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We study the possibility that, after inflation,the inflaton reaches thermal equilibrium with the Standard
Model thermal bath and eventually freezes out in the nonrelativistic regime. When the inflaton decay is the
sole source of (nonthermal) dark matter, its relic density is automatically suppressed. We delineate
parameter space leading to the correct dark matter abundance. The model allows for a significant Higgs-
inflaton coupling which may lead to invisible Higgs decay into inflaton pairs at the LHC.
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I. INTRODUCTION

The Standard Model (SM) of particle physics is chal-
lenged by the existence of dark matter (DM) and an
inflationary paradigm. One of the minimalistic options to
address these cosmological issues is to extend the SM with
just 2 degrees of freedom in the form of 2 real scalars. One
scalar would then be responsible for driving inflation, while
the other would be stable and play the role of dark matter.
The inflationary energy must subsequently be converted
into SM radiation, which necessitates a coupling between
the inflaton and some SM fields. The leading renormaliz-
able couplings are provided by the “Higgs portal” [1,2],

ΔV ¼ 1

2
λϕhϕ

2H†H þ σϕhϕH†H; ð1Þ

where ϕ is the inflaton and λϕh; σϕh are some coupling
constants. On general grounds, these interactions are
expected to be responsible for reheating the Universe.
Analogous couplings can be written down for the dark
matter field, which would lead to DM production directly
by the inflaton.
The absence of the direct DM detection signal motivates

one to consider seriously the possibility that dark matter
couples feebly to normal matter. It may have never been in
thermal equilibrium and its current abundance could be
determined directly by its coupling to the inflaton. This
framework has been analyzed in detail in [3] and reviewed
in [4]. In our work, we extend the previous studies by

considering inflaton thermalization due to its interaction
with the Higgs field and subsequent inflaton freeze-out.
This suppresses the inflaton energy density compared to
that of the SM thermal bath. If inflaton decay is the only
source of nonthermal dark matter, the relic abundance of
the latter will consequently be suppressed, as required by
observations. In what follows, we discuss the technical
aspects of this mechanism and delineate parameter space
leading to the correct DM abundance.

II. HIGGS PORTAL FRAMEWORK

The minimal Standard Model extension that accommo-
dates dark matter and inflation includes two real scalars, ϕ
(inflaton) and s (dark matter).1 This framework is reviewed
in [4]. The only renormalizable inflaton couplings to the
Standard Model are

Vϕh ¼
1

4
λϕhϕ

2h2 þ 1

2
σϕhϕh2; ð2Þ

where we have assumed the unitary gauge for the Higgs
field H ¼ ð0; h= ffiffiffi

2
p ÞT. The inflaton mass is denoted by mϕ

and ϕ is taken to have a zero VEV. The DM couplings to
the inflaton are given by

Vϕs ¼
1

4
λϕsϕ

2s2 þ 1

2
σϕsϕs2; ð3Þ

where a stabilizing Z2 symmetry s → −s has been
imposed. The DM mass is denoted by ms. In what follows,
we study the possibility that dark matter is nonthermal and
the Higgs-DM interactionPublished by the American Physical Society under the terms of
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1It is possible that the inflaton also plays the role of dark matter
[5,6], yet the minimal option is strongly constrained [7].
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Vsh ¼
1

4
λshh2s2 ð4Þ

is negligible, λsh → 0.
We focus on the range of λϕh values leading to efficient

inflaton-Higgs scattering and eventual thermalization of the
inflaton-Higgs system. As we show later, this sets the lower
bound

λϕh ≳ 10−8–10−7: ð5Þ

While the inflaton may be lighter or heavier than the Higgs,
we require

mϕ > 2ms; ð6Þ

such that perturbative decay ϕ → ss is allowed. The
trilinear couplings σϕs; σϕh are assumed to be sufficiently
small so that they do not affect the inflaton thermodynamics
until ϕ decays at late times.
After inflation, the Higgs quanta can be copiously

produced via parametric resonance [8,9] induced by the
coupling λϕh. Following rescattering and thermalization,
the inflaton-Higgs system remains in thermal equilibrium
until the inflaton freezes out. If this occurs in the non-
relativistic regime, its energy density is suppressed com-
pared to that of the SM bath. Then, the decay ϕ → ss
generates dark matter whose abundance is automatically
small, in accordance with observations. This mechanism is
reminiscent of the super–WIMP (weakly interacting mas-
sive particle) idea put forth in [10,11].
Clearly, for this scenario towork, the couplings have to be

in a specific range. The different options are summarized in
Table I. In particular, in order to eliminate additional sources
of dark matter such as freeze-in production, we take λsh ≪
10−11 [12]. Further, if λϕs ≳ λϕh and λϕh is large enough for
thermalization, then dark matter also reaches thermal
equilibrium with the inflaton. Since it does not have an
efficient annihilation channel formϕ > ms, its abundance is
bounded from below, roughly by the inverse of the number
of degrees of freedom (see e.g., [3]). This makes dark
matter overabundant, thuswe require λϕs ≪ λϕh. Finally, the
relation between the trilinear couplings σϕs and σϕh affects
the efficiency of the SM state production in late inflaton

decay. If ϕ → SM is non-negligible, the inflaton lifetime
must be belowOð0.1 secÞ in order not to spoil the standard
nucleosynthesis.

III. MOTIVATION: INFLATION DRIVEN BY
A NONMINIMAL SCALAR-CURVATURE

COUPLING

The main premise of our work is that the inflaton reaches
thermal equilibrium with the Standard Model thermal bath.
Clearly, it requires a sufficiently large coupling between the
two. This may be problematic since such a coupling
generally induces a large loop correction to the inflaton
potential thereby spoiling its flatness. However, in a class of
models based on a nonminimal scalar coupling to gravity,
the inflaton self-interaction can be significant and the loop
corrections small compared to the tree-level value. Below
we describe the main features of such models.
A simple and viable inflationary model is based on the

action [13]

LJ ¼
ffiffiffiffiffiffi
−ĝ

p �
−
1

2
ΩR̂þ 1

2
∂μϕ∂

μϕ − VðϕÞ
�
; ð7Þ

with

Ω ¼ 1þ ξϕϕ
2; VðϕÞ ¼ 1

4
λϕϕ

4 þ 1

2
m2

ϕϕ
2: ð8Þ

Here we use the Planck units

MPl ¼ 1; ð9Þ

where MPl is the reduced Planck mass, mϕ ≪ 1, ĝμν

denotes the Jordan frame metric, and R̂ is the corresponding
scalar curvature. The transition to the Einstein frame is
accomplished by the metric rescaling

gμν ¼ Ωĝμν; ð10Þ

such that the curvature based on the metric gμν appears in
the Lagrangian with the canonical coefficient −1=2. At
large field values, Ω ≃ ξϕϕ

2 and the canonically normal-
ized inflaton becomes [13]

χ ¼
ffiffiffi
3

2

r
lnðξϕϕ2Þ; ð11Þ

with the potential

VE ¼ λϕ
4ξ2ϕ

�
1þ exp

�
−
2γχffiffiffi
6

p
��

−2
; ð12Þ

where

TABLE I. Coupling regimes in the Higgs portal model.

Coupling regime Feature

λsh ≪ 10−11 Present model
λsh ≳ 10−11 DM freeze-in or freeze-out
λϕs ≳ λϕh Too much DM
λϕs ≪ λϕh Present model
σϕs ≫ σϕh Present model (no BBN constraint)
σϕs ≲ σϕh Present model (with BBN constraint)
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γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ξϕ

6ξϕ þ 1

s
: ð13Þ

This inflaton potential is well consistent with the infla-
tionary data. The cosmic background explorer (COBE)
normalization requires [4]

λϕ
4ξ2ϕ

¼ 4 × 10−7
1

γ2N2
; ð14Þ

where N ¼ 50…60 is the number of inflationary e-folds.

For ξϕ ≳ 1=6, this implies λϕ
4ξ2ϕ

∼ 10−10. The spectral index n

and the tensor-to-scalar ratio r are given by

n ¼ 1 − 6ϵþ 2η ≃ 1 −
2

N
−

9

2γ2N2
;

r ¼ 16ϵ ≃
12

γ2N2
: ð15Þ

These predictions fit the PLANCK data very well [14].
After inflation, the inflaton starts oscillating with a

decreasing amplitude and, for ξϕϕ
2 < 1, the field ϕ

becomes a canonically normalized variable with the poten-
tial (8). The inflaton can be taken to be light enough such
that the potential is dominated by the quartic term.
Oscillations in this potential can lead to efficient particle
production and, eventually, reheating.
The model parameters are subject to a unitarity con-

straint. The nonminimal scalar coupling to gravity corre-
sponds to a dimension-5 operator, which implies that the
theory is valid up to a cutoff [15,16]

Λ ∼
1

ξϕ
: ð16Þ

The energy density during inflation, ðλϕ=4ξ2ϕÞ1=4, should be
below the cutoff. Combining this condition with the COBE
normalization (14) for γ ∼ 1 one finds

λϕðHÞ≲ 4 × 10−5 ð17Þ

and ξϕðHÞ ≲ 300. Here λϕðHÞ is the running coupling
evaluated at the Hubble scale H. Thus, the inflaton self-
coupling cannot be too strong. In turn, this implies that the
loop corrections to this coupling cannot be too large either.
In particular, if one introduces the Higgs portal coupling

ΔV ¼ 1

4
λϕhϕ

2h2; ð18Þ

where h is the Higgs field in the unitary gauge, the resulting
radiative correction to λϕ is of order λ2ϕh=ð8π2Þ, up to the
logarithm of the renormalization group scales ratio. The
bound (17) then implies

λϕh ≲ 10−2: ð19Þ

This constraint is loose enough to allow for thermalization
of the inflaton-Higgs system without inducing too large a
correction to the inflaton potential.
The constraints relax further if one employs the Palatini

[17] instead of metric formalism. That is, in addition to the
metric gμν, one introduces the connection degrees of
freedom Γλ

μν. In this case, the curvature Rμν is a function
of the connection only. Eliminating Γλ

μν via their equations
of motion, one finds a theory similar to the one described
above albeit with some important modifications. In par-
ticular, the canonically normalized inflaton χ is defined by
the relation ϕ ¼ 1=

ffiffiffiffiffi
ξϕ

p
sinhð ffiffiffiffiffi

ξϕ
p

χÞ such that the unitarity
cutoff becomes [18]

ΛPal ∼
1ffiffiffiffiffi
ξϕ

p : ð20Þ

The energy density during inflation remains the same, so
unitarity is preserved as long as the system remains
perturbative,

λϕ; λϕh ≲Oð1Þ: ð21Þ

As before, the Higgs-induced correction to the inflaton
potential is small as long as λϕ ≫ λ2ϕh=ð8π2Þ. A somewhat
uncomfortable aspect of this approach is that the infla-
tionary data require an extremely large ξϕ ∼ 1010λϕ.
The above examples show that there exist classes of

inflationary models in which the inflaton-Higgs coupling
can be quite large without spoiling the flatness of the
inflaton potential. Depending on the inflaton mass, cou-
plings of this size often suffice to bring the system to
thermal equilibrium such that during reheating the inflaton
shares a thermal bath with the Standard Model states. This
question will be considered in more detail in the next
section.

IV. THERMALIZATION CONSTRAINT

The inflaton-Higgs system reaches thermal equilibrium
for λϕh above a certain mϕ-dependent value. The main
relevant processes are

ϕϕ ↔ hihi; ϕϕ ↔ h; ð22Þ

where hi represents 4 Higgs degrees of freedom at high
energies, while h stands for a single Higgs d.o.f. at low
energies. If the rate of these processes is above the Hubble
rate H, the Higgses are copiously produced and thermal-
ization sets in. Let us consider these processes separately.
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A. ϕϕ → hihi
Comparing the corresponding terms in the Boltzmann

equation for the inflaton number density nϕ, the thermal-
ization condition can be formulated as

3nϕH < 2Γðϕϕ → hihiÞ; ð23Þ

where Γðϕϕ → hihiÞ is the reaction rate per unit volume.
The specifics of thermalization depend on the momen-

tum distribution and density of the scalars. After inflation,
the Higgses as well as the inflaton fluctuations are
produced nonperturbatively via parametric resonance. It
is very efficient in the regime λϕh ≳ λϕ in the (locally)
quartic inflaton potential [3], which we will assume in our
example. To account for backreaction effects and rescatter-
ing, one normally resorts to lattice simulations. A typical
example is shown in Fig. 1 (left panel), which displays the
energy fraction as a function of time. One observes that, for
this parameter choice, about 20% of the inflaton energy
gets transferred to the Higgs field by the end of preheating.
The process is impeded by the Higgs self-interaction which
creates a large effective mass term λhhh2i, where hh2i is the
Higgs field variance [19]. Towards the end of the simu-
lation, the evolution becomes very slow and proper
thermalization cannot be observed. At this stage, the
coherent inflaton background is essentially absent and
the system consists of the Higgs and inflaton quanta with
some nonthermal momentum distribution.
Motivated by the simulations of preheating, we can make

a number of simplifying assumptions in the calculation of
the reaction rate. Since the initial number density of ϕ is

large, let us approximate nϕ by the corresponding thermal
number density at temperature T. On the other hand, the
Higgs number density is relatively low initially, so one may
neglect it. Then the relevant reaction rate of ϕϕ → hihi is
analogous to that for freeze-in production in the
relativistic regime [12]. If the Higgs sector populates
faster than the Hubble expansion, one expects thermal-
ization. Using the full Bose-Einstein distribution for the
inflaton quanta, one finds [12]

Γðϕϕ→ hihiÞ

¼ 4×
1

2!2!

λ2ϕhT

16π5

Z
∞

mϕ

dEE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

h

q

×
Z

∞

0

dη
sinhη

e
2E
T coshη − 1

ln
sinh

Ecoshηþ
ffiffiffiffiffiffiffiffiffiffiffi
E2−m2

ϕ

p
sinhη

2T

sinh
Ecoshη−

ffiffiffiffiffiffiffiffiffiffiffi
E2−m2

ϕ

p
sinhη

2T

; ð24Þ

where E is half the center-of-mass energy. To be as explicit
as possible, we have factored out the symmetry factor
1=2!2! stemming from 2 identical particles in the initial and
final states as well as a factor of 4 representing 4 Higgs
d.o.f. in the symmetric phase. At high temperature, the
mass parameters in this expression should generally include
thermal corrections,

m2
h → m2

hjv¼0 þ
�
3

16
g2 þ 1

16
g02 þ 1

4
y2t þ

1

2
λh

�
T2; ð25Þ

m2
ϕ → m2

ϕ þ
�
1

4
λϕ þ

1

6
λϕh

�
T2; ð26Þ

FIG. 1. Left: fraction of the energy density carried by the inflaton and 4 Higgs d.o.f. as a function of conformal time z. The simulation
is performed with LATTICEEASY [20] in a quartic potential 1

4
λϕϕ

4 and z is defined by dz ¼ ffiffiffiffiffi
λϕ

p
ϕ0dt=aðtÞ. Right: inflaton-Higgs

thermalization constraint.
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where v ¼ hhi is the Higgs VEV and g, g0, yt are the
electroweak gauge couplings and the top quark Yukawa
coupling, respectively. We neglect complications associ-
ated with the Higgs mass variation at the electroweak
crossover, which makes an insignificant impact on the
results.
To find the lower bound on the coupling required by

thermalization, we use the following procedure. For fixed
couplings and zero-temperature masses, we maximize the
ratio

2Γðϕϕ → hihiÞ
3nϕH

→ max ð27Þ

with respect to T. If the ratio exceeds one, thermalization is
said to occur or, more precisely, the necessary condition for
thermalization has been fulfilled. In the above expression,
nϕ is computed with the full Bose-Einstein distribution and
H is given by

H ¼
ffiffiffiffiffiffiffiffiffi
π2g�
90

r
T2

MPl
; g� ¼ 1; ð28Þ

which assumes that the energy density is dominated by a
thermal bath of ϕ.
Our result is presented in Fig. 1, right panel. We find that,

for largemϕ, the above ratio is maximized at T ∼mϕ, while
for mϕ ≪ mh, it reaches its maximum at T ∼mh. The
thermal mass corrections do not play a significant role in
this case. These results are largely consistent with those
obtained by a somewhat different method in [21], taking
into account the difference in the active d.o.f. g�. In
particular, at mϕ ≫ mh, thermalization requires

λϕh ≳ 4 × 10−8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mϕ=GeV

q
: ð29Þ

It should be noted that the derived bound is subject to
some uncertainty stemming from a nonthermal momentum
distribution for the inflaton field, neglected Bose-Einstein
enhancement for the Higgses as well as a variation of g�
during thermalization. While these factors introduce Oð1Þ
uncertainty in the bound, they are not expected to affect the
results significantly.

B. ϕϕ → h

At temperatures below the electroweak crossover critical
temperature Tc, the Higgs field develops a nonzero VEV.
This generates the interaction term v

2
λϕhhϕ2, which allows

for the fusion reaction ϕϕ → h if mϕ < mh=2. The corre-
sponding reaction rate per unit volume is [21]

Γϕϕ→h ¼
λ2ϕhv

2mhT

32π3
θðmh − 2mϕÞ

Z
∞

0

dη
sinh η

e
mh cosh η

T − 1

× ln
sinh

mh cosh ηþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

h−4m
2
ϕ

p
sinh η

4T

sinh
mh cosh η−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

h−4m
2
ϕ

p
sinh η

4T

: ð30Þ

This expression is valid for a single Higgs d.o.f. We neglect
the gauge boson contribution at low energies.
The fusion reaction is efficient in a relatively narrow

temperature range:T has to be below the critical temperature,
but not much below the Higgs mass. On the other hand, its
rate is enhanced by the phase space factor compared to the
2 → 2 reaction rate. Since ϕϕ → h is operative at T ≲ Tc,
one needs to account for the Higgs mass and VEV variation
around the critical temperature. Motivated by the lattice
study [22],we takeTc ≃ 162 GeVandparametrize theHiggs
VEV by vðTÞ ¼ αT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
162 GeV − T

p
for 96 GeV < T <

162 GeV and vðTÞ ¼ 246 GeV for T < 96 GeV, where α
is a fitted constant. Similarly, we parametrize the Higgs
mass as mhðTÞ ¼ βTð175 GeV − TÞ for 96 GeV < T <
162 GeV and mhðTÞ ¼ 125 GeV for T < 96 GeV, where
β is another fitted constant. We then maximize the ratio

2Γðϕϕ → hÞ
3nϕH

→ max ð31Þ

with respect to T in the allowed range and derive the lower
bound on λϕh, requiring that this ratio be greater than one.
The resulting thermalization bound is displayed in Fig. 1

(right panel) at mϕ < mh=2. We observe that, in this mass
range, the fusion channel gives the dominant contribution
to the Higgs production rate.

V. INFLATON FREEZE-OUT

One of the challenges for cosmological model building is
to suppress the relic density of dark matter. Within the
WIMP paradigm, this is achieved via efficient DM anni-
hilation. In this work, we study a different possibility: a
thermal inflaton itself undergoes annihilation in the SM
thermal bath. This reduces its energy density contribution
and if it is the sole source of dark matter, the relic density of
the latter will automatically be suppressed. In our scenario,
the inflaton decays into DM after freeze-out, so its decay
width has to be sufficiently small.
Consider inflaton freeze-out in the nonrelativistic regime.

In this case, one can use theMaxwell-Boltzmann distribution
function and the reaction rates take a simple form.Neglecting
the inflaton contribution to the total energy density at this
stage, we have

_nϕþ3Hnϕ¼2hσðϕϕ→SMÞviðn2ϕeq−n2ϕÞ−Γϕðnϕ−nϕeqÞ;
_nsþ3Hns¼2Γðϕ→ ssÞnϕ; ð32Þ
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where Γϕ is the total inflaton decay width, σðϕϕ → SMÞ is
the inflaton annihilation cross section, and nϕeq is the
equilibrium number density. In our convention, hσðϕϕ →
SMÞvi includes a symmetry factor of 1=2 to account for
identical particles in the initial state, so it appearswith a factor
of 2 in the Boltzmann equation due to a particle number
change by 2 units.
An example of the solution in terms of

Yi ¼
ni
sSM

; ð33Þ

where sSM is the SM entropy density, is shown in Fig. 2.
Freeze-out occurs when nϕ starts deviating from its
equilibrium value, i.e., around mϕ=T ∼ 10 for this param-
eter choice, leading subsequently to nϕ ≫ nϕeq. After
freeze-out, Yϕ remains approximately constant until the
Hubble rate becomes comparable to Γϕ. Indeed, the
annihilation term in the Boltzmann equation can be
neglected since it scales as a−6 with the scale factor, while
the decay term and the Hubble term scale as a−3 and a−5,
respectively. At some point, Γϕ ∼H and the inflaton decays
quickly producing pairs of DM particles. The resulting DM
relic density fits observations for a wide range of the input
parameters, while the DM mass is restricted to the range
between mϕ=2 and about 10 keV as required by the
structure formation constraints. Its couplings to itself and
other fields are assumed to be feeble, such that it does not
thermalize nor entail observable signatures.
The relic density can be determined as follows. First, the

inflaton annihilation rate is computed precisely with
micrOMEGAs. At large masses, it is dominated by ϕϕ →
hihi such that hσðϕϕ → hihiÞvi ¼ λ2ϕh=ð32πm2

ϕÞ. For
lower inflaton masses, other channels must also be taken
into account. The calculation is similar to that for the
“singlet scalar dark matter” [1,23,24], except the relic
density is different.

The frozen-out inflaton quanta decay subsequently into
dark matter, at least in part. The decay rate into the DM
states is given by

Γðϕ → ssÞ ¼ σ2ϕs
32πmϕ

; ð34Þ

assuming mϕ ≫ ms. If the inflaton is sufficiently heavy, it
can also decay directly into the Higgs pairs, Γðϕ → hihiÞ ¼
σ2ϕh
8πmϕ

, where 4 Higgs d.o.f. have been included. Otherwise, it

decays into lighter SM states at one loop. Depending on
σϕh=σϕs, this channel may be significant or suppressed.
For our purposes, the results are conveniently parametrized
in terms of the branching ratio BRðϕ → ssÞ ¼
Γðϕ → ssÞ=ðΓðϕ → ssÞ þ Γðϕ → SMÞÞ. The inflaton
energy and number densities after freeze-out are small
compared to those of the SM states, so the entropy and
energy injection resulting from its decay can be neglected.
Since the SM sector entropy is conserved,

Ys ¼ YFO
ϕ × 2BRðϕ → ssÞ; ð35Þ

where YFO
ϕ is the inflaton abundance after freeze-out.

Imposing the observational constraint on Ys and para-
metrizing YFO

ϕ in terms of R as

Ys ¼ 4.4 × 10−10
GeV
ms

;

YFO
ϕ ¼ 4.4 × 10−10

GeV
mϕ

× R; ð36Þ

we have

mϕ

R
¼ 2msBRðϕ → ssÞ: ð37Þ

If R ¼ 1, the energy density of the inflaton after freeze-out
would match that required of DM, so if it were stable, it
would be a good DM candidate. Since the branching ratio is
bounded from above by 1 and mϕ > 2ms as required by
kinematics,

R ≥ 1: ð38Þ

For R > 1, the correct DM density imposes a constraint on
a product of ms and BRðϕ → ssÞ, which leads to a one-
parameter family of solutions.
The results are conveniently presented in terms of λϕh,

mϕ, and R. Once these are fixed, the dark matter mass and
BRðϕ → ssÞ are determined by Eq. (37). Figure 3 displays
our numerical results produced with the help of micrOMEGAs

[25]. The curves with fixed R exhibit nonrelativistic
inflaton freeze-out, leading to the correct DM relic density
via (37). The large mϕ behavior can be readily understood:
the dominant annihilation channel is ϕϕ → hihi and

FIG. 2. Example of the inflaton and DM abundance evolution.
Here BRðϕ → ssÞ ¼ 1.
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λϕh ≃ 3 × 10−4
mϕ=GeVffiffiffiffi

R
p ; ð39Þ

where the logarithmic dependence on λϕh has been
neglected. At low masses, other channels become impor-
tant, while at mϕ ≃mh=2 the annihilation becomes reso-
nantly enhanced.
Close to the resonant annihilation region, kinetic equi-

librium may be lost before inflaton freeze-out, which leads
to complications in precision calculations of the relic
density [26]. This is because the elastic scattering rate
scales as nϕnSMhσelvi, while the annihilation rate is
proportional to n2ϕhσannvi. Away from the resonance, the
elastic (σel) and annihilation (σann) cross sections are not
vastly different, while the annihilation rate suffers from an
additional suppression factor nϕ. Thus, kinetic equilibrium
is normally maintained at freeze-out, apart from the
resonant annihilation region where σann ≫ σel. The above
complication, however, does not make a tangible impact at
the level of our precision.

A. Constraints

The parameter space is subject to the following con-
straints. First of all, the Higgs-inflaton system does not
reach thermal equilibrium unless the coupling is above the
bound shown in Fig. 1 (right panel).
Further, our framework includes inflation and as such

must be perturbative from low energies to at least the
Hubble scale H. The couplings at high energies are found
via renormalization group (RG) equations [4]:

16π2
dλh
dt

¼ 24λ2h − 6y4t þ
3

8
ð2g4 þ ðg2 þ g02Þ2Þ

þ ð12y2t − 9g2 − 3g02Þλh þ
1

2
λ2ϕh;

16π2
dλϕh
dt

¼ 4λ2ϕh þ 12λhλϕh −
3

2
ð3g2 þ g02Þλϕh þ 6y2t λϕh

þ 6λϕλϕh;

16π2
dλϕ
dt

¼ 2λ2ϕh þ 18λ2ϕ: ð40Þ

Here t ¼ ln μ with μ being the RG scale; g, g0, yt are the
electroweak gauge couplings and the top quark Yukawa
coupling, respectively, which run according to the SM RG
equations. Requiring that all the couplings remain pertur-
bative, λi < 4π, between μ ∼mϕ, where inflaton annihila-
tion occurs, and H ∼ 1014 GeV, we find that the values
λϕhðmϕÞ≳ 1 are excluded as shown in Fig. 3. [We
conservatively assume λϕðmϕÞ ∼ 0.]
Another constraint is imposed by the Higgs invisible

decays. If the inflaton is light, h → ϕϕ is kinematically
allowed and

Γh→ϕϕ ¼ λ2ϕhv
2

32πmh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
2mϕ

mh

�
2

s
θðmh − 2mϕÞ: ð41Þ

Requiring the invisible decay branching ratio to be below
0.1 (see e.g., [27]) rules out significant λϕh > 10−2 for a
light inflaton (Fig. 3, purple region).
We note that our nonrelativistic inflaton freeze-out

approximation breaks down at very large R ∼ 108 since
mϕ=TFO decreases steadily with growing R. Although this
does not rule out the corresponding parameter space, a
more careful treatment with the full Bose-Einstein distri-
bution function would be necessary in this case.
Finally, there are constraints on the lifetime of the

inflaton. Late inflaton decay into the SM states can
spoil the standard nucleosynthesis. Therefore, if the branch-
ing ratio BRðϕ → SMÞ is non-negligible, one would
require

τϕ < 0.1 sec : ð42Þ

Parametrizing the total width in terms of BRðϕ → ssÞ and
σϕs, we thus find

σϕs > 3 × 10−11
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BRðϕ → ssÞmϕ GeV

q
: ð43Þ

FIG. 3. λϕh vs mϕ reproducing the correct DM relic density for
fixed R ¼ 1; 102; 104; 106. The shaded areas are excluded by
perturbativity at the inflation scale (H ¼ 1014 GeV), invisible
Higgs decay, and thermalization through ϕϕ → hihi;ϕϕ → h.
The dark matter mass is determined by Eq. (37).
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In the limit σϕh → 0, this constraint is lifted. For a 100 GeV
inflaton, the typical lower bound on σϕs is in the sub-eV
region.
There is an additional constraint on σϕs stemming from

structure formation considerations. At the time of structure
formation, which can be taken to be of order Oð1Þ keV,
dark matter should be nonrelativistic. If the inflaton decays
at temperature Tdec, the s-quanta become nonrelativistic at
the temperature ∼Tdec ×ms=mϕ. Requiring this temper-
ature to be greater than 1 keVand eliminatingms in favor of
R results in the constraint

σϕs > 10−13 × BRðϕ → ssÞ3=2R ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mϕ GeV

p
: ð44Þ

For R × BRðϕ → ssÞ > 102 this bound is stronger than
(43), while at BRðϕ → ssÞ ≪ 1 it becomes weak.
The upper bound on σϕs is imposed by requiring that the

inflaton decay occurs after freeze-out. Comparing the
corresponding Hubble rates and ignoring a logarithmic
λϕh dependence, one finds

σϕs ≲Oð1Þ ×mϕ

�
mϕBRðϕ → ssÞ

MPl

�
1=2

: ð45Þ

Thus, the trilinear coupling is suppressed by the factor
ðmϕ=MPlÞ1=2 relative to the inflaton mass. For σϕh of the
same order or smaller, the consequent Higgs-inflaton
mixing [28] is unobservably small. We note that this bound
is easily compatible with (44) at BRðϕ → ssÞ ≪ 1.
We note that the coupling pattern discussed in this work

is technically natural, i.e., stable under radiative correc-
tions. The trilinear couplings σϕh and σϕs break the ϕ →
−ϕ symmetry and their beta functions are proportional to
the tree-level values of these couplings (see e.g., [4]), hence
they can be chosen small. The beta functions for λϕh and λϕs
are also proportional to the couplings themselves. Finally,
the Higgs portal coupling s2h2 is generated by integrating
out the inflaton; however, the result is suppressed by
σϕhσϕs=m2

ϕ, which makes it completely negligible in view
of (45).
In this work, we are assuming that other sources of dark

matter production are subleading. In particular, DM can be
produced during inflation via scalar fluctuations, yet its
abundance can be reduced by introducing a small self-
coupling [29]. Dim-6 Planck suppressed operators such as
ϕ4s2=M2

Pl can be very efficient during preheating [30];
however, their Wilson coefficients could only be evaluated
within a UV complete theory of quantum gravity. In our
phenomenological approach, we neglect this contribution,
which introduces uncertainty in our calculation.
We conclude that inflaton freeze-out is an efficient

mechanism for suppressing the DM relic density that

allows for a vast range of the inflaton and DM masses.
In the extreme case, the inflaton itself could be identified
with dark matter, yet the direct detection constraint is then
very strict and forces mϕ into a very narrow range close to
mh=2 [7].2 In our scenario, however, the direct detection
bound is irrelevant3 and the inflaton energy density can
exceed that of dark matter by orders of magnitude, which
widens significantly available parameter space.
It is interesting that the inflaton is allowed to be light and

have a substantial coupling to the Higgs boson, in which
case some of the allowed parameter space can be probed via
invisible Higgs decay at the LHC [32]. Indeed, its high
luminosity phase aims at detecting the invisible decay with
a branching ratio above 2.5% [33], which is a twofold
improvement in the coupling sensitivity compared to that of
Fig. 3. Heavier inflaton pairs could be produced, for
example, via vector boson fusion VV → h → ϕϕ [32].
However, the corresponding cross section is suppressed
either by small couplings or large masses, and the process
appears to be beyond the reach of the LHC.

VI. CONCLUSION

We have studied the possibility that, after inflation, the
inflaton reaches thermal equilibrium with the SM thermal
bath and subsequently freezes out. After freeze-out, it
decays producing nonthermal dark matter. This mechanism
suppresses the DM relic density without requiring a
significant coupling between the Standard Model and dark
matter, thereby evading strong direct detection constraints.
On the other hand, the Higgs coupling to the inflaton can be
substantial and lead to observable signatures at the LHC.
In this paper, we have focused on the Higgs portal

framework which provides us with a minimal and viable
setting to implement the inflaton freeze-out idea. If infla-
tion is driven by a nonminimal scalar-curvature coupling,
the loop corrections induced by the Higgs-inflaton coupling
do not adversely affect the inflaton potential, making the
picture radiatively stable. We expect that this approach
could also be implemented in more general settings.
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2This conclusion does not apply to nonminimal inflaton DM
models [31].

3The indirect DM detection signal is also highly suppressed:
DM annihilation proceeds via the inflaton such that the amplitude
contains the factor σϕhσϕs=m2

ϕ, leading to the cross section
suppressed by m2

ϕ=M
2
Pl in view of (45). This makes dark matter

virtually undetectable.
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