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Observations of the redshifted 21-cm signal emitted by neutral hydrogen represent a promising probe of
large-scale structure in the universe. However, the cosmological 21-cm signal is challenging to observe due
to astrophysical foregrounds which are several orders of magnitude brighter. Traditional linear foreground
removal methods can effectively remove foregrounds for a known telescope response but are sensitive to
telescope systematic errors such as antenna gain and delay errors, leaving foreground contamination in the
recovered signal. Nonlinear methods such as principal component analysis, on the other hand, have been
used successfully for foreground removal, but they lead to signal loss that is difficult to characterize and
requires careful analysis. In this paper, we present a systematics-robust foreground removal technique
which combines both linear and nonlinear methods. We first obtain signal and foreground estimates using a
linear filter. Under the assumption that the signal estimate is contaminated by foreground residuals induced
by parametrizable systematic effects, we infer the systematics-induced contamination by cross-correlating
the initial signal and foreground estimates. Correcting for the inferred error, we are able to subtract
foreground contamination from the linearly filtered signal up to the first order in the amplitude of the
telescope systematics. In simulations of an interferometric 21-cm survey, our algorithm removes
foreground leakage induced by complex gain errors by 1 to 2 orders of magnitude in the power spectrum.
Our technique thus eases the requirements on telescope characterization for modern and next-generation
21-cm cosmology experiments.

DOI: 10.1103/PhysRevD.106.043534

I. INTRODUCTION

The 21-cm line in neutral hydrogen (HI) has emerged as
a new and highly promising tool in cosmology. By
observing the cumulative hydrogen signal from many
unresolved sources, hydrogen intensity mapping [1,2] uses
HI as a tracer of matter to survey large volumes of the
universe rapidly. In particular, this technique can map large-
scale structure in the intermediate/low redshift universe
(z < 4) [1], constrain ionization fraction and reionization
models during the epoch of reionization (z ∼ 6–10) [3], and
potentially observe matter distribution throughout much of
the dark ages (z > 30) [4]. The promise of this technique is
reflected by the numerous 21-cm cosmology experiments
which are either collecting data (GMRT [5], HERA [6],
LOFAR [7], MWA [8], CHIME [9]) or being planned
(HIRAX [10], CHORD [11], PUMA [12], SKA [13]).

However, detecting the 21-cm signal is difficult due to
astrophysical foregrounds which are ∼3–5 orders of mag-
nitude brighter, primarily consisting of galactic synchrotron
emission and extragalactic point sources [14]. Using the
smooth spectral shape of these foregrounds, many filters
have been proposed to separate the 21-cm signal from
foregrounds. These filters can be categorized either as
linear or nonlinear methods. Linear filters, such as those
based on the Karhunen-Loève (KL) eigenmode projection
[15] or the delay filter [16], can remove foregrounds so long
as the instrument response is accurately known or well
behaved, but they are highly sensitive to telescope sys-
tematic errors (e.g., calibration errors), leaving foreground
residuals that dominate the signal [14]. On the other hand,
nonlinear filtering methods such as principal component
analysis (PCA) have historically been more successful in
single-dish telescope experiments to detect the 21-cm
signal in cross-correlation with galaxy surveys [17–20].
However, nonlinear filters are difficult to characterize in
general and may result in oversubtraction and signal loss.*hcwang96@mit.edu
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The recent detection of the 21-cm large-scale structure
signal by CHIME used a foreground filter that is linear
apart from a final flagging stage; however, an aggressive
delay filter that eliminated the largest spatial scales was
required [21].
In this paper, we introduce a hybrid foreground filtering

technique, where the data are initially processed by a linear
filter to obtain initial signal and foreground estimates. We
then cross-correlate the foreground and signal channels in
order to draw out and isolate systematics-induced residual
foreground contamination in the latter. This second step is
nonlinear. However, in contrast to other nonlinear methods,
it allows for a perturbative expansion (in powers of the
magnitude of the systematic errors and the signal-to-fore-
ground ratio) to control the nonlinearity. Thus, signal loss
through the procedure can be characterized analytically.
Critical to this procedure is the choice of how to cross-

correlate the signal and foreground estimates; i.e., through
what transformations—or in which data subspaces—
should this cross-correlation be performed? We address
this question by framing the correlation as a quadratic
estimator for (small) parameters describing the systematic
errors. Examples of such parameters are errors in the
complex gains of the signal chains of an interferometric
array. This interferometric calibration problem has been a
central focus of the 21-cm literature, and is the case on
which we focus in this work. In simulations of a small,
compact, square antenna array, we show that our hybrid
foreground filtering algorithm can suppress calibration-
error-induced foreground residuals in the power spectrum
by 2 orders of magnitude compared to the linear filter
alone. The algorithm thus dramatically eases the require-
ments on telescope calibration for 21-cm surveys. We also
discuss the extension of this technique to other types of
systematics commonly observed in 21-cm experiments.
We first illustrate the basic idea of the hybrid foreground

filtering algorithm using a toy example in Sec. II. We
provide a general formalism of the technique in Sec. III. In
Sec. IV, we give a summary of the simulation pipeline that
we use to test our algorithm. In Sec. V, we apply the hybrid
technique to simulated data in three different scenarios,
each with systematics of increasing complexity, and show
the results. Finally, in Sec. VI, we discuss the current
limitations of our hybrid algorithm and its extension to
other types of systematic errors commonly observed in
21-cm experiments. We also compare this hybrid technique
with other gain calibration and foreground removal tech-
niques in literature. We present the conclusions in Sec. VII.

II. TOY EXAMPLE

We introduce the technique with a simple yet illustrative
example. Suppose we have a dataset d which represents a
sky map with N frequencies and M pixels per frequency,
with N;M ≫ 1. The sky map includes both the 21-cm
signal and foregrounds, with s and f representing the

vectorized version of each component. We expect the
foregrounds to be spectrally smooth. In this example, we
will assume that f is independent of frequency. The model
for the data is then

dνp ¼ sνp þ fp; ð1Þ

where fp ¼ ðf ÞðνpÞ, reflecting the assumption that fore-
grounds are frequency independent. The indices ν and p
represent the frequency channel and pixel number, respec-
tively, and form a single compound index for the vectors d,
s, and f . Suppose that hf i; hsi ¼ 0, and that signal and
foregrounds are uncorrelated with covariances

SðνpÞðν0p0Þ ¼ hsðνpÞsðν0p0Þi ¼ δνν0δpp0σ2s ;

FðνpÞðν0p0Þ ¼ hfpfp0 i ¼ δpp0σ2f;

with σ2f ≫ σ2s : ð2Þ

Equations. (1) and (2) represent our simple model for
foregrounds that are completely correlated in frequency and
the cosmological signal that is uncorrelated in frequency
and position. We want to separate s and f given the data d.
Since the foregrounds are independent of frequency, we can
estimate f by averaging the data over frequency. Namely,
we have

f̂p ¼ 1

N

X
ν

dνp; ð3Þ

where f̂p represents the estimated foreground f̂ at pixel p.

(Note that the dimensions of f̂ and f are different since f̂ is
obtained after averaging over the frequency axis.) We can
represent the operation of frequency averaging by a matrix
A whose elements are

AðpÞðν0p0Þ ¼
1

N
δpp0 : ð4Þ

Equation (3) can now be written as

f̂ ¼ Ad → f̂p ¼ fp þ
1

N

X
ν0
sν0p;

hf̂pf̂p0 i ¼
�
σ2f þ

σ2s
N

�
δpp0 : ð5Þ

With foregrounds estimated, we can obtain the estimated
signal ŝ simply by subtracting the estimated foregrounds
from the data. This operation can be represented by a
matrixK ¼ I −A0, whereA0 is the same filter asA, except
that it maintains the original dimensions of the data.
Namely,
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A0
ðνpÞðν0p0Þ ¼

1

N
δpp0 : ð6Þ

Then, the matrix K is

KðνpÞðν0p0Þ ¼ δpp0

�
δνν0 −

1

N

�
: ð7Þ

The signal estimate ŝ is obtained by

ŝ ¼ Kd → ŝνp ¼ sνp −
1

N

X
ν0
sν0p: ð8Þ

Note that the signal estimate ŝ is a linear combination of the
components of the true signal s only, so the foreground
filter K effectively separates signal from foregrounds.
Let us now examine what happens to signal and fore-

ground estimates when we introduce bandpass (indepen-
dent of pixel) perturbations to the data. In this case, the data
model is

dνp ¼ ðsνp þ fpÞð1þ gνÞ; gν ≪ 1: ð9Þ

Note that systematics typically are not strictly multiplica-
tive in the image domain, but this will be accounted for in
later sections where per-antenna gains will be considered in
the visibility domain.
Using A and K from Eqs. (5) and (8), the signal and

foreground estimates now become

f̂p ¼ fp

�
1þ 1

N

X
ν0
gν0

�
þ 1

N

X
ν0
sν0pð1þ gν0 Þ;

ŝνp ¼ sνpð1þ gνÞ −
1

N

X
ν0
sν0pð1þ gν0 Þ

þ fp

�
gν −

1

N

X
ν0
gν0

�
: ð10Þ

Equations (10) show how bandpass perturbations cause
foregrounds leaking into the initially signal dominated
subspace (the last term in the equation for ŝνp). The power
in the estimated signal is now1

hŝ2νpi ¼ σ2s

��
1 −

2

N

�
ð1þ gνÞ2 þ

1

N2

X
ν0
ð1þ gν0 Þ2

�

þ σ2f

�
gν −

1

N

X
ν0
gν0

�
2

: ð11Þ

Equation (11) shows that perturbations introduce a relative
bias in the signal power estimate by a term of order

ðσgσf=σsÞ2, where σg represents the scale of the gain
perturbations. This factor is typically much greater than
one, and as such, our signal estimate is dominated by
systematic-error-induced residual foregrounds. This is the
essence of the problem we aim to address in this paper.
From Eq. (10) and the assumption that foregrounds are

much brighter than the signal, we expect that f̂p goes
roughly as ∼fp and that ŝνp goes roughly as ∼gνfp. Thus,
one way to estimate the perturbations gν is by cross-
correlating the signal and foreground estimates. In particu-
lar, let us define the estimates ŷν,

ŷν ¼
P

pf̂pŝνpP
pf̂

2
p

: ð12Þ

If we plug the expressions for f̂p and ŝνp from Eq. (10)
into Eq. (12), take the average, and use Eq. (2) to simplify,
we find

hŷνi ¼
�
gν −

1

N

X
ν0
gν0

��
1þ 1

N

X
ν0

gν0
�

−1
þO

�
σ2sg
Nσ2f

�

¼
X
ν0
Wνν0gν0 þO

�
σ2g
N

�
; ð13Þ

where the window matrix W is defined as

Wνν0 ¼ δνν0 −
1

N
: ð14Þ

Rather than inverting W to obtain a first-order estimate
for gν, we note that, for this particular example, the
combination hŷνif̂p gives the foreground term that we
need to remove from ŝνp in Eq. (10) (this will not be the
case in general). Thus, we define the “cleaned” signal as

s̃νp ¼ ŝνp − ŷνf̂p: ð15Þ

With the expressions for f̂p, ŝνp, and ŷν given in
Eqs. (10) and (12), it is shown in Appendix A that the
cleaned signal s̃νp has zero mean and variance

hs̃2νpi ¼ σ2s

�
1þO

�
σg;

1

M

��
; ð16Þ

where Oðσg; 1=MÞ means that the next terms in the
expansion are of order σg and 1=M. On average, the
cleaned signal is free of foreground bias to all orders.
Thus, in the case of the toy example, the foreground
residual subtraction is exact. In general, the foreground
residual subtraction may not be complete and can leave
behind higher order foreground terms in the cleaned power
spectrum.

1Unless stated otherwise, h·i denotes ensemble averaging over
signal and foreground realizations while keeping the perturba-
tions fixed.
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III. FORMALISM

In Sec. II, we have shown that if linear filters A and K
can produce foreground and signal estimates, then the
cross-correlation in Eq. (12) can estimate the perturbations.
In fact, this procedure can be generalized and framed as a
quadratic estimator.
To see this explicitly, we can define a matrix Eν for each

frequency ν as

ðEνÞðp0Þðν00p00Þ ¼ δp0p00δνν00 : ð17Þ

Equation (12) can now be written as

ŷν ¼
1

η
f̂ †Eνŝ − bν; ð18Þ

where bν ¼ 0, and

η ¼
X
p

f̂2p ¼ f̂ † f̂ ð19Þ

is a normalization factor. Equation (18) is reminiscent of
the optimal quadratic estimator formalism developed in
[22]. In this formalism, Eν can be an arbitrary symmetric
matrix and bν is chosen accordingly to make the estimator
unbiased. There are two important differences, however.
The first is the appearance of the normalization factor η
which is computed from filtered data. The second differ-
ence is that in our case we are not correlating data
with itself. Instead, we are correlating two different vectors,
or more precisely, two linear transformations of the
original dataset. Another way to see this difference
with the traditional quadratic estimator is that if we rewrite
ŷν as

ŷν ¼
1

η
d†A†EνKd − bν; ð20Þ

then we see that A†EνK is not necessarily symmetric.
To develop the toy example into a more general

formalism (where we allow frequency-dependent fore-
grounds and any type of parametrizable systematic errors),
we write the perturbed data as

d ¼ ðIþGÞðsþ f Þ; ð21Þ

where I is the identity matrix andG is a perturbation matrix
that assigns errors to the data. Given a set of perturbations
fgig, we can parametrize G as

G ¼
X
i

giΓi; ð22Þ

where Γi are base matrices that represent how different
perturbations act on data. For instance, in the case of the toy

example, we can add bandpass error to the data by defining
G as

G ¼
X
ν

gνΓν; ð23Þ

where the matrix Γν is defined as

ðΓνÞðν0p0Þðν00p00Þ ¼ Iðν0p0Þðν00p00Þδνν0 ¼ δν0ν00δp0p00δνν0 : ð24Þ

In this case, the base matrix Γν corresponding to the νth
frequency is the identity matrix with diagonal elements
corresponding to other frequencies set to zero. In other
words, Γν picks out all the data points that are corrupted by
the bandpass gain gν.
Note that the data model in Eq. (21) should also include a

noise term n reflecting the fact that our data will also
contain instrumental noise. For simplicity, we omit the
noise term in this section since the statistics of n are
expected to be similar to those of s, and thus the foreground
filter will act on both components in the same way.
However, noise is included in the simulations presented
in Secs. IV and V.
Applying a linear foreground filter K to the data, we

obtain the estimated signal

ŝ ¼ Kd ¼ KðIþGÞðsþ f Þ
¼ KðIþGÞsþKGf ≈KGf ; ð25Þ

assuming the foreground filter works well in absence of
systematics, i.e., Kf ≪ s. Note that Eq. (25) is dominated
by the foreground residual term KGf . On the other hand,
when we apply the signal filter A to data, we get the
estimated foreground

f̂ ¼ Ad ¼ AðIþGÞðsþ f Þ
≈ f ; ð26Þ

assuming f ≫ s and the elements of the perturbation matrix
G are small.
Since ŝ is dominated by terms at the order of Gf , and f̂

goes roughly as f , we can cross-correlate the two vectors to
estimate the perturbations, namely elements of the matrix
G. For each perturbation gi, we can define its estimate as

ŷi ¼
f̂ †Ei ŝ

f̂ †Di f̂
− bi; ð27Þ

where Ei is a quadratic estimator and Di is the normali-
zation operator which controls how normalization is done
[note that Di is the identity matrix in Eq. (19)]. We will
comment on the choice of Ei and Di in the last two
paragraphs of this section.
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To first order in the amplitude of the perturbations, we
can express the ensemble average of the perturbation
estimate ŷi as a linear combination of the true perturbations:

hŷii ¼
X
i0
Wii0gi0 − bi: ð28Þ

To determine the window matrix W, it is useful to first
compute the variance of the data d and the covariance
between the estimated signal ŝ and estimated foreground f̂ .
With d defined in Eq. (21), we can compute

Cdd ¼ hdd†i
≈ Sþ FþGðSþ FÞ þ ðSþ FÞG†

¼ Sþ Fþ
X
i

½giΓiðSþ FÞ þ g�i ðSþ FÞΓ†
i �: ð29Þ

Note that we have dropped second order terms in pertur-
bations on the second line of Eq. (29). The covariance
between ŝ and f̂ is now

Csf ≡ hŝf̂ †i ¼ KCddA† ≈
X
i

giΦi; ð30Þ

where

Φi ¼
∂Cŝ f̂

∂gi
≈KΓiFA†: ð31Þ

To compute the window matrix, we take the ensemble
average of Eq. (27) while keeping perturbations fixed and
assume bi ¼ 0 (we can check this assumption by examin-
ing whether the perturbation estimate is biased at the end of
the calculation). We obtain

hŷii ¼
�
f̂ †Eiŝ

f̂ †Di f̂

�
: ð32Þ

We can approximate the right-hand side of Eq. (32) by the
ratio between the expectation of the numerator and that of
the denominator. With details shown in Appendix B, we
find that Eq. (32) to the first order in amplitude of the
perturbations gives

hŷii ¼
X
i0

TrðEiΦi0 Þ
Tr½A†DiAðSþ FÞ� gi0 þ

Tr½EiKðSþ FÞA†�
Tr½A†DiAðSþ FÞ� :

ð33Þ

Comparing Eq. (33) with Eq. (28), we see that

Wii0 ¼
TrðEiΦi0 Þ

Tr½A†DiAðSþ FÞ�

≈
TrðEiKΓi0FA†Þ
Tr½A†DiAF� ; ð34Þ

where we have simplified the expression on the second line
using Eq. (31) and AS ≪ AF. In addition, to make the
perturbation estimate unbiased, we need to set bi in Eq. (28)
to be

bi ¼
Tr½EiKðSþ FÞA†�
Tr½A†DiAðSþ FÞ� : ð35Þ

However, given that KF and SA† are approximately 0, bi
can be neglected (and bi is exactly 0 if we chooseK and A
to be orthogonal projections). For this reason, we will set
bi ¼ 0 in the rest of this paper.
To recover perturbations gi from ŷi, we need to com-

pensate for the windowW. In principle, this can be done by
inverting the window matrix, but W is ill-conditioned
because the linear filters K and A have removed some
modes from the data. We can nonetheless partially recover
perturbations from the remaining modes with the pseudo-
inverse of the window matrix,Wþ. Denoting the recovered
perturbations by ĝi, we have

ĝi ¼
X
i0
Wþ

ii0 ŷi0 : ð36Þ

Although we cannot recover the perturbations perfectly, we
expect that the missing modes in perturbations are not
needed since those are modes already removed by the
foreground filter. We can then assemble the recovered
perturbation matrix Ĝ in the same way that G is con-
structed:

Ĝ ¼
X
i

ĝiΓi: ð37Þ

Equation (25) shows the foreground contamination term
in the estimated signal is KG f . We can now reconstruct
this term using the estimates and subtract it from the
estimated signal to obtain the cleaned signal. Since Ĝ
approximates true perturbations up to the first order, when
we apply the filterK to the recovered perturbations, we have

KĜ ¼ KGþOðG2Þ: ð38Þ

We also already have a foreground estimate f̂ . Equation (26)
shows that f̂ ≈ f þOðGf Þ. Therefore, we can reconstruct
the contamination term up to the first order in amplitude of
perturbations using K, Ĝ, and f̂ :

KĜ f̂ ¼ KG f þOðG2f Þ: ð39Þ

Now we subtract this term from ŝ to obtain the cleaned
signal, denoted by s̃:

s̃ ¼ ŝ −KĜ f̂ ¼ KðIþGÞsþOðG2f Þ: ð40Þ
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In Eq. (40), we see that as long as perturbations are small
enough so that G2f < s, the cleaned signal s̃ will no longer
be overwhelmed by foreground residuals.
Note that Eqs. (21), (22), and (25)–(40) are general and

can be applied to any linear filter A andK, foreground and
signal covariance model F and S, perturbation model G,
and choice of quadratic estimator Ei and normalization
operator Di. It can be verified that if we substitute the
quantities in the formalism with those defined in our toy
example [Eqs. (2), (4), (7), (17), (19), and (23)], then we
obtain the results for W and bν in Eqs. (14) and (18).
In principle, both the quadratic estimator Ei and nor-

malization operator Di can be chosen arbitrarily, but not all
choices will result in good estimates for ŷi. In Eq. (17), the
quadratic estimator Eν is chosen to recover Eq. (12) in the
toy example. We could instead follow the optimal quadratic
estimator formalism developed by Tegmark [22] to define
Eν such that it minimizes the variance hðŷvÞ2i and
determine the normalization operator Dν accordingly.
However, the optimal quadratic estimator formalism

requires assumed signal and foreground models, whereas
we would prefer our estimator to be model independent. In
addition, for illustrative purposes, we prefer the simplicity
of estimators similar to Eq. (17) in order to demonstrate the
hybrid foreground filtering technique. For these reasons,
we leave the optimal quadratic estimator formalism for
future studies and will stay with intuitive choices of Ei in
this paper.
One particular choice for the quadratic estimator and

normalization operator is to set them equal to the pertur-
bation base matrix

Ei ¼ Di ¼ Γi: ð41Þ

Recall that the base matrix Γi picks up all the data that are
corrupted by the ith perturbation. It is an intuitive choice
because in order to estimate the ith perturbation gi, we
naturally want to cross-correlate all the data points that are
affected by gi while leaving out the rest. This is essentially
what we have done in the toy model. Note that in Eq. (12),
we only cross-correlate the estimated signal at the νth
frequency with the estimated foreground when estimating
the bandpass error gν. The motivation for this choice of the
quadratic estimator may seem naive, but we will demon-
strate its applicability to estimating complex gain errors in
Sec. V using simulations outlined in the following section.

IV. SUMMARY OF THE SIMULATIONS

We now provide an overview of the simulations used to
test our hybrid algorithm. A more in-depth description is
provided in Appendix C. In this paper, we use a KL-based
foreground filter to fulfill the role ofK in Eq. (25). The KL
method requires prior knowledge of the sky components
encoded in the covariance matrices of the signal S and
foregrounds F. For simplicity, we compute the prior

covariance matrices from simulated Monte Carlo (MC)
realizations given a simple angular power spectrum and
frequency dependency of each component. However, we
adopt an independent and more realistic sky model based
on [23] and [24] to generate input maps as our test dataset
in order to verify the robustness of the foreground removal
algorithms to foreground model. Previous work has found
that as long as the models of the sky components that are
input to the KL filter are qualitatively correct, the filter is
insensitive to the exact model mismatch between it and the
test data [14].
We consider four components in the sky model: (1) the

cosmological HI signal, (2) synchrotron radiation from
cosmic ray electrons gyrating in Galactic magnetic fields,
(3) free-free radiation due to free electrons scattering off
ions, and (4) extragalactic point sources. Both the simple
prior simulations and more realistic test datasets of these
components are described in Appendix C 1 a to C 1 d. The
simulated telescope is a 5 × 5 square array consisting of
6-m aperture single dishes with 1-m separation in between
any adjacent pair of dish edges. All the antennas have the
same primary beam derived from a fixed antenna illumi-
nation pattern. The telescope has a system temperature of
50 K, observing from 400MHz to 500 MHz with 50 evenly
spaced frequency channels. The total integration time of the
observation is 120 days. (In Sec. VA and V C, the survey
observes the same patch of the sky for 120 days, but in
Sec. V B, the survey observes 15 different sky patches for
8 days each.) The simulated telescope takes in the more
realistic sky maps and generates visibilities through a
Fourier transform under the flat sky approximation, which
are then corrupted by systematic effects and noise. Details
on the instrument and visibility generation are included in
Appendix C 2. After visibilities are computed, we apply the
hybrid foreground filter developed in Sec. III to remove
foreground residuals and recover the HI signal.
To quantify the performance of our foreground filter, we

compare the power spectra of the recovered HI signal with
the theoretical power spectrum used to generate the input
HI maps. The power spectrum estimator is constructed
using the optimal quadratic estimator formalism (e.g., [25])
and computes the redshift-averaged spectrum of the given
recovered HI signal. We will refer readers to Appendix C 3
for details on the power spectrum estimator.
As a first step to develop and test the hybrid foreground

filtering algorithm, we have made several assumptions and
simplifications in the simulations. We only consider com-
plex gain errors and omit others, such as beam or baseline
errors, in the simulated telescope (although we will address
how to extend the foreground filtering algorithm to handle
these errors in Sec. VI E). In Secs. VA and V C, we assume
that we can integrate on one patch of sky for 120 days
without the baselines rotating, while in Sec. V B, we
simulate a time axis by simply adding uncorrelated patches
of the sky. These simplifications facilitate implementation
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of simulations while preserving key aspects of real surveys
required to demonstrate the algorithm.

V. EXAMPLES OF APPLYING HYBRID
FOREGROUND FILTERING

In this section, we will demonstrate the hybrid fore-
ground filter through three examples, starting with the
simplest case of bandpass perturbations, and finishing with
a more complex case of antenna and frequency dependent
gain perturbations.

A. Bandpass perturbations

The data product of the simulated telescope is
visibilities. Since bandpass errors are independent of
baselines, we only consider visibilities from non-
redundant baselines—which we will refer to as the stacked
visibilities—by averaging visibilities of redundant base-
lines. Visibilities are represented by the vector ðvdÞðνbÞ, with
ν and b indexing frequencies and nonredundant baselines,
respectively. Following the same format as Eq. (21), the
data are a sum of HI and foreground visibilities, denoted by
vHI and vF respectively, and is multiplied by the perturba-
tion matrix G:

vd ¼ ðIþGÞðvHI þ vFÞ: ð42Þ

Since the real-valued bandpass error is already considered
in the toy model, we can define G by modifying Eqs. (23)
and (24):

G ¼
X
ν

gνΓν;

ðΓνÞðν0b0Þðν00b00Þ ¼ δν0ν00δb0b00δνν0 ; ð43Þ

where gν’s are the bandpass errors that we want to estimate.
Note that we have replaced the index p in Eq. (24) with b in
Eq. (43) to be consistent with using visibilities as data
instead of the sky map.
Having defined the data format, we now apply the hybrid

foreground filtering algorithm following the procedure
developed in Sec. III. We first obtain the estimated signal
v̂HI by applying the KL filter K to the data:

v̂HI ¼ Kvd: ð44Þ

As in the toy example, we choose the filter A to be I −K
and obtain the estimated foreground:

v̂F ¼ ðI −KÞvd: ð45Þ

We now estimate the gain error by cross-correlating the
estimated foreground with the estimated signal. Adopting
the choice we made for the quadratic estimator and
normalization operator in Eq. (41), we get

Eν ¼ Dν ¼ Γν: ð46Þ

Substituting v̂HI, v̂F,Eν, andDν into Eq. (27), we obtain the
perturbation estimate

ŷν ¼
v̂F†Γνv̂HI

v̂F†Γνv̂F

¼
P

bðv̂FÞ�ðνbÞðv̂HIÞðνbÞP
bðv̂FÞ�ðνbÞðv̂FÞðνbÞ

: ð47Þ

We can see the similarity between Eq. (47) and
Eq. (12) of the toy model. Both estimate perturbations
by averaging the product of the estimated foreground and
estimated signal over the index of which perturbations are
independent.
Recall that the ensemble average of the perturbation

estimate ŷν is a linear combination of the actual perturba-
tions gν0 ,

hŷνi ¼
X
ν0
Wνν0gν0 : ð48Þ

Using Eqs. (34), (46), and A ¼ I −K, we obtain the
window matrix

Wνν0 ¼
Tr½ΓνKΓν0FðI −K†Þ�

Tr½ðI −K†ÞΓνðI −KÞF� : ð49Þ

Note that the derivation of the window matrix in Sec. III
does not account for noise in the data. However, since
the KL filter mostly preserves the noise as it does to the
signal, noise terms will propagate just as the signal
throughout the derivation. The effect of noise is therefore
negligible assuming the noise covariance is much smaller
than the foreground covariance, given a reasonable amount
of integration time.
To test the accuracy of the window matrix, we draw 50

bandpass errors from aGaussian distributionwith a standard
deviation of 10−3 and apply them to the simulated telescope.
Following the steps summarized in Sec. IV, we simulate
telescope observations of a single sky patch for 120 days.We
then obtain the estimated errors ŷν using Eq. (47) from the
visibilities and compare them with the true errors gν as well
as true errors passed through the window matrix, namelyP

ν0 Wνν0gν0 , which approximates hŷνi in Eq. (48).
The result is shown in Fig. 1. Note that although the

estimated errors ŷν roughly trace the actual errors gν, they
do not match exactly since the estimated errors are, in fact,
a linear combination of the true errors as seen in Eq. (48).
This also explains why the estimated errors better match the
true errors passed through the window matrix. The small
deviation between the two comes from the fact that the gain
ŷν is only estimated from one dataset rather than an
ensemble of realizations.
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To obtain the recovered errors ĝν, we need to compensate
for the window matrix. As discussed in Sec. III, we cannot
invert the window matrix since it is ill-conditioned, but we
can partially recover the errors using the pseudo-inverse

ĝν ¼
X
ν0
Wþ

νν0 ŷν0 : ð50Þ

We then assemble the recovered perturbation matrix Ĝ as in
Eq. (43):

Ĝ ¼
X
ν

ĝνΓν: ð51Þ

Following Eq. (40), we can now obtain the cleaned signal
ṽHI by subtracting the foreground contamination term from
the estimated signal

ṽHI ¼ v̂HI −KĜv̂F: ð52Þ

We expect the cleaned signal ṽHI to be no longer
dominated by foreground residuals if G2vF < vHI
as indicated by Eq. (40). Our simulation shows that

foregrounds are brighter than the HI signal by roughly 5
orders of magnitude [see Figs. 2(a) and 2(b)]. This suggests
foreground subtraction can remove foreground contamina-
tion due to bandpass errors up to the order of 10−3.
Figures 2(c) and 2(d) compare sky visibilities in the uv
plane before and after foreground residual subtraction.
Both visibilities contain 10−3-level bandpass errors and
have been passed through the KL filter. Note that before
foreground residual subtraction, visibilities are mostly
oversaturated due to foreground contamination. After the
subtraction, most visibilities are comparable with the HI
signal [Fig. 2(a)] in terms of magnitude.
We now use the quadratic estimator outlined in Sec. IV

to estimate the HI power spectrum from the visibilities. We
compare the power spectrum of the linearly filtered signal
v̂HI and that of the signal cleaned with our algorithm ṽHI in
the presence of bandpass errors drawn from a Gaussian
distribution, depicted in the top, middle, and bottom panels
of Fig. 3, with standard deviations of 10−5, 10−4, and 10−3,
respectively. The blue curve in the three panels is the
theoretical HI power spectrum used to generate the data
without any foreground filter applied.

FIG. 2. Visibilities of signal, foregrounds, contaminated signal, and recovered signal in the uv plane at 400 MHz: (a) true HI
visibilities passed through the KL filter, (b) true foreground visibilities suppressed by 104, (c) visibilities of the sky map
(foregroundsþ HIþ noise) with 10−3 level bandpass errors after KL filtering but before foreground residual subtraction, and
(d) previous visibilities but after foreground subtraction. Only the real part of the visibilities is shown. In comparison to panel (c), panel
(d) contains much fewer oversaturated visibilities. This suggests the recovered signal is no longer dominated by foreground
contamination after foreground residual subtraction.

FIG. 1. Simulated bandpass errors and recovery using our quadratic estimator. The bandpass errors are drawn from a Gaussian
distribution with a standard deviation of 10−3 and are subsequently estimated using our simple quadratic estimator. The estimated errors
match the true errors passed through the window matrix. This verifies the accuracy of the window matrix and shows our method is able
to recover bandpass errors with good precision.
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Figure 3 shows that at the 10−5 level, bandpass errors are
too small to cause a bias in the HI power even before
foreground residual subtraction. At the 10−4 level, however,
the HI power of the uncleaned signal is 1 order of
magnitude higher than the theoretical power, but fore-
ground residual subtraction is able to remove this bias in the
HI power of the cleaned signal. At the 10−3 level, the HI

power of the uncleaned shows a bias of 3 orders of
magnitude while that of the cleaned signal only shows
slight bias at low l. This indicates the foreground residual
subtraction can effectively suppress foreground contami-
nation due to bandpass errors at the order of 10−3 or below.

B. Antenna-dependent perturbations with a time axis

Now we want to generalize bandpass errors from the
previous example to antenna-dependent complex gain
errors. In the simulated telescope, we model the gain of
the ith antenna at the νth frequency as

1þ qνi ¼ ð1þ hν þ pi þ δνiÞe2πiðντiþϵνiÞ; ð53Þ
where qνi is the gain error that has contributions from
bandpass error hν, antenna-dependent gain error pi, random
gain error δνi, delay error τi, and random phase error ϵνi.
Note that the delay error has the unit of microsecond when
the frequency is given in megahertz, while the other error
components are unitless. In addition, we have assumed that
all error components in Eq. (53) are small. Note that
although Eq. (53) is how we model antenna errors in this
example, our foreground cleaning technique does not
require antenna errors to conform to Eq. (53). This is
because our algorithm will only estimate errors on the
stacked visibilities [gðνbÞ in Eq. (54)] and thus need not
know the details of the antenna-error model. The only
requirement on the antenna errors in this example is that
they are time independent. We choose this particular
parametrization because it allows us to investigate how
different types of gain errors typically found in radio
telescopes generate foreground leaking.
In this example, we will estimate antenna-dependent

errors from stacked visibilities. Since the stacked visibility
averages visibilities of redundant baselines, the total gain
error gðνbÞ of the stacked visibility at frequency ν and
baseline b is the averaged sum of errors from every antenna
pair i and j that forms the baseline b:

gðνbÞ ¼
1

NðbÞ
X
ði;jÞ∈b

qνi þ q�νj; ð54Þ

where NðbÞ is the total number of antenna pairs with
baseline b, and we have assumed qνi; qνj ≪ 1. Then the
perturbation matrix, defined in Eq. (22), now becomes

G ¼
X
ν;b

gðνbÞΓνb; ð55Þ

and

ðΓνbÞðν0b0Þðν00b00Þ ¼ ðΓνÞðν0b0Þðν00b00Þδbb0 ; ð56Þ
where ðΓνÞðν0b0Þðν00b00Þ is the perturbation base matrix defined
in Eq. (43) from the previous example. The extra term δbb0

FIG. 3. Comparison of the HI power of the uncleaned signal
(with KL filtering only), cleaned signal (with KL filtering and
foreground residual subtraction), and true signal (no foreground
filters applied). The top, middle, and bottom panels correspond to
bandpass errors at the order of 10−5, 10−4, and 10−3, respectively.
At the 10−5 level, foreground contamination is negligible. At the
10−4 level, the HI power of the uncleaned data shows a bias that
foreground residual subtraction is able to remove. At the 10−3

level, the HI power of the uncleaned data shows a larger bias, but
that of the cleaned data only shows slight bias at low l. This
suggests the foreground residual subtraction can suppress fore-
ground contamination due to bandpass errors by nearly 3 orders
of magnitude.
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reflects the fact that perturbations in the current example
also depend on baselines, so the matrix Γνb not only picks
up visibilities with the frequency ν but also baseline b at the
same time.
Compared with the previous bandpass case, antenna-

dependent errors have many more parameters to estimate,
so more information needs to be included in the data to
compensate for the larger parameter space. We can achieve
this by adding a time axis to the stacked visibilities, and we
will denote all quantities in this expanded space by capital
caligraphic letters:

ðvHIÞðνbÞ → ðVHIÞðνbtÞ;
ðvFÞðνbÞ → ðVFÞðνbtÞ: ð57Þ

The time axis represents the telescope observing different
patches of the sky at different times. In our simulations, the
telescope observes 15 sky patches with an integration time
of 8 days each [so the subscript t in Eq. (57) ranges from 1
to 15 in this case]. Since different sky patches do not
correlate, the signal and foreground covariances in the
expanded space can be related to the original signal and
foreground covariances by

SðνbtÞðν0b0t0Þ ¼ SðνbÞðν0b0Þδtt0 ;

F ðνbtÞðν0b0t0Þ ¼ FðνbÞðν0b0Þδtt0 : ð58Þ

Similarly, the KL filter estimates the signal of one sky patch
by only using information from the same patch, so the KL
filter in the expanded space is

KðνbtÞðν0b0t0Þ ¼ KðνbÞðν0b0Þδtt0 : ð59Þ

We make the assumption that antenna-dependent gain
errors gðνbÞ are constant with respect to time. Then, the
perturbation matrix G is related to the original perturbation
matrix defined in Eq. (55) by

Gðν0b0t0Þðν00b00t00Þ ¼ Gðν0b0Þðν00b00Þδt0t00

¼
X
ν;b

gðνbÞðΓνbÞðν0b0Þðν00b00Þδt0t00

¼
X
ν;b

gðνbÞðΔνbÞðν0b0t0Þðν00b00t00Þ; ð60Þ

where we have defined the base matrix in the expanded
space as

ðΔνbÞðν0b0t0Þðν00b00t00Þ ¼ ðΓνbÞðν0b0Þðν00b00Þδt0t00 : ð61Þ

Now we can define the data, estimated signal, and
estimated foreground in the same way as in Eqs. (42),
(44), and (45), respectively, with relevant qualities changed
to their counterparts in the expanded space:

Vd ¼ ðI þ GÞðVHI þVFÞ;
V̂HI ¼ KVd;

V̂F ¼ Vd − V̂HI: ð62Þ

Using the newly defined base matrix Δνb in Eq. (61), the
quadratic estimator and normalization operator chosen in
Eq. (41) now become

Eνb ¼ Dνb ¼ Δνb: ð63Þ
Substituting Eνb,Dνb, and other quantities in the expanded
space into Eq. (27), we obtain the perturbation estimate

ŷðνbÞ ¼
V̂F

†ðΔνbÞV̂HI

V̂F
†ðΔνbÞV̂F

¼
P

tðV̂FÞ�ðνbtÞðV̂HIÞðνbtÞP
tðV̂FÞ�ðνbtÞðV̂FÞðνbtÞ

: ð64Þ

Compare Eq. (64) with the perturbation estimate of the
bandpass case from Eq. (47), we see that instead of
summing over the baseline, we now sum over the time
axis, i.e., always summing over the axis over which the gain
errors are constant. This is, in fact, a feature of the quadratic
estimator designed in Eq. (41).
Using Eq. (34), we obtain the window matrix

WðνbÞðν0b0Þ ¼
Tr½ΔνbKΔν0b0F ðI −K†Þ�

Tr½ðI −K†ÞΔνbðI −KÞF � : ð65Þ

Following Eqs. (36), (37), and (40), we recover the error by
compensating the window

ĝðνbÞ ¼
X
ν0;b0

Wþ
ðνbÞðν0b0Þŷðν0b0Þ ð66Þ

and recover the perturbation matrix

Ĝ ¼
X
ν;b

ĝðνbÞEðνbÞ: ð67Þ

We finally obtain the cleaned signal

ṼHI ¼ V̂HI −KĜV̂F: ð68Þ

We use the simulations developed in Sec. IVagain to test
foreground residual subtraction in the case of antenna-
dependent gain errors. The sky maps now include a time
axis that has 15 realizations. This simulates the telescope
observing 15 different sky patches at different times. We
keep the total integration time 120 days, so each of the 15
sky patches is observed for 8 days. We start by comparing
the HI power spectrum of the KL filtered data before and
after foreground residual subtraction with error components
hν, pi, δνi, τi, and ϵνi of Eq. (53) each at the 10−5 level
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(accounting for the factor of 2π multiplied with ϵνi and
frequency multiplied with τi). We then repeat the analysis
by redrawing all error components with their standard
deviations increased by 10 times and then again with their
standard deviations increased by 100 times.
The results are shown in Fig. 4. The top, middle, and

bottom panels correspond to individual error components

of Eq. (53) at the order of 10−5, 10−4, and 10−3, respec-
tively. Similar to the bandpass case, 10−5-level errors do not
cause significant foreground contamination. At the 10−4

level, the HI power of the uncleaned signal shows a bias of
1 order of magnitude, but HI power after foreground
residual subtraction matches the theoretical power (shown
in blue). At the 10−3 level, the power spectrum of the
uncleaned signal shows roughly a 3-orders-of-magnitude
bias while the HI power after foreground residual sub-
traction is biased by only 1 order of magnitude.
Compared with Fig. 3, HI power of the cleaned signal in

Fig. 4 has a larger bias in the middle and bottom panels.
This is not surprising because antenna-dependent errors
have multiple components, so the rms errors in the antenna-
dependent case are larger than those in the bandpass case.
Nonetheless, Fig. 4 suggests that the foreground residual
subtraction is able to remove foreground bias for antenna-
dependent errors up to the order of 10−4.

C. Antenna-dependent perturbations estimated
in the unstacked space

In the previous section we assumed that antenna-
dependent gains are roughly constant for all 15 observations,
which is not always valid. To address this limitation, we now
apply foreground residual subtraction to the observation of a
single sky patch. We will do so in the unstacked visibility
space, i.e., considering all the redundant baselines. Even
though redundant visibilities contain identical information
of the sky, they carry additional information on the antenna
pairs which produce the visibilities.
We denote the visibility produced by the ith and jth

antenna at the νth frequency as vðνijÞ. It is a sum of HI
signal and foregrounds multiplied with antenna errors

vðνijÞ ¼ ð1þ qνiÞð1þ q�νjÞ½ðvHIÞðνijÞ þ ðvFÞðνijÞ�
≈ ð1þ qνi þ q�νjÞ½ðvHIÞðνijÞ þ ðvFÞðνijÞ�; ð69Þ

where the antenna-dependent error qνi was defined in
Eq. (53) and we assume qνi; qνj ≪ 1. Also, notice that
the second antenna in the pair (antenna j in this case) has its
errors complex conjugated.
Given these data, we can design the intuitive quadratic

estimator in the same way as Eqs. (47) and (64) to estimate
the perturbation qνi. Namely, we cross-correlate the fore-
ground estimate ðv̂FÞðνijÞ with the signal estimate ðv̂HIÞðνijÞ
by summing their product over the index j, of which the
error qνi is independent. We thus have

ŷνi ¼
P

jðv̂FÞ�ðνijÞðv̂HIÞðνijÞP
jðv̂FÞ�ðνijÞðv̂FÞðνijÞ

: ð70Þ

Recall that the estimated signal is dominated by fore-
ground residuals (i.e., foregrounds multiplied with gain

FIG. 4. HI power spectrum of the uncleaned signal (with KL
filtering only), cleaned signal (with KL filtering and foreground
residual subtraction), and true signal (no foreground filters
applied) in the presence of antenna-dependent errors and a time
axis. The top, middle, and bottom panels correspond to each
component of the error at the order of 10−5, 10−4, and 10−3,
respectively. At the 10−5 level, errors are too small to cause
foreground bias even before the foreground residual subtraction.
At the 10−4 level, HI power of the uncleaned signal shows a
1-order-of-magnitude bias while HI power of the cleaned signal
shows only slight bias. At the 10−3 level, foreground residual
subtraction is able to suppress foreground bias in the HI power by
2 orders of magnitude.
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error) and that the estimated foregrounds are dominated by
the true foregrounds. Then, Eq. (70) becomes

ŷνi ∼
P

jðqνi þ q�νjÞjðvFÞðνijÞj2P
jjðvFÞðνijÞj2

ð71Þ

¼ qνi þ
P

jq
�
νjjðvFÞðνijÞj2P
jjðvFÞðνijÞj2

: ð72Þ

Therefore, the perturbation estimate ŷνi will be mainly
sensitive to qνi if the second term of Eq. (72) is small. This
is only the case when the errors of the jth antennas are
uncorrelated, but the antenna errors in our model have a
correlated component: the bandpass error. As a result, the
second term of Eq. (72) obtains a large contribution from
the bandpass error, requiring us to compensate for the
window matrix to demix the errors.
Equation (72) suggests that we need to disentangle both

the antenna errors and their complex conjugates to com-
pensate for the window. One way to do this is to regard the
complex conjugates of the gain perturbations as indepen-
dent parameters. We define qνðNaþiÞ ≡ q�νi for all i from 1 to
Na, where Na is the total number of antennas. Namely, we
treat the complex conjugate of the ith error as the
ðNa þ iÞth error. With this numerical trick, we treat the
problem as if the number of parameters were doubled, but
the number of degrees of freedom and the amount of
information has not changed since the visibilities vðνijÞ and
vðνjiÞ contain identical information.
With this change, the visibilities are now effectively

produced by 2Na antennas but with the first to Nath
antennas only appearing first in an antenna pair and the
ðNa þ 1Þth and ð2NaÞth antennas only appearing second in
a pair, i.e., the first antenna index running from 1 to Na and
the second antenna index running from Na þ 1 to 2Na. We
will refer to this visibility space as the redundant unstacked
space. We can modify Eq. (70) accordingly in order to
estimate the ith antenna error:

ŷνi ¼
P2Na

j¼Naþ1;j≠Naþiðv̂FÞ�ðνijÞðv̂HIÞðνijÞP2Na
j¼Naþ1;j≠Naþiðv̂FÞ�ðνijÞðv̂FÞðνijÞ

if i ¼ 1 toNa

ð73Þ

and

ŷνi ¼
PNa

j¼1;j≠i−Na
ðv̂FÞ�ðνjiÞðv̂HIÞðνjiÞPNa

j¼1;j≠i−Na
ðv̂FÞ�ðνjiÞðv̂FÞðνjiÞ

if i ¼ Na þ 1 to 2Na; ð74Þ

where the restrictions j ≠ Na þ i in Eq. (73) and j ≠ i −
Na in Eq. (74) come from the fact that we do not include
autocorrelations in the data.

Having determined the data format and chosen the
quadratic estimator, we can now apply the formalism
developed in Sec. III to this example. We model the data
as the sum of the true signal and foregrounds multiplied
with the antenna gain as before,

vd ¼ ðIþGÞðvHI þ vFÞ; ð75Þ

where the matrix G assigns antenna errors to visibilities in
the redundant unstacked space and can be defined as

G ¼
X
ν

X2Na

i¼1

qνiΓνi: ð76Þ

The matrix Γνi is the individual error matrix that picks up
all the visibilities that involve the ith antenna at the νth
frequency and assigns the antenna error qνi to them. It can
be defined as the identity matrix I but only with diagonal
elements that correspond to frequency ν and antenna i
being one:

ðΓνiÞðν0i0j0Þðν00i00j00Þ ¼ Iðν0i0j0Þðν00i00j00Þδνν0δii0

if i ¼ 1 toNa; ð77Þ

and

ðΓνiÞðν0i0j0Þðν00i00j00Þ ¼ Iðν0i0j0Þðν00i00j00Þδνν0δij0

if i ¼ Na þ 1 to 2Na: ð78Þ

Note that δii0 in Eq. (77) is changed to δij0 in Eq. (78)
because the ðNa þ 1Þth to ð2NaÞth antennas only appear
second in a pair.
We now proceed as the previous two examples.

Applying the KL filter to data in the redundant unstacked
space, we compute the estimated signal v̂HI and the
estimated foregrounds v̂F. With the individual error matrix
Γνi defined in Eqs. (77) and (78), the perturbation estimate
Eqs. (73) and (74) can now be written as one single
equation:

ŷðνiÞ ¼
v̂F†ðΓνiÞv̂HI

v̂F†ðΓνiÞv̂F
: ð79Þ

This is, in fact, consistent with the quadratic estimator and
normalization operator designed in Eq. (41), since Eq. (79)
is equivalent to having Eνi ¼ Dνi ¼ Γνi.
The perturbation estimate Eq. (79) has the same form as

the one of the bandpass case [Eq. (47)], so the window
matrix is identical to Eq. (49) but with all quantities in the
redundant unstacked space. We can then recover the gain
qνi by compensating for the window and finally obtain the
cleaned signal by subtracting foreground contamination
from the estimated signal in the same way as the pre-
vious cases.
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We test the foreground residual subtraction algorithm
using the identical setup for antenna errors as in Sec. V B
and the same sky map as in Sec. VA. Figure 5 compares HI
power of the uncleaned, cleaned, and true HI signal. The
results are consistent with the previous two examples: No
significant bias is introduced by antenna errors at the 10−5

level, but with larger antenna errors, the bias in the
uncleaned signal becomes larger. The foreground residual
subtraction algorithm is able to remove the bias when
antenna errors are at the 10−4 level and suppress the bias by
2 orders of magnitude with errors at the 10−3 level.

VI. DISCUSSION

A. Estimator form

We have developed an algorithm that estimates telescope
systematic errors from linearly filtered data with a quadratic
estimator, and then subtracts the systematics-induced fore-
ground contamination. The algorithm is motivated by the
fact that the estimated signal is dominated by foreground
residuals which correlate with the foregrounds. Therefore,
cross-correlation between the contaminated signal channels
and estimated foregrounds isolates the systematics.

This form, where we cross-correlate the estimated signal
and foregrounds to estimate the foreground residuals, has a
number of qualitative advantages. First, it explicitly targets
precisely the thing we wish to eliminate: foregrounds
leaking into the signal channel. The fact that the fore-
grounds themselves are typically measured at very high
signal-to-noise ratio means we have an essentially noise-
less template with which to draw out the residual fore-
grounds. Thus spurious correlations from either noise or
the 21-cm signal in the signal channel will be subdominant.
The cross-correlation also provides ameans to control the

nonlinearity of the method. Other nonlinear methods result
in significant and hard-to-characterize signal loss. Here, it is
only the signal that spuriously correlates with the fore-
grounds that can be lost. The foregrounds themselves have
few degrees of freedom compared to the signal due to their
spectral smoothness, and estimates of the foregrounds have
little signal contamination due to the difference in their
brightness. Our algorithm introduces additional degrees of
freedom in the number of ways we cross-correlate the data
(i.e., the number of systematics-related parameters to be
estimated), which must be substantially smaller than the
number of degrees of freedom in the data itself. However, in
order for the signal to be lost in the foreground residual
cleaning process, the power in the signal channel must
correlate with well-determined foregrounds. This mitigates
oversubtraction and signal loss, even when the number of
free parameters is relatively large. Indeed, a perturbative
expansion in the small parameters describing the system-
atics, and in the ratio of signal to foreground powers,
provides control over how many foregrounds are not
removed by our algorithm. A similar expansion can be
used to estimate signal loss from the nonlinearity, although
we have not performed this calculation.
Having motivated a method that cross-correlates the

signal and foreground estimates, what remains is to
determine how to cross-correlate them. That is, what set
of transformations Ei should be applied to the foreground
estimate prior to cross-correlation to draw out the residual
contamination? In this work, we assumed the systematics
are described by a parametric model with unknown
(but small) parameters gi and use a quadratic estimator
framework to determine the cross-correlation that returns
the parameters. This formalism applies to errors in the

FIG. 5. HI power spectrum of the uncleaned, cleaned, and true
signal with antenna-dependent errors in the unstacked space.
Antenna errors have the same setup as in Fig. 4. No significant
bias is introduced with errors at the 10−5 level (top panel). At
10−4 level (middle panel), the foreground residual subtraction
removes the bias from the uncleaned signal. At the 10−3 level
(bottom panel), the foreground residual subtraction suppresses
foreground bias by 2 orders of magnitude.
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signal-chain gains, and should be straightforward to gen-
eralize other systematics with limited numbers of degrees
of freedom as discussed below.
For some types of systematics, such as complex variations

in the primary beam, it may not be practical to write down a
parametrized model. Then, it would not be possible to
construct a quadratic estimator, since there is no parameter to
estimate. However, the basic idea of cross-correlating the
signal estimate with the foreground estimate, in order to
draw out residual foregrounds, could still be valid. One
would need to determine—perhaps empirically—through
what transformations and with what symmetries the fore-
grounds are leaking into the signal, such that the subspace
over which to cross-correlate can be determined. While we
believe this generalization is very promising, we leave
further consideration to future work.
In our analysis, we have chosen the quadratic estimatorEi

to be the perturbation base matrix Γi based on the intuition
that in order to estimate a particular perturbation gi, wewant
to cross-correlate all the data points corrupted by it while
leaving out those that are unaffected.We verified this choice
with simulations in Sec. V by showing that the algorithm
reduces foreground contamination in the power spectrum of
the cleaned signal by 1 to 3 orders of magnitude.
One particular characteristic of our formalism developed

in Sec. III is that, in order to estimate systematics, the
quadratic estimator can be chosen such that it is independent
of any signal or foreground model (for example, when we
choose Ei ¼ Γi). Then, the only model-dependent compo-
nents in our systematics estimation are thewindowmatrixW
and linear foreground filterK. However, the windowmatrix
can, in fact, be approximated using data only instead of using
assumed foreground and signal models. This is because
although the windowmatrix requires the foreground covari-
ance, our data are already an excellent measurement of the
foregrounds (given that s ≪ f and gi ≪ 1) and can be used
to approximate the covariance.
We can approximate the denominator of the window

matrix, Eq. (34), as

TrðA†DiAFÞ ≈ f̂ †Di f̂ ; ð80Þ
and approximate the numerator as

TrðEiKΓi0FA†Þ ≈ f̂ †EiKΓi0d: ð81Þ
So the expression for the window matrix

Wii0 ≈
f̂ †EiKΓi0d

f̂ †Di f̂
ð82Þ

does not explicitly depend on signal or foreground models,
although the linear filterK does. In our analysis, we choose
the KL filter as the linear foreground filter K, but the
formalism is, in fact, independent of this choice. Therefore,
any other choice for K will work as well.

B. Limiting factors on current results

Section V shows that our foreground residual subtraction
algorithm can—in the context of our somewhat simple
simulations—successfully remove foreground contamina-
tion with bandpass errors up to the 10−3 level and antenna-
dependent errors up to the 10−4 level. Several factors
prevent the algorithm from achieving better results with
larger errors: most notably the second order terms of
perturbations, statistical noise, and instrumental noise.
Derivations in Sec. III ignored all terms that involved the

square and higher powers of perturbations. Particularly, we
dropped the second order terms from the data covariance
matrix in Eq. (29) and from the window matrix in Eq. (B2).
As a result, we can subtract foreground residuals only up to
the first order in amplitude of perturbations as shown by
Eq. (52). This naturally leaves foregrounds at the order of
g2vF, which can be neglected as long as g2vF ≪ vHI .
Figures 2(a) and 2(b) show that the foreground visibilities
are almost 105 times brighter than HI in the simulations.
This suggests that if bandpass errors are at the 10−3 level or
below, their second order terms can be safely ignored. This
is consistent with the results shown in Fig. 3. In compari-
son, Figs. 4 and 5 show that the foreground residual
subtraction does not recover the theoretical HI power
spectrum well with 10−3-level antenna-dependent errors.
This is because the rms value of the antenna-dependent
errors is a few times larger than that of the bandpass errors.
Statistical noise can also introduce bias to the cleaned

signal. In Eq. (36), we compensated the window by
applying the pseudo-inverse of the window matrix to the
estimated perturbations ŷ. Strictly speaking, we should
compensate the window for the ensemble mean of the
perturbation estimate hŷi, but in reality we only have one
sky to observe. The difference between ŷ and hŷi results in
an error in the recovered perturbations ĝ. They are
subsequently used to subtract foreground contamination
at the linear order and thus leave foreground residuals at the
order of ðhŷi − ŷÞvF. Figure 1 shows that the perturbation
estimates (yellow square data points) and their ensemble
averages (green triangle data points) have percent-level
differences. This implies that statistical noise does not
introduce significant bias with perturbations at the 10−3

level or below since the residual should be smaller than the
HI signal at that level. This is again consistent with the
results shown in Sec. V.
Similarly, instrumental noise can affect foreground

residual cleaning. The perturbation estimate relies on the
estimated signal being dominated by foreground contami-
nation at the order of gvF. However, in the case of relatively
small perturbations and large instrument noise, the latter
may dominate the former. Even though noise is removed
during the power spectrum estimate by cross-correlating
data from two seasons, a dominating noise term in the
estimated signal causes the perturbation estimator to pick
up noise instead of the gain errors, which subsequently
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affects foreground residual subtraction. In Secs. VA and
V C, the sky map was observed for 120 days such that the
resulting noise is about a few times brighter than the HI
signal but more than 1000 times weaker than the fore-
ground. However, in Sec. V B, the integration time of each
sky map is decreased to 8 days, so the noise becomes larger.
As a result, cleaned signals shown in Fig. 4 have bigger
error and higher biases than the ones in Figs. 3 and 5.
In principle, we could improve our results by estimating

the perturbations iteratively. Namely, after deriving initial
first order perturbation estimates, we could apply these
corrections to the data, reapply the foreground filter to
obtain a new model, and then rederive new perturbations.
This is equivalent to iteratively solving for higher order
terms. However, because of the relatively high level of
statistical and instrumental noise, the second order pertur-
bations are subdominant to noise in our current simulation.
Therefore, it requires a larger simulation to test the
possibility of iteratively applying our method to estimate
higher order perturbations.

C. Comparison with gain calibration literature

To remove foreground residuals from linearly filtered
data, estimating gain perturbations is an essential step of the
algorithm. Traditional gain calibration methods can be
summarized into two categories: the “sky-based” calibra-
tion and the “redundant calibration” [26]. The former uses
sky and instrument models to produce simulated data and
compares them to the real data to estimate the gains, while
the latter constrains antenna gains by checking consisten-
cies between redundant baseline measurements. Both
methods are Bayesian inference of complex gain param-
eters from the data and the model of the data. In other
words, they aim to find the gain parameters g that maximize
the posterior probability PðgjvÞ from the visibility data v.
Our gain estimation, in comparison, uses a quadratic

estimator, Ei, in Eq. (27), to estimate the gains by cross-
correlating two different sets of linearly filtered data. It is
essentially a maximum likelihood approach, which estimates
the gain parameters g that maximize the likelihood function
Lðgjf̂ ; ŝÞ, where f̂ and ŝ are the estimated foreground and
signal, respectively. In this sense, our approach is related to
self-calibration methods [27]. Self-calibration uses assumed
sky and instrument models to simulate visibilities corrupted
by systematics and then solves for the least-square solutions
of the systematics g that minimize the function

χ2ðgÞ≡ jvobs − vmodðgÞj2
¼ ½vobs − vmodðgÞ�†½vobs − vmodðgÞ�; ð83Þ

where vobs is the observed visibilities and vmod is modeled
visibilities corrupted by the systematics g.
In comparison, we assume that the estimated signal ŝ is

dominated by foreground residuals at the first order of gain

perturbations, so our approach essentially estimates the set
of perturbations fgig that minimizes

χ2ðfgigÞ≡
����ŝ −K

X
i

giΓif̂

����
2

; ð84Þ

where K is a linear foreground filter and Γi is the
base matrix associated with the ith perturbation gi.
In other words, estimating systematics by cross-correlating
estimated signal and foreground (which is the way
we set up the formalism in Sec. III) is equivalent to finding
the first order solution gi that minimizes Eq. (84). (For
instance, the estimated gains in the toy example Eq. [(12)]
is precisely the first order solution to dχ2=dyν ¼ 0 where
χ2 ¼ P

νp½ŝνp − f̂pyν�2.)
However, our approach differs from traditional calibra-

tion methods in a few ways. First, we have utilized
the 21-cm specific foreground-signal hierarchy, namely
the signal being subdominant to foregrounds, and the
assumption that the telescope systematics are small.
These conditions allow us to derive a simple form of the
least-square solution at the linear order in perturbations. In
Sec. III, we formulated our method as a cross-correlation
between the estimated foreground and signal. The two are
correlated precisely due to foreground residuals leaking into
the estimated signal. Compared with the traditional self-
calibration, the special trait of our approach is that it directly
targets what we want to remove: the foreground residuals.
Second, both sky-based calibration (including traditional

self-calibration) and redundant calibration rely on accurate
sky models. In sky-based calibration, sky models are
needed to produce simulated data. Redundant calibration
can in principle estimate the relative gain among antennas
without the knowledge of a sky model, but to break gain
parameter degeneracies and produce physical calibration
results, absolute calibration must be done with the
assumption of a sky model [28–30]. In reality, sky models
contain inaccurate intensities for known sources and can
have other faint sources missing. These inaccuracies lead to
errors in gain calibrations [31–35]. In comparison, our
approach of gain estimation does not rely on a specific sky
model. Instead, it requires the covariance matrices of the
foreground and signal to train the linear filter. Our approach
is thus immune from inaccurate and incomplete prior
knowledge of the sky and only needs statistical information
of the foregrounds and signal.
In addition, sky-based calibration relies on an accurate

understanding of instrument response in order to map the
sky into visibilities. Errors in instrument response, such as
baseline perturbations, can thus produce errors in modeled
visibilities which can propagate through the calibration
process [32,34]. Likewise, baseline perturbations can
cause nonredunancies in baselines that would otherwise
observe identical sky information. This breaks the basic
assumption of redundant calibration and leads to calibration
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error [36–38]. Extensions to traditional calibration methods
can account for instrument response error bymodeling beam
response via either direct measurement or simulation soft-
ware [39–42]. However, such extensions require additional
measurement or modeling prior to gain calibration.
In recent years, new calibration techniques have been

invented which combine “sky-based” and “redundant”
calibration methods to address their limitations. For exam-
ple, combined methods allow otherwise purely sky-based
calibration to include tunable sky parameters to account for
inaccuracies and missing sources in the sky map [26], and
redundant calibration can now compensate nonredundan-
cies by modeling data covariances from imperfectly redun-
dant baselines [43]. Other methods model both foregrounds
and instrumental effects using a linear combination of basis
functions and estimate bandpass gains with a low-detailed
sky model only [44].
These new methods relax many unphysical assumptions

of the traditional calibration techniques and in general
achieve better results. However, introducing a large number
of degrees of freedom in calibration can lead to over-
subtraction and even introduce more errors [45,46].
Therefore, it requires great care to characterize signal
losses when applying some of these methods to real
telescopes [44]. In addition, even though these methods
only require low-detailed sky information as prior, a sky
model is still needed in the calibration process.
Our gain estimation algorithm can also account for other

instrumental effects. Not only can we apply our algorithm
to estimate antenna gains but also to any perturbation that
can be parametrized. For any set of perturbation parameters
λα, if we can describe their effect on the visibilities as

vij ¼ v̄ij þ
X
α

λα
∂vij
∂λα

; ð85Þ

where v̄ij is the true visibility, then we can estimate λα in the
same way that we estimate antenna gains. We will discuss
this idea in more detail in Sec. VI E. This allows our
method to be robust to modeled instrument effects. In
contrast to other methods mentioned in the previous para-
graph, the advantage of our approach is that we do not need
a sky model in the calibration procedure. Also, using the
linearity of the foreground filter (the KL filter in our case
but can be any other linear filter) and 21-cm foreground-
signal hierarchy, we can perform calculations similar to
Eq. (16) (with details in Appendix A) to analytically
characterize signal loss through a perturbative expansion
in terms of the ratio between signal and foreground
covariance. This greatly reduces the risk of oversubtraction
of the signal.

D. Comparison with foreground removal literature

Our foreground removal technique combines a tradi-
tional linear filter with a nonlinear quadratic estimator to

estimate the gain errors and clean foreground residuals. We
used the KL filter [15] as the linear filter in our examples,
but other linear filters, such as the delay filter [16], can
work with the algorithm as well. Our findings in Sec. V
suggest that using the KL filter alone results in bright
foreground residuals. This is because telescope systematics
introduce nonsmooth spectral features to foregrounds, thus
violating the basic assumption of traditional linear filters
that the foregrounds are spectrally smooth. Compared with
using a traditional linear filter alone, our hybrid foreground
filtering technique can suppress foreground residuals for 1
to 3 orders of magnitude, as shown in Figs. 3–5.
Our hybrid method has advantages over traditional non-

linear foreground removal techniques as well in some
aspects. Traditional nonlinear foreground removal methods,
such as the principal component analysis and its related
nonparametric component separation algorithms [47–55],
project out the brightest modes from the total data covari-
ancewith the assumption that the brightestmodes aremostly
dominated by foregrounds. Such techniques are robust to
some systematics because the brightest modes are discarded
regardless of whether they are spectrally smooth or not.
However, the brightest modes can also contain a significant
amount of signal, so oversubtraction could become an issue
that hinders signal detection [50]. Moreover, zeroing out the
brightestmodes cannot address the possibility of foreground
leakage into the less bright modes.
In comparison, traditional linear filters which are part of

our hybrid algorithm target the smooth component of the
data which is dominated by foregrounds. This helps one
control how much signal is lost and estimate how much
foreground is left in the remaining modes [14]. Therefore,
the hybrid foreground removal technique essentially com-
bines the advantages of both the linear and nonlinear filters,
meaning it is easy to characterize signal loss and at the
same time more robust to systematics.

E. Extension to other systematics

Our algorithm can potentially be applied to subtract other
types of systematics in a generic radio interferometry
telescope. The essence of estimating systematics is to
calculate the perturbation base matrix Γ as in Eq. (22).
Generically, Eq. (22) projects each systematics in the form
of a coefficient g and a derivative matrix Γ that character-
izes the system response to a particular systematics.
Depending on the specific types of systematics, Γ can
be a function of different instrumental parameters such as
frequency, antenna, or baseline distance. For example, for
baseline distortions induced by feed position shifts, one can
parametrize the derivative matrix for each antenna pair as a
function of the perturbations on the baseline distance u so
that Γ ∝ ðΔui þ ΔujÞ, with i and j being the coordinates of
the two feeds.
The main limitation of our approach is that we need to be

able to write down a parametrized model for the systematics
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with derivative matrices. This is convenient to do for gain
and baseline perturbations, but for systematics such as beam
perturbations, it may be unrealistic to calculate the derivative
matrix simply with an analytical parametrization. In this
case, one may vary relevant instrumental parameters through
simulation and numerically calculate the derivative matrix.
For example, one can vary the primary beamwidth or the
beam pointing angle to quantify the systematics induced by
those factors and subsequently subtract them out using our
algorithm. Nevertheless, our algorithm is potentially appli-
cable to a variety of systematics as long as the characteristic
derivative matrix can be deduced.

VII. CONCLUSIONS

In this paper, we have developed a novel hybrid fore-
ground-removal algorithm for 21-cm intensity mapping
experiments by combining a traditional linear filter with a
nonlinear quadratic estimator. With simulations of a small-
scale compact array, we have demonstrated that we can
suppress foreground residuals in the linearly filtered 21-cm
signal by 1 order of magnitude when antenna-dependent
complex gain errors are at the level of 10−4 and nearly 2
orders of magnitude at the level of 10−3. In the case of 10−4-
level errors, the signal after foreground residual cleaning
recovers the theoretical HI power spectrum.
Compared with traditional linear methods, the hybrid

algorithm is more robust to systematics by calibrating them
using a quadratic estimator and subsequently subtracting
the induced foreground contamination from the data.
Compared with traditional nonlinear methods, the hybrid
algorithm is easier to characterize and quantify signal loss,
due to perturbative control over nonlinearities. Our method
thus combines the advantages of both linear and nonlinear
methods while each compensates for the other’s drawbacks.
At the same time, there is room for improvement on the

current version of the hybrid algorithm. At the end of
Sec. III, we picked a simple form for the quadratic estimator
and applied it to three examples in Sec. V to intuitively
illustrate the idea of the technique. However, we could
instead use the optimal quadratic estimator to further reduce
uncertainties on the estimated calibration parameters.
Moreover, due to computational limitations, we simulated
the data from a small 5 × 5 square array. A larger array of a
realistic size will have many more baselines and therefore
incorporate more information from the sky, which will
decrease the statistical noise of our estimated systematics
and further improve our results. Last, it is worth mentioning
that in the current version of our algorithm,we only compute
and remove the foreground residuals that come from first
order terms in the amplitude of the perturbations. In
principle, the second order terms can be computed and
removed from the linearly filtered data as well. These
improvements will be explored in future studies.
While our simulations are simplistic, they nonetheless

capture the essential features that make foreground removal

difficult and thus demonstrate the potential of our algorithm.
Precisely how effective the algorithm is could change
somewhat with more realistic simulations, as well as the
design of the instrument and survey. The telescope system-
atics used in the simulations are limited to bandpass errors
and antenna-dependent complex gain errors. However, as
mentioned in Sec. VI, any type of error that can be para-
metrized as in Eq. (85) can be estimated by our algorithm.
Thus, a promising future direction is to generalize our
algorithm to calibrate other types of systematic error, such
as baseline errors and beam errors. In addition, the simu-
lation pipeline we use to test the hybrid algorithm does not
include sky polarization, but studies have shown that linear
filters, such as the KL filter, can be applied to polarized data
as well [56]. Applying our hybrid algorithm to polarized
data is another aspect to be explored in future studies.
Clearly, there will be many opportunities to generalize

our hybrid algorithm for a potentially wide range of low
frequency intensity mapping experiments. With the work
presented in this paper, we hope that our hybrid algorithm
can become a new powerful tool to mitigate the foreground
contamination problem.
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APPENDIX A: DETAILED ANALYSIS OF THE
TOY EXAMPLE

To demonstrate that the cleaning algorithm indeed
removes the effect of the foregrounds for the toy model,
we will start by rewriting Eq. (10) as

f̂p ¼ αfp þ
1

N

X
ν0
mν0p;

ŝνp ¼ mνp −
1

N

X
ν0
mν0p þ βνfp; ðA1Þ

where

mνp ¼ sνpð1þ gνÞ; α ¼ 1þ 1

N

X
ν

gν;

βν ¼ gν −
1

N

X
ν0
gν0 : ðA2Þ

By plugging Eqs. (A1) and (A2) into the definition of ŷν
in Eq. (12) and rearranging (including the Taylor expansion
of the denominator) we find
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βν
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α
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�
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�
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1
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X
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mν0pmν00p

�
þ � � �



: ðA3Þ

We are interested in hŷνi, so we need to calculate the
ensemble average of Eq. (A3) over signal and foreground
realizations while keeping the gν fixed.
The leading term in ŷν is βν=α [the first term within the

first curly brackets in Eq. (A3)], which is a function of gν
only. Terms of the form

P
p fpmνp are zero on average, so

the next term in importance in the expansion of hŷνi has the
form hn=di where

n ¼ 1

α2N

�X
ν0p

mνpmν0p −
1

N

X
ν0ν00p

mν0pmν00p

�
;

d ¼
X
p

f2p: ðA4Þ

This term can be approximated as2

�
n
d

�
≈
hni
hdi

¼ σ2s
α2Nσ2f

�
ð1þ gνÞ2 −

1

N

X
ν0
ð1þ gν0 Þ2

�
: ðA5Þ

From Eq. (A5), hn=di is of order ∼σ2sσg=ðNσ2fÞ where
σg ≪ 1 is the scale of the gain perturbations. This term is
negligible compared to βν=α (which goes roughly as ∼σg)
since N ≫ 1 and σ2s=σ2f ≪ 1. Thus

hŷνi ¼
βν
α
þO

�
σ2sσg
Nσ2f

�
; ðA6Þ

which is the result shown in Eq. (13).
The “cleaned” signal is defined in Eq. (15) as

s̃νp ¼ ŝνp − ŷνf̂p. From Eqs. (A1) and (A3), s̃νp is indeed
free of the term βνfp which is the source of foreground
contamination in ŝνp [Eq. (A1)] and in its variance
[Eq. (11)]. However, it still has residual foreground
contamination due to the higher order terms (beyond
βν=α) in the expansion of ŷν. An inspection of these terms
reveals that they are zero on average and that their
contribution to the variance of s̃νp is below ∼σ2s=M, which
forM ≫ 1 are too small compared to hm2

νpi ≈ σ2sð1þ 2gνÞ,

the dominant term in the variance of the cleaned signal. The
final expression for hs̃2νpi is given in Eq. (16), where
Oðσg; 1=MÞ means that the next terms in the expansion are
of order σg and 1=M. On average, the cleaned signal is free
of foreground bias to all orders.

APPENDIX B: DERIVATION OF THE WINDOW
MATRIX

The way we calculate the window matrix is to approxi-
mate the right-hand side of Eq. (32) by taking the ensemble
average of the numerator and the denominator and finding
their ratio. Namely, we have

hŷii ≈
hf̂ †Eiŝi
hf̂ †Di f̂ i

: ðB1Þ

To see why this approximation is reasonable, we can
rewrite Eq. (27) as f̂ †Dif̂ ŷi ¼ f̂ †Eiŝ (with bi ¼ 0), and
then take the expectation to get

h f̂ †Di f̂ ŷii ¼ h f̂ †Eiŝi: ðB2Þ

Note that on the left-hand side of Eq. (B2), the perturbation
estimate ŷi is already at the order of gi. Since we are
interested in the linear order of perturbations only, we
can drop the perturbation term [the term that involves
G in the first line of Eq. (26)] in f̂ on the left-hand side.
Equation (B2) now becomes

hðsþ f Þ†A†DiAð sþ f Þŷii ¼ h f̂ †Eiŝi: ðB3Þ

Suppose the choice of the quadratic estimator Ei and the
normalization operator Di is good such that ŷi ≈ gi, and
then ŷi is only weakly dependent on the sky signal s and f
under the assumption that errors of the instrument gi’s are
independent of the sky signal. This was the case for the toy
example described in Sec. II and Appendix A, where we
analytically showed that higher order terms in the expan-
sion of y are orders of magnitude smaller than the gain
perturbation terms on average. Therefore, we can separate
the expectation value of ŷi from the rest of the left-hand side
and write Eq. (B3) as

hðsþ f Þ†A†DiAðsþ f Þihŷii ¼ h f̂ †Eiŝi: ðB4Þ

Simplifying both sides of Eq. (B4), we get

2Equation (A5) is the first term of the expectation of the
function hðn; dÞ ¼ n=d Taylor expanded about ðhni; hdiÞ. The
next term in the expansion is a factor of ∼M smaller, so it can be
safely neglected.
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Tr½A†DiAðSþ FÞ�hŷii ¼ TrðEiCsfÞ: ðB5Þ

Replacing the covariance Csf with Eq. (30), and dividing
Eq. (B5) by the normalization factor Tr½A†DiAðSþ FÞ�
from the left-hand side, we finally get Eq. (33) which we
simply stated in Sec. III.

APPENDIX C: SIMULATION PIPELINE DETAILS

1. Sky model

As described in Sec. III, the KL-based foreground filter
requires prior knowledge of the sky components encoded in
the covariance matrices of the signal S and foregrounds F.
For simplicity, we compute the prior covariance matrices
from simulated MC realizations given a simple angular
power spectrum and frequency dependency of each com-
ponent. However, we adopt an independent and more
realistic sky model based on [23] and [24] to generate
input maps as our test dataset in order to verify the
foreground removal algorithms. This is to simulate the
scenario that as long as our prior knowledge of the sky
components is statistically correct, our foreground filter is
insensitive to the exact model mismatch between the prior
knowledge and the test data. Both the simplified prior
simulations and the more realistic test datasets are
described in this section.

a. HI emission

The mean brightness temperature of the HI signal as a
function of redshift is computed following [57] by

T̄obsðzÞ ¼ 44 μK

�
ΩHIh
2.45−4

� ð1þ zÞ2
EðzÞ ; ðC1Þ

where ΩHI is the neutral HI fraction assumed to be
constant over redshift at ΩHI ¼ 6.2 × 10−4, h ¼
H0=100 km s−1Mpc−1, and EðzÞ ¼ HðzÞ=H0 describing
the Hubble expansion.
The HI angular power spectrum is computed by using the

Limber approximation [58], which is a good approximation
to l≳ 50 assuming a flat sky,

Cl ¼ H0b2HI
c

Z
dzEðzÞ

�
T̄obsðzÞDðzÞ

rðzÞ
�
2

Pcdm

�
lþ 0.5

r

�
;

ðC2Þ

where bHI is the HI bias assumed to be constant at unity for
simplicity in our simulation, rðzÞ is the comoving distance
out to redshift z, DðzÞ is the growth factor, and Pcdm is the
cold dark matter power spectrum computed using the CAMB

software [59].
We simulate 50 equally spaced frequency channels

between 400 and 500 MHz. At each frequency, a
HEALPIX HI map realization with NSIDE ¼ 256 is

generated given its angular power spectrum using the
SYNFAST module provided by the HEALPIX package [60].
Although the simulated HI map realizations are full sky
maps, to minimize the strong emission from the other
foreground components in the Galactic plane, we mask out
the Galactic plane by using the Planck 2015 Galactic plane
mask with 80% unmasked sky.3 We arbitrarily select ten
separated sky locations outside of the mask, and a 30° × 30°
sky patch centered at each selected location is projected
into a two-dimensional (2D) Cartesian patch with a pixel
size of 150 × 150 as our input HI dataset. The upper left
panel in Fig. 6 shows one example of the HI patch at the
first frequency of 400 MHz.
For the prior covariance matrix to construct the fore-

ground filter, we adopt a simpler simulation while pre-
serving the statistic properties. We create a 2D field of
Gaussian distributed random complex numbers with a
mean of 0 and a standard deviation of 1. We compute
the real Fourier frequency for each side as

lx;y ¼
k

Wsize=2π
; k ¼

�
1;…;

Npix

2 − 1
;
Npix

2

�
; ðC3Þ

where Wsize ¼ 30° is the size of the patch per side
converted into radian. The 2π is to convert the Fourier
frequency into the unit of angular scale, i.e., multipole.
Npix ¼ 150 is the number of pixels per side. The radial
magnitude of the 2D Fourier frequency vector is then

lmag ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
x þ l2

y

q
. We define the scale-dependent power

spectrum in the form of

Pl ¼ A

�
lmag

lref

�
α

; ðC4Þ

where lref ¼ 200 is the reference scale at which the power
spectrum has an amplitude of A. α is the power spectrum
scale factor to scale the power with respect to the angular
scale. Depending on the sky component, we choose differ-
ent values of A and α so that the simulated patches are in the
same order of magnitude as the realistic input dataset. The
value of α is selected to preserve the scale-dependent
morphology for each component. For example, the small
scale HI signal has a smaller α value compared with the
synchrotron emission which is diffused over large scales.
We choose AHI ¼ 10−13 K2 and αHI ¼ −0.6 for our HI
simulation.
To obtain the simulated patches, we first scale the 2D

random Gaussian field with the square root of the power
spectrum to introduce scale-dependent structures in our
simulation. We then apply the inverse real Fourier trans-
form on the scaled Gaussian field to get the simulated 2D
temperature map. The HI covariance matrix for our

3Planck Legacy Archive: http://pla.esac.esa.int
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foreground filter is generated from 10000 realizations of the
simulated HI 2D patches for each frequency channel. We
have tested that 10000 realizations are much larger than the
degree of freedom in the prior covariance matrix to yield
unbiased results in our analysis. The lower left panel in
Fig. 6 shows one realization of the simulated HI patches.
Compared with the upper left panel, the two completely
independent simulation approaches for the test dataset and
the covariance matrix give consistent maps in terms of both
amplitude and morphology.

b. Synchrotron radiation

Synchrotron radiation arises from the interaction
between energetic charged particles and the Galactic
magnetic field [61]. At low radio frequencies, synchrotron
emission becomes the dominant emission from the sky,
brighter than other emissions. The Galactic synchrotron
emission has a smooth frequency spectrum that can be
approximated by a power law so that the brightness
temperature scales with the frequency as T ∝ νβ where β
is the spectra index varying across the sky [62].
We use the reprocessed all-sky [63] 408 MHz Galactic

synchrotron map [64] as the template for simulating
synchrotron maps as our test dataset. The synchrotron
map at each frequency is generated by a frequency scaling
of the 408 MHz template map as

Tðν; n̂Þ ¼ T408 MHzðν; n̂Þ
�

ν

408 MHz

�
βðn̂Þ

; ðC5Þ

where the spatially varying spectra index βðn̂Þ is estimated
from the all-sky spectral index map by [62], which has a
mean value of β̄ ¼ 2.695 with a standard deviation of
σβ ¼ 0.120. For each frequency, we project a 2D 30° × 30°
patch at the ten sky locations described above as our
synchrotron test dataset. The upper panel in the second
column of Fig. 6 shows one patch of the synchrotron map at
the frequency of 400 MHz. The colorbar highlights the
amplitude difference between the synchrotron emission and
the HI signal. The foregrounds thus must be properly
subtracted in order to detect the HI signal.
To get the prior covariance matrix of the synchrotron

emission, we adopt the simple 2D simulation as described
above for HI. The amplitude Asyn and scale factor αsyn for
the simulated synchrotron power spectrum [Eq. (C4)] are
5 × 10−5 K2 and −5, respectively. Since the synchrotron
maps are correlated across frequency, we generate 10000
realizations of simulated synchrotron maps for the first
frequency at 400 MHz. For each realization, we scale the
map to other frequency channels following Eq. (C5), where
we replace the 408 MHz synchrotron map by each
realization and scale with respect to 400 MHz. The spectral
index βðn̂Þ in this case varies spatially with a mean of −2.8

FIG. 6. Upper panels: The test dataset generated using the realistic simulation pipeline based on [23] and [24]. From left to right, we
show a map of the HI, synchrotron, free-free, and point source at a random location in the sky. Lower panels: The simulated maps using a
simplified approach to compute prior covariance matrices for the foreground filter. Each panel shows a 30° × 30° patch on the sky with
150 × 150 pixels at the first frequency channel of 400 MHz.
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and a standard deviation of 0.5. The values are chosen so
that they are close to the observed values but with larger
variations. This is to introduce more complex characters
than the test dataset in order for the foreground filter to
effectively tackle the complex structures inherent in the
synchrotron emission. The lower panel in the second
column of Fig. 6 shows one realization of the simulated
synchrotron patches at 400 MHz. The amplitude and large
scale diffused structures are consistent with the Haslam-
based synchrotron map in the upper panel.

c. Free-free radiation

Free-free radiation originates from the unbound inter-
action between free electrons and ions from ionized
interstellar medium [61]. The free-free frequency spectrum
is well-defined by a power law with an independent spectral
index to the Galactic synchrotron emission [65]. Therefore,
free-free emission adds spectral curvature to the foreground
components, increasing the complexity and difficulties of
component separation.
At radio frequencies, the optical Hα line is a good tracer

of free-free emission at intermediate and high Galactic
latitudes (jbj≳ 10°) outside of the Galactic plane. We use
the all-skyHα emission map [65] to simulate free-free maps
through the Hα-to-radio relation

T ≈ 10 mK

�
Te

104 K

�
0.667

�
ν

GHz

�
−2.1

IHα
; ðC6Þ

where IHα
is the Hα template in Rayleigh and Te is the

electron temperature fixed at 7000 K for our simulation,
which is the typical temperature of warm ionized gas at
radio frequencies [66]. A 2D 30° × 30° patch is projected at
each of the selected 10 sky locations as our free-free test
dataset. The upper panel in the third column of Fig. 6 shows
one patch of the free-free maps at 400 MHz as an example.
Compared with the small-scale HI signal and the diffused
synchrotron emission, the free-free map has more clustered
structures.
For the covariance matrix of the free-free emission, we

follow the 2D simulation as for the synchrotron emission.
The amplitude and scale factor based on Eq. (C4) are
Afree ¼ 10−5 K2 and αfree ¼ −2.5, respectively. The value
of the scale factor in this case is between the values of the
HI and synchrotron scale factors. This is because free-free
emission is less diffused on large scales than the synchro-
tron emission, but has more clustered structures than the
small-scale dominated HI emission. We generate 10000
realizations at the frequency channel of 400MHz, and scale
to other frequencies with a spatially varying spectral index
with a mean of −2.1 and a standard deviation of 0.5. This is
consistent with the observed spectral index in Eq. (C6) but
includes more spatial complications to build an effective
foreground filter. The lower panel in the third column of
Fig. 6 shows one realization of the simulated free-free map

at 400 MHz. We have chosen the spectral index to
introduce the medium-scale structures in the simulated
map in order to be consistent with the Hα-based free-free
map in the upper panel.

d. Point sources

Another component of foreground contamination is the
extragalactic point sources consisting of radio galaxies,
quasars, and other objects. We use the model from [57]
based on observed data from continuum surveys at 1.4 GHz
between 1985 and 2009 to simulate point source maps. The
mean background brightness temperature of the point
sources can be modeled by

T̄ps ¼
�
dB
dT

�
−1 Z Smax

0

S
dN
dS

dS; ðC7Þ

where dB=dT ¼ 2κBν
2=c2, with ν being the observing

frequency, c being the speed of light, and κB being the
Boltzmann constant. Smax is the flux density assuming one
can subtract sources with S > Smax. In principle, one
expects to subtract the brightest radio sources down to
Smax ¼ 10 mJy using the National Radio Astronomy
Observatory Very Large Array Sky Survey (NVSS) with
a completeness of 3.4 mJy. We choose a conservative value
of Smax ¼ 1 Jy in our case to test our foreground filter. The
source count dN=dS, quantifying the number of sources per
steradian per unit flux, is computed using a fifth order
polynomial model from [57] by fitting observed data of
multiple continuum surveys at 1.4 GHz.
The fluctuations on the background temperature can be

characterized in two components: (i) the Poisson distrib-
uted sources; (ii) the clustered sources. Poisson distributed
sources contribute to the fluctuations in two parts. For weak
sources at the limit of a sufficiently large number density,
the intensity distribution can be approximated by a
Gaussian distribution with a white power spectrum of [57]

CPoisson
l ¼

�
dB
dT

�
−2 Z SPS

0

S2
dN
dS

dS; ðC8Þ

where SPS ¼ 0.01 Jy is the upper limit of the source flux
density that still satisfies a Gaussian distribution [24]. For
sources with a higher flux density of SPS < S < Smax, the
source density becomes too low that we must simulate their
contribution by directly distributing sources on the sky map
with the number of sources and their flux densities
respecting the source count model. To do this, we calculate
the number of sources,Ni, in aggregate source density bins,
Si, between SPS and Smax through Ni ¼

R SiþΔS=2
Si−ΔS=2

dN
dS dS,

where ΔS is the source flux density bin width. For each bin
Si, we assign Ni sources with random flux density between
Si − ΔS=2 and Si þ ΔS=2, and distribute them on random
sky locations. The corresponding brightness temperature at
a particular pixel at location n̂ on the sky is computed by
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TPSðν; n̂Þ ¼
�
dB
dT

�
−1
Ω−1

pix

XJ
j¼1

SjðνÞ; ðC9Þ

whereΩpix is the pixel size, J is the total number of sources
allocated within the pixel, and SiðνÞ is the flux of each point
source at frequency ν.
The power spectrum of clustered point sources can be

estimated as [24]

CCluster
l ≈ 1.8−4l−1.2T̄2

PS: ðC10Þ

In summary, the point source map is a combination of a
background mean temperature given by Eq. (C7), a
Gaussian map realization from the power spectrum in
Eq. (C8) for weak Poisson distributed sources, randomly
located strong Poisson sources from Eq. (C9), and a
Gaussian map realization of the clustered point source
power spectrum in Eq. (C10).
We adopt a power law to scale the point source bright-

ness temperature into different frequencies by Tb ∝ να. The
spectral index α is randomized for each pixel of the
simulated map following a Gaussian distribution:

GðαÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp

�
−
ðα − α0Þ2

2σ2

�
; ðC11Þ

where the mean and standard deviation of the Gaussian
distribution are α0 ¼ −2.7 and σ ¼ 0.2, respectively [57].
As for the other sky components, a 2D 30° × 30° patch is
projected at each of the selected ten sky locations to be the
point source test dataset. The upper right panel in Fig. 6
shows one patch of the point source maps at 400 MHz,
which is dominated by small-scale structures.
For the covariance matrix, we simulate 2D point source

maps in a much simpler way. We generate a total number of
2 × N2

pix point sources, where Npix ¼ 150 is the number of
pixels per side. We assume each point source is smaller than
the pixel size so that each source occupies a single pixel.
We randomly distribute the point sources on the 2D map.
Therefore, we have ∼2 point sources in each pixel on
average. Each source has a randomly allocated brightness
temperature between Tmin ¼ 0.01 K and Tmin ¼ 10 K.
These thresholds are chosen so that the simulated 2D maps
have approximately the same order of magnitude as the
point source test dataset. We simulate 10000 realizations of
the 2D point source maps at the first frequency channel of
400 MHz. Each realization is scaled to other frequencies
through a spatially varying spectral index with a mean of
−2.7 and a standard deviation of 0.5. The lower right panel
of Fig. 6 shows one realization of the simulated point
source at 400 MHz. The amplitude is consistent with the
test dataset in the upper panel, while the map constitutes
Poisson distributed sources only.

2. Instrument model

A telescope array object in the simulation pipeline is
characterized by an array layout (the physical arrangement
of the antenna elements) and the parameters that describe
each antenna element in the array including primary
beam, system temperature, and frequency of operation.
Visibilities are calculated via a two-dimensional Fourier
transform of the flat sky maps weighted by the telescope’s
primary beam.
The primary beam is calculated from a user-defined

window function that represents the antenna illumination
pattern, and that is Fourier transformed, interpolated to
each pixel in the flat-sky map, and squared to obtain the
power beam at each frequency of operation. By using an
illumination pattern as a starting point for the beam, we are
able to generate beams that have the desired frequency
dependence and properties of a realistic beam while having
control over the leak of signal power in visibility space
outside the telescope’s physical dimensions due to the
truncated nature of the flat sky maps. By default, we use a
two-dimensional modified Bartlett-Hann window as the
illumination pattern.
The visibilities are corrupted by instrumental noise that

is modeled as additive complex-valued Gaussian distrib-
uted noise that is stationary and uncorrelated between
antennas and frequencies. The noise of each visibility is
determined by the system temperature, integration time,
bandwidth, and redundancy according to the radiometer
equation.

3. Power spectrum estimator

To quantify the performance of our foreground filter, we
compare the power spectra of the recovered HI map and the
input HI dataset. The power spectrum estimator is con-
structed in the form of a quadratic estimator such that [25]

Cl ¼ F−1
ll0

2
ðd†

1C
−1C;l0C−1d2Þ: ðC12Þ

In our case, d1 and d2 are the recovered HI maps from two
different seasons so that the thermal noise will be canceled
out through the cross-spectrum estimation. Fll0 is the
Fisher matrix defined as

Fll0 ¼ 1

2
Tr½C;lC−1C;lC−1�: ðC13Þ

In each case,C−1 is the inverse covariance matrix including
all components (C ¼ Sþ Fþ N), computed using the
simplified simulation with 10000 realizations as described
in Sec. C 1. Physically, the inverse covariance matrix
applies weighting to the data. C;l is the derivative matrix
with respect to the HI signal at the angular scale of
multipole l. Physically, the derivative matrix characterizes
the properties of the HI signal to enable the accurate
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estimation of the HI power from the given data. The
derivative matrix is calculated by replacing the HI power
spectrum in Eq. (C4) with a top-hat function so that for
each multipole bin centered at li with a bin width of δl, the
power spectrum within that bin is

Pli ¼
	
1 li − δl

2
< l < li þ δl

2

0 elsewhere
: ðC14Þ

Based on our telescope configuration, the largest angular
scale we can measure is l ¼ 59 and the smallest scale is
l ¼ 414. In our analysis, we choose 14 equally spaced
multipole bins within the measurable scales to compute our
power spectra. Since our HI simulation is completely
Gaussian, the uncertainty on the estimated power spectrum
is the square root of the inverse of the Fisher matrix such that

ΔCl ¼
ffiffiffiffiffiffiffiffiffi
F−1
ll0

q
: ðC15Þ

Our power spectrum estimator is independent of the
exact space of the data, as long as it is consistent with the
total covariance and derivative matrices throughout
Eq. (C12). In our analysis, we project the total covariance
and derivative matrices into the KL space to estimate the
power of the recovered HI signal after our KL-based
foreground filter. The projected data and covariance contain
all measured degrees of freedom from both baselines and
frequencies. Therefore, the estimated power spectrum
following Eq. (C12) is equivalently the redshift-averaged
spectrum of the recovered HI signal. We compare the
recovered HI power spectrum with the input HI spectrum
computed from the full-sky HI test dataset simulated with
the realistic sky model before projecting into the 2D
patches (see Sec. 1 a). We use the ANAFAST module
provided by the HEALPIX package to calculate the input
HI power spectrum at the central frequency to be compa-
rable with the recovered HI spectrum.
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