). Some
family of particles may be responsible for creating a large
quantum bulge (fermion ball or soliton) [16,17,25,34] at the
center of the galaxies which could explain the dispersion
velocity peak observed in the Milky Way [108] while other
family of particles may be responsible for creating a very
compact object (fermion ball or soliton) at the very center
of the galaxies mimicking a SMBH [60,62,67], or even
leading to the formation a true SMBH.58 If this suggestion
is correct, it would give interest to all kinds of research
made on quantum (fermionic and bosonic) DM and SIDM.
If not, some physically interesting theoretical models may
be ruled out by the observations.
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APPENDIX A: APPROXIMATE EQUATIONS
OF STATE

Instead of using the exact equation of state of an ideal
Fermi gas at finite temperature determined by Eqs. (8) and
(9), we can consider the approximate equation of state

P ¼ 1

20

�
3

π

�
2=3 h2

m8=3 ρ
5=3 þ ρ

kBT
m

; ðA1Þ

which is simply the sum of the polytropic equation of state
(69) valid at high densities and the isothermal equation of
state (43) valid at low densities.
Similarly, in the case of self-interacting BECDM halos in

the TF limit, we have used in Ref. [25] an approximate
equation of state of the form

P ¼ 2πasℏ2

m3
ρ2 þ ρ

kBT
m

; ðA2Þ

where as is the scattering length of the bosons.

Finally, in the case of noninteracting BECDM halos, we
have used in Refs. [37,134] an approximate equation of
state of the form

P ¼
�
2πGℏ2

9m2

�
1=2

ρ3=2 þ ρ
kBT
m

; ðA3Þ

where the first term mimics the quantum potential (see
Appendix E of [38] for the justification of this equation
of state).
These equations of state are of the generic form

P ¼ Kργ þ ρ
kBT
m

ðγ ¼ 1þ 1=nÞ: ðA4Þ

They involve a polytropic equation of state of index n and
an isothermal (linear) equation of state. In the models
discussed above, the polytropic index is n ¼ 3=2 for
fermions, n ¼ 1 for self-interacting bosons, and n ¼ 2
for noninteracting bosons [38]. DM halos described by
the mixed equation of state (A4) have been studied in [25].
They are governed by a generalized Lane-Emden equation
introduced in Appendix E of [25].59 These DM halos have a
core-halo structure with a quantum core surrounded by an
isothermal envelope. The quantum core corresponds to a
fermion ball (n ¼ 3=2), a self-interacting BEC (n ¼ 1), or
a soliton (n ¼ 2). Their caloric curves present similar
features. On the other hand, using a maximum entropy
principle, we found in Ref. [38] that the generic core mass
—halo mass relation is given by

Mc

ðMhÞmin
∼
�

Mh

ðMhÞmin

�ð3−nÞ=4
∝ Mð3−nÞ=3

v : ðA5Þ

This relation is equivalent to the velocity dispersion tracing
relation. For fermionic DM halos (n ¼ 3=2), we get

Mc

ðMhÞmin
∼
�

Mh

ðMhÞmin

�
3=8

∝ M1=2
v : ðA6Þ

For self-interacting bosonic DM halos (n ¼ 1), we get

Mc

ðMhÞmin
∼
�

Mh

ðMhÞmin

�
1=2

∝ M2=3
v : ðA7Þ

For noninteracting bosonic DM halos (n ¼ 2), we get

Mc

ðMhÞmin
∼
�

Mh

ðMhÞmin

�
1=4

∝ M1=3
v : ðA8Þ

58The compact object at the center of the Galaxy (Sgr A� of
mass M ¼ 4.2 × 106 M⊙) could be a mixed structure made of a
SMBH surrounded by a compact fermion or boson ball. In that
case, the mass of the SMBH could be smaller than commonly
thought (MBH ≤ 4.2 × 106 M⊙) since part of the mass of the
compact object (Sgr A�) would be in the fermion or boson ball.

59The mixed equation of state (A4) has also been introduced
and studied in a cosmological context (in the framework of
general relativity) in Refs. [135–137]. In that case, ρc2 represents
the energy density of the Universe.
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Remark: BECDM halos are described by the GPP
equations with a self-interaction potential that accounts
for their equation of state. Because of the analogy between
fermionic and bosonic DM halos, we could also try to
describe fermionic DM halos by the GPP equations. This
idea is developed in Appendix G of [29]. The generalized
wave equation associated with the equation of state (A4) is

iℏ
∂ψ

∂t
¼ −

ℏ2

2m
Δψ þ kBT lnðjψ j2Þψ

þ Kγm
γ − 1

jψ j2ðγ−1Þψ þmΦψ

− i
ℏ
2
ξ

�
ln

�
ψ

ψ�

�
−
	
ln

�
ψ

ψ�

�
�
ψ : ðA9Þ

It must be coupled to the Poisson equation

ΔΦ ¼ 4πGjψ j2: ðA10Þ

For self-interacting bosons [see Eq. (A2)], we get [29]

iℏ
∂ψ

∂t
¼ −

ℏ2

2m
Δψ þ kBT lnðjψ j2Þψ

þ 4πasℏ2

m2
jψ j2ψ þmΦψ

− i
ℏ
2
ξ

�
ln

�
ψ

ψ�

�
−
	
ln

�
ψ

ψ�

�
�
ψ : ðA11Þ

For fermions [see Eq. (A1)], we obtain [29]

iℏ
∂ψ

∂t
¼ −

ℏ2

2m
Δψ þ kBT lnðjψ j2Þψ

þ 1

8

�
3

π

�
2=3 h2

m5=3 jψ j4=3ψ þmΦψ

− i
ℏ
2
ξ

�
ln

�
ψ

ψ�

�
−
	
ln

�
ψ

ψ�

�
�
ψ : ðA12Þ

When ξ ¼ T ¼ 0, we recover the standard GPP equa-
tions with a potential accounting for the self-interaction
between the bosons [in Eq. (A11)] or taking into account
the Pauli exclusion principle for fermions [in Eq. (A12)].
The kinetic term (or the quantum potential) is generally
negligible for strongly self-interacting bosons and for
fermions, justifying the Thomas-Fermi approximation,
but it may nevertheless be relevant in order to regularize
the dynamics at small scales when the system undergoes
gravitational collapse. The wave equation (A12) could be
used to describe the dynamics of self-gravitating fermions
and the formation of fermionic DM halos similarly to
the numerical simulations performed with bosons using
Eq. (A11) [16–24]. It is usually acknowledged that the
processes of violent relaxation and gravitational cooling
produce an isothermal halo and a source of dissipation

(see the Introduction). Equations (A9)–(A12) with ξ ≠ 0
and T ≠ 0 may provide a relevant parametrization of these
complicated processes (see Ref. [29] for a more detailed
discussion).

APPENDIX B: ENTROPY

Using the Gibbs-Duhem formula (see Eqs. (40), (47),
and (58) of [30]), the entropy of the nonrelativistic self-
gravitating Fermi gas is given by60

S ¼ −
μ

T
N þ 5Ekin

3T
þ 2W

T
: ðB1Þ

Using the virial theorem from Eq. (32) and introducing the
total energy E ¼ Ekin þW, we obtain

S
NkB

¼ −
μ

kBT
þ 7E
3NkBT

−
PbV
NkBT

: ðB2Þ

Using

k ¼ e−βμeβmΦ0 ðB3Þ

and

ψðαÞ ¼ βmðΦðRÞ −Φ0Þ

¼ βm

�
−
GM
R

−Φ0

�
¼ −η − βmΦ0 ðB4Þ

from Eq. (16), we get

βμ ¼ − ln k − η − ψðαÞ: ðB5Þ

Substituting Eq. (B5) into Eq. (B2) and introducing
the dimensionless variables defined in Sec. III, we finally
obtain

S
NkB

¼ ln kþ ηþ ψkðαÞ −
7

3
Λη −

2α6

9μ̃2
I3=2ðkeψkðαÞÞ; ðB6Þ

where μ̃ denotes the degeneracy parameter from Eq. (29)
(we use the notation μ̃ here to distinguish it from the
chemical potential μ). This returns in a more direct manner
the result obtained in [41].
The entropy of the nonrelativistic self-gravitating

Boltzmann gas is also given by Eq. (B1) (see footnote
60). Using Eq. (61) and introducing the total energy
E ¼ Ekin þW, we obtain

S ¼ −
μ

T
N þ 2E

T
−
1

2
NkB: ðB7Þ

60It is shown in [30] that this expression is valid for an arbitrary
form of entropy.
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On the other hand, applying Eq. (41) at r ¼ R and using
Eqs. (57)–(59) and ΦðRÞ ¼ −GM=R, we find that

βμ ¼ 2 lnðαÞ þ 1

2
ln η − ψðαÞ − η − ln μ̃þ ln 2 −

1

2
ln π:

ðB8Þ

Substituting Eq. (B8) into Eq. (B7), we finally obtain

S
NkB

¼ −
1

2
ln η − 2 lnðαÞ þ ψðαÞ þ η − 2Λη

þ ln μ̃þ 1

2
ln π − ln 2 −

1

2
: ðB9Þ

APPENDIX C: BASIC EQUATIONS
AND DEFINITIONS

For classical self-gravitating systems, or for quantum
self-gravitating systems in the TF approximation (where
the quantum potential can be neglected), the condition of
hydrostatic equilibrium reads

∇Pþ ρ∇Φ ¼ 0: ðC1Þ

Combined with the Poisson equation

ΔΦ ¼ 4πGρ; ðC2Þ

we obtain the fundamental differential equation

∇ ·

�∇P
ρ

�
¼ −4πGρ: ðC3Þ

This equation determines the density profile ρðrÞ of a DM
halo described by a barotropic equation of state PðρÞ.
The halo radius rh is defined as the distance at which the

central density ρ0 is divided by 4:

ρðrhÞ
ρ0

¼ 1

4
: ðC4Þ

The mass MðrÞ contained within a sphere of radius r is
given by

MðrÞ ¼
Z

r

0

ρðr0Þ4πr02dr0: ðC5Þ

The halo mass is

Mh ¼ MðrhÞ: ðC6Þ

The circular velocity is defined by

v2ðrÞ ¼ GMðrÞ
r

: ðC7Þ

The circular velocity at the halo radius is

v2h ¼ v2ðrhÞ ¼
GMh

rh
: ðC8Þ

We have the identity

v2h
Gρ0r2h

¼ Mh

ρ0r3h
: ðC9Þ

APPENDIX D: ISOTHERMAL PROFILE

1. Emden equation

We consider a DM halo with an isothermal equation
of state

P ¼ ρ
kBT
m

; ðD1Þ

where T is the temperature [55]. The fundamental differ-
ential equation of hydrostatic equilibrium (C3) takes the
form

kBT
m

Δ ln ρ ¼ −4πGρ: ðD2Þ

Writing

ρ ¼ ρ0e−ψ ; ðD3Þ

where ρ0 is the central density, introducing the normalized
radial distance

ξ ¼ r=r0; r0 ¼
�

kBT
4πGρ0m

�
1=2

; ðD4Þ

where r0 is the thermal core radius, and assuming that the
DM halo is spherically symmetric, we obtain the Emden
equation [55]

1

ξ2
d
dξ

�
ξ2

dψ
dξ

�
¼ e−ψ ðD5Þ

with the boundary conditions

ψð0Þ ¼ ψ 0ð0Þ ¼ 0: ðD6Þ

The density profile has the self-similar (homology) form
ρðrÞ=ρ0 ¼ e−ψðr=r0Þ. Using Eqs. (C5), (D3), (D4), and (D5),
the mass contained within the sphere of radius r is given by

MðrÞ ¼ 4πρ0r30ξ
2ψ 0ðξÞ: ðD7Þ

According to Eqs. (C7), (D4) and (D7), the circular
velocity is
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v2ðrÞ ¼ 4πGρ0r20ξψ
0ðξÞ: ðD8Þ

Using Eq. (D4), we find that the temperature satisfies the
relation

kBT
m

¼ 4πGρ0r20: ðD9Þ

Therefore, we can rewrite Eq. (D8) as

mv2ðrÞ
kBT

¼ ξψ 0ðξÞ: ðD10Þ

2. Halo mass and halo radius

The halo radius defined by Eq. (C4) is given by
rh ¼ ξhr0, where ξh is determined by the equation

e−ψðξhÞ ¼ 1

4
: ðD11Þ

Solving the Emden equation (D5) numerically, we find

ξh ¼ 3.63; ψ 0ðξhÞ ¼ 0.507: ðD12Þ

The normalized halo mass is

Mh

ρ0r3h
¼ 4π

ψ 0ðξhÞ
ξh

¼ 1.76: ðD13Þ

The normalized circular velocity at the halo radius is

v2h
4πGρ0r2h

¼ ψ 0ðξhÞ
ξh

¼ 0.140: ðD14Þ

The normalized temperature is

kBT
Gmρ0r2h

¼ 4π

ξ2h
¼ 0.954: ðD15Þ

The normalized inverse temperature of the halo is

ηv ¼
βGMhm

rh
¼ ξhψ

0
h ¼ 1.84: ðD16Þ

APPENDIX E: POLYTROPIC PROFILES

1. Lane-Emden equation

We consider a DM halo with a polytropic equation of
state of the form

P ¼ Kργ; ðE1Þ

where K is the polytropic constant and γ ¼ 1þ 1=n is the
polytropic index [55]. The fundamental differential equa-
tion of hydrostatic equilibrium (C3) takes the form

Kðnþ 1ÞΔρ1=n ¼ −4πGρ: ðE2Þ

In the following, we restrict ourselves to spherically
symmetric distributions. We also assume K > 0 and 6=5 <
γ < þ∞ (i.e., 0 ≤ n < 5) in order to have density profiles
with a compact support (see below).
Writing

ρ ¼ ρ0θ
n; ðE3Þ

where ρ0 is the central density, introducing the normalized
radial distance

ξ ¼ r=r0; r0 ¼
�
Kðnþ 1Þ
4πGρ1−1=n0

�
1=2

; ðE4Þ

where r0 is the polytropic core radius, and assuming that
the DM halo is spherically symmetric, we obtain the Lane-
Emden equation [55]

1

ξ2
d
dξ

�
ξ2

dθ
dξ

�
¼ −θn ðE5Þ

with the boundary conditions

θð0Þ ¼ 1; θ0ð0Þ ¼ 0: ðE6Þ

The density profile has the self-similar (homology) form
ρðrÞ=ρ0 ¼ θnðr=r0Þ. Using Eqs. (C5), (E3), (E4), and (E5),
the mass contained within the sphere of radius r is given by

MðrÞ ¼ −4πρ0r30ξ2θ0ðξÞ: ðE7Þ

According to Eqs. (C7), (E4) and (E7), the circular
velocity is

v2ðrÞ ¼ −4πGρ0r20ξθ0ðξÞ: ðE8Þ

2. Mass and radius

When n < 5, the polytropes are self-confined (their
density has a compact support) [55,138]. We denote by
ξ1 the normalized radius at which the density vanishes:
θ1 ¼ θðξ1Þ ¼ 0. Their radius R and their total mass M are
given by

R ¼ ξ1r0; M ¼ −4πρ0r30ξ21θ01; ðE9Þ

or, more explicitly, by

R ¼ ξ1

�
Kðnþ 1Þ
4πG

�
1=2 1

ρðn−1Þ=2n0

; ðE10Þ

M ¼ −4π
θ01
ξ1

ρ0R3: ðE11Þ
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Eliminating the central density between these two equa-
tions, we obtain the mass-radius relation [55]

Mðn−1Þ=nRð3−nÞ=n ¼ Kðnþ 1Þ
Gð4πÞ1=n ω

ðn−1Þ=n
n ; ðE12Þ

where ωn ¼ −ξðnþ1Þ=ðn−1Þ
1 θ01 is a constant determined by

the Lane-Emden equation (E5). It can be shown that a
polytrope of index n is dynamically stable with respect
to the Euler-Poisson equations if n < 3 and linearly
unstable if n > 3 [55]. On the other hand, the gravitational
energy of a polytrope of index n is given by the Betti-Ritter
formula [55]

W ¼ −
3

5 − n
GM2

R
: ðE13Þ

For the polytrope n ¼ 3=2, solving the Lane-Emden
equation (E5) numerically, we find

ξ1 ¼ 3.65375; θ01 ¼ −0.203302: ðE14Þ

This polytrope represents a nonrelativistic fermion star at
T ¼ 0. This leads to Eqs. (72)–(74) quoted in the main text.
The mass-radius relation may be written as

MR3 ¼ 9ω3=2

8192π4
h6

G3m8
; ðE15Þ

where ω3=2 ¼ 132.3843.

3. Halo mass and halo radius

The halo radius defined by Eq. (C4) is given by
rh ¼ ξhr0, where ξh is determined by the equation

θðξhÞn ¼
1

4
: ðE16Þ

The value of ξh can be obtained by solving the Lane-Emden
equation (E5) for a given value of n. The normalized halo
mass is

Mh

ρ0r3h
¼ −4π

θ0ðξhÞ
ξh

: ðE17Þ

The normalized circular velocity at the halo radius is

v2h
4πGρ0r2h

¼ −
θ0ðξhÞ
ξh

: ðE18Þ

The halo radius rh and the halo mass may be written
more explicitly as

rh ¼ ξh

�
Kðnþ 1Þ
4πG

�
1=2 1

ρðn−1Þ=2n0

; ðE19Þ

Mh ¼ −4π
θ0ðξhÞ
ξh

ρ0r3h: ðE20Þ

Eliminating the central density between Eqs. (E19) and
(E20), we obtain the halo mass-radius relation

Mhr
ð3−nÞ=ðn−1Þ
h ¼ −4πθ0ðξhÞξðnþ1Þ=ðn−1Þ

h

�
Kðnþ 1Þ
4πG

�
n=ðn−1Þ

:

ðE21Þ

Let us assume that the minimum halo corresponds to a
polytrope of index n (this includes the case of fermions
corresponding to n ¼ 3=2, the case of noninteracting
bosons corresponding to n ¼ 2, and the case of self-
interacting bosons corresponding to n ¼ 1 [38]). Using
Eqs. (E19) and (E20) and introducing the universal surface
density of DM halos from Eq. (52) we find that the
minimum halo radius, the minimum halo mass, and the
maximum halo central density are given by

ðrhÞmin ¼ ξ2n=ðnþ1Þ
h

�
Kðnþ 1Þ
4πG

�
n=ðnþ1Þ 1

Σðn−1Þ=ðnþ1Þ
0

; ðE22Þ

ðMhÞmin ¼ −4πθ0ðξhÞξð3n−1Þ=ðnþ1Þ
h

�
Kðnþ 1Þ
4πG

�
2n=ðnþ1Þ

× Σð3−nÞ=ðnþ1Þ
0 ; ðE23Þ

ðρ0Þmax ¼
1

ξ2n=ðnþ1Þ
h

�
4πG

Kðnþ 1Þ
�
n=ðnþ1Þ

Σ2n=ðnþ1Þ
0 : ðE24Þ

For the polytrope n ¼ 3=2, solving the Lane-Emden
equation (E5) numerically, we find

ξh ¼ 2.27; θ0h ¼ −0.360: ðE25Þ

If the minimum halo corresponds to a fermion ball at T ¼ 0
(equivalent to a polytrope n ¼ 3=2) we obtain Eqs. (75)–
(82) quoted in the main text.
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