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Holographic dark energy with the Hubble radius as infrared cutoff has been considered as a candidate to
explain the late-time cosmic acceleration and it can solve the coincidence problem. In this scenario, a
nonzero equation of state is only possible if there is an interaction between dark energy and cold dark
matter. In this paper, a set of phenomenological interactions is assumed and a detailed analysis of the
possible values of the coupling constants is carried out, however the resulting matter power spectrum and
cosmic microwave background temperature and polarization power spectra have a shape very far from the
observed ones. These results rule out any value for the free parameters and it seems to indicate that
the assumed interacting holographic dark energy with a Hubble-scale cutoff is not viable to explain the
accelerated expansion of the Universe, when cosmological data are taken into account.
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I. INTRODUCTION

The observational evidence of dark energy (DE) in 1998
[1,2] opened a new phase in the understanding of our
Universe. While cosmological data are continuously con-
firming the existence of the late-time cosmic acceleration
(see [3,4] for reviews), the nature of the accelerated
expansion is still an open issue. The simplest candidate
for DE is a cosmological constant Λ, which encompasses
the standard Λ-cold-dark-matter (CDM) model. The six
free parameters of the ΛCDM model are well constrained
and are in agreement with cosmological observations [5],
despite some tensions, e.g., the Hubble tension [5,6] (a
recent review is [7]). The observed value of the vacuum
energy is many orders of magnitude smaller than the
theoretically calculated [8], leading to the so-called “cos-
mological constant problem.”Additionally, the evolution of
CDM and DE are very different from each other, but their
energy densities today have the same order of magnitude.
This coincidence may indicate new physics and it is usually
referred to as “coincidence problem.”
The lack of understating about the nature of the cosmo-

logical constant and the aforementioned issues encourage
alternative models of DE (for reviews see [3,9]). Among the
many candidates there are scalar and vector fields [10–29],
metastable DE [30–38], models using extra dimensions [39],
alternative fluids [40,41], etc. Another explanation for
DE comes from the holographic principle, the so-called
holographic DE (HDE) [42–64] (see [65] for a review).
The holographic principle suggested by ’t Hooft [66] and
Susskind [67,68], in turn based on the previous works of

Thorn [69] and Bekenstein [70], is a property of quantum
gravity, where at Planckian scale the world is best described
by a 2-D lattice evolving with time, rather than 3þ 1-D.
In this scenario, DE should obey this principle and the fine-
tuning problem is eliminated [71].
HDE would then have an energy density given by

ρde ¼ 3c2M2
PlL

−2, where c is a constant,MPl is the reduced
Planck mass and L is the infrared (IR) cutoff [42,43]. The
first natural choice for the IR cutoff is the Hubble radius,
however it led to an equation of state that described
pressureless matter [42]. This problem was circumvented
choosing the future event horizon as cutoff [43]. Other
choices for L include the inverse of the Ricci scalar
curvature [72], the age of the Universe [73], among others
[74–76]. Inspired by the holographic principle and the
AdS=CFT correspondence [77], HDE has been embedded
in minimal supergravity [50], while in [78] it was shown
that HDE arises from generic quantum gravity theory,
assuming only the existence of a minimum length.
Another widely studied alternative to the ΛCDM para-

digm is if DE interacts with CDM [79–106] and it can help
alleviating the coincidence problem [107] and the Hubble
tension [108–110]. Among the many possible phenomeno-
logical interactions, one of the most famous and used in the
literature is at the background level, proportional to the sum
of the energy densities of CDM and DE (see [97] for a
review). Constraints on the couplings constants and fore-
casts for several upcoming observational programs are
presented in [89,94,111–114].
Assuming an interaction between HDE (with a Hubble

radius as IR cutoff) and CDM not only gives the correct
equation of state for DE, but also solves the coincidence
problem [44]. In this paper we investigate this HDE model,*ricardo.landim@tum.de
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using the aforementioned phenomenological interactions.
We perform a detailed analysis of the necessary values for
the couplings that would give an equation of state in
agreement with the cosmic acceleration. It turns out that the
parameter space leads to a matter and cosmic microwave
background (CMB) power spectra in disagreement to
what is observed. The resulting power spectra are actually
very similar to the ΛCDM model but without CDM,
therefore not being able to reproduce current cosmological
observations.
This paper is organized as follows. Section II reviews

some aspects of the HDE model considered here, along
with the phenomenological interactions, and present the
necessary equations. In Sec. III we show our results and
Sec. IV is reserved for conclusions. We use natural units
(c ¼ ℏ ¼ 1) throughout the text.

II. HOLOGRAPHIC DARK ENERGY

When the Hubble scale is considered as IR cutoff
L−1 ¼ H, the energy density for DE is ρde ¼ 3c2M2

PlH
2,

while for CDM the energy density becomes ρdm ¼
3ð1 − c2ÞM2

PlH
2, where the first Friedmann equation

for a spatially flat Universe was used, safely ignoring
radiation and visible matter. The ratio r≡ ρdm=ρde is thus
r ¼ ð1 − c2Þ=c2 [44], therefore constant if c is constant.
When there is an interaction between DE and CDM the
total energy momentum tensor is still conserved, however
not anymore for the individual components. The continuity
equations are

_ρdm þ 3Hρdm ¼ Q; ð1Þ

_ρde þ 3Hð1þ wÞρde ¼ −Q; ð2Þ

where w is the constant DE equation of state and a dot
represents a time derivative. We take the phenomenological
interaction Q ¼ Hðλ1ρdm þ λ2ρdeÞ [115], where λ1 and λ2
are constants.
Here we will use the original scenario of constant c.

Using the expression for ρde into Eq. (2) the equation of
state is determined

w ¼ −
1

3

�
λ1 þ

λ2
r

�
ð1þ rÞ: ð3Þ

This means that the equation of state is no longer a free
parameter, as it is usual in other interacting DE models.
When the coupling constants are zero, a pressureless fluid
is recovered, as originally found in [42].
The equation of state is constant and depends on the

coupling constants, given that the ratio r is well known. In
order for w not to be zero, the coupling constants should not
be very small. The constant c is also completely determined
by the ratio r ¼ r0, through c2 ¼ ð1þ r0Þ−1.

We can solve the corresponding continuity equations,
which give the energy densities for CDM and DE,
respectively,

ρdm ¼ ρdm;0a
−3þλ1þλ2

r0 ; ð4Þ

ρde ¼ ρde;0a
−3þλ1þλ2

r0 : ð5Þ

Both CDM and DE present the same background evolution,
with an effective equation of state weff

de ¼ weff
dm ¼

−1=3ðλ1 þ λ2=r0Þ, thus leading to the constant ratio r at
all times. This already poses a problem in the description,
because both fluids will have the same evolution, therefore
they both describe either CDM (with λ1 ¼ λ2 ≃ 0) or DE
(weff

de < −1=3). The first scenario is what Hsu found [42]
and the second one is the incentive to add an interaction
in the first place. However, if both fluids describe DE
then we would have a Universe without CDM, which is
ruled out by observations. We will return to this point in a
moment.
The accelerated expansion can only be achieved if

both couplings are not very small, as it is depicted in
Fig. 1. One may wonder if such relatively large couplings
are in agreement with observations, since in other models
the couplings are small [94]. This issue is investigated as
follows.
Although HDE is an effective description for the

cosmological constant, the perturbation of the energy
density is nonzero, in contrast to ΛCDM. The perturbation
is δde ¼ 2δH=H, where the perturbation in the Hubble rate
is given by δH ¼ kvT=3þ _h=6 [116]. We can use the full
set of linear order perturbation equations for CDM and DE
to investigate the CDM behavior. In the synchronous gauge
they are [89,116–118]

FIG. 1. Effective equation of state for DE as a function of the
coupling constants. The accelerated expansion of the Universe
may happen for relatively large couplings. If λ1 ¼ 0, then λ2
should be considerably larger than 1.
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_δdm ¼ −θdm −
_h
2
þHλ2

ρde;0
ρdm;0

ðδde − δdmÞ

þ
�
λ1 þ λ2

ρde;0
ρdm;0

��
kvT
3

þ
_h
6

�
; ð6Þ

_θdm ¼ −Hθdm −
�
λ1 þ λ2

ρde;0
ρdm;0

�
Hθdm; ð7Þ

_δde ¼ −ð1þ wÞ
�
θde þ

_h
2

�
− 3Hð1 − wÞδde

þHλ1
ρdm;0

ρde;0
ðδde − δdmÞ

− 3Hð1 − wÞ
�
3ð1þ wÞ þ λ1

ρdm;0

ρde;0
þ λ2

�
Hθde
k2

−
�
λ1

ρdm;0

ρde;0
þ λ2

��
kvT
3

þ
_h
6

�
; ð8Þ

_θde ¼ 2Hθde

�
1þ 1

1þ w

�
λ1

ρdm;0

ρde;0
þ λ2

��
þ k2

1þ w
δde;

ð9Þ

where the adiabatic sound speed is assumed to be w, the DE
effective sound speed is one and the center of mass velocity
for the total fluid vT is defined as [116]

FIG. 2. Linear matter power spectrum at z ¼ 0 for two sets of
representative values for λ1 and λ2, and ΛCDM. The usual
cosmological parameters were fixed to the Planck 2018 best-fit
values.

FIG. 3. Dimensionless CMB temperature (top left), polarization (top right) and cross (bottom) power spectra. Two sets of
representative values for λ1 and λ2 were taken, while the other cosmological parameters were fixed to the Planck 2018 best-fit values.
A comparison with ΛCDM is also shown.
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ð1þ wTÞvT ¼
X
a

ð1þ waÞΩava: ð10Þ

The DE equation of state w is given by Eq. (3) with
constant r.
In the synchronous gauge, the adiabatic initial conditions

for CDM and DE are [115,119]

δðiÞde ¼ δðiÞdm ¼ 3

4
δðiÞr

�
1 −

λ1
3
−
λ2
3

1

r0

�
; ð11Þ

vðiÞde ¼ vðiÞr ; ð12Þ

where the index “r” represents radiation. The equations for
the other species remain as they are in the ΛCDM model.
Finally, a comoving frame where the CDM velocity is zero
is chosen in order to fix the residual freedom of the
synchronous gauge.

III. RESULTS

We implemented the background and perturbation equa-
tions in a modified version of CLASS [110,120].
We have extensively investigated the parameter space,

and illustrative matter and CMB power spectra are shown
in Figs. 2 and 3, respectively, where we chose two different
set of values for λ1 and λ2 and plot also the case for ΛCDM.
Independent of the chosen values for the couplings, the
power spectra are very different from ΛCDM.
Several experiments have measured the CMB power

spectrum since 1992, e.g., COBE [121], TOCO [122],
DASI [123], Boomerang [124], MAXIMA [125], WMAP
[126,127], and more recently Planck [128]. All of these
experiments constrained very well the CMB power spec-
trum, which is in agreement with the ΛCDM model.
Therefore, a deviation from the observed power spectrum,
like the ones shown in Fig. 3, is very disfavored. The same
conclusion can be drawn for the matter power spectrum.
The matter power spectrum is well constrained by latest

observations, e.g., Planck 2018 CMB data [128], DES Year
1 cosmic shear [129], and SDSS galaxy and Ly α clustering
[130–133]. Thus all choices of couplings are completely
excluded from current observations.
A situation where the couplings are large enough to

produce the cosmic acceleration leads to a Universe without
CDM, as pointed out before. In order to compare the
scenarios, we show in Fig. 4 the power spectra for the case
λ1 ¼ λ2 ¼ 0.6 along with ΛCDM without CDM. We see
that the power spectra are very similar to each other,
although not identical, because of the different DE equation
of state and perturbation equations. In this case, the CMB
power spectrum has all peaks increased, when compared to
the one for ΛCDM, due to the absence of CDM, while the
third peak is smaller than the second one. On the other
hand, the matter power spectrum is reduced mainly on
small scales due to the absence of CDM.

IV. CONCLUSIONS

In this paper we investigated an interacting HDE model
with the Hubble-scale as the IR cutoff. We assumed that the
interaction between CDM and DE is driven by the sum of
the energy densities of both species, with constant coupling
constants. The evolution of the energy density for both
components of the dark sector is the same, leading to an
always constant ratio ρdm=ρde and solving the coincidence
problem. However, an analysis of possible values for the
couplings that would lead to the cosmic acceleration shows
that the corresponding CMB and matter power spectra are
very different from the ones in the ΛCDM model. Hence,
this is in disagreement with cosmological observations,
indicating that the assumed interacting HDE is not viable to
describe the current phase of accelerated expansion of the
Universe.
We point out that the results presented here are valid for a

constant c2. A time varying c changes the DE equation of
state and may lead to different conclusions, but it is beyond
the scope of the present work.

FIG. 4. Linear matter power spectrum (left) and dimensionless CMB temperature (right) power spectrum, for λ1 ¼ λ2 ¼ 0.6, ΛCDM,
and ΛCDM without CDM. The other cosmological parameters were fixed to the Planck 2018 best-fit values.
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