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We study the Hamiltonian formulation of the Ashtekar-Olmedo-Singh model for the description of the
interior geometry of nonrotating, uncharged black holes. This model incorporates loop quantum effects
through the introduction of two regularization parameters. We consider an extended phase space formalism
proposed by the creators of the model that includes such parameters as configuration variables, constrained
to be functions of the black hole mass. We generalize this restriction, allowing for an off shell phase space
dependence. We then introduce a gauge fixing procedure and reduce the system, proving that the reduced
symplectic structure cannot reproduce the standard relativistic one in terms of the densitized triad and the
Ashtekar-Barbero connection. Actually, the reduced structure precisely compensates the modifications that
arise in the Hamilton equations when the regularization parameters are treated as phase space functions,
rather than as numbers, attaining a consistent Hamiltonian derivation of the dynamics. We then choose the
extended phase space formalism as starting point to address the loop quantization of the model. Taking the
definition of certain geometric operators as the only basic ingredient and adopting prescriptions that have
proven successful in loop quantum cosmology, we construct a polymer representation of all the constraints
and deduce the formal expression of the physical states, assuming reasonable spectral properties for the
constraint operators. The physical states turn out to be characterized by a wave function of the black hole
mass with support on a very specific set. We finally discuss conditions that guarantee the existence of
physical states in the region of large black hole masses. This is a first step in the development of a new loop
quantum theory of black holes.
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I. INTRODUCTION

Among the different approaches for the quantization of
general relativity, loop quantum gravity (LQG) [1,2] stands
out as a promising candidate, leading to predictions that
might eventually make contact with observations. For
example, the application of LQG techniques to the descrip-
tion of the very early Universe, in the discipline known as
loop quantum cosmology (LQC) [3–11], is an active field
that might unveil traces of quantum gravitational phenom-
ena in the cosmic microwave background [12–19]. Another
appealing scenario for testing the quantum nature of gravity
is black hole physics, especially as we are witnessing the
dawn of gravitational wave astronomy.
Over the last decades, there have been many proposals to

apply the quantization program of LQG to spacetimes that

correspond toblackholes ingeneral relativity [20–29,29–41].
The case of spherically symmetric spacetimes is especially
interesting, owing to their simplicity but yet rich physical
properties. In this context, a fewyears agoAshtekar, Olmedo,
and Singh (AOS) proposed a loop quantum extension of the
Kruskal spacetime which has received a fair amount of
attention [42–44]. This model incorporates quantum effects
arising from LQC in the description of the interior of the
Schwarzschild black hole, which behaves as an anisotropic
cosmology. The resulting geometry is then smoothly
extended to the exterior. As a consequence of the modifica-
tions based on LQC, the classical singularity in the interior is
replaced with a transition surface that connects a trapped
region with an antitrapped one. Remarkably, the curvature
invariants remain finite throughout the whole spacetime.
Furthermore, in contrast with previous approaches to the
loop quantum description of spherically symmetric models
[23,24,32–34], the AOS model displays local quantum
gravity effects near the horizons and in the exterior regions
that are controllably small (for macroscopic black holes).
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A fundamental difference between the construction of the
AOS model and other previous LQC descriptions of black
holes resides in the procedure followed to regularize the
classical Hamiltonian [43]. In the formulation of general
relativity in terms of gauge connections and densitized triads
that constitutes the basis of LQG, the Hamiltonian depends
on the curvature of the Ashtekar-Barbero connection [1,2].
This curvature is not well defined as an operator in LQG,
owing to the noncontinuity of the quantum representation
provided for the geometry [45,46]. This issue is inherited by
LQC, so that one needs to prescribe a regularized version of
the curvature prior to its quantization. This is usually done in
terms of some parameters of quantum origin, which are
related to the minimum nonzero eigenvalue allowed for the
area operator in LQG [3–5]. The classical Hamiltonian is
recovered in the limit in which this area gap tends to zero.
The distinctive feature of the AOS formulation of the black
hole interior is that these quantum parameters are chosen to
be specific functions of the mass of the black hole itself.
Such a choice is the primary reason behind the appealing
properties of the resulting spacetime geometry [42,43,47].
The regularization of the Hamiltonian chosen in the

original works of the AOS model, leading to the extended
Kruskal spacetime briefly described above, has been an
active subject of debate [48–53] (see Refs. [54,55] for
criticisms on other features of the model). The reason is
that, whereas the quantum parameters that are introduced
for the regularization are chosen as functions of the black
hole mass, their treatment in the calculation of the dynami-
cal equations casts shadows on the correct derivation of the
AOS solution. Indeed, that mass is in fact a constant of
motion of the system and, therefore, it is a function on
phase space. Thus, if the equations of motion follow from
the regularized Hamiltonian, the phase space dependence
of the mass should be taken into account when deducing
them. On the contrary, the dynamical equations that
describe the AOS geometry can only be obtained from
this Hamiltonian if the quantum parameters are handled as
pure constants in the calculations, making them equal to
functions of the mass only at the very end, namely on shell.
In order to motivate the dynamical equations for the

black hole interior from a canonical approach, the authors
of the AOS model have argued that they can be derived if
one suitably extends the phase space to include the
quantum parameters as canonical variables [43]. In this
extended formulation, these parameters are subject to
constraints that dictate their relation with the mass as given
functions on phase space. Nonetheless, the symplectic
relation between the reduction of this extended phase
space (after imposing the constraints) and the original
phase space of the black hole interior is unclear.
Understanding this relation is of major importance if one
wishes to go beyond the study of a spacetime geometry
with loop corrections, and explore a canonical quantum
description of the black hole. In fact, the AOS model is

conceived to portrait the semiclassical behavior of certain
states in the loop quantization of nonrotating black holes.
This is precisely what happens with the cosmological
dynamics in LQC from which it draws inspiration, where
certain families of Gaussian states describe bouncing
universes within an effective dynamics [56]. However, that
this is actually the case for black hole spacetimes is just an
assumption at present. A viable quantum theory for the
black hole interior is needed to support that the AOS
geometry is a manifestation of quantum gravity phenom-
ena. The construction of this theory should be founded on a
Hamiltonian formulation of the system which, drawing a
parallelism with LQC, ideally would lead to the AOS
model after a suitable regularization.
With this perspective, the aim of this work is twofold. On

the one hand, we want to clarify how the extended phase
space proposed by the authors of the AOS model relates,
after reduction, to the phase space of a Kantowski-Sachs
cosmology in general relativity [57–59]. This anisotropic
spacetime describes the interior of the Schwarzschild black
hole and, thus, it has traditionally served as the starting
point for the study of the interior region of nonrotating
black holes in LQC [20,21,23–25,27,29,32–34]. As wewill
see, the Poisson algebra of the connection and triad
variables that describe the geometry differs greatly in the
two formalisms under consideration. The variables are
canonical in the case of Kantowski-Sachs, but not really
in the extended phase space formalism (after reduction).
This difference is precisely what makes possible that, using
the symplectic structure inherited from the extended phase
space, one can consistently derive the dynamical equations
of the AOS model starting from the (regularized)
Hamiltonian in Kantowski-Sachs, with the quantum param-
eters fixed as off shell functions of the black hole mass. One
is then inclined to believe that, if the AOS geometry is to be
recovered effectively from a genuine quantum model of
black hole spacetimes, then this quantum model should be
based on the Hamiltonian formulation of the extended
Kantowski-Sachs phase space. These considerations lead to
the second purpose of this work, namely, paving the road to
the loop quantization of the black hole (interior). We will
argue in favor of using the extended Kantowski-Sachs
model for its quantum description, and then proceed to
outline the main steps for its quantization. The Hamiltonian
of the system is a linear combination of constraints; the
relativistic one, identical to the one found in Kantowski-
Sachs cosmologies, and the ones that implement the
relation between the quantum parameters and the black
hole mass. We will show how to construct a quantum
representation for these constraints following well known
techniques of LQC and LQG. Finally, we will formally
show how physical states (namely, those annihilated by the
constraints) look like, and discuss some of their properties.
The content of this paper is organized as follows. In

Sec. II, we summarize the AOS model of a black hole
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interior. In order to make this paper self-contained, we
briefly introduce the canonical description of Kantowski-
Sachs cosmologies in terms of Ashtekar-Barbero variables.
Then, we formulate the effective Hamiltonian and equa-
tions of motion of the AOS model, noticing some caveats in
their relation. Finally, we summarize the extended phase
space formulation used in Ref. [43] to motivate these
equations of motion from a Hamiltonian perspective. In
Sec. III, we consider a natural generalization of the
extended phase space, that takes into account the on shell
indistinguishability of two different identifications of the
black hole mass as a phase space function. The aim of this
section is to clarify the relation between phase space
reductions leading to the AOS model and the
Kantowski-Sachs cosmologies. For this, we first study
how such reductions affect the symplectic algebra of
connection and triad variables. We explicitly derive this
algebra and show that it is inequivalent to the canonical one
found in the case of the Kantowski-Sachs cosmologies.
This inequivalence actually turns out to allow for a
consistent derivation of the AOS model in the reduced
phase space. In Sec. IV we address the loop quantization of
the extended phase space formalism. We borrow techniques
from LQC to find a representation of the holonomy-flux
algebra, and use it to construct a quantum representation of
the constraints of the system after their regularization
(according to the usual strategies in LQG). Finally, in
Sec. V we formally characterize the physical states annihi-
lated by these constraints and discuss conditions to con-
sistently recover a reasonable sector of large black hole
masses. In Sec. VI we summarize our results and comment
on the outlook of our research. Two appendixes with details
are included. Throughout this article, we adopt geometrical
natural units, setting the speed of light, Planck’s reduced
constant, and Newton’s gravitational constant equal to one.

II. THE AOS MODEL

Let us start by considering homogeneous but anisotropic
classical spacetimes that exhibit spherical symmetry. It is
well known that their geometry can be described by a
Kantowski-Sachs metric [57–59]. Furthermore, in suitable
coordinates, they can model the interior of the
Schwarzschild black hole [20]. The topology of the spatial
hypersurfaces is given by I × S2, where I ¼ ð0; LoÞ and Lo
is a fiducial coordinate length.1 The components of the
densitized triad and Ashtekar-Barbero connection can be
respectively written as

Eα
i ∂α ¼ δ3i pc sin θ∂x þ δ2i

pb

Lo
sin θ∂θ − δ1i

pb

Lo
∂ϕ; ð2:1Þ

Ai
αdxα ¼ δi3

c
Lo

dxþ δi2bdθ − δi1b sin θdϕþ δi3 cos θdϕ;

ð2:2Þ

where ðx; θ;ϕÞ is a set of coordinates adapted to the spatial
isometries, with x ∈ I, θ ∈ ½0; πÞ, and ϕ ∈ ½0; 2πÞ.
Throughout this paper, we adopt a convention such that
letters from the beginning of the Greek alphabet denote
spatial indices on tensor fields and take values in the set
ðx; θ;ϕÞ, whereas i; j;… ¼ 1, 2, 3 represent internal suð2Þ
indices. The variables pb, pc, b, and c are functions of the
coordinate time of the system τ and they codify the
dynamical information about the triad and connection
components. In terms of these and the lapse function N,
the spacetime line element reads

ds2 ¼ −NðτÞ2dτ2 þ p2
bðτÞ

L2
ojpcðτÞj

dx2

þ jpcðτÞjðdθ2 þ sin2 θdϕ2Þ: ð2:3Þ

In general relativity, our variables satisfy a canonical
algebra with the following nonzero Poisson brackets,

fb; pbg ¼ γ; fc; pcg ¼ 2γ; ð2:4Þ

where γ ≃ 0.2375 is the commonly used value of the
Immirzi parameter in LQG [1,2]. In addition, the
Hamiltonian HKS½N� for the considered Kantowski-Sachs
cosmologies can be expressed as

HKS½N� ¼ NLo
b

γ
ffiffiffiffiffiffiffiffijpcj

p ðOKS
b −OKS

c Þ;

OKS
b ¼ −

pb

2γLo

�
bþ γ2

b

�
; OKS

c ¼ cpc

γLo
: ð2:5Þ

In the classical theory, with the choice of lapse
N ¼ γ

ffiffiffiffiffiffiffiffijpcj
p

=b, the phase space sectors coordinatized
by ðb; pbÞ and ðc; pcÞ are dynamically decoupled.
Furthermore, the partial HamiltoniansOKS

b andOKS
c , which

generate the respective dynamics of these sectors with a
suitable choice of time, are constants of motion and equal to
each other on shell. When the Kantowski-Sachs geometry
is used to describe the interior region of the Schwarzschild
black hole in general relativity, the absolute value of the
resulting constant of motion turns out to be the ADM mass
of the spacetime.

A. The AOS dynamics

In homogeneous and isotropic LQC, well established
results show that a wide class of physical states are peaked
at trajectories for the phase space variables that follow a
dynamics generated by an effective Hamiltonian [4,5,56].
Remarkably, it turns out that this effective Hamiltonian can

1The consideration of the interval I instead of the real line
avoids possible infrared divergences in the Hamiltonian formu-
lation. Physical quantities must have a well-defined limit when
Lo tends to infinity.
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be obtained by replacing the connection variable ζ in that
model by sinðμ̄ζÞ=μ̄ [60], where μ̄ is a (phase space
dependent) regularization parameter of quantum origin.
Specifically, μ̄ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ=jpζj
p

, where pζ is the canonically
conjugate momentum of ζ and Δ is the minimum nonzero
area allowed by the spectrum of the area operator in LQG
[56]. Motivated by these results, the AOS model assumes
an effective dynamical description of the black hole interior
that, with the choice of lapse described in the preceding
paragraph, is generated by the effective Hamiltonian
[42,43]

Heff
AOS ¼ LoðOb −OcÞ;

Ob ¼ −
pb

2γLo

�
sinðδbbÞ

δb
þ γ2δb
sinðδbbÞ

�
;

Oc ¼
sinðδccÞ
γLoδc

pc; ð2:6Þ

where δb and δc are the (real) quantum parameters of the
model. Clearly, if these parameters are genuine constant
numbers or functions of Ob and/or Oc, we find ourselves
again in a situation where these two partial Hamiltonians
are equal on shell to one and the same constant of motion,
which we will call m.
In the original formulation of the AOS model, it is

claimed that the following equations of motion for the
connection and triad variables follow from the above
Hamiltonian [42,43],

_b ¼ −
1

2

�
sinðδbbÞ

δb
þ γ2δb
sinðδbbÞ

�
;

_c ¼ −2
sinðδccÞ

δc
; ð2:7Þ

_pb¼
pb

2
cosðδbbÞ

�
1−

γ2δ2b
sin2ðδbbÞ

�
; _pc¼ 2pc cosðδccÞ;

ð2:8Þ

for a large class of quantum parameters whose behavior is
fixed so that, in the limit of large jmj,

δb ¼
� ffiffiffiffi

Δ
pffiffiffiffiffiffi
2π

p
γ2m

�1=3

; Loδc ¼
1

2

�
γΔ2

4π2m

�
1=3

: ð2:9Þ

The AOS black hole interior geometry is attained by
solving Eqs. (2.7) and (2.8). However, the actual
Hamiltonian derivation of these dynamical equations is
rather obscure. Indeed, using the symplectic structure of the
Kantowski-Sachs cosmologies [see Eq. (2.4)], the only way
to derive these equations from the effective Hamiltonian
Heff

AOS is to treat the quantum parameters δb and δc as
constant numbers. Nevertheless, they are finally fixed as
functions of the mass m, which, we recall, is in fact a

constant of motion; it takes a different value on each of the
dynamical solutions. Because of this nontrivial phase space
dependence, functions of m do not behave as constant
numbers under Poisson brackets. The realization of this
tension has led several authors to question the fundamental
relation between the effective Hamiltonian and the dynam-
ics of the AOS model [48,52,53].

B. Extended phase space

In order to attain a Hamiltonian derivation of the
dynamical equations of the AOS model consistent with
the identification of the quantum parameters as constants of
motion, an extension of the Kantowski-Sachs phase space
ΓKS and of its dynamics has been proposed in Ref. [43]. In
that work, an extended phase space Γext of dimension eight
is defined in the first place. In addition to the pairs ðb; pbÞ
and ðc; pcÞ, which satisfy the canonical algebra (2.4), two
new pairs ðδb; pδbÞ and ðδc; pδcÞ are introduced, their only
nonzero Poisson brackets being

fδb; pδbg ¼ 1; fδc; pδcg ¼ 1: ð2:10Þ

The Hamiltonian on this extended phase space has the form

NHeff
AOS þ λbΦb þ λcΦc; ð2:11Þ

where N, λb, and λc are nondynamical Lagrange multi-
pliers, and the constraints Φb and Φc take the expressions

Φb ¼ Ob − FbðδbÞ; Φc ¼ Oc − FcðδcÞ; ð2:12Þ

for a certain pair of (at least) C1 functions, Fb and Fc. In
principle, the only restriction on them [arising from
Eq. (2.9)] is that they must behave as

FbðδbÞ ¼
ffiffiffiffi
Δ

pffiffiffiffiffiffi
2π

p
γ2δ3b

; FcðδcÞ ¼
γΔ2

32π2ðLoδcÞ3
; ð2:13Þ

at dominant order in the limit of small absolute values of δb
and δc. Clearly, all of the constraints in this Hamiltonian
commute with each other under Poisson brackets, so they
form a first-class set and can be interpreted as the
generators of symmetries of the system. Under the choice
of Lagrange multipliers N ¼ 1 and λc ¼ λb ¼ 0, the
evolution generated by this Hamiltonian on the subspace
of Γext coordinatized by ðb; pbÞ and ðc; pcÞ is ruled by the
AOS dynamics [42]–(2.9). These equations can be equiv-
alently obtained if one (i) suitably fixes the freedom
associated with the constraints Φb and Φc to eliminate
the degrees of freedom associated with the pairs ðδb; pδbÞ
and ðδc; pδcÞ, and (ii) computes the dynamics on the phase
space Γ̄ext resulting from the reduction of the system,
provided that the choice of gauge leads to λb ¼ λc ¼ 0. A
particular class of such gauge choices for ðδb; pδbÞ and
ðδc; pδcÞ is considered in Ref. [43], where the AOS
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equations for the black hole interior are explicitly obtained
after the gauge fixing. In view of this procedure, it seems
natural to ask what kind of relation actually exists between
Γ̄ext and ΓKS. This question is of key importance to
understand how the AOS dynamical equations can arise
canonically from an effective LQC description of
Kantowski-Sachs cosmologies.

III. REDUCTION OF THE EXTENDED PHASE
SPACE

In this section we will consider reductions of the
extended phase space Γext that remove the degrees of
freedom ðδb; pδbÞ and ðδc; pδcÞ and lead to vanishing
Lagrange multipliers λb and λc, so that the AOS equations
may rule the reduced dynamics. Then, we will study the
relation between the result of this reduction and the
Kantowski-Sachs phase space ΓKS.
With the aim of generalizing previous studies while

respecting the good physical properties of the system, we
will carry out our analysis with a Hamiltonian different
from (2.11), but equally valid on Γext. Indeed, let us notice
that the constant of motion m of the AOS model is
indistinguishable from both Ob and Oc on shell [52,53].
Therefore, we can more generally consider the Hamiltonian

Heff
ext ¼ NHeff

AOS þ λbΨb þ λcΨc; ð3:1Þ

where the constraints Ψb and Ψc associated with the
quantum parameters take the form

Ψb ¼KbðOb;OcÞ− δb; Ψc ¼KcðOb;OcÞ− δc; ð3:2Þ

for a certain pair of sufficiently smooth functions, Kb and
Kc. A priori, the only restriction on these functions is that,
at dominant order in the limit of large jmj,

Kbðm;mÞ ¼
� ffiffiffiffi

Δ
pffiffiffiffiffiffi
2π

p
γ2m

�1=3

;

Kcðm;mÞ ¼ 1

2Lo

�
γΔ2

4π2m

�
1=3

; ð3:3Þ

as it is required to correctly generate the equations of
motion of the AOS model under the choice of Lagrange
multipliers given by N ¼ 1 and λc ¼ λb ¼ 0. Once again, it
is clear that all of the constraints in Heff

ext form a first-class
set which generates the symmetries of the system.

A. Gauge-fixing procedure: Dirac algebra

In order to remove δb and δc as degrees of freedom, one
can add to the constraints Ψb and Ψc conditions that fix the
gauge associated with the canonical momenta pδb and pδc .
Following the strategy employed in Ref. [43], we introduce
the gauge fixing conditions χb ¼ χc ¼ 0, with

χb¼Pδb −GbðOb;OcÞ; χc¼Pδc −GcðOb;OcÞ; ð3:4Þ

where Gb and Gc are two sufficiently smooth functions.
Here, Pδb and Pδc are suitably defined momenta that are
canonically conjugate to δb and δc, respectively, and
constructed so that they Poisson commute with the partial
Hamiltonians Ob and Oc. Actually, one can change
variables from b, c, and their momenta to Ob, Oc, and
suitable momenta Pb and Pc, obtaining a canonical set for
the extended phase space together with ðδb; Pδb ; δc; PδcÞ.
Further details on this canonical transformation, including
the expressions of the new momenta, can be found in
Appendix A, although we encourage the reader to consult
Ref. [43] for a complete description. Let us mention here
only the properties of Pδb and Pδc that are relevant for the
present discussion, namely that these momenta depend
exclusively on the respective b and c sectors and differ from
the original momenta pδb and pδc in terms independent
of them,

Pδb ¼ Pδbðb; pb; δb; pδbÞ;
∂Pδb

∂pδb

¼ 1;

Pδc ¼ Pδcðc; pc; δc; pδcÞ;
∂Pδc

∂pδc

¼ 1: ð3:5Þ

The constraints Ψb, Ψc, χb, and χc form a second-class set,
indicating that our conditions provide a good gauge fixing.
Indeed, the Poisson algebra of these constraints reads

fχb;Ψbg¼ 1; fχc;Ψcg¼ 1; fχb;Ψcg¼ 0;

fχc;Ψbg¼ 0; fχb;χcg¼ 0; fΨb;Ψcg¼ 0: ð3:6Þ

In addition, for the gauge fixing to be well posed, it must be
stable under the dynamical evolution generated by the
Hamiltonian Heff

ext. This requires that the Lagrange multi-
pliers λb and λc can be fixed so that the Poisson brackets of
the four considered constraints with the total Hamiltonian
vanish on our gauge-fixing section. A straightforward
calculation shows that this is indeed the case if and only
if λb ¼ λc ¼ 0.
After this gauge fixing, the pairs ðδb; PδbÞ and ðδc; PδcÞ

become functions of the rest of phase space. In this sense,
the eight-dimensional extended phase space Γext is reduced
to a four-dimensional one, Γ̄ext. The canonical algebra of
functions on Γ̄ext is obtained from the pull back of the
symplectic structure on Γext. An explicit way in which one
can derive this canonical algebra on the reduced phase
space is by considering the passage from Poisson to Dirac
brackets. If f·; ·g are the Poisson brackets of the phase
space subject to the set of second-class constraints
ðφ1;…;φ4Þ ¼ ðΨb;Ψc; χb; χcÞ, the Dirac bracket f·; ·gD
between two functions f and g on the reduced phase space
where these constraints have been implemented is defined
as [61]
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ff; ggD ¼ ff; gg −
X4
μ;ν¼1

ff;φμgðM−1Þμνfφν; gg; ð3:7Þ

where M is the 4 × 4 matrix with elements given by
ðMÞμν ¼ fφμ;φνg. In the case under consideration, we
simply have

M−1 ¼
�

02 I2
−I2 02

�
: ð3:8Þ

Here, 02 and I2 are the two-dimensional null and identity
matrices, respectively.
After reducing the phase space with our gauge fixing

conditions, the Dirac algebra of the variables Ob, Pb, Oc,
and Pc on Γ̄ext can be easily computed to be

fOb; PbgD ¼ 1; fOc; PcgD ¼ 1; fOb;OcgD ¼ 0;

fPb; PcgD ¼
X
a¼b;c

�
∂Ga

∂Ob

∂Ka

∂Oc
−
∂Ga

∂Oc

∂Ka

∂Ob

�
: ð3:9Þ

Then, it is clear that, for general choices of gauge (namely,
general choices of functions Ga and Ka), the resulting
algebra ceases to be canonical on the reduced phase space,
because the last bracket is not identically zero.

B. Inequivalence with Kantowski-Sachs cosmologies

In the original motivation for an extended phase space
formulation of the AOS model, it is assumed that a choice
of gauge such that fPb; PcgD ¼ 0 leads to a reduced phase
space Γ̄ext that is symplectomorphic to the phase space ΓKS
of the Kantowski-Sachs cosmologies [43]. It is in this sense
that the AOS dynamical equations are understood as arising
from a Hamiltonian description of the system. However, the
implicit dependence of the quantum parameters δb and δc
appearing in the partial Hamiltonians Ob and Oc on these
same quantities obscures the validity of such an
assumption. In fact, in the following, we will explicitly
show that Γ̄ext and ΓKS describe inequivalent phase spaces,
even if one fixes the gauge such that fPb; PcgD ¼ 0. We
will do so by checking the Dirac algebra that the connection
and triad variables b, pb, c, and pc satisfy in Γ̄ext. We will
prove that they fail to form canonical pairs, unlike what
happens in ΓKS.
Let us first restrict our analysis to any choice of gauge

that guarantees the commutativity of Pb and Pc under Dirac
brackets, namely to functions Gb and Gc that satisfy

∂Gb

∂Ob

∂Kb

∂Oc
−
∂Gb

∂Oc

∂Kb

∂Ob
¼ ∂Gc

∂Oc

∂Kc

∂Ob
−
∂Gc

∂Ob

∂Kc

∂Oc
: ð3:10Þ

A direct application of Eqs. (3.7) and (3.8) then reveals that
the variables b, pb, c, and pc have the following nonzero
Dirac brackets in Γ̄ext,

fb; pbgD ¼ γ

�
1 −

∂Kb

∂Ob

∂Ob

∂δb

�
;

fc; pcgD ¼ 2γ

�
1 −

∂Kc

∂Oc

∂Oc

∂δc

�
; ð3:11Þ

fb; cgD ¼ 2γ2
�
∂Pδc

∂pc

∂Kc

∂Ob

∂Ob

∂pb
−
∂Pδb

∂pb

∂Kb

∂Oc

∂Oc

∂pc

�
; ð3:12Þ

fb; pcgD ¼ 2γ2
�
∂Pδb

∂pb

∂Kb

∂Oc

∂Oc

∂c
−
∂Pδc

∂c
∂Kc

∂Ob

∂Ob

∂pb

�
; ð3:13Þ

fc; pbgD ¼ 2γ2
�
∂Pδc

∂pc

∂Kc

∂Ob

∂Ob

∂b
−
∂Pδb

∂b
∂Kb

∂Oc

∂Oc

∂pc

�
; ð3:14Þ

fpb;pcgD¼ 2γ2
�
∂Pδc

∂c
∂Kc

∂Ob

∂Ob

∂b
−
∂Pδb

∂b
∂Kb

∂Oc

∂Oc

∂c

�
; ð3:15Þ

as one can readily check using that Pδb and Pδc exhibit the
properties displayed in Eq. (3.5) and that they Poisson
commute by construction with Ob and Oc in the extended
phase space Γext. Clearly, the Dirac brackets fb; pbgD and
fc; pcgD are not constant for general choices of functionsKb
andKc. In particular, this happens if one definesKb andKc to
depend only on Ob and Oc, respectively, as it is done in the
original Ref. [43] of the AOS model (see Sec. II B). In that
case, it is true that the rest of Dirac brackets (3.12)–(3.15)
vanish, but the connection variables still do not have
canonical brackets with the triad ones. In general, the
nontrivial cases inwhich fb; pbgD and fc; pcgD are constant
occur when Kb and Kc are respectively independent of Ob
andOc. Then, however, it is not hard to convince oneself that
the rest ofDirac brackets cannot be all zero. Finally, the trivial
situation with constant functions Kb and Kc is excluded by
the very construction of the AOS model. We can thus
conclude that the connection and triad variables can never
form a canonical set in Γ̄ext. As an immediate consequence,
the reduced phase space is generally inequivalent to the one
that describes the Kantowski-Sachs cosmologies.
The change in the canonical structure of Γ̄ext with respect

to that of ΓKS can be used to reconcile the AOS dynamical
equations with an effective Hamiltonian NHeff

AOS where the
quantum parameters δb and δc are phase space functions that
behave as constants of motion on solutions. Indeed, after
imposing the constraintsΨb ¼ Ψc ¼ 0 associatedwith these
parameters, the Dirac brackets between the variables b, pb,
and the partial Hamiltonians Ob and Oc can be written as
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fb;ObgD ¼ 1

β

�
∂Ob

∂pb

�
1 −

∂Kc

∂Oc

∂Oc

∂δc

�
fb; pbgD þ ∂Kb

∂Oc

∂Ob

∂δb

�
∂Oc

∂c
fb; cgD þ ∂Oc

∂pc
fb; pcgD

��
;

fb;OcgD ¼ 1

β

�
∂Ob

∂pb

∂Kc

∂Ob

∂Oc

∂δc
fb; pbgD þ

�
1 −

∂Kb

∂Ob

∂Ob

∂δb

��
∂Oc

∂c
fb; cgD þ ∂Oc

∂pc
fb; pcgD

��
; ð3:16Þ

and

fpb;ObgD ¼ −
1

β

�
∂Ob

∂b

�
1 −

∂Kc

∂Oc

∂Oc

∂δc

�
fb; pbgD þ ∂Kb

∂Oc

∂Ob

∂δb

�
∂Oc

∂c
fc; pbgD −

∂Oc

∂pc
fpb; pcgD

��
;

fpb;OcgD ¼ −
1

β

�
∂Ob

∂b
∂Kc

∂Ob

∂Oc

∂δc
fb; pbgD þ

�
1 −

∂Kb

∂Ob

∂Ob

∂δb

��
∂Oc

∂c
fc; pbgD −

∂Oc

∂pc
fpb; pcgD

��
; ð3:17Þ

where we have defined the function

β ¼
�
1 −

∂Kb

∂Ob

∂Ob

∂δb

��
1 −

∂Kc

∂Oc

∂Oc

∂δc

�
−
∂Kb

∂Oc

∂Kc

∂Ob

∂Ob

∂δb

∂Oc

∂δc
;

ð3:18Þ

which we assume to be nonzero (by suitably choosing Kb
and Kc, if necessary). Similar equations hold for the Dirac
brackets between c, pc, and the partial Hamiltonians, after
interchanging the roles of ðb; pb; δb; Ob; KbÞ by
ðc; pc; δc; Oc; KcÞ. If one inserts the explicit expression
of the Dirac brackets between connection and triad vari-
ables, and takes into account again that Pδb and Pδc Poisson
commute with the partial Hamiltonians in the extended
phase space, one finally obtains

fb;ObgD ¼ γ
∂Ob

∂pb
; fpb;ObgD ¼ −γ

∂Ob

∂b
;

fb;OcgD ¼ 0; fpb;OcgD ¼ 0; ð3:19Þ

fc;ObgD ¼ 0; fpc;ObgD ¼ 0;

fc;OcgD ¼ 2γ
∂Oc

∂pc
; fpc;OcgD ¼ −2γ

∂Oc

∂c
: ð3:20Þ

Since these Dirac brackets define Hamiltonian flows on the
reduced phase space, the above equations determine the
reduced dynamics of the connection and triad variables. It
is straightforward to realize that they provide precisely the
equations of motion that one obtains from the Hamiltonian
Heff

AOS in a Kantowski-Sachs type of cosmology if one treats
the quantum parameters δb and δc as pure constants (to be
later evaluated in terms of the constant of motionm on each
solution). In other words, the equations that we have
obtained reproduce exactly the dynamics of the AOS
model for the black hole interior. In this sense, a rigorous
Hamiltonian derivation of these equations is possible
because the change in the symplectic structure on Γ̄ext

with respect to ΓKS actually compensates the implicit
dependence of the quantum parameters δb and δc on the
partial Hamiltonians.

IV. LOOP QUANTIZATION

From our discussion, it seems evident that the deduction
of the AOS equations from an effective Kantowski-Sachs
Hamiltonian with LQC corrections [see Eq. (2.6)] requires
that the symplectic algebra of the Ashtekar-Barbero var-
iables be not canonical, unlike what happens in general
relativity. In fact, depending on how one fixes the quantum
parameters as functions of the partial Hamiltonians Ob and
Oc, this algebra can be very complicated and even display
noncommutativity between different components of the
connection and of the densitized triad, in spite of allowing a
reduced dynamics of the AOS type. Finding a concrete
quantum representation of such an algebra on a Hilbert
space does not seem manageable using standard loop
techniques. However, we know that the dynamics of the
AOS model can be obtained from the effective Hamiltonian
Heff

ext on the extended phase space Γext, (at least) for an
ample class of conditions fixing the gauge associated with
the constraints Ψb and Ψc. The connection and triad
variables indeed form a canonical set in the subspace of
Γext coordinatized by them. In this sense, a promising line
of attack for the loop quantization of a black hole that leads
to the AOS model in effective regimes is to consider on Γext
the extended Hamiltonian

Hext ¼ NLoðOKS
b −OKS

c Þ þ λbΨKS
b þ λcΨKS

c ; ð4:1Þ

where OKS
b and OKS

c are the (densitized) partial
Hamiltonians of the Kantowski-Sachs cosmologies in
general relativity [see Eq. (2.5)], and the constraints ΨKS

b
and ΨKS

c are defined as
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ΨKS
b ¼KbðOKS

b ;OKS
c Þ−δb; ΨKS

c ¼KcðOKS
b ;OKS

c Þ−δc:

ð4:2Þ

They incorporate the choice of quantum parameters that
allows to reach the AOS model in the regime where these
parameters have small absolute values [see Eqs. (2.9) and
(3.3)]. In the following, we will address the loop quan-
tization of the canonical algebra of the extended phase
space, and construct a quantum representation of the
constraints contained in the Hamiltonian Hext following
LQC techniques.
In LQG, one looks for a quantum representation of the

Poisson algebra of holonomies of the Ashtekar-Barbero
connection along edges and fluxes of the densitized triad
through two-dimensional surfaces [1,2]. In a geometry of
the Kantowski-Sachs type [see Eq. (2.3)], if one focuses on
surfaces delimited by edges in any of the coordinate
directions x, θ, and ϕ, these fluxes are completely described
by the variables pb and pc. On the other hand, the matrix
elements of holonomies of the connection along edges in
the coordinate directions θ and x are completely determined
by complex exponentials of the form

N μb ¼ eibμb=2; N μc ¼ eicμc=2; μb;μc∈R: ð4:3Þ

The holonomies along edges in the coordinate direction ϕ,
however, display a more complicated dependence on the
connection variables b and c, owing to the dependence of the
component Ai

ϕ on the polar angle θ [see Eq. (2.2)].
Nonetheless, we do not need them for the loop quantization
of the system and, hence, we do not show their explicit
expression here. All the relevant information about the
Ashtekar-Barbero connection in the Kantowski-Sachs cos-
mologies is captured by the complex exponentials N μb and
N μc . These satisfy a Poisson algebra with the triad variables
pb and pc which can be interpreted as two copies of the
algebra used to describe homogeneous and isotropic systems
in LQC [3]. Its triad representation is usually called poly-
meric representation, and it can be defined on (two copies of)
the Hilbert space of square integrable functions on the real
line with respect to the discrete measure [62]. Specifically,
calling this Hilbert space Hkin

LQC and denoting its basis
elements as the kets jμb; μci, with μb; μc ∈ R, the polymeric
representation of the Poisson algebra of pairs ðN μb ; pbÞ and
ðN μc ; pcÞ in Kantowski-Sachs is given by [20]

N̂ μ0b
jμb; μci ¼ jμb þ μ0b; μci; p̂bjμb; μci ¼

γμb
2

jμb; μci;

N̂ μ0c jμb; μci ¼ jμb; μc þ μ0ci; p̂cjμb; μci ¼ γμcjμb; μci:
ð4:4Þ

For the canonical pairs ðδb; pδbÞ and ðδc; pδcÞ that describe
the rest of the extended phase space, we adopt a continuous
Schrödinger representation, with Hilbert spaces simply

given by L2ðR; dδbÞ and L2ðR; dδcÞ. This choice completes
the quantization of the canonical algebra on Γext, paralleling
the standard procedure followed in homogeneous and
isotropic LQC minimally coupled to a scalar field. In total,
the kinematic Hilbert space for the theory is given by
Hkin

T ¼ Hkin
LQC ⊗ L2ðR; dδbÞ ⊗ L2ðR; dδcÞ. Generalized

basis elements of this space are denoted as jμb; μc; δb; δci
and they are normalized such that

hμb;μc;δb;δcjμ0b;μ0c;δ0b;δ0ci¼δμb;μ0bδμc;μ0cδðδb−δ0bÞδðδc−δ0cÞ;
ð4:5Þ

where δy;y0 is the Kronecker delta and δðy − y0Þ is the Dirac
delta. To study the quantumdynamics of the system,we need
to find a representation of the constraints contained in the
Hamiltonian Hext on the kinematic Hilbert space.
The representation of the holonomy-flux algebra dis-

played in Eq. (4.4) is discrete, so one cannot define an
operator representation for the connection variables b and
c. Considering that the partial Hamiltonians of the
Kantowski-Sachs cosmologies depend on these variables
through powers of them, their quantum representation as
operators on the kinematic Hilbert space requires a regu-
larization procedure. This situation is analogous to the one
found in full LQG, where a well established regularization
exists [1,2,46]. Inspired by the main ideas driving the
formulation of LQC, we follow this procedure by adapting
it to the considered cosmological spacetimes. After impos-
ing the cosmological symmetries, all the dependence of the
Kantowski-Sachs Hamiltonian on the Ashtekar-Barbero
connection Ai

α can be expressed in terms of its associated
curvature tensor

Fi
αβ ¼ 2∂½αAi

β� þ ϵijkA
j
αAk

β; ð4:6Þ

or, rather, of an integrated version of it. If □ðα; βÞ is a
coordinate rectangle in the plane α–β, it is possible to relate
the holonomy circuit along the edges that delimit it with the
contribution from the corresponding curvature components
in the limit in which the rectangle shrinks to a point (as
much as it is physically allowed). This type of relations are
traditionally employed in LQG to provide a regularization
of the Hamiltonian [46]. In Appendix B we explicitly show
how to mimic such a regularization in the case of
Kantowski-Sachs cosmologies, following the prescriptions
used in the AOS model to fix a minimum physical area
[43]. In short, the Hamiltonian is regularized by first
postulating that there exists a certain minimum nonvanish-
ing value of the physical area of □ðα; βÞ, and then
truncating the relations between the curvature components
and the holonomy circuit at dominant order in the size of
the edges of □ðα; βÞ. In this process, the lengths of these
edges are fixed in terms of the quantum parameters δb and
δc. As a result, it turns out that the regularized version of the
Kantowski-Sachs Hamiltonian can be written precisely as
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the effective one Heff
AOS, given in Eq. (2.6). Since this

function contains regularized versions Ob and Oc of the
partial Hamiltonians OKS

c and OKS
b , we directly prescribe

that the regularization of the constraints ΨKS
b and ΨKS

c for
their quantization is attained by simply replacing them with
Ψb and Ψc, given in Eq. (3.2).
The regularized versions of the partial Hamiltonians

depend on the connection variables b and c only through
complex exponentials of the form N 2δb and N 2δc .
Therefore, we can construct operators for them using the
basis of the kinematic Hilbert space with generalized
elements jμb; μc; δb; δci and the polymeric representation
of the holonomy-flux algebra given in Eq. (4.4). For this
purpose, we first define the quantum representation of the
phase space functions sinðδbbÞ and sinðδccÞ through their
action on the basis elements,

dsinðδbbÞjμb; μc; δb; δci ¼
1

2i
ðjμb þ 2δb; μc; δb; δci

− jμb − 2δb; μc; δb; δciÞ;
dsinðδccÞjμb; μc; δb; δci ¼

1

2i
ðjμb; μc þ 2δc; δb; δci

− jμb; μc − 2δc; δb; δciÞ: ð4:7Þ

Next, inspired by factor ordering prescriptions that have
proven useful in homogeneous and isotropic LQC (see
Ref. [63], which employs the so-called MMO prescription),
we introduce the operators

Ω̂δb
b ¼ 1

2δb
jp̂bj1=2½ dsinðδbbÞ dsignðpbÞ

þ dsignðpbÞ dsinðδbbÞ�jp̂bj1=2; ð4:8Þ

Ω̂δc
c ¼ 1

2δc
jp̂cj1=2½ dsinðδccÞ dsignðpcÞ

þ dsignðpcÞ dsinðδccÞ�jp̂cj1=2; ð4:9Þ

for fixed nonzero δb and δc,
2 respectively, where the

representation of functions of the triad variables pb and
pc is defined in terms of the triad operators using the
spectral theorem. We note that the operators Ω̂δb

b and Ω̂δc
c

annihilate the kinematic states corresponding to pb ¼ 0 and
pc ¼ 0, and completely decouple them from the rest of
states (namely, from their complement in Hkin

T ). Moreover,
these operators do not mix basis elements with positive and
negative values of μb (and similarly for μc). Then, without
loss of generality, we will focus on states with μb > 0 and
μc > 0 from now on. On each generalized eigenspace of the

quantum parameters δ̂b and δ̂c with fixed nonzero eigen-
values ðδb; δcÞ, the operators Ω̂δb

b and Ω̂δc
c only relate

generalized states in our basis of the respective form

jðεb þ 2nbÞjδbj; μc; δb; δci; εb ∈ ð0; 2� and

jμb; ðεc þ 2ncÞjδcj; δb; δci; εc ∈ ð0; 2�; ð4:10Þ

where nb; nc ∈ N. Therefore, in each of those generalized
eigenspaces, the operators preserve superselection sectors
labelled by pairs ðεb; εcÞ. These sectors are clearly sepa-
rable. In the following, we will restrict our attention to any
of them in each generalized eigenspace of the kinematic
Hilbert space. Furthermore, let us assume for convenience
that the operator Ω̂δb

b admits an inverse on each super-
selection sector. Then, we can adopt the following repre-
sentation of the partial Hamiltonians on the kinematic
Hilbert space, determined by their action on basis elements,

Ôbjμb;μc;δb;δci¼Ôδb
b jμb;μc;δb;δci

¼−
1

2γLo
½Ω̂δb

b þγ2jp̂bjðΩ̂δb
b Þ−1jp̂bj�

×jμb;μc;δb;δci; ð4:11Þ

Ôcjμb; μc; δb; δci ¼ Ôδc
c jμb; μc; δb; δci

¼ 1

γLo
Ω̂δc

c jμb; μc; δb; δci: ð4:12Þ

Although other representations are admissible, the pro-
posed representation is especially simple and keeps to a
minimum the number of independent basic operators
involved in the definition of the quantum constraints.
Subtracting now the operators Ôb and Ôc (and multiplying
the result by the fiducial length Lo), we obtain the
Hamiltonian constraint operator for our extended
Kantowski-Sachs model [see Eq. (4.1)]. This constraint
immediately decouples any state corresponding to vanish-
ing triad variables. In this sense, looking at the expression
of the metric given in Eq. (2.3), one can say that the black
hole singularity is already resolved at this level of the
quantum theory (similarly to what happens in LQC with the
big bang singularity). As for the remaining constraints Ψb
and Ψc, we can simply construct their quantum represen-
tation as operators by applying the spectral theorem to
define the functions KbðÔb; ÔcÞ and KcðÔb; ÔcÞ. For this
definition (and in the following), we assume that Ôb and Ôc
are self-adjoint, or that they can be replaced with suitable,
unique self-adjoint extensions. This assumption is quite
reasonable from a physical perspective if one recalls that, in
the classical theory describing the Schwarzschild interior,
the considered partial Hamiltonians determine the black
hole mass.

2Since δb ¼ 0 and δc ¼ 0 are irrelevant points in the space of
square integrable functions with respect to the Lebesgue measure,
it is not necessary for any practical purpose to provide a detailed
definition of the operators Ω̂δb

b and Ω̂δc
c for vanishing parameters

δb and δc.
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V. PHYSICAL STATES

The usual strategy to find physical states in LQC is to
follow Dirac’s approach for the quantization of constrained
systems [4,5,61]. Given a kinematic Hilbert space and a
representation of the constraints as operators on it, one
focuses on the algebraic dual of a dense subset of this
space, on which the constraints are defined by the adjoint
action. Physical states are sought there by demanding that
they be annihilated by the constraints. This set of physical
states should eventually be provided with a Hilbert space
structure. In what remains, we will follow this procedure to
formally characterize the physical states of our quantization
of the extended Kantowski-Sachs model.
In the search of physical states, it is most convenient to

know the spectral properties of the constraint operators. For
the purposes of this work, we will make the following
assumptions (for more details about the spectral analysis of
linear operators on a Hilbert space, see Refs. [64,65]):

(i) For all values of the parameters δb and δc, the
operators Ôδb

b and Ôδc
c are self-adjoint (or can be

replaced with unique self-adjoint extensions). As a
consequence, their spectra are real and only contain
a continuous part and/or a point part.

(ii) The point parts of the spectra of Ôδb
b and Ôδc

c are
discrete. This means that each eigenvalue is an
isolated point of the real line and has finite multi-
plicity.

(iii) The continuous parts of the spectra of Ôδb
b and Ôδc

c

are absolutely continuous. In other words, they do
not contain any singular part in which the spectral
measure is not equivalent to the Lebesgue one.

These three assumptions are quite reasonable and are
actually shared by most of the Hamiltonian operators of
physical quantum theories.
A remarkable property of the operator Ω̂δc

c that will be
extremely important in our quantum construction is that its
spectrum turns out to be independent of the value of the
parameter δc for any given superselection sector, charac-
terized by a value of εc ∈ ð0; 2�. To prove this statement, let
us consider the following change of the polymeric basis in
each generalized eigenspace of the operators δ̂b and δ̂c,

jμb; μc; δb; δci → jμ̃b; μ̃c; δb; δci; μ̃b ¼
μb
jδbj

; μ̃c ¼
μc
jδcj

:

ð5:1Þ

Under the action of the triad operator p̂c, the new basis
states get multiplied by γjδcjμ̃c. Thus, the action of
jp̂cj=jδcj, or of any (possibly fractional) power of it, its
independent of the value of the parameter δc. On the other
hand, the operator dsinðjδcjcÞ simply generates constant 2-
unit shifts in μ̃c on the new basis elements, while the action
of dsignðpcÞ does not depend on δc either. Therefore, we
conclude that the action of Ω̂δc

c , given by Eq. (4.8), is indeed
independent of the (fixed) value of δc associated with the

generalized eigenspace where it is defined. Hence, the same
happens with its spectrum. Obviously, this applies as well
to the spectrum of Ôδc

c , because the two operators differ
only by a multiplicative constant independent of the
parameter.
Clearly, the spectrum of Ω̂δb

b is also independent of the
value of δb, since this operator is defined in a completely
analogous way. However, this conclusion does not extend
to the partial Hamiltonian Ôδb

b . From the definition (4.11) of
this operator, we see that, up to irrelevant multiplicative
constants, its action on a generalized state jμ̃b; μ̃c; δb; δci
differs from that of Ω̂δb

b by the addition of another operator.
This operator is proportional to the symmetrized product of
the inverse of Ω̂δb

b with powers of jp̂bj=jδbj, all of them with
actions that are independent of δb according to our
discussion, but the proportionality factor is actually γ2δ2b.
Given this dependence on the regularization parameter, it is
reasonable to at least expect a smooth variation of the
action of Ôδb

b with δb. Moreover, we would expect that the
term that contains the contribution of δ2b in Ôδb

b can be
treated as a perturbation of Ω̂δb

b when jδbj is small.
Since the partial Hamiltonian operators are self-adjoint,

we can employ the spectral theorem and decompose any
state of the kinematic Hilbert space in terms of their
(generalized) eigenfunctions [64,65]. Then, taking into
account the spectral properties that we have assumed for
these operators, we can write any dual element ðψ j of the
subset of states spanned by the (rescaled) basis elements
jμ̃b; μ̃c; δb; δci as

ðψ j ¼
Z
R
dδb

Z
R
dδc

Z
R
Dρδb

Z
R
Dm

X
μ̃b;μ̃c

ψðδb; δc; ρδb ; mÞ

× eεbρδb ðμ̃bÞē
εc
mðμ̃cÞhμ̃b; μ̃c; δb; δcj: ð5:2Þ

Let us explain this formula. First of all, we have restricted
our attention to only one superselection sector of the
rescaled polymeric basis, which is the same in all of the
generalized subspaces of fixed ðδb; δcÞ. This sector is
labeled by the pair ðεb; εcÞ. Allowing a dependence of
these labels on the parameters δb and δc seems artificial if
we are interested in studying the physical dynamics of the
system. Indeed, it is easy to check that the action of
the partial Hamiltonian operators, and therefore of all the
constraint operators, leave these superselection sectors
invariant. Moreover, a similar restriction has been adopted
in many discussions in LQC (where a homogeneous scalar
field plays a similar mathematical role as the parameters δb
and δc), assuming that the final results about measurable
physical observables are not sensitive to the choice of a
specific superselection subspace [56,63,66]. The sums over
μ̃b and μ̃c in Eq. (5.2) run over each of the semilattices
associated respectively with the labels εb and εc. In
addition, Dρδb and Dm respectively denote the spectral
measures associated with Ôδb

b and Ôδc
c , whereas ρδb and m
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stand for points of their spectra. Our notation emphasizes
that the spectral measure of Ôδc

c is independent of the
parameter δc and that the eigenvalues of this operator are
directly related with the black hole mass. On the other
hand, eεbρδb ðμ̃bÞ and ē

εc
mðμ̃cÞ are the respective eigenfunctions

of the operators Ôδb
b and Ôδc

c in the polymeric representa-
tion with our choice of basis elements. Unlike what occurs
in the case of ēεcmðμ̃cÞ, we expect the eigenfunction eεbρδb ðμ̃bÞ
to depend on the value of the parameter δb, since the same
happens with the action of the operator Ôδb

b . For simplicity
in the notation, we will not explicitly indicate this depend-
ence. Finally, using the assumed properties of the partial
Hamiltonian operators, we can always write the spectral
measures Dρδb and Dm directly as the discrete and the
Lebesgue measures, respectively in the discrete and abso-
lutely continuous parts of the spectrum. The change to
these more familiar measures from the original spectral
ones would be given by the so-called Radon-Nikodym
derivative [67], and it can be absorbed in the definition of
the eigenfunctions eεbρδb ðμ̃bÞ and ē

εc
mðμ̃cÞ, convention that we

adopt in the following.
The simultaneous imposition of the three constraint

operators of our system (namely Ôb − Ôc, Ψ̂b, and Ψ̂c)
implies that the wave function ψ must have the form

ψðδb; δc; ρδb ; mÞ ¼ ξðmÞδD½δb − Kbðm;mÞ�
δD½δc − Kcðm;mÞ�δDðm − ρδbÞ; ð5:3Þ

in principle without restrictions on the function ξ. Here, δD
denotes a general delta distribution, the discrete or con-
tinuous nature of which depends on the integration measure
of the functional space where it is defined. In the following,
we discuss the restrictions that these delta distributions
impose on the physical states.
Consider a fixed (but otherwise arbitrary) value of the

parameter δb, and let Spb½δb� and Spc be the respective
spectra of the operators Ôδb

b and Ôδc
c . In principle, these

spectra might even depend on the superselection semi-
lattices chosen for the construction of the partial
Hamiltonian operators. Recall that the spectrum of Ôδc

c

is independent of δc and that we have fixed the correspond-
ing superselection semilattice for all possible values of the
pair ðδb; δcÞ. The last delta in Eq. (5.3) then restricts the
search for physical states to the intersection of the two
considered spectra. According to our assumptions, this set
will generally contain continuous intervals and a set of
isolated points on the real line. The intervals can only arise
from common continuous parts of Spb½δb� and Spc. On the
other hand, the set of isolated points will have a contri-
bution coming from the intersection of the discrete (con-
tinuous) part of Spb½δb� and the continuous (discrete) part
of Spc. The rest of this set is simply the intersection of the
discrete parts of Spb½δb� and Spc, which will only occur
exceptionally. We call ISp½δb� the subset that is formed by
this last intersection and by the commented continuous

intervals. Since an isolated point in the continuous part of
Spb½δb� or Spc has zero measure, we limit our consider-
ations to contributions in which the integration over the
(generalized) eigenvalues ρδb andm in Eq. (5.2) is restricted
to ISp½δb�. Hence, the corresponding physical states of the
model have their support on ISp½δb�.
We now turn our attention to the remaining deltas in

Eq. (5.3), involving the regularization parameters. For this,
we define the pair of functions

K̃bðmÞ¼Kbðm;mÞ; K̃cðmÞ¼Kcðm;mÞ; m∈R: ð5:4Þ

Concerning the second delta distribution in that equation,
we note that, as long as the domain of K̃c contains ISp½δb�,
something that can be guaranteed by construction of this
function, there always exists some δc ∈ R that coincides
with the resulting value of K̃cðmÞ. However, the value of
K̃b, when applied to an arbitrary point of ISp½δb�, need not
be equal to δb, as it is required by the first delta distribution
in Eq. (5.3). Taking into account this imposition and
considering all possible values of δb, it follows that the
support of the physical states is restricted to the subset of
Spc given by

CSp ¼ fm ∈ ISp½δb ¼ K̃bðmÞ�g: ð5:5Þ

In other words, m belongs to CSp if it belongs to the
intersection of the (absolutely) continuous parts of Spc and
Spb½K̃bðmÞ� or to the intersection of the discrete parts of
these two sets. In total, we conclude that the physical states
should admit the following formal expression,

ðψ j ¼
Z
CSp

DmξðmÞ
X
μ̃b;μ̃c

eεbm ðμ̃bÞjδb¼K̃bðmÞē
εc
mðμ̃cÞ

× hμ̃b; μ̃c; δb ¼ K̃bðmÞ; δc ¼ K̃cðmÞj: ð5:6Þ

The physical states of the system are then completely
characterized by wave functions ξ with support on the
spectral set CSp. Therefore, we see that physical wave
profiles of the quantum AOS model are simply functions of
the black hole mass. The allowed values for this mass must
belong to a very specific subset of the real line determined
by the spectral properties of the loop quantum operators.
The measure Dm is a natural candidate to endow this set of
physical states with a Hilbert structure, namely that of
square integrable functions ξ over the black hole mass.
Physical observables will be represented by linear operators
on this Hilbert space. Obvious examples are the multipli-
cative operator representing the black hole mass and
translation operators between points of CSp.
We end this section commenting on the viability that

CSp contains points of arbitrarily large value that belong to
sets ISp½δb� with small jδbj. This part of the support of the
physical states corresponds to large black hole masses that
are mapped to small quantum parameters. It is evident that
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the existence of such a region is necessary for the quantum
theory to be physically satisfactory. First of all, let us recall
that, for large absolute values of its argument, the function
K̃b follows the behavior given in the first identity of
Eq. (3.3). Thus, for very large jmj, it is a monotonically
decreasing function and the mapping from eigenvalues to
quantum parameters δb is one-to-one (in fact, a similar
statement is valid for K̃c and δc). Furthermore, the mapping
clearly brings, in absolute value, large eigenvalues (masses)
to small quantum parameters. It follows that the physical
states of the theory can only describe realistic black holes,
with masses that take any arbitrarily large value and are
mapped to small quantum parameters, if the union of the
sets ISp½δb� for small values of jδbj contains a continuous
interval that is unbounded from above in absolute value.
This condition, in turn, translates into an important restric-
tion on the admissible spectral properties of the operators
Ôδc

c and Ôδb
b . The spectrum of the former must contain an

absolutely continuous part that is unbounded from above in
absolute value, while the spectrum of the latter must contain
as well an absolutely continuous part for small values of
jδbj such that it becomes unbounded from above (in
absolute value) when this parameter is negligible. This
result simply follows from the fact that, according to our
previous discussion, the union of the sets ISp½δb� over any
interval of the parameter δb may only contain isolated
points coming from the intersection of the discrete spectra
of the partial Hamiltonian operators, or intervals coming
from the intersection of their continuous spectra. Thus, we
see that only partial Hamiltonian operators with a very
specific type of spectra lead to a quantum theory that can
describe physically realistic black holes. In this context, it is
worth mentioning that, if a spectral analysis of these
operators is carried out in the future, one can rule out or
put forward their definition as physically acceptable in a
straightforward manner using our results. In fact, with this
procedure, one can even test the very validity of the loop
quantum representation of the model, if factor ordering
ambiguities turn out to be irrelevant for the spectral
properties of the partial Hamiltonians.

VI. CONCLUSIONS

In this work we have provided a consistent Hamiltonian
formulation of the AOS model for the effective loop
quantum extension of a nonrotating and noncharged black
hole interior. Under such a Hamiltonian framework, we
have set the main steps for the quantization of this type of
spacetimes following LQC techniques, including defini-
tions of the constraint operators and a preliminary study of
the physical states. Our work finds an answer to some
caveats posed to the AOS model since it was first proposed,
about the consistency of its dynamics from a canonical
perspective; if the effective Hamiltonian includes a depend-
ence on constants of motion of the system, through loop
quantum regularization parameters, their dependence on

phase space should be taken into account when deriving the
equations of motion. We show that, in order to consistently
derive this dynamics from a Hamiltonian formulation, one
either has to give up the symplectic structure of the black
hole interior in general relativity, or extend its phase space
to include the quantum parameters introduced to regularize
the Hamiltonian according to LQG principles. Namely,
there is no way of reproducing exactly the purely relativ-
istic formulation of the system with a gauge fixing and the
subsequent reduction of this extended phase space. Since
the relativistic algebra of connections and triads is the
fundamental basis for the formulation of LQG in terms of
holonomies and fluxes, we have decided to address the loop
quantization of the extended system, which includes extra
constraints, in addition to the relativistic one, codifying
the relation between the quantum parameters and constants
of motion.
Employing well-developed prescriptions in LQC, we

have promoted the partial Hamiltonian of the angular sector
[i.e., the sector corresponding to ðc; pcÞ] to an operator in a
polymeric representation. Remarkably, taking the counter-
part of this operator for the radial sector as the only basic
ingredient, we have been able to construct as well a
representation for the other partial Hamiltonian, and there-
fore for the Hamiltonian constraint of the system (given by
the difference between the operators of the two sectors).
Moreover, using these partial Hamiltonian operators we
have been able to represent almost straightforwardly the
remaining constraints that fix the parameters δb and δc. This
quantization of the model has allowed us to formally
deduce the general expression of the physical states,
provided that the partial Hamiltonian operators have certain
reasonable spectral properties. Specifically, we have
assumed that they are self-adjoint (or can be replaced by
a unique self-adjoint extension) and that their spectra only
contain discrete and absolutely continuous parts. Based on
similar constructions used in LQC, in all the considered
contributions to the physical states we have adopted the
same (rescaled) superselection subspaces. With this restric-
tion, the spectrum of the partial Hamiltonian Ôδc

c turns out
to be completely independent of the parameter δc. Then,
physical states can be completely characterized by a wave
function of the black hole mass, with support on a very
specific subset of the spectrum of the partial Hamiltonian of
the radial sector. This subset is essentially the part of the
intersection with the spectrum of the other partial
Hamiltonian which is consistently mapped to the values
of the parameter δb. We have also discussed under which
circumstances this subset includes the sector of interest
with large masses. The most important condition is that the
spectra of the operators that represent the partial
Hamiltonians must include an interval extending to infinity,
both in the case of the angular sector that is parameter
independent and for negligibly small values of δb in the
case of the radial Hamiltonian. Proving that this is indeed
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so would require an spectral analysis of our operators,
something that will be carried out in future research. The
verification of this condition, together with a suitable
choice of the functions that relate the mass with the
parameters (e.g., of the type chosen in the AOS model),
would guarantee that there exist physical states correspond-
ing to geometries with large black hole masses and,
predictably, small local quantum effects.
Our investigations constitute an important step towards

the construction of a quantum theory for the interior of a
nonrotating uncharged black hole, even despite the possible
criticisms existing in the literature about the physical
properties of the AOS model as an effective geometry.
Such a quantum theory, in turn, is necessary in order to
study how quantum gravitational phenomena may affect
the behavior of possible perturbations around the black
hole geometry. These perturbations are of great physical
importance since they can be used, e.g., to describe the
ringdown part of the gravitational wave signal of a non-
rotating black hole merger. In the context of the AOS
model, there already exists a number of works that address
how the loop quantum corrections to the spacetime metric
affect the gravitational perturbations and their quasinormal
modes [see e.g., [68–70]]. However, all those studies
assume that the dynamics of these perturbations are ruled
by their relativistic equation, with a background metric that
is not exactly the Schwarzschild one. In order to really
capture how the gravitational waves are affected by
quantum gravity phenomena, it is necessary to quantize
their contribution to the Hamiltonian of the system,
together with the black hole background. This may well
lead to dynamical equations for the perturbations that differ
from the relativistic ones, as it has been shown to be the
case in cosmology [71]. Our work provides a first building
block for this ambitious program, which requires a sat-
isfactory quantum description of the black hole interior.
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APPENDIX A: EXPLICIT EXPRESSIONS OF THE
MOMENTA ON THE EXTENDED PHASE SPACE

In the discussion of the gauge fixing that leads to the
reduced phase space Γ̄ext, we have defined a new set of
canonical variables that facilitates the comparison with
Ref. [43]. Instead of the original connection-triad canonical
pairs, it is convenient to regard the partial Hamiltonians Ob

and Oc as the new configuration variables, introducing
canonically conjugate momenta given by

Pb ¼ −
2Lo

bo
tanh−1

�
cosðδbbÞ

bo

�
− 2Lo ln

γjδbj
2

; ðA1Þ

Pc ¼ −
Lo

2
ln

���� 2pc sinðδccÞ
γL2

oδ
2
c

tan

�
δcc
2

�����; ðA2Þ

where bo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ2δ2b

q
. It is straightforward to verify that

Ob, Oc, Pb, and Pc form a canonical set with nonzero
Poisson brackets equal to fOb; Pbg ¼ 1 and fOc; Pcg ¼ 1.
This change of variables can be completed into a canonical
transformation in the extended phase space Γext by intro-
ducing new momenta Pδb and Pδc that not only are
canonically conjugate to δb and δc, respectively, but also
Poisson commute with the two partial Hamiltonians and
their associated momenta. The following momenta meet
these conditions,

Pδb ¼ pδb −
pb

γδb

�
b −

sinðδbbÞ
δb

−
γ2δb

sinðδbbÞ
�

−
γpb

b2o sinðδbbÞ
�
cosðδbbÞ þ

1

bo
tanh−1

�
cosðδbbÞ

bo

�

× ½b2o − cos2ðδbbÞ�
	
; ðA3Þ

Pδc ¼ pδc −
pc

2γδc

�
c −

sinðδccÞ
δc

�
: ðA4Þ

APPENDIX B: REGULARIZATION OF THE
KANTOWSKI-SACHS HAMILTONIAN

In this appendix we show how a systematic procedure
following LQG techniques [46], and supplemented with the
prescription of the AOS model to fix the minimum physical
area, leads to the effective formula (2.6) as a regularization
of the Kantowski-Sachs Hamiltonian. The Hamiltonian
constraint of general relativity can be generally written in
terms of the Ashtekar-Barbero variables as

C ¼ 1

16π
ffiffiffi
h

p ½ϵijkFk
αβ − 2ð1þ γ2ÞKi

½αK
j
β��Eα

i E
β
j ; ðB1Þ

where h is the determinant of the spatial metric, ϵijk is
the Levi-Civita symbol, and Ki

α is the triadic form
of the extrinsic curvature of the spatial sections. In
the case of Kantowski-Sachs cosmologies, it holds that
h ¼ p2

bjpcjsin2θ=L2
o. Moreover, imposing the symmetries

of this type of spacetimes we get the following identity,

2Ki
½αK

j
β�E

α
i E

β
j ¼

1

γ2
ϵijkFk

αβE
α
i E

β
j þ

p2
b

γ2L2
o
sin2θ: ðB2Þ
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Taking this into account and recalling the form of the
components of the densitized triad for Kantowski-Sachs,
given in Eq. (2.1), we obtain a Hamiltonian constraint of
the form

C ¼ 1

8πγ2
ffiffiffiffiffiffiffiffijpcj

p �
pcðF1

xθ sin θ þ F2
xϕÞ

−
pb

Lo
ðsin θ þ γ2 sin θ − F3

θϕÞ
�
: ðB3Þ

The above expression inside the square brackets is what
we have to regularize adapting LQG techniques to our
cosmological system. For this purpose, we first consider
two holonomy circuits h□ðx;θÞ and h□ðx;ϕÞ along coordinate
rectangles □ðx; θÞ and □ðx;ϕÞ in the directions ðx; θÞ and
ðx;ϕÞ that enclose the respective regions ð0; Loμ̄xÞ ×
ð0; πμ̄θÞ and ð0; Loμ̄xÞ × ð0; 2πμ̄ϕÞ. The positive parame-
ters μ̄x; μ̄θ, and μ̄ϕ will be related to the minimum physical
area allowed by the AOS model. Taking into account the
definition of holonomy along an arbitrary edge e

he ¼ P exp
Z
e
dxαAi

ατi; ðB4Þ

where P denotes path ordering and τi are the generators of
the Lie algebra suð2Þ, it is possible to show that

Fi
xθ ¼ −2 lim

μ̄x;μ̄θ→0

Tr½h□ðx;θÞτi�
πLoμ̄xμ̄θ

;

Fi
xϕ ¼ −2 lim

μ̄x;μ̄ϕ→0

Tr½h□ðx;ϕÞτi�
2πLoμ̄xμ̄ϕ

: ðB5Þ

Explicitly, we have that

2Tr½h□ðx;θÞτi� ¼πδi1 sinðμ̄xcÞsinðμ̄θbÞþOð3Þ;
2Tr½h□ðx;ϕÞτi� ¼2πδi2 sinðμ̄xcÞsinðμ̄ϕbÞsinθþOð3Þ; ðB6Þ

where OðnÞ contains any nth order product between the
parameters μ̄x, μ̄θ, and μ̄ϕ or smaller terms, in the limit in
which these parameters are negligibly small. Drawing
direct inspiration from LQC [4,5], we regularize the
contributions from Fi

xθ and Fi
xϕ in the Hamiltonian con-

straint by removing the limit of vanishing area in Eq. (B5)
(thus prescribing a minimum nonzero physical area in the
theory), and replacing the traces of the right-hand side by
the dominant-order terms appearing in Eq. (B6).
The regularization procedure for the contribution of the

curvature components Fi
θϕ to the Hamiltonian constraint is

a bit more involved than in standard LQC. This is due to the
complexity of the holonomy along the ϕ direction as a
function of b and θ. In particular, rather than the simple
identities that hold for the other components of the
curvature [see Eq. (B5)], in this case we use that

Z
□n;ñðθ;ϕÞ

dθdϕFi
θϕ ¼ −2Tr½h□n;ñðθ;ϕÞτ

i� ðB7Þ

at dominant order in the limit of small parameters μ̄θ and
μ̄ϕ, where □n;ñðθ;ϕÞ is the coordinate rectangle enclosing
the region ðnπμ̄θ; nπμ̄θ þ πμ̄θÞ × ð2ñπμ̄ϕ; 2ñπμ̄ϕ þ 2πμ̄ϕÞ,
for any n; ñ ∈ N. Explicitly, we have

2Tr½h□n;ñðθ;ϕÞτ
i� ¼ π3ð1þ 2nÞδi3½μ̄2θμ̄ϕ þ sin2ðμ̄θbÞμ̄ϕ

þ 2 sinðμ̄θbÞ sinðμ̄ϕbÞμ̄θ� þOð4Þ: ðB8Þ

Our prescription for the regularization of the contributions
coming from Fi

θϕ in the Hamiltonian constraint is then the
following. Upon integrating C over the unit two-sphere
coordinatized by the pair ðθ;ϕÞ, we cover it with as many
coordinate rectangles of the form □n;ñðθ;ϕÞ as possible
and then make the replacement

−
Z

π

0

dθ
Z

2π

0

dϕFi
θϕ → π3δi3M

�
1

μ̄ϕ

� XM½1=μ̄θ �−1

n¼0

ð1þ 2nÞ

× ½μ̄2θμ̄ϕ þ sin2ðμ̄θbÞμ̄ϕ
þ 2 sinðμ̄θbÞ sinðμ̄ϕbÞμ̄θ�; ðB9Þ

whereM½·� denotes the natural number immediately greater
than or equal to its argument.
The parameters μ̄x, μ̄θ, and μ̄ϕ play a key role in the two

regularization procedures that we have introduced. Indeed,
they define the minimum coordinate areas allowed in the
system, so that the dynamical contribution of the Ashtekar-
Barbero connection can be quantized in a discrete way. In
this sense, from a fundamental perspective it is important
that one makes a connection between the values of the
parameters and the theory that motivates them, in this case
LQG. In the AOS model, this is done by relating them in a
very specific way with the minimum area Δ allowed by the
spectra of the area operator in LQG. Concretely, on each
solution of this effective black hole model, it is required
that [43]3

Δ ¼ 2πjδcjjδbjjpbjT ; Δ ¼ 4πδ2bjpcjT ; ðB10Þ

where the subscript T indicates evaluation on the smooth
transition surface that replaces the singularity, and the
right-hand sides are by definition the physical areas on
this surface of, respectively, the coordinate rectangles
□ðx;ϕÞjθ¼π=2 and □ðθ;ϕÞ covering the coordinate regions
ð0; Loμ̄xÞ × ð0; 2πμ̄ϕÞ and ð0; πμ̄θÞ × ð0; 2πμ̄ϕÞ. Since we
want to construct a quantum theory that eventually leads to
the AOS model in effective regimes, we naturally adapt this
prescription to our model by demanding that μ̄x, μ̄θ, and μ̄ϕ

3In Ref. [43] the authors implicitly assume that the parameters
δb and δc are positive, whereas in our work we let them be real.
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are fixed in terms of the quantum parameters δb and δc in
such a way that the physical areas of the considered
rectangles equal the right-hand side of Eq. (B10), evaluated
off shell. It is then the set of constraints Ψb and Ψc in our
extended phase space formulation what relates these areas
with the minimum value Δ allowed by LQG. A direct
application of this prescription shows that

jδcj ¼ μ̄x; jδbj ¼ μ̄ϕ ¼ π2μ̄2θ
4

: ðB11Þ

If we integrate the Hamiltonian density NC over the
spatial hypersurfaces with topology I × S2 of the
Kantowski-Sachs cosmologies and apply the regularization
prescriptions described above, we finally obtain the follow-
ing expression for the regularized Hamiltonian,

Hreg
KS½N� ¼ −N

sinðδbbÞ
γδb

ffiffiffiffiffiffiffiffijpcj
p ½Heff

AOS þOðδbÞ�; ðB12Þ

where OðδbÞ denotes terms that are of the order of δb or
smaller in the limit in which this parameter is small in
absolute value. Taking into account that these subdominant

terms vanish when the corrections coming from the loop
quantization procedure are ignored, we simply remove
them from our regularized expression of the Hamiltonian.
Then, up to a global factor that can be absorbed in a suitable
choice of densitization, we see that our regularization of the
Kantowski-Sachs Hamiltonian using LQG techniques and
adhering to the AOS prescription for the minimum nonzero
physical area indeed is equivalent to the effective
Hamiltonian of the AOS model.
It is worth mentioning that many replacements per-

formed in our regularization amount to fixing ambiguities
that are more involved than those arising in the case of
homogeneous and isotropic cosmologies [4,5]. Namely, the
regularization chooses to keep some subdominant terms
while neglecting others in the expansion of the traces of
holonomy circuits over small areas, and also in the
expansion of the resulting Hamiltonian in the limit of
small quantum parameters δc and δb. Our guideline for this
choice has been to maintain the result as simple as possible
with an eye on its polymeric quantization. To the best of our
knowledge, this is the first explicit derivation of the
Hamiltonian of the AOS model as a loop quantum
regularization of the Kantowski-Sachs one, using closed
holonomy circuits.
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