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We consider the interplay of the early dark energy (EDE) model, the swampland distance conjecture
(SDC), and cosmological parameter tensions. EDE is a proposed resolution of the Hubble tension relying
upon a near-Planckian scalar field excursion, while the SDC predicts an exponential sensitivity of masses of
other fields to such an excursion, m ∝ e−cjΔϕj=Mpl with c ∼Oð1Þ. Meanwhile, EDE is in tension with large-
scale structure (LSS) data, due to shifts in the standard Λ cold dark matter parameters necessary to fit the
cosmic microwave background. One might hope that a proper treatment of the model, e.g., accounting for
the SDC, may ameliorate the tension with LSSs. Motivated by these considerations, we introduce the early
dark sector (EDS) model, wherein the mass of dark matter is exponentially sensitive to super-Planckian
field excursions of the EDE scalar. The EDS model exhibits new phenomenology in both the early and late
Universe, the latter due to an EDE-mediated dark matter self-interaction, which manifests as an enhanced
gravitational constant on small scales. This EDE-induced dark-matter-philic “fifth force,” while con-
strained to be small, remains active in the late Universe and is not screened in virialized halos. We find that
the new interaction with dark matter partially resolves the LSS tension. However, the marginalized
posteriors are nonetheless consistent with fEDE ¼ 0 at 95% CL once the Dark Energy Survey year 3
measurement of S8 is included. We additionally study constraints on the model from Atacama Cosmology
Telescope data and find a factor of 2 improvement on the error bar on the SDC parameter c, along with an
increased preference for the EDE component. We discuss the implications of these constraints for the SDC
and find the tightest observational constraints to date on a swampland parameter, suggesting that an EDE
description of cosmological data is in tension with the SDC.
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I. INTRODUCTION

The early dark energy (EDE) model [1] is a prominent
candidate to resolve the Hubble tension [2]. However, this
model faces challenges both from data, in the form of
exacerbated tensions with large-scale structure observa-
tions [3–5], and from theory, namely, whether the model
can be self-consistently described as a low-energy limit of a
high-energy theory including gravity. To understand the
interplay of these challenges, in this work we take guidance
from the “swampland distance conjecture” [6] (and its
extension to axions [7–10]) and extend EDE to an early
dark “sector.”
The Hubble tension, namely, the discrepancy in the value

of the Hubble constant H0 measured locally via the cosmic
distance ladder using type Ia supernovae (SNIa) [11,12]
and the value inferred from the cosmic microwave back-
ground (CMB) [13], large-scale structures (LSSs) [14–19],
and other probes [2], presents a challenge to the standard Λ
cold dark matter (ΛCDM) cosmological model. In par-
ticular, the disagreement between Planck 2018 CMB

observations and the SH0ES 2020 cosmic distance ladder
measurement stands at 5.0σ statistical significance [20],
with the two values given by H0 ¼ 67.37� 0.54 [13] and
H0 ¼ 73.04� 1.04 km=s=Mpc [20], respectively. While
some local measurements have yielded H0 values that are
not in statistical disagreement with the ΛCDM-predicted
value from CMB and LSS data (e.g., [21,22]), it is
generally true that local H0 probes have yielded higher
values than expected in ΛCDM.
A plethora of cosmological models have been proposed

to bring these datasets into concordance and resolve the
Hubble tension. For a recent review see, e.g., Ref. [23].
These range from modifications to the early (prerecombi-
nation) Universe to the late Universe and to the theory of
gravity in the local Universe. However, all approaches face
severe challenges: For example, late Universe models that
leave the sound horizon at the drag epoch unchanged are
heavily constrained by the inverse cosmic distance ladder
and generally cannot explain the SH0ESmeasurement [24].
Early Universe models that reduce the sound horizon at
recombination can successfully raise the Hubble constant
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while maintaining consistency with CMB observations, but
are often in tension with LSS observations, namely, the
galaxy clustering and cosmic shear auto- and cross-corre-
lation two-point functions from the Dark Energy Survey
year 1 [3] and Baryon Oscillation Spectroscopic Survey
(BOSS) full-shape anisotropic galaxy clustering [4]; see
also Refs. [25,26]. Nonetheless, the relative success of
early Universe models at raising the inferred H0 motivates
the search for an embedding into a more complete and yet
still well-motivated model that is consistent with all data-
sets. Several recent models have been proposed along these
lines, e.g., [27–29].
An interesting case study is early dark energy [1]. In this

class of models, the expansion rate is increased near matter-
radiation equality, so as to reduce the sound horizon at
recombination and thereby raise theH0 value inferred from
the angular scale of the sound horizon. The model can
accommodate larger values of H0 than ΛCDM while not
degrading the fit to the CMB and is thereby compatible
with both SH0ES and Planck. However, the larger H0 is
accompanied by shifts in other ΛCDM parameters, such as
the darkmatter densityΩch2, the scalar spectral index ns, and
the amplitude of density perturbations σ8. This brings the
model into tension with LSS data [3–5]. Accordingly, when
additional LSS data are included in the analysis, e.g., from
the Dark Energy Survey, the Kilo-Degree Survey [30,31],
and the Subaru Hyper Suprime-Cam (HSC) survey [32], or
from BOSS [4], the evidence for an EDE component is
significantly diminished [3–5] (see Ref. [33] for an alter-
native viewpoint).
The minimal EDE model is composed of a scalar field ϕ

with potential VðϕÞ ¼ V0½1 − cosðϕ=fÞ�n. This potential,
first proposed in [34], is a generalization of the usual axion
potential (see Ref. [35] for a review). In this model, the
relative energy density in ϕ is peaked at a critical redshift
zc, at which point the scalar field constitutes a fraction
fEDE ≡ ρϕðzcÞ=ρtotðzcÞ of the energy density of the
Universe. The parameters of the model follow from simple
considerations: n ≥ 2 so as to have the EDE field’s energy
density rapidly redshift away following zc, V

1=4
0 ∼ eV so as

to constitute≈10% of the Universe at zeq, and f ≲Mpl so as
to endow the scalar with a mass m ∼HðzeqÞ and thereby
set zc ∼ zeq.
This model is, at best, a phenomenological description of

a more complicated theory. The conventional origin of
periodic axion potentials is instantons. A complete model
would need to explain why a tower of instantons
VðϕÞ ∼P

n cne
−Sn cosðnϕ=fÞ, with Sn as the instanton

action, conspires to take the required form, despite the
Planckian decay constant f ∼Mpl, which would conven-
tionally be associated with a total breakdown of the
instanton expansion (see, e.g., Refs. [36–38]). One might
presuppose that the model exists as a low-energy limit of an
uv-complete theory, e.g., that EDE is in the landscape of
string theory [39,40], and that the low-energy parameter

fine-tunings are sensible from the uv perspective. However,
it might equally well be the case that the EDE model is in
the swampland [6,41]. So-called swampland conjectures
(for a review, see Refs. [42–44]) attempt to delineate the
boundaries of the landscape and identify those properties
that low-energy theories inherit from the high-energy
theory. In particular, the swampland distance conjecture
[6] holds that any Planckian field excursion jΔϕj ∼Mpl,
such as that in EDE, causes an exponential suppression of
the mass of other fields in the theory, m ∝ e−cjΔϕj=Mpl , with
c > 0 a number of Oð1Þ.
In this work we study the interplay of the swampland and

the EDE model. We consider the impact of the swampland
distance conjecture (SDC) [6] (and its extension to axions
[7–10]) on the EDE inference of H0 and on the tension of
EDE and LSS data [3–5]. To this end, we promote EDE to
an early dark sector (EDS). We consider an EDE depend-
ence of the mass of dark matter, given by

mDMðϕÞ ¼ m0ecϕ=Mpl ; ð1Þ

where ϕ is initially ϕi ∈ ½0; πf� and is zero in the present
Universe. We assume for simplicity that the above applies
to all of the dark matter (as also considered in, e.g., the
“fading dark matter”model [45,46]). The SDC prediction is
that c is positive and order 1, such that the dark matter is
exponentially lightened when ϕ rolls from ϕi ∼Mpl to
ϕ ∼ 0. We perform data analysis allowing c to vary and
allow the data to decide both the magnitude and sign of c.
We find that positive c (c > 0), which is the sign of c

predicted by the SDC, raises S8 and exacerbates the tension
with LSS data in this model. On the other hand, we find that
a small but negative c can lower S8 without decreasing H0,
while simultaneously improving the fit to the CMB. This
occurs due to an interplay of imprints on the cosmic
microwave background, both at high l and on scales that
enter the horizon around zc, and imprints on the growth of
structure, caused by a relative shift in the redshift of matter-
radiation equality and by an induced attractive dark matter
self-interaction (a dark-matter-philic fifth force).1

We perform a Markov chain Monte Carlo (MCMC)
analysis of a (“baseline”) combined dataset composed of
Planck 2018 primary CMB and CMB lensing data
[13,48,49]; baryon acoustic oscillation (BAO) distances
from the Sloan Digital Sky Survey (SDSS) DR7 main
galaxy sample [50], the 6dF galaxy survey [51], and SDSS
BOSS DR12 [52]; the Pantheon supernovae dataset [53];
and the SH0ES H0 measurement. We find a modest overall
preference for c < 0, with the best-fit value c ¼ −5 × 10−3.

1This is related to, but distinct from, the “cosmic axion force”
[47]; in that work, an ultralight scalar mediates an interaction with
the Standard Model, whereas in the EDS model the interaction is
confined to the dark sector.
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We find that the EDS model is able to accommodate a
lowerS8 than inEDEand thereby lessen the tensionwithLSS
data. To substantiate this,we supplement our baseline dataset
with Dark Energy Survey year 3 data (DES-Y3) [54],
approximated as a prior on S8 ≡ σ8ðΩm=0.3Þ0.5, and we
repeat the MCMC analysis. We find that the best-fit EDS is
better able to accommodate theDES-Y3measurement than is
EDE, with a relative reduction in χ2DES−Y3 of 1.1. However,
like previous analyses [3–5], we find that the combined
dataset including DES-Y3 is statistically consistent with
fEDE ¼ 0, indicating that there is little Bayesian justification
for this four-parameter extension of ΛCDM.
Finally, we study the impact of recent CMB temperature

and polarization data from the Atacama Cosmology
Telescope (ACT) [55,56]. The ACT DR4 data significantly
improve upon the precision of Planck on small angular
scales. The ACT Collaboration analysis of the EDE model
[57] found amoderate preference for fEDE > 0, in contrast to
results from Planck. We perform a MCMC analysis of the
EDS model fit to the baseline dataset supplemented with
ACT DR4 temperature and polarization spectra. Analogous
to the EDE analysis of [57],we find that the inclusion ofACT
data increases the preference for fEDE > 0 and significantly
constrains the timing zc. We find a factor of 2 improvement
on the constraint on c relative to the baseline dataset.
Turning these analyses on their head, we may ask what

the data, when analyzed in the context of the EDE model,
have to say about the swampland distance conjecture. We
find a 95% CL upper limit on c given by c < 0.068 for the
baseline dataset and c < 0.035 and c < 0.042 at 95% CL
when DES-Y3 or ACT are included, respectively. We
interpret this as a modest tension between the swampland
distance conjecture and the EDE model, at the level of a
4%–7% fine-tuning.
The structure of this paper is as follows. In Sec. II, we

introduce the early dark sector model, the dynamics, and
the physics behind it. In Sec. III, we detail the imprint on
the cosmic microwave background and on large-scale
structures. In Sec. IV, we discuss the datasets that will
be used in our analyses and performMCMC analyses of the
model fit to varying dataset combinations. We detail the
implications of this for the swampland distance conjecture
in Sec. IV D and conclude in Sec. V.
Wework in natural units, where the speed of light is unity.

The parameter c refers exclusively to the coupling parameter
of theEDSmodel and not to the speed of light.We denote the
reduced Planck mass Mplð¼ 2.435 × 1018 GeVÞ. Unless
otherwise stated, values for H0 are given in units of
km=s=Mpc.

II. FROM EARLY DARK ENERGY
TO THE EARLY DARK SECTOR

The idea underlying the EDE model [1] is to shrink the
comoving sound horizon at last scattering rs, defined by

rsðz�Þ ¼
Z

∞

z�

dz
HðzÞ csðzÞ; ð2Þ

where z� is the redshift of last scattering and cs is the sound
speed of the photon-baryon plasma, through the inclusion
of an additional source of energy density, namely, the EDE.
The reduced sound horizon allows an increased H0 while
remaining consistent with CMB observations of the angu-
lar scale of the sound horizon θs, defined by

θs ¼
rsðz�Þ
DAðz�Þ

; ð3Þ

whereDA is the angular diameter distance to last scattering.
By adjusting the redshift dependence of the EDE compo-
nent, the CMB damping scale can simultaneously be
adjusted to match observations, albeit at the expense of
introducing a tuning or coincidence into the EDE model.
The baseline EDE model [1] is described by a canonical

scalar field, with potential energy given by

VðϕÞ ¼ m2f2
�
1 − cos

ϕ

f

�
3

: ð4Þ

This potential, of the form first proposed in [34], is a
generalization of the usual axion potential, corresponding
to a careful fine-tuning of an instanton expansion or of
other nonperturbative effects (see, e.g., the discussion in
[3]). Alternative realizations and variations on the EDE
model abound, see, e.g., Refs. [1,58–66].
The common feature of these models is that the energy

density transitions between redshifting slower than ordi-
nary matter to redshifting faster across a critical redshift. In
the baseline EDE model, this is achieved as follows. At
early times, the scalar is frozen in place by Hubble friction
and effectively behaves at dark energy. The scalar is
released from Hubble friction when H ≃m, for a typical
value of the initial field ϕi ¼ OðfÞ. Around this time, the
scalar field makes its maximal contribution to the energy
density of the Universe, i.e., the ratio of energy densities

fEDEðzÞ≡ ρEDEðzÞ
ρtotðzÞ

; ð5Þ

where ρtot is the total energy density, is maximal when
z ¼ zc. As a shorthand, we will denote fEDE ≡ fEDEðzcÞ
and will explicitly specify fEDEðzÞ when referring to the
above. At times after zc, i.e., at lower redshifts, the field
rolls down the potential VðϕÞ and undergoes damped
oscillations. The energy density of the scalar rapidly
redshifts away, naively leaving no trace in the postrecom-
bination Universe.
One can easily estimate the model parameters necessary

to resolve the Hubble tension. The sound horizon and
damping scale are most sensitive to dynamics that occur in
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the decade of redshift preceding last scattering [67]. This
effectively imposes zc ∼ zeq, which in turn determines the
mass parameter m as

m ∼ 10−27 eV: ð6Þ

Meanwhile, the discrepancy in the Hubble constant H0 is
roughly 10%, which, combined with ϕi ¼ OðfÞ by stan-
dard arguments (see, e.g., Ref. [35]), implies that

Vðz ∼ zcÞ ∼ 0.1H2
eqM2

pl; ð7Þ

and hence,

f ∼Mpl: ð8Þ

Thus, we see the EDE scalar field, insofar as it is relevant to
the Hubble tension, naturally undergoes a field excur-
sion jΔϕj ∼ f ∼Mpl.
Little is known about field theories near the Planck scale.

At these scales one can reasonably expect quantum gravity
effects, e.g., from string theory, to become relevant. When
assessing models, in lieu of a concrete string theory
construction, one approach is to take guidance from known
calculable string theory examples, distilled into a simple set
of conjectures—so-called swampland conjectures [41] (for
a review, see Refs. [42–44]). The swampland conjectures
collectively aim to delineate the boundary between effec-
tive field theories (EFTs) that are inconsistent once gravity
is quantized (or, more precisely, EFTs that do not admit an
uv completion into quantum gravity [42]) and those that are
consistent with quantum gravity (and hence do admit uv
completion).
Of particular relevance to EDE is the SDC [6]. The SDC

holds that any low-energy effective field theory is only
valid in a region of field space bounded by the Planck scale,
and the breakdown of effective field theory that occurs at
Planckian field excursions is encoded in an exponential
sensitivity of the mass spectrum of the effective theory. This
can be expressed as, for the mass of at least one such field in
the spectrum,

M ∼M0e−αjΔj=Mpl ; ð9Þ

where Δ is the distance traversed in field space, and α is an
order-1 parameter. There are numerous concrete examples
that support the SDC. For example, consider a universe
with an extra dimension that is a circle of radius R.
Dimensional reduction on the circle yields a tower of
massive Kaluza-Klein excitations, with masses given by

m2
n ≃ n2M2

ple
−2φ=Mpl ; ð10Þ

where φ≡Mpl logðMplRÞ is the canonically normalized
radius of the circle. At large field values φ≳Mpl, the

Kaluza-Klein fields become exponentially light and a priori
cannot be neglected. For other examples of the scaling in
Eq. (9), see, e.g., the review in [44].
The EDE scenario is precisely the sort of model that the

SDC is designed to address, namely, a model with
Planckian field excursions. While this is not unique to
EDE and is exhibited also in late Universe dark energy
models, such as quintessence [68], the EDE model is
unique in that this exponential sensitivity is activated in the
high-redshift Universe. Thus, one might hope that cosmo-
logical observables such as the CMB and LSSs may be
powerful probes of the couplings predicted by the SDC,
e.g., of the form in Eq. (9), in the EDE model.
With all this in mind, in this work we consider a simple

model that implements these ideas. We extend the EDE
model to the EDS and consider a coupling of the EDE field
to dark matter of the form predicted by the SDC. While
fields that exhibit the mass scaling in Eq. (9) could, in
principle, be an arbitrary fraction of the total dark matter,
for simplicity, we assume ϕ couples to all dark matter. As a
concrete model, we consider the following Lagrangian:

L ¼ 1

2
ð∂ϕÞ2 þ iψ̄Dψ − VðϕÞ −mDMðϕÞψ̄ψ ; ð11Þ

where ϕ is the EDE scalar with potential VðϕÞ and ψ is a
fermionic cold dark matter candidate with ϕ-dependent
mass mDMðϕÞ. We consider the specific form of the
potential VðϕÞ given by Eq. (4) and a field-dependent
mass mDMðϕÞ given by

mDMðϕÞ ¼ m0ecϕ=Mpl ; ð12Þ

as motivated by the SDC and, in particular, the extension of
the SDC to axions [7–10]. In our work we fix the
convention that ϕ decreases over the course of cosmic
evolution, i.e., ϕ evolves from ϕi > 0 in the early Universe
to ϕf ∼ 0 in the present Universe. The SDC then predicts
that c defined by Eq. (12) is positive (c > 0), such that the
dark matter mass is decreased by a Planckian field
excursion of ϕ. In what follows, we refer to the system
defined by Eqs. (11), (12), and (4), as the EDS model.
The background cosmology of the EDS model (11) is

specified by the Friedmann equations, along with the scalar
field equation of motion,

ϕ̈þ 2aH _ϕþ a2
dV
dϕ

¼ −a2
c
Mpl

ρDM; ð13Þ

where a dot denotes a derivative with respect to conformal
time and H ¼ ð1=aÞda=dt where t is cosmic time, and the
conservation equation for the joint stress energy of the dark
matter and scalar field. The latter leads to the modified
continuity equation for the dark matter density,
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_ρDM þ 3aHρDM ¼ c
Mpl

_ϕρDM: ð14Þ

A full derivation of the equations of motion at the back-
ground and linear-perturbation level is given in
Appendix A. We may understand the background cosmol-
ogy in a relatively straightforward way. On the dark matter
side, Eq. (14) may be solved exactly, to give the evolution
of the dark matter density at all times. We find

ρDMðaÞ ¼
3M2

plH
2
0ΩDM

a3
mDMðϕÞ
mDMðϕ0Þ

; ð15Þ

with mDMðϕ0Þ as the present-day dark matter mass. This is
consistent with the conservation of the comoving DM
number density, a3nDMðaÞ ¼ 3M2

plH
2
0ΩDM=mDMðϕ0Þ.

Meanwhile, the scalar field may be understood as evolving
in a time-dependent effective potential, which can be read
off from Eq. (A6) as

Veffðϕ; aÞ≡ VðϕÞ þ ρDMðaÞ; ð16Þ

where ρDMðaÞ is given by Eq. (15).
As a fiducial numerical example, we consider the best-fit

model in the fit to primary CMB, CMB lensing, BAO,
SNIa, and SH0ES data, to be presented later in this work
(see Table I). We will refer to this example throughout; the

parameters (to be varied in Sec. III and sampled in our
MCMC analysis) are given by, for the EDS parameters,

fEDE ¼ 0.142; log10ðzcÞ ¼ 3.58;

θi ≡ ϕi

f
¼ 2.72; cθ ≡ c ·

f
Mpl

¼ −0.0010; ð17Þ

where we have defined cθ as c in units of f, analogous to
the rescaling of ϕ into θ, and

100θs ¼ 1.04114; Ωbh2 ¼ 0.02284;

Ωch2 ¼ 0.13043; logð1010AsÞ ¼ 3.079;

ns ¼ 0.9931; τ ¼ 0.0600; ð18Þ

for the ΛCDM parameters. The corresponding particle
physics parameters are given by

c ¼ −0.0049; ϕi ¼ 0.55Mpl;

f ¼ 0.20Mpl; m ¼ 5.4 × 10−28 eV; ð19Þ

implying a change in the dark matter mass,

ΔmDM

mDM
≡mðϕiÞ −m0

m0

¼ −0.003: ð20Þ

TABLE I. Maximum-likelihood (ML) parameters and 68% CL marginalized constraints for the ΛCDM, EDS, and
EDE models, in the fit to a combined dataset composed of Planck 2018 CMB, CMB lensing, BAO, SNIa, and
SH0ES. Parameters in bold are sampled in the MCMC analyses.

Model ΛCDM EDS EDE

100θs 1.04218 (1.04205� 0.00027Þ 1.04114 (1.04136� 0.00040Þ 1.04091 (1.04141� 0.00036Þ
Ωbh2 0.02249 (0.02252� 0.00013Þ 0.02284 (0.02291� 0.00024Þ 0.02286 (0.02280þ0.00020

−0.00022 )
Ωch2 0.11840 (0.11821� 0.00085Þ 0.1343 (0.1288þ0.0056

−0.0046 ) 0.1344 (0.1296� 0.0039Þ
τ 0.0594 (0.0595þ0.0068

−0.0078 ) 0.0600 (0.0570� 0.0075Þ 0.0600 (0.0578� 0.0072Þ
logð1010AsÞ 3.052 (3.052� 0.015Þ 3.079 (3.062� 0.017Þ 3.079 (3.067� 0.015Þ
ns 0.9686 (0.9691� 0.0035Þ 0.9931 (0.9847� 0.0073Þ 0.9930 (0.9865� 0.0071Þ
cθ −0.0010 (−0.0024þ0.0091

−0.015 )
fEDE 0.142 (0.099þ0.056

−0.041 ) 0.142 (0.104þ0.034
−0.030 )

log10zc 3.58 (3.602þ0.071
−0.19 ) 3.58 (3.606þ0.037

−0.11 )
θi 2.72ð< 3.14Þ 2.73 (2.60þ0.31

þ0.022)

c −0.005 (−0.011þ0.029
−0.047 )

ϕiðMplÞ 0.547 (0.53þ0.10
−0.15 ) 0.549 (0.48� 0.11Þ

log10ðf=eVÞ 26.69 (26.857þ0.058
−0.37 ) 26.69 (26.652þ0.080

−0.14 )
log10ðm=eVÞ −27.27 (−27.04þ0.30

−0.55 ) −27.28 (−27.195þ0.031
−0.23 )

ΔmDM=mDM −0.003 (−0.007� 0.021Þ
σ8 0.8093 (0.8087� 0.0060Þ 0.8481 (0.838þ0.011

−0.013 ) 0.8490 (0.815� 0.011Þ
Ωm 0.3047 (0.3039� 0.0050Þ 0.3000 (0.3012� 0.0056Þ 0.3003 (0.3017� 0.0051Þ
S8 0.8156 (0.8140� 0.0098Þ 0.8481 (0.840� 0.014Þ 0.8495 (0.838� 0.013Þ
H0 68.16 (68.21� 0.39Þ 72.52 (71.1� 1.2Þ 72.50 (71.2� 1.1Þ
Δχ2tot 0 −18.1 −16.2
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The tension-related derived cosmological parameters are
given by

H0 ¼ 72.52; S8 ¼ 0.848;

σ8 ¼ 0.848; Ωm ¼ 0.3000; ð21Þ

which can be compared with the SH0ES 2020 measurement
H0 ¼ 73.2� 1.3 [12] and the DES-Y3 measurements [54]
S8¼0.776�0.017,Ωm¼ 0.339þ0.032

−0.031 , andσ8 ¼ 0.733þ0.039
−0.049 .

Note that SH0ES has been included in the datasets that are
used in this fit, while DES-Y3 has not. We will discuss in
detail the tension with and interplay between these datasets
in Sec. IV.
The cosmological evolution of the EDE scalar field, the

fractional energy density fEDEðzÞ, and the dark matter mass
mDMðϕÞ for the above parameters are shown in Fig. 1. The
scalar field undergoes an OðMplÞ excursion and near z ¼
zc ¼ 3801 comprises 14% of the energy density of the
Universe. This energy density is rapidly dissipated as the
field rolls down the potential and begins to oscillate, and at
z ¼ 103 its contribution is less than 2% of the energy
density of the Universe. The dark matter mass undergoes a
fractional change corresponding to a mass that is 0.3%
lighter in the early Universe than in the late Universe.
The equations of motion for linear perturbations of the

scalar field and dark matter may be derived following the
same procedure as for the background evolution, namely,
from the variation of the action with respect to the scalar
field perturbations and the conservation of the perturbed
joint stress-energy tensor (see Appendix A). In the syn-
chronous gauge, we find for the scalar field perturbation,

δ̈ϕþ 2aH _δϕþ
�
k2 þ a2

d2V
dϕ2

�
δϕþ

_h
2
_ϕ ¼ −a2

cρDM
Mpl

δc;

ð22Þ

and for the dark matter,

_δc þ θ þ
_h
2
¼ 1

Mpl
c _δϕ; ð23Þ

_θ þ aHθ ¼ 1

Mpl
ck2δϕ −

1

Mpl
c _ϕθ; ð24Þ

where θ≡ ∂ivi and h is the trace of the spatial metric
perturbation. These results are specific to the choice of
SDC-inspired dark matter mass dependence in Eq. (12); the
equations of motion for a general ϕ-dependent dark matter
mass mðϕÞ are given in Appendix A. The phenomenology
of perturbations will be discussed in detail in Sec. III.
Finally, we note that the model we consider here is

similar to, but distinct from, the modified gravity imple-
mentation of coupled EDE in [29]. While both setups
include a field-dependent dark matter mass, here we
consider an axionlike sinusoidal VðϕÞ, Eq. (4), whereas
[29] considered a monomial VðϕÞ ¼ λϕ4. These two
choices for VðϕÞ are known to exhibit different phenom-
enology; see, e.g., the discussion in [58,59].

III. PHENOMENOLOGY: THE CMB AND THE
GROWTH OF STRUCTURE

Here we investigate the novel EDS impact of the
coupling between the scalar field and dark matter on the
CMB and large-scale structure of the Universe.

A. CMB

In Fig. 2, we show the impact of varying c with the other
parameters fixed to their values in Eqs. (17) and (18)
compared with the Planck TT, EE, and TE data. The
various models are plotted as differences with respect to the
best-fit model to baseline dataset in units of the cosmic
variance per multipole,

FIG. 1. Fiducial example background evolution of the scalar field, the energy density fraction fEDE, and the dark matter massmDMðϕÞ.
The vertical lines indicate the location of zc. The scalar field indeed undergoes a Planckian field excursion (up to an order-1 factor),
leading to an ≈0.3% change to mDM around zc. See Eq. (17) for parameters.
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l ; TT;
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1
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q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CTT
l CEE

l þ ðCTE
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q
; TE;

ffiffiffiffiffiffiffiffi
2

2lþ1

q
CEE
l ; EE;

ð25Þ

of the best-fit model. From the Δc ¼ �0.02 parameter
variations around the best-fit c ¼ −0.005, which is com-
parable to the scale of its observational errors, we can see
that the main effects on the TT power spectrum of
decreasing c is a localized decrease in power near l ∼
500 and an increase in power at high multipole
moments l ≳ 700.
These effects are induced by the gravitational effects of

the change of dark matter mass on the CMB acoustic
oscillations. These gravitational effects come through the

Newtonian gauge Weyl potential ΨþΦ; see, e.g.,
Ref. [69]. The change in the Weyl potential drives acoustic
oscillations, especially around the epoch that the oscilla-
tions reach their first extrema krsðzÞ ¼ π, where rs is the
comoving sound horizon. In Fig. 3, we show the time
evolution of theWeyl potential and dark matter mass for the
Δc ¼ −0.02 model with respect to the best-fit EDS model.
The Weyl potential is shown in blue and orange curves
for k ¼ 0.038 and 0.0857 Mpc−1, which correspond to
l ∼ 500 and 1100, respectively. The dashed vertical lines
indicate locations where krsðzÞ ¼ π for each k mode with
the same color, and the shaded area indicates the epoch
between zc and recombination. We see that the Weyl
potential change follows the dark matter mass change,
which oscillates with time. For a negative c, the dark matter
mass is smaller before zc and larger during an epoch
between zc and recombination. For modes that cross krs ¼
π well before zc, the decrease in the dark matter mass at that
time causes a larger relative decay in the Weyl potential and
a corresponding increase in the amplitude of the acoustic
peaks at the corresponding multipoles l≳ 700. On the
other hand, for modes that cross right around zc, the change
in the Weyl potential flips sign at the critical phase for
driving the acoustic mode, leading to a local decrement in
the power around l ∼ 500.
As we can see from Fig. 2, these effects for variations of

Δc ¼ �0.02 with other parameters fixed are too large to be
accommodated by the data and must be compensated by
other parameters. This can be done largely within the EDS
sector itself, without substantially modifying the other

FIG. 2. Planck 2018 data residuals relative to the EDS best-fit
model to the baseline dataset. Models with Δc ¼ �0.02 around
the best fit −0.005 with all other parameters fixed to their values
in Eqs. (17) and (18) are shown for comparison. The blue vertical
lines indicate the positions of the acoustic peaks in the best-fit
EDS model.

FIG. 3. Time evolution of Weyl potential, in units of the initial
comoving curvature perturbation, and the dark matter mass for
Δc ¼ −0.02 with respect to the best-fit EDS model. All the other
parameters are fixed to their values in Eq. (17) and (18). The
dashed vertical lines indicate locations of krsðaÞ ¼ π for each k
mode with the same color, where rs is the comoving sound
horizon. The shaded area indicates the epoch between zc and
recombination.
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ΛCDM parameters of Eq. (18), especially Ωch2. We study
these compensating effects in Fig. 4, where we show TT
power spectra for both the global best-fit EDS model where
c ¼ −0.005 (black line) and the best model with c ¼
−0.025 fixed (orange line). We then iteratively perform the
parameter shifts from the former to the latter so as to
understand the compensations and hence the expected
parameter degeneracies in the fit to data. One may
appreciate from Fig. 4 that lowering c from c ¼ −0.005
to c ¼ −0.025 generates a significant dip in CTT

l around
l ∼ 500. This can be compensated by lowering the initial
phase θi, however, this comes at the expense of significant
residuals at somewhat higher multipoles. Next, tuning zc
changes the damping scale and hence the high-l amplitude.
Therefore, we expect a c − θi − zc degeneracy in the fit to
data. This expectation is confirmed by MCMC analyses,
e.g., the results presented in Sec. IV.
In particular these compensations do not involve the

present cold dark matter density Ωch2, leaving a range of
allowed c at fixed Ωch2. Indeed in the best-fit model with
c ¼ −0.005, Ωch2 remains very close to its best-fit value
for EDE (i.e., c ¼ 0), but the change in the dark matter
mass makes the cold dark matter density at early times
smaller. We shall see next that this delays the onset of the
matter-dominated growth of density fluctuations and hence
allows a smaller amplitude of structure today.

B. Growth of structure

As we have seen, the CMB allows c < 0 with a present
dark matter density Ωch2 nearly fixed. In this context, there
are two distinct effects of c on the growth of structure and
hence S8 as can be seen in Fig. 5. The first is that for c < 0
the dark matter mass is lighter at z > zc and the dark matter
density is smaller. Therefore, the start of the matter-
dominated growth of density fluctuations is delayed, which

leads to a smaller amplitude of fluctuations today for c < 0,
all else equal. This can be seen in Fig. 5 as the negative
change in density fluctuation right after zc. Note that the
behavior before zc is due to the Weyl potential change
induced by the change of the dark matter mass, as we see in
Fig. 3. This pre-zc effect will be suppressed for larger k
modes where horizon crossing occurs much earlier. The
second effect is that the ϕ field mediates an enhanced
gravitational force for the dark matter, which increases the
growth of structure for large values of jcj.
To understand this second effect, in Appendix B we

derive the equation of the dark matter density perturbation
growth at second order in c, under a quasistatic approxi-
mation for the sourced scalar field perturbations, namely,
the assumption that spatial gradients dominate over tem-
poral derivatives for δϕ. This is a good approximation deep
inside the horizon. In this limit, the impact of δρDM on δϕ
takes the form of a nonoscillatory offset δϕð0Þ ∝ cδc [see
Eq. (B6)]. Substituting this back into the equation for δc,
the resulting effect is an Oðc2Þ self-interaction. We find

δ̈c þH_δc ¼ 4πGa2ρcδc

�
1þ 2c2k2

k2 þ a2d2V=dϕ2

�
; ð26Þ

where H is the Hubble parameter defined with respect to
conformal time. From this, one may read off an effective
gravitational constant

Geff ¼ GN

�
1þ 2c2k2

k2 þ a2d2V=dϕ2

�
; ð27Þ

which is independent of the sign of c. This expression
simplifies in the high-k limit, namely, for physical wave

FIG. 4. Comparison between the Planck TT data and both the
global best-fit EDS model where c ¼ −0.005 (black line) and the
best model for the baseline dataset with c ¼ −0.025 fixed (c-
optimized, orange line). The other curves show the effect of
varying the EDS parameters c, θi, and zc from the former to the
latter in the direction indicated by theþ and − with the remaining
parameters fixed to the global best-fit model.

FIG. 5. Density growth of EDS best-fit model as c varied, with
fixed H0 and all other parameters (except θs) fixed to their values
in Eqs. (17) and (18). The vertical line indicates the location of zc.
Here k ¼ 0.2h Mpc−1.
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numbers greater than the mass of the EDE scalar field,
which satisfy

k
a
≫ mϕ ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2V=dϕ2

q
: ð28Þ

In this limit, we have

Geff ¼ GNð1þ 2c2Þ; ð29Þ

which is independent of k and the scalar field potential.
This enhanced gravitational constant can be understood as
a dark-matter-philic scalar-mediated force.
The range of k modes which satisfy Eq. (28) changes

throughout cosmic history, as the EDE scalar evolves.
Before zc, for the parameters in Eq. (17), the field mass is
jmϕj ≃ 3.9 × 10−14 eV ≃ 18 h=Mpc. After zc, the field is
released from Hubble friction and begins to oscillate, and
the mass rapidly decreases. After this, modes come to
satisfy Eq. (28). The modes predominantly responsible for
setting S8, k ≈ 0.2 h=Mpc, satisfy Eq. (28) shortly after zc,
while longer-wavelength modes begin to satisfy Eq. (28) at
later times tk as aðtkÞ ∼ k2. The mass eventually settles to
its value at the minimum of the effective potential and
quasistatically evolves with ρDM. We derive in Appendix B
the scaling of this quasistatic mass with parameters and
show that it remains negligible, even with the enhanced
local ρDM of virialized structures. Consequently, even on
nonlinear scales today, the scalar mediates an enhanced
force on the dark matter.
A direct consequence of the enhanced gravitational con-

stant in Eq. (29) is that both positive and negative c will
increase the late-time growth of δc. This may be appreciated
from Fig. 6, where we show S8 as c is varied (with H0 held
fixed). While S8 may be slightly decreased by a small

negative c, making c further negative leads to a net increase
in S8. This may be understood analytically as follows. In the
matter-dominated limit, the enhanced gravitational force on
the darkmatter, below theCompton scale k ≫ amϕ, changes

the growth rate to limc≪1δc∝a1þ6c2=5≃að1þlogðaÞ6c2=5Þ.
This determines the fractional change in σ8 as
Δσ8=σ8 ≃ Δδcðz ¼ 0Þ=δc ≃ − logðaeqÞ6c2=5 ≃ 9.6c2. This
simple estimate captures the qualitative behavior of S8 in
Fig. 6; more quantitatively, we find S8 ¼ 0.8488ð1þ0.22cþ
7.93c2Þ.
These effects are encoded in the matter power spectrum

by a c-dependent enhancement on small scales. The linear
matter power spectrum for varying c is shown in Fig. 7,
where one may appreciate a net enhancement for both
positive and negative c. The enhancement is lessened in the
negative c case, since the fifth force effect is mitigated by
the delayed onset growth effect, while the opposite occurs
for c > 0.
The imprint on the matter power spectrum is most

significant on small scales. This is true for both the imprint
of the shift in matter-radiation equality (from the dark
matter mass variation) and of the enhanced gravitational
interaction. The latter effectively “turns on” as modes come
into the quasistatic approximation, and small-scale modes
have had the greatest period of time spent under its
influence. In our EDS model, these two competing effects
leave only a small ability to lower S8 with c. Interestingly
though, these two effects are determined by different
regions of the scalar field potential: the shift in zeq is
determined by the release from Hubble friction of the axion
from the hilltop of the cosine potential, while the enhanced
gravitational interaction is determined by the scalar field
mass in the minimum of the potential. This opens the

FIG. 6. S8 value as function of c, with fixed H0 and all other
parameters (except θs) fixed to their values in Eqs. (17) and (18).
The red dot indicates the best-fit model.

Λ

FIG. 7. Matter power spectra of EDS best-fit model as c varied,
with fixed H0 and all other parameters (except θs) fixed to their
values in Eqs. (17) and (18). The results are compared to the best-
fit ΛCDM model.
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possibility of modifying the potential in such a way as to
reduce the second effect and lower S8 to below its ΛCDM
value, e.g., if ϕ becomes heavy in the late Universe. We
leave the exploration of this possibility to future work.

IV. CONSTRAINTS FROM DATA

In this work, we take as our baseline dataset the
following combination:
(1) CMB: Planck 2018 [13,48,49] low- and high-l

(PLIK) temperature and polarization power spectra
(TT=TE=EE) and reconstructed CMB lensing
power spectrum.

(2) BAO: distance measurements from the SDSS DR7
main galaxy sample [50], the 6dF galaxy survey
[51], and SDSS BOSS DR12 [52], namely, the
optimally combined LOWZ and CMASS galaxy
samples.

(3) Supernovae: the Pantheon supernovae dataset [53],
composed of relative luminosity distances of 1048
SNe Ia in the redshift range 0.01 < z < 2.3.

(4) H0: the 2019 SH0ES cosmic distance ladder meas-
urement H0 ¼ 74.03� 1.42 km=s=Mpc [11].2

We supplement the above baseline dataset with additional
LSS data from the DES-Y3 analysis [54]:
(5) DES-Y3: Dark Energy Survey year 3 [54] weak

lensing and galaxy clustering data, namely, galaxy-
galaxy, shear-shear, and galaxy-shear two-point
correlation functions, implemented as a Gaussian
constraint on S8 ≡ σ8ðΩm=0.3Þ0.5 corresponding to
the DES-Y3 measurement S8 ¼ 0.776� 0.017.

The approximation of DES data with an S8 prior procedure
was validatedwithDES-Y1data in the context of EDE [3]. In
thiswork, in light of the significant computational expense of
evaluating the full DES 3 × 2 point likelihood, we assume
that an S8 prior continues to be a good approximation in the
EDS model with DES-Y3 data. As we will see, the baseline
dataset combination restricts the EDS model to be a small
departure from EDE, and thus one expects the validation test
of [3] to apply, at least at the level ofmarginalized 1D and 2D
posterior probability distributions.
Finally, we also supplement our baseline dataset with

CMB data from the Atacama Cosmology Telescope:
(6) ACT: the ACT DR4 [55,56] temperature and polari-

zation power spectra. When combining these data
with the Planck CMB likelihood, we apply the
multipole cut determined in [55] to the ACT data
to avoid double-counting information, in particular,
setting lmin;TT ¼ 1800.

The ACT Collaboration analyzed the EDE model in [57]
and found that ACT data combined with low-l Planck TT

data (l < 650, similar to WMAP) mildly prefer a nonzero
fEDE at ≈3σ significance (see also Refs. [70,71]). When
combining ACTwith the full Planck dataset, this preference
is no longer seen, due to the dominant statistical weight of
Planck (which does not prefer EDE on its own). In our
work, we consider ACT in combination with the baseline
dataset, including Planck 2018. We take care in combining
ACTand Planck, and in particular, we apply a multipole cut
lmin;TT ¼ 1800 to ACT data to avoid double-counting
information (following [55]). We additionally use increased
precision settings in the theoretical computation of CMB
power spectra when ACT is included in the joint dataset, as
emphasized in [55,72].
We perform MCMC analyses of the EDS scenario using

a modified version of the Cosmic Linear Anisotropy
Solving System (CLASS) [73,74]3 and posterior sampling
with COBAYA [75]. We impose broad uniform priors on the
ΛCDM parameters. Following past work on early dark
energy (e.g., [3]), we impose uniform priors on the EDE
parameters fEDE ¼ ½0.001; 0.5� and log10ðzcÞ ¼ ½3.1; 4.3�
and a uniform prior on the initial field displacement in units
of the decay constant f, as θi ¼ ½0.1; 3.1�. The choice and
impact of EDE priors is discussed in detail in [3]. Given
that the EDE physics is sensitive primarily to θi (and not ϕi
per se), and given that θi is itself relatively well constrained
by data [3,58], we express mDMðϕÞ as mDMðθÞ ¼ m0ecθθ,
with cθ ≡ cf=Mpl. We impose a uniform prior cθ ¼
½−0.08; 0.08�. Since θi is fairly well constrained for cases
that alleviate the Hubble tension, this allows cθ to function
as a proxy for mDM.
We follow the Planck convention for the neutrino

masses; namely, we hold the sum of the neutrino masses
fixed to 0.06 eV with a single massive neutrino eigenstate.
We analyze the MCMC chains using GetDist [76]4 and
consider chains to be converged when the Gelman-Rubin
statistic [77] satisfies R − 1 < 0.05. To determine maxi-
mum-likelihood parameter values we use the “BOBYQA”
likelihood maximization method implemented in COBAYA

[78–80]. When handling ACT data, we use increased CLASS

precision settings as discussed in [55] and a slightly relaxed
convergence criterion R − 1 < 0.07 due to the computa-
tional expense of these calculations. In all EDS runs, we
use increased CLASS precision setting perturb sampling
stepsize ¼ 0.02.

A. EDS vs EDE: The interplay of H0 and S8
We first perform a direct comparison of the EDE and

EDS models fit to the baseline dataset, namely, Planck
2018 primary CMB anisotropies, Planck 2018 CMB lens-
ing, BAO, Pantheon, and SH0ES. The posteriors are shown
in Figs. 8 and 9, the best-fit parameters and parameter

2We use the SH0ES 2019 measurement to facilitate compari-
son with previous work, but note that a more recent SH0ES
measurement has recently appeared, with a smaller error bar and
slightly lower value (H0 ¼ 73.04� 1.04 km=s=Mpc) [20].

3http://class-code.net.
4https://github.com/cmbant/getdist.
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constraints are given in Table I, and the χ2 statistics of the
best-fit models are given in Table II.
The best-fit EDS and EDE models (Table I) have near-

identical cosmological parameters. They are distinguished
primarily by the parameter c, which is c ¼ −5 × 10−3 in
EDS, whereas c ¼ 0 in EDE by definition. The models
have near-identical best-fit H0 and S8, with H0 ¼ 72.50
and 72.52 km=s=Mpc, and S8 ¼ 0.8481 and 0.8495, for
EDS and EDE, respectively. Both models are a significant
χ2 reduction in comparison to the best-fit ΛCDM, whereas
the EDS model, with c ¼ −5 × 10−3, is a slightly better fit
to the data than EDE, with a relative χ2 reduction of
Δχ2EDS−EDE ¼ −1.9. This is driven by the high-lCMB data,
which in turn drives the mild preference for c < 0, as
discussed in Sec. III.
The marginalized posterior distributions, shown in

Fig. 8, shed more light on the differences between the
models. From the H0 − S8 panel of Fig. 8, one may
appreciate that the tight H0 − S8 correlation in EDE is
softened in EDS, evidenced by an overall flattening of the
1σ posterior and a slight anticorrelation of H0 and S8 in the
95% contour. Focusing on the SH0ES 1σ region, indicated
by the dark gray band, we see that the EDS model allows a
notable reduction in S8 relative to EDE. This suggests that,
in the high-H0 context, the EDS model may allow greater
compatibility with current LSS data, e.g., from the Dark
Energy Survey, than the EDEmodel. We return to this point
in Sec. IV B.

The ability to raise H0 and simultaneously lower S8 in
EDS relative to EDE is obscured in the 1D marginalized
posteriors and the marginalized parameter constraints. This
occurs due to the low-H0 region of parameter space,
H0 ≲ 70 km=s=Mpc, where the 95% CL contour in EDS
extends to significantly larger S8 values than in EDE. The
net effect, i.e., after marginalizing, is for the 1D S8 posterior
in EDS to be near-identical to that in EDE, differing only in
the high-S8 tail.
These two corners of parameter space, i.e., high H0=low

S8 and lowH0=high S8, correlate with the EDS parameter c.
This can be appreciated from the c −H0 and c − S8 panels
in Fig. 8, where one may see that highH0=low S8 correlates
with c < 0, while low H0/high S8 correlates with c > 0.
This suggests that additional S8 data would prefer c < 0;
we return to this in Sec. IV B. There is an additional effect
at c < 0, which amplifies the overall preference of the
baseline dataset for c < 0: the negative c region includes a
weak multimodality in log10ðzcÞ and, in particular, at
log10ðzcÞ ≃ 3.8, the 1σ contour is contained completely
within c < 0. These effects combine to give an overall mild
asymmetry in the posterior, weighted toward c < 0, and we
find c ¼ −0.011þ0.029

−0.047 .

B. Impact of Dark Energy Survey data

We now supplement the baseline dataset with DES-Y3
data [54], approximated by a Gaussian constraint on

FIG. 8. Interplay of the H0 and S8 tensions in the EDS, EDE, and ΛCDM models (as labeled). The plot shows posterior distributions
for the fit to the baseline dataset (CMB, CMB lensing, BAO, SNIa, and SH0ES). Shaded gray and pink bands denote the SH0ES
measurement and the DES-Y3 S8 constraint, respectively.
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S8 ≡ σ8ðΩm=0.3Þ0.5 corresponding to the DES-Y3 meas-
urement S8 ¼ 0.776� 0.017. To contextualize these
results, we perform the same analysis for ΛCDM. We do
not repeat the baseline+DES-Y3 analysis for EDE, in light
of computational expense and given that the role of S8 data
in EDE was studied in detail in [3].
The χ2 statistics are given in Table III and the best-fit

parameters and parameter constraints are given in Table IV.
Consistent with expectations from the fit to the baseline
dataset, Sec. IVA, we find that when DES-Y3 is included
the best-fit EDS has a lower S8 than EDE, while having a
near-identical value of H0. We find S8 ¼ 0.8192 and
S8 ¼ 0.8228 in EDS and EDE, respectively, corresponding
to a Δχ2DES−Y3 ¼ −1.1 between the two models.
Meanwhile, the H0 values are, respectively, 71.96 and
72.02 km=s=Mpc for the two models, corresponding to
Δχ2SH0ES ¼ þ0.1. Comparing the total χ2, Table III, we find
that the best-fit EDS is an improvement over EDE of
Δχ2EDS−EDE ¼ −2.0.
The marginalized posterior distributions are shown in

Figs. 10 and 14. The preference for fEDE > 0 is significantly

Λ

FIG. 9. Enlarged set of posterior distributions for the fit to the baseline dataset (CMB, CMB lensing, BAO, SNIa, and SH0ES) for
ΛCDM, EDE, and EDS.

TABLE II. χ2 statistics for the ML ΛCDM, EDS, and EDE
models in the fit to the baseline dataset (CMB, CMB lensing,
BAO, SNIa, and SH0ES).

Datasets ΛCDM EDS EDE

Primary CMB:
Planck 2018 low-lTT 22.9 20.9 20.9
Planck 2018 low-lEE 397.2 397.2 397.2
Planck 2018 high-lTT þ TEþ EE 2346.5 2345.1 2346.9
LSS:
Planck CMB lensing 8.9 10.0 10.0
BAO (6dF) 0.00005 0.008 0.005
BAO (DR7 MGS) 1.7 2.0 2.0
BAO (DR12 BOSS) 3.4 3.4 3.5
SNIa (Pantheon) 1034.8 1034.7 1034.7
SH0ES 17.2 1.2 1.2
Planck prior 1.9 2.2 2.2
Δχ2Primary CMB 0 −3.4 −1.6
Δχ2LSS 0 þ1.4 þ1.5
Δχ2SH0ES 0 −16.0 −16.0
Δχ2tot 0 −18.1 −16.2

MCDONOUGH, LIN, HILL, HU, and ZHOU PHYS. REV. D 106, 043525 (2022)

043525-12



diminished when DES-Y3 is included (as expected based on
previouswork for EDE [3–5]), and in place of a detection,we
find only an upper bound. We find a 95% CL upper bound
fEDE < 0.14, which, while consistent with theH0-resolving
regime of parameter space, is also consistent with fEDE ¼ 0,
similar to results in the noninteracting EDE scenario [3]
when DES-Y1, HSC, and KV-450, are included. However,
onemayappreciate from theH0 − S8 panel that EDSexhibits
a substantial overlap between the 95% CL contours of both
the SH0ES measurement (gray bands) and DES-Y3 meas-
urement (pink bands). This indicates that the EDS model fit
to baseline+DES-Y3 data is statistically consistent with both
SH0ES and DES-Y3, at 95% CL. This is encoded in the
marginalized parameter constraints by a broadening of the
error bars in EDS relative to EDE: comparing to TableVIII of
[3], we see that the error bar on H0 in the EDE fit to a
comparable combination of datasets is ≈� 1.1, whereas in
our analysis we find an error bar �1.2.
The weighting of the posterior to c < 0 is slightly

strengthened by the inclusion of DES-Y3 data, as the
additional S8 data disfavor the low-H0/high-S8 region
discussed in Sec. IVA. We find c ¼ −0.020þ0.025

−0.032 and
highlight the 1D c posterior in Fig. 10, where the support
for the c > 0 tail of the distribution present in the fit to the
baseline dataset has been significantly reduced. Looking at

TABLE III. χ2 values for the ML ΛCDM, EDS, and EDE
models in the fit to Planck primary CMB and CMB lensing, BAO,
SNIa, SH0ES, and S8 from DES-Y3.

Datasets ΛCDM EDS EDE

Primary CMB:
Planck 2018 low-lTT 22.4 21.0 20.9
Planck 2018 low-lEE 396.1 396.7 396.6
Planck 2018 high-lTT þ TEþ EE 2349.6 2344.7 2345.5
LSS:
Planck CMB lensing 9.9 9.9 9.9
BAO (6dF) 0.011 0.085 0.078
BAO (DR7 MGS) 2.1 2.7 2.6
BAO (DR12 BOSS) 3.4 4.0 4.0
S8 (DES-Y3) 2.5 6.5 7.6
SNIa (Pantheon) 1034.7 1034.8 1034.8
SH0ES 15.4 2.2 2.0
Planck prior 1.9 1.6 2.0
Δχ2Primary CMB 0 −5.7 −5.1
Δχ2LSS 0 þ5.3 þ6.3
Δχ2SH0ES 0 −13.2 −13.3
Δχ2tot 0 −13.9 −11.9

TABLE IV. ML parameters and marginalized parameter constraints for ΛCDM and EDS in the fit to a combined
dataset composed of Planck 2018 primary CMB and CMB lensing, BAO, SNIa, SH0ES, and S8 data from DES-Y3.
Parameters in bold are sampled in the MCMC analyses. For EDE we present the ML parameters, but not
marginalized parameter constraints, as we do not repeat the MCMC for EDE (see Ref. [3] for analysis of a similar
dataset combination in EDE). Upper and lower bounds are quoted at 95% CL.

Model ΛCDM EDS EDE

100θs 1.04202 (1.04208� 0.00027Þ 1.04143 (1.04151� 0.00039Þ 1.04138
Ωbh2 0.02258 (0.02258� 0.00013Þ 0.02273 (0.02287� 0.00022Þ 0.02281
Ωch2 0.11760 (0.11754� 0.00078Þ 0.1284 (0.1247þ0.0042

−0.0047 ) 0.1287
τ 0.0535 (0.0577� 0.0071Þ 0.0583 (0.0557� 0.0074Þ 0.0581
logð1010AsÞ 3.041 (3.046� 0.014Þ 3.063 (3.051� 0.015Þ 3.065
ns 0.9706 (0.9704� 0.0035Þ 0.9884 (0.9812� 0.0072Þ 0.9895
cθ −0.0034 (−0.0044þ0.0076

−0.0097 )
fEDE 0.112ð< 0.140Þ 0.109
log10zc 3.57ð> 3.39Þ 3.56
θi 2.69ð< 2.84Þ 2.77
c −0.020 (−0.020þ0.025

−0.032 )
ϕiðMplÞ 0.461 (0.46� 0.12Þ 0.463
log10ðf=eVÞ 26.62 (26.835þ0.057

−0.43 ) 26.61
log10ðm=eVÞ −27.29 (−26.90þ0.21

−0.63 ) −27.31
ΔmDM=mDM −0.0009 (−0.0095� 0.014Þ
σ8 0.8024 (0.8044� 0.0054Þ 0.8287 (0.8206� 0.0096Þ 0.8320
Ωm 0.3004 (0.2999� 0.0046Þ 0.2931 (0.2961� 0.0052Þ 0.2934
S8 0.8028 (0.8043� 0.0084Þ 0.8192 (0.815� 0.010Þ 0.8228
H0 68.47 (68.51� 0.36Þ 71.96 (70.7� 1.2Þ 72.02
Δχ2tot 0 −13.9 −11.9
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the c − log10ðzcÞ panel, we again see a weak multimodality,
now accompanied by a tail out to large zc.

C. Constraints from ACT data

Finally, we consider the impact of high-precision small-
scale CMB data, namely, the latest measurements from the
Atacama Cosmology Telescope fourth data release (DR4)
[55,56]. The ACT Collaboration analysis of EDE [57], in a
fit to the combination of ACT, large-scale Planck TT,
Planck CMB lensing, and BAO data, has found a moderate
≈3σ preference for a nonzero EDE component, finding
fEDE ¼ 0.091þ0.020

−0.036 . As a first look at ACT and the EDS
model, we supplement our baseline dataset with ACT TT,
TE, and EE data. We include the full Planck likelihood,
including the high-l temperature and polarization power
spectra, and impose the multipole cut determined in [55] to
the ACT data to avoid double-counting information, in
particular, setting lmin;TT;ACT ¼ 1800.
When using the ACT data, we use enhanced precision

settings in our modified version of the Boltzmann code
CLASS. The need for this increased precision is documented
in [55] (see their Appendix A). This increased precision
comes at the cost of additional computational expense in
the MCMC analyses. In light of this, and in light of the
existing ACT Collaboration analyses of ΛCDM [55] and
EDE [57], in this work we perform a MCMC analysis of
only the EDS model (and not EDE or ΛCDM), and we
present maximum-likelihood parameters for only EDS and

FIG. 10. The impact of S8 data. The plot shows posterior distributions for the fit to the baseline dataset (CMB, CMB lensing, BAO,
SNIa, and SH0ES) supplemented with DES-Y3 data, approximated by a prior on S8, for ΛCDM, EDE, and EDS. Shaded gray and pink
bands denote the 2019 SH0ES measurement and the DES-Y3 S8 constraint, respectively.

TABLE V. Maximum likelihood parameters and marginalized
parameter constraints for EDS and ΛCDM in the fit including
ACT data. Parameters in bold are sampled in MCMC analyses.
For ΛCDM we give only ML parameters, due to the significant
computational expense of MCMC analyses at the high precision
settings required to analyze ACT data.

Parameter ΛCDM EDS

100θs 1.04219 1.04150 (1.04151þ0.00034
−0.00039 )

Ωbh2 0.02248 0.02257 (0.02258� 0.00017Þ
Ωch2 0.1181 0.1311 (0.1302þ0.0055

−0.0034 )
τ 0.0599 0.0565 (0.0546� 0.0071Þ
logð1010AsÞ 3.059 3.071 (3.068� 0.015Þ
ns 0.9725 0.9876 (0.9865þ0.0077

−0.0065 )
cθ −0.0008 (0.0013þ0.0013

−0.0065 )

fEDE 0.119 (0.108þ0.053
−0.023 )

log10zc 3.545 (3.521þ0.071
−0.032 )

θi 2.79 (2.44þ0.46
þ0.16)

c −0.005 (−0.002þ0.015
−0.024 )

ϕiðMplÞ 0.474 (0.490� 0.093)
log10ðf=eVÞ 26.61 (26.726þ0.011

−0.19 )
log10ðm=eVÞ −27.32 (−27.270þ0.033

−0.16 )
ΔmDM=mDM −0.0009 (−0.0011þ0.0078

−0.011 )
σ8 0.8128 0.8393 (0.840þ0.010

−0.0094)
Ωm 0.3003 0.2995 (0.3003� 0.0052Þ
S8 0.8172 0.8385 (0.841� 0.012Þ
H0 68.23 71.79 (71.5þ1.4

−1.1 )
Δχ2tot 0 −19.0
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ΛCDM (and not EDE). Future optimization of the precision
parameters needed for these calculations and/or the devel-
opment of emulators with which to accelerate the
Boltzmann code (e.g., as in [81]) will be useful.
The best-fit parameters and parameter constraints for the

analysis including ACT are given in Table V, and χ2

statistics are given in Table VI. The marginalized posterior
distributions are shown in Fig. 11.
Inclusion of the ACT data provides a factor of 2

improvement on the error on c. We find c ¼
−0.002þ0.015

−0.024 in comparison with c ¼ −0.011þ0.029
−0.047 from

the fit to the baseline dataset. This dramatic reduction is
largely driven by the ability of ACT to constrain the timing
of the EDE component zc. Indeed, from the posterior
distribution of log10ðzcÞ in Fig. 11, one may appreciate that
the inclusion of ACT data in the EDS analysis almost
completely removes the multimodality exhibited in the fit
of EDS to the baseline dataset, as ACT removes the high-zc
tail (as discussed in [57]). The reduced multimodality in zc
propagates to the marginalized constraint on c, leading to
an overall reduction in the error bar.
Meanwhile, the preference for a nonzero EDE compo-

nent is strengthened (as found in [57,70,82]): we find the
marginalized constraint fEDE ¼ 0.108þ0.053

−0.023 when ACT is
included, compared to fEDE ¼ 0.099þ0.056

−0.041 without ACT
data. However, the fEDE posterior distribution in Fig. 11 is

TABLE VI. χ2 statistics for the ML ΛCDM and EDS models in
the fit to the baseline dataset (CMB, BAO, SNIa, and SH0ES)
supplemented with ACT data.

Datasets ΛCDM EDS

Primary CMB:
Planck 2018 low-lTT 22.2 21.3
Planck 2018 low-lEE 397.2 396.4
Planck 2018 high-lTTþ TEþ EE 2346.3 2345.9
ACT 243.2 241.2
LSS:
Planck CMB lensing 8.4 9.8
BAO (6dF) 0.0008 0.015
BAO (DR7 MGS) 1.8 2.1
BAO (DR12 BOSS) 3.4 3.4
SNIa (Pantheon) 1034.7 1034.7
SH0ES 16.7 2.5
Planck prior 4.1 2.0
Δχ2Planck primary CMB 0 −2.1
Δχ2ACT 0 −1.9
Δχ2LSS 0 þ1.2
Δχ2SH0ES 0 −14.2
Δχ2tot 0 −19.1

FIG. 11. Constraints including ACT data. The plot shows posterior distributions for the fit of the EDS model to the baseline dataset
(CMB, CMB lensing BAO, SNIa, and SH0ES) with and without the addition of ACT primary CMB data. Shaded gray and pink bands
denote the SH0ES measurement and the DES-Y3 S8 constraint, respectively.
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significantly broader than a Gaussian, exhibiting ample
support on the boundary of the prior at fEDE ≈ 0. Indeed,
we find the 95% CL constraint fEDE ¼ 0.108þ0.063

−0.095 , which
nearly reaches fEDE ¼ 0. This is reflected also in the 2D
posteriors, e.g., fEDE −H0 and fEDE − S8, which are
consistent with fEDE ¼ 0 at the 95% confidence level.
The marginalized constraints on H0 and S8 are consistent
with those from the fit to the baseline dataset, while the
best-fit values of both are lower when ACT is included,
with H0 ¼ 71.79 and H0 ¼ 72.52 with and without ACT,

respectively, and S8 ¼ 0.8385 and S8 ¼ 0.8481 with and
without ACT, respectively.
Turning to the χ2 values, Table VI, we find that the best-fit

EDS model is an improvement over the best-fit ΛCDM
model byΔχ2 ¼ −19.0. This is slightly enhanced relative to
that in the fit to the baseline dataset (Δχ2tot;baseline ¼ −18,
Table II), driven inpart byΔχ2ACT ¼ −1.9, consistentwith the
mild preference of ACT data for a nonzero EDE component.

D. The swampland

As discussed in Sec. II, the SDC states that a Planckian
field excursion leads to an exponential suppression of the
mass of other fields. The simple setup studied here, with the
scalar field coupled to all of the dark matter, provides a
minimal context within which to test the SDC. A similar
idea has been explored previously in the context of
quintessence, where it was dubbed fading dark matter [45].
The 95% bounds on the parameter c are given in

Table VII. The posterior distributions for swampland-
related quantities (the field excursion, the axion decay
constant, and the coupling c), along with their correlations

TABLE VII. Constraints on the swampland distance conjecture
parameter c, defined by the early dark energy dependence of the
dark matter mass mDM ¼ ecϕ=Mpl . Upper and lower bounds are
95% CL.

Datasets 95% upper limit on c

Baseline c < 0.068
Baseline þ S8 from DES-Y3 c < 0.035
Baseline þ ACT c < 0.042

FIG. 12. Early dark energy and the swampland conjectures. We show the posterior distributions of the field excursion, axion decay
constant, and dark matter mass dependence, along with their correlation with H0, in the fit to varying datasets. The swampland distance
conjecture would suggest that c ¼ Oð1Þ > 0, while the data constrain c < 0.068, 0.035, and 0.042 at 95% confidence, for the baseline
dataset, the baselineþ DES − Y3, and baseline þ ACT, respectively, and slightly prefer c < 0.
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with the Hubble parameter H0, are shown in Fig. 12. The
SH0ES measurement is shown in gray bands. From this,
one may appreciate that the EDE resolution of the Hubble
tension scenario, namely, the ability for the EDE model to
be 1 − 2σ consistent with SH0ES, indeed rests upon a
Planckian field excursion jΔϕj=Mpl ≃ 1=2 and a Planckian
axion decay constant f ∼Mpl=5. Thus, one naturally
expects the parameter c to play a role in this model.
However, turning to Table VII, we see that the SDC

parameter c is constrained to be c < 0.068 from the
baseline dataset, at 95% CL, and c < 0.035 and c <
0.042 at 95% CL when DES-Y3 or ACT are included,
respectively. From this, we infer a mild tension of the data,
in the context of the EDE model, with the SDC at the level
of a 4%–7% fine-tuning.
While the degree of fine-tuning may not be severe, it is

interesting to note that these constraints are an order of
magnitude stronger than constraints on other would-be
Oð1Þ swampland parameters. In particular, the de Sitter
(dS) swampland conjecture [83] states that scalar field
potentials cannot be arbitrarily flat and are bounded by
V 0=V ≥ Oð1Þ in Planck units. The would-be Oð1Þ param-
eter of the dS conjecture is constrained by data to be
V 0=V ≲ 0.51 (2σ) [84] or V 0=V ≲ 1.35 (3σ) [85] (see also
Ref. [86]). Compared to the constraints on the SDC order-1
parameter presented in this work (c < 0.035, c < 0.042,
and c < 0.068 at 95% CL), one may appreciate the latter
are considerably stronger than constraints on the swamp-
land found in previous works.
Finally, we note that a more complete analysis, which we

will not pursue here, would be to allow variation in the
fraction of dark matter fDM to which the scalar field
couples. This would introduce one new parameter to the
already four-parameter EDS extension to ΛCDM. We
expect the ≈5% fine-tuning of c in our fixed-fDM analysis
to translate to slightly lesser fine-tunings of c and fDM once
fDM is allowed to vary.

V. DISCUSSION

In this work,we have extended early dark energy to an
EDS. Motivated by the swampland distance conjecture [6],
the EDS is composed of the EDE scalar field along with a
dark matter candidate whose mass is exponentially sensi-
tive to Planckian field excursions of the EDE scalar. The
aims of this model are twofold: (1) to understand the
interplay of the H0 and S8 tensions and determine whether
the competition between these can be softened by embed-
ding EDE into a larger model and (2) to determine the
extent to which EDE (namely the H0-tension-resolving
region of EDE parameter space) is in conflict with the SDC
and thereby determine whether the EDE resolution of the
Hubble tension lies in the landscape or the swampland.
Concretely, the EDS model is a one-parameter extension

of EDE, parametrized by an additional parameter c corre-
sponding to the exponent in the dark matter mass,

mDMðϕÞ ¼ m0ecϕ=Mpl , where ϕ is the EDE scalar. In our
sign convention, where ϕ is initially> 0 and decreases over
cosmic evolution, the SDC predicts that c > 0 and
c ¼ Oð1Þ. The parameter c has important impacts on both
the CMB and on the growth of structure. In the CMB, the
imprint of c contains a localized feature around l ≃ 500,
corresponding to modes that enter the horizon near zc and a
sign reversal in its effect at much higher multipoles. This
can be understood in terms of the impact of the dark matter
mass on the radiation driving of acoustic oscillations, as
described in Sec. III.
Meanwhile, c > 0 (at fixed Ωch2) leads to an enhanced

growth of structure, due to the relative shift in matter-
radiation equality to earlier times. The growth of structure
is also subject to a second effect: an effective dark matter
self-interaction (a dark fifth force) that is attractive and in
the limit of high k has strength c2GN . This leads to
enhanced structure formation on small scales for both
positive and negative c. The combination of the two growth
effects allows a small but negative c to decrease S8.
Incidentally, this small negative c also improves the fit
to the CMB.
Armed with the theory motivation and understanding of

the phenomenology, we have performed MCMC analyses
of the EDS model fit to a baseline dataset combination of
Planck 2018 primary CMB and CMB lensing [13,48,49];
BAO from the SDSS DR7 main galaxy sample [50], the
6dF galaxy survey [51], and SDSS BOSS DR12 [52]; the
Pantheon supernovae dataset [53], and the 2019 SH0ESH0

measurement [11]. We have performed additional MCMC
analyses of the baseline dataset supplemented with Dark
Energy Survey year-3 data [54] and supplemented with
data from ACT [55,56].
From the analysis of the baseline dataset, we find that

EDS can accommodate lower S8 values than EDE without
compromising on H0. The low-S8/high-H0 region of
parameter space is correlated with small but negative c,
and we find a mild overall preference for c < 0 in the fit to
the baseline dataset. When the dataset is supplemented with
DES-Y3, we find that S8 decreases while leavingH0 nearly
unchanged, while maintaining the preference for c < 0.
Compared to EDE, we find EDS is better able to accom-
modate the DES-Y3 data by Δχ2DES−Y3;EDS−EDE ¼ −1.1.
This demonstrates the ability of the EDS model to at least
partially resolve the tension of EDE with large-scale
structure data.
When ACT data are included we find a significant

improvement on the constraint on c, driven largely by
the improved constraint on zc. Finally, all of these analyses
constrain c to be significantly less than 1: we find c <
0.068 from the baseline dataset, at 95% CL, and c < 0.035
and c < 0.042 at 95% CL when DES-Y3 or ACT are
included, respectively. Taken at face value, this indicates a
tension between the EDE resolution of the Hubble tension
and the SDC.
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Finally, we evaluate the overall preference of the data for
the EDE model vs EDS. To compare the EDS and EDE
models, we calculate the Akaike Information Criterion
(AIC) [87], which for the baseline dataset yieldsΔAIC ≃ 0,
suggesting no preference for one model over the other. A
more detailed model comparison could be done by com-
puting the Bayesian evidence for each model; we leave this
for future work.
We close this analysis with the following summary

comments:
(1) The EDS extension of EDE, namely, EDE with the

EDE-dependent dark matter mass mDMðϕÞ ¼
m0ecϕ=Mpl , can partially ameliorate the tension be-
tween the EDE resolution of the Hubble tension and
LSS data. However, the data are statistically con-
sistent with c ¼ 0.

(2) ACT data significantly constrain both the timing zc
of the EDE component and the EDS coupling
parameter c. We find that supplementing the baseline
dataset with ACT data improves the constraint on c
by a factor of 2 and nearly eliminates the preference
for c < 0.

(3) Order-1 values of c in H0-resolving EDE are ruled
out by the data. While the SDC does not make any
prediction for the fraction of dark matter to which the
EDE scalar is coupled, this nonetheless suggests a
mild tension between the SDC and EDE resolution
of the H0 tension.

There remain many directions for future work. Our
analysis is motivated by the SDC, but the latter makes no
prediction for fraction of darkmatter towhich the scalar field
couples. Therefore, a natural model extension is to allow this
fraction to vary in the fit to cosmological datasets. Other
variations of our analysis would be to consider different
choices of VðϕÞ, such as monomial ϕn or hyperbolic
tanhðϕ=fÞn potentials, and different choices of the dark
matter coupling, such as mDM ¼ m0ð1þ cϕ2=M2

plÞ. A final
possibility is to examine the role of EDE–dark matter
interactions in resolving the coincidence problem inherent
in early Universe resolutions to the Hubble tension, namely,
why the new physics becomes transiently relevant around
matter-radiation equality and not in the many decades of
redshift before this epoch. We leave these interesting
possibilities to future work.
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APPENDIX A: EQUATIONS OF MOTION

We consider cold dark matter interacting with the EDE
scalar field ϕ. We model dark matter as a population of
nonrelativistic Dirac fermions. We consider a model with
action given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

3M2
pl

R −
1

2
∂
μϕ∂μϕ − iψ̄Dψ

− VðϕÞ −mDMðϕÞψ̄ψ þ H:c:

�
; ðA1Þ

where ψ is a Dirac fermion, which plays the role of cold
dark matter. As such, we take the nonrelativistic limit of ψ ,
in which case hψ̄ψi → nðtÞ, where nðtÞ is the number
density, namely, the total number of particles and anti-
particles, not to be confused with hψ̄γ0ψi, which is the
difference between the number of particles and antipar-
ticles. In this limit, the dark matter component is described
by a stress tensor,

TðDMÞμ
ν ¼ nDMmDMðϕÞuμuν; ðA2Þ

with uμ ¼ ð−1; viÞ. This comprises only a part of the stress
tensor of the full interacting system, which is given by

Tμν ¼ TðDMÞ
μν þ TðϕÞ

μν ; ðA3Þ

where TðϕÞ
μν is the ϕ contribution given by

TðϕÞμ
ν ¼ ∂

μϕ∂νϕ −
1

2
δμν∂

αϕ∂αϕ − δμνVðϕÞ: ðA4Þ

The combined stress tensor is covariantly conserved,

∇μTμ
ν ¼ 0; ðA5Þ

which follows from the contracted Bianchi identities of
general relativity. The equations of motion of the interact-
ing system are dictated by the conservation equation (A5),
along with the equations of motion for the scalar field that
follow from the variation of the action.
The equations of motion for the scalar field background

and perturbations are given by the variation of the action
expanded to linear and quadratic order in δϕ, respectively.
At the background level, where quantities depend only on
time, the variation with respect to the scalar field gives

ϕ̈þ 2aH _ϕþ a2
dV
dϕ

þ a2n
dmDM

dϕ
¼ 0; ðA6Þ
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where a dot denotes a derivative with respect to conformal
time τ, whileH is defined with respect to time t. This can be
expressed in terms of the dark matter energy density as

ϕ̈þ 2aH _ϕþ a2
dV
dϕ

þ a2
d logmDM

dϕ
ρDM ¼ 0: ðA7Þ

The equation of motion for the dark matter density is
given by

_ρDM þ 3aHρDM ¼ _ϕ
d logmDM

dϕ
ρDM: ðA8Þ

We repeat this procedure for the perturbations, working
in the synchronous gauge. The metric in synchronous
gauge is given, in general, by

ds2 ¼ a2ðτÞð−dτ2 þ ðδij þ hijÞdxidxjÞ: ðA9Þ
The perturbation hij may be decomposed into two scalar
degrees of freedom, h and η, defined by the decomposition

hijðx⃗; τÞ ¼
Z

d3keik⃗·x⃗
�
k̂ik̂jhðk⃗; τÞ

þ
�
k̂ik̂j −

1

3
δij

�
6ηðk⃗; τÞ

�
; ðA10Þ

where k⃗ ¼ kk̂. See, e.g., Ref. [88] for more details.
The interaction of the scalar field with dark matter

generates new terms in the quadratic action for perturba-
tions, which are given by

δS2 ¼ −
Z

dτd3xa4ðτÞ
�
d2mDM

dϕ2
δϕ2nþ dmDM

dϕ
δϕδn

�
;

ðA11Þ
where δn is the perturbation to the dark matter number
density. The resulting equation of motion is

δ̈ϕþ 2aH _δϕþ
�
k2 þ a2

d2V
dϕ2

�
δϕþ 1

2
_h _ϕ

¼ −a2
�
d logm
dϕ

ρDMδc þ
d2 logm
dϕ2

δϕρDM

�
; ðA12Þ

where we define the fractional dark matter density pertur-
bation δc ≡ ðδρDMÞ=ρDM.
To derive the equations of motion for the dark matter

component, we now explicitly evaluate Eq. (A5) and apply
the scalar field equations of motion. From the ν ¼ 0
component, we find the equation of motion for δc, given by

_δc þ θ þ
_h
2
¼ d logm

dϕ
_δϕþ d2 logm

dϕ2
_ϕδϕ; ðA13Þ

while from the ν ¼ i component we find the equation of
motion for the velocity perturbations,

_θ þ aHθ ¼ þ d logm
dϕ

k2δϕ −
d logm
dϕ

_ϕθ; ðA14Þ

where θ≡ ∂ivi.

APPENDIX B: SCALAR-MEDIATED
FORCE ON DARK MATTER

To assess the combined gravitational- and scalar-medi-
ated forces on the dark matter, we start with the time-time
and trace of the space-space pieces of the Einstein equation
with the synchronous metric of Eq. (A9),

H
_h
2
¼ k2ηþ 1

2M2
pl

a2δρ; ðB1Þ

ḧ
2
þH _h − k2η ¼ −

3

2M2
pl

a2δP ðB2Þ

and combine them to eliminate η,

ḧ
2
þH

_h
2
¼ −

1

2M2
pl

a2ðδρþ 3δPÞ: ðB3Þ

Taking the derivative of the dark matter continuity
equation (A13) and plugging in ḧ from above and _θ from
the Euler equation (A14), we arrive at

δ̈c −H
�
_h
2
þ θc

�
¼ 1

2M2
pl

a2ðδρþ 3δPÞ − 1

Mpl
ck2δϕ

þ 1

Mpl
c _ϕθc þ

1

Mpl
cδ̈ϕ: ðB4Þ

To gain physical intuition, we consider a quasistatic limit in
which the last term in the above can be neglected. For small
c, the second last term is in higher order of c. Note that
there is a nonzero offset value for δϕ at late times. From the
equation of motion

δ̈ϕþ 2aH _δϕþ
�
k2 þ a2

d2V
dϕ2

�
δϕþ 1

2
_h _ϕ

¼ −a2
1

Mpl
cδρDM; ðB5Þ

we can estimate δϕ in the quasistatic limit as

δϕð0Þ ≈ −a2
cδρDM=Mpl

k2 þ a2d2V=dϕ2
: ðB6Þ

We then plug it into Eq. (B4) and, assuming δρþ δP is
dominated by dark matter, we have

δ̈c þH_δc ¼ 4πGa2ρcδc

�
1þ 2c2k2

k2 þ a2d2V=dϕ2

�
: ðB7Þ

From this, one may read off an effective gravitational
constant,
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Geff ¼ GN

�
1þ 2c2k2

k2 þ a2d2V=dϕ2

�
; ðB8Þ

which is independent of the sign of c.
Notice that the modification to Geff appears on scales

below the Compton wavelength of the scalar k=a >
d2V=dϕ2, which itself depends on the dark matter density.
The scalar field oscillates around the minimum of the
effective potential, which evolves quasistatically as

dV
dϕ

¼ −
c

Mpl
ρDM ðB9Þ

to be

ϕ ¼ −sgnðcÞ 2
2=5c1=5f4=5ρ1=5DM

31=5m2=5M1=5
pl

: ðB10Þ

At the minimum, the scalar mass is

mϕ ¼
�
d2V
dϕ2

�
1=2

¼ 31=1051=2c2=5m1=5ρ2=5DM

21=5f2=5M2=5
pl

: ðB11Þ

In Fig. 13, we show the late-time evolution of the scalar
field for model with c ¼ −0.025with fixedH0 and all other
parameters (except θs) fixed to their values in Eqs. (17) and
(18). We see that the quasistatic estimation agrees well with
the dc offset of the scalar field. The corresponding
Compton wavelength at the minimum at z ¼ 0 is
∼1 Gpc so that for scales relevant to the large-scale
structure, Geff ≈GNð1þ 2c2Þ. Notice also that the scaling
of the range of the modified force is a fairly mild ρ−2=5DM .
Although EDS admits chameleon screening of the force in
a high-density environment, even in a virialized halo where
the local density is ∼200 times the background, the range

remains large compared with both the scale of the halo and
the large-scale structure relevant to S8.

APPENDIX C: IMPLEMENTATION IN CLASS

We implement the EDS model into the publicly available
Boltzmann code CLASS [73,74],5 by modifying the publicly
available CLASS_EDE [3].6

We use the synchronous gauge functionality of CLASS to
solve the Einstein equations, Eq. (21) of [88], given the
energy density, pressure, and velocity of the matter content.
From the stress tensor Eq. (A4), the energy density and
pressure of the scalar field are given by

ρϕ ¼ 1

2a2
_ϕ2 þ VðϕÞ;

pϕ ¼ 1

2a2
_ϕ2 − VðϕÞ: ðC1Þ

The perturbations to the above, along with the scalar field
velocity perturbation, are given by

δρϕ ¼ 1

a2
_ϕ _δϕþV 0ðϕÞδϕ;

δpϕ ¼ 1

a2
_ϕ _δϕ−V 0ðϕÞδϕ;

ðρϕ þ pϕÞvϕ ¼ 1

a2
k _ϕδϕ: ðC2Þ

We note that CLASS works in units wherein the energy
density and pressure are rescaled by 1=3M2

pl, i.e., the stress-
energy tensor is rescaled as

TðCLASSÞ
μν ¼ 1

3M2
pl

Tμν: ðC3Þ

The scalar field retains units of Mpl. The above rescaling
manifests in CLASS as a factor of ð1=3Þ in the CLASS

definition of ρϕ, pϕ, etc., relative to Eqs. (C1) and (C2).
The scalar field background equation of motion becomes

ϕ̈þ 2aH _ϕþ a2
dV
dϕ

þ 3a2
d logmDM

dϕ
ρðCLASSÞDM ¼ 0; ðC4Þ

where ρðCLASSÞDM is in CLASS units. The perturbed Klein-
Gordon equation becomes

δ̈ϕþ 2aH _δϕþ
�
k2 þ a2

d2V
dϕ2

�
δϕþ 1

2
_h _ϕ

¼ −3a2
�
d logm
dϕ

ρðCLASSÞDM δþ d2 logm
dϕ2

δϕρðCLASSÞDM

�
:

ðC5Þ
FIG. 13. Scalar field ϕ evolution for c ¼ −0.025 with fixed H0

and all other parameters (except θs) fixed to their values in Eqs. (17)
and (18). The quasistatic estimation (B10) is also shown for
comparison.

5http://class-code.net.
6https://github.com/mwt5345/class_ede.
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The covariant conservation of stress-energy may be
expressed as

∇μðTðDM;CLASSÞ
μν þ Tðϕ;CLASSÞ

μν Þ ¼ 0: ðC6Þ
Propagating through the factors of 3 from the conversion to
CLASS units, we find that the equations of motion of dark
matter perturbations in CLASS units are unchanged from
Eqs. (A13) and (A14).
The CLASS_EDE code [3] absorbs the cosmological

constant Λ into the scalar field potential, as

VðϕÞ ¼ 3M2
plΛþm2f2

�
1 − cos

ϕ

f

�
3

; ðC7Þ

where Λ is a constant. This rewriting utilizes the built-in
functionality of CLASS to tune a parameter in VðϕÞ in order
to satisfy the energy budget equation

P
Ωi ¼ 1 for

arbitrary initial conditions for the scalar field. We impose
slow-roll initial conditions on ϕðtÞ and adiabatic initial

conditions on δϕ, as discussed in [3]. Finally, in order to
sample the EDE parameters fEDE and log10ðzcÞ, we use a
shooting method to iteratively determine the corresponding
model parameters f and m.
In this work we add to CLASS_EDE [3] a new cold

(pressureless) dark matter component that is coupled to the
EDE scalar as discussed above. We retain the CLASS cold
dark matter component, with a fixed Ωcdm ¼ 10−5, in order
to self-consistently define the synchronous gauge.
In order to simultaneously sample the present-day dark

matter density and the scalar field initial conditions, we
implement a shooting method to determine the initial dark
matter density. We impose adiabatic initial conditions for
the coupled dark matter component.

APPENDIX D: ADDITIONAL POSTERIOR PLOTS

The enlarged set of posterior distributions for the
analysis with DES-Y3 data and with ACT data are given
in Figs. 14 and 15, respectively.

Λ

FIG. 14. Enlarged set of posterior distributions for the fit to the baseline dataset (CMB, CMB lensing, BAO, SNIa, and SH0ES)
supplemented with DES-Y3 data, approximated by a prior on S8 for ΛCDM and EDS.

EARLY DARK SECTOR, THE HUBBLE TENSION, AND THE … PHYS. REV. D 106, 043525 (2022)

043525-21



[1] V. Poulin, T. L. Smith, T. Karwal, and M. Kamionkowski,
Phys. Rev. Lett. 122, 221301 (2019).

[2] L.Verde, T. Treu, andA. G. Riess, Nat. Astron. 3, 891 (2019).
[3] J. C. Hill, E. McDonough, M.W. Toomey, and S.

Alexander, Phys. Rev. D 102, 043507 (2020).
[4] M.M. Ivanov, E. McDonough, J. C. Hill, M. Simonović,

M.W. Toomey, S. Alexander, and M. Zaldarriaga, Phys.
Rev. D 102, 103502 (2020).

[5] G. D’Amico, L. Senatore, P. Zhang, and H. Zheng, J.
Cosmol. Astropart. Phys. 05 (2021) 072.

[6] H. Ooguri and C. Vafa, Nucl. Phys. B766, 21 (2007).
[7] F. Baume and E. Palti, J. High Energy Phys. 08 (2016) 043.
[8] D. Klaewer and E. Palti, J. High Energy Phys. 01 (2017)

088.

[9] R. Blumenhagen, I. Valenzuela, and F. Wolf, J. High Energy
Phys. 07 (2017) 145.

[10] M. Scalisi and I. Valenzuela, J. High Energy Phys. 08 (2019)
160.

[11] A. G. Riess, S. Casertano, W. Yuan, L. M. Macri, and D.
Scolnic, Astrophys. J. 876, 85 (2019).

[12] A. G. Riess, S. Casertano, W. Yuan, J. B. Bowers, L. Macri,
J. C. Zinn, and D. Scolnic, Astrophys. J. Lett. 908, L6
(2021).

[13] N. Aghanim et al. (Planck Collaboration), Astron. As-
trophys. 641, A6 (2020).

[14] R. J. Cooke, M. Pettini, K. M. Nollett, and R. Jorgenson,
Astrophys. J. 830, 148 (2016).

[15] E. Aubourg et al., Phys. Rev. D 92, 123516 (2015).

FIG. 15. Enlarged set of posterior distributions for the fit of the EDS to the baseline dataset (Planck CMB, CMB lensing, BAO, SN,
and SH0ES) with and without the addition of ACT data. Shaded gray and pink bands denote the SH0ES measurement and the DES-Y3
S8 constraint, respectively.

MCDONOUGH, LIN, HILL, HU, and ZHOU PHYS. REV. D 106, 043525 (2022)

043525-22

https://doi.org/10.1103/PhysRevLett.122.221301
https://doi.org/10.1038/s41550-019-0902-0
https://doi.org/10.1103/PhysRevD.102.043507
https://doi.org/10.1103/PhysRevD.102.103502
https://doi.org/10.1103/PhysRevD.102.103502
https://doi.org/10.1088/1475-7516/2021/05/072
https://doi.org/10.1088/1475-7516/2021/05/072
https://doi.org/10.1016/j.nuclphysb.2006.10.033
https://doi.org/10.1007/JHEP08(2016)043
https://doi.org/10.1007/JHEP01(2017)088
https://doi.org/10.1007/JHEP01(2017)088
https://doi.org/10.1007/JHEP07(2017)145
https://doi.org/10.1007/JHEP07(2017)145
https://doi.org/10.1007/JHEP08(2019)160
https://doi.org/10.1007/JHEP08(2019)160
https://doi.org/10.3847/1538-4357/ab1422
https://doi.org/10.3847/2041-8213/abdbaf
https://doi.org/10.3847/2041-8213/abdbaf
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.3847/0004-637X/830/2/148
https://doi.org/10.1103/PhysRevD.92.123516


[16] A. Cuceu, J. Farr, P. Lemos, and A. Font-Ribera, J. Cosmol.
Astropart. Phys. 10 (2019) 044.

[17] N. Schöneberg, J. Lesgourgues, and D. C. Hooper, J.
Cosmol. Astropart. Phys. 10 (2019) 029.

[18] T. M. C. Abbott et al. (DES Collaboration), Mon. Not. R.
Astron. Soc. 480, 3879 (2018).

[19] O. H. E. Philcox, M. M. Ivanov, M. Simonovic, and M.
Zaldarriaga, J. Cosmol. Astropart. Phys. 05 (2020) 032.

[20] A. G. Riess et al., arXiv:2112.04510.
[21] W. L. Freedman et al., arXiv:1907.05922.
[22] S. Birrer et al., Astron. Astrophys. 643, A165 (2020).
[23] P. Shah, P. Lemos, and O. Lahav, Astron. Astrophys. Rev.

29, 9 (2021).
[24] G. Efstathiou, Mon. Not. R. Astron. Soc. 505, 3866

(2021).
[25] K. Jedamzik, L. Pogosian, and G.-B. Zhao, Commun. Phys.

4, 123 (2021).
[26] W. Lin, X. Chen, and K. J. Mack, Astrophys. J. 920, 159

(2021).
[27] S. J. Clark, K. Vattis, J. Fan, and S. M. Koushiappas,

arXiv:2110.09562.
[28] I. J. Allali, M. P. Hertzberg, and F. Rompineve, Phys. Rev. D

104, L081303 (2021).
[29] T. Karwal, M. Raveri, B. Jain, J. Khoury, and M. Trodden,

Phys. Rev. D 105, 063535 (2022).
[30] H. Hildebrandt et al., Mon. Not. R. Astron. Soc. 465, 1454

(2017).
[31] H. Hildebrandt et al., Astron. Astrophys. 633, A69 (2020).
[32] C. Hikage et al. (HSC Collaboration), Publ. Astron. Soc.

Jpn. 71, 43 (2019).
[33] T. L. Smith, V. Poulin, J. L. Bernal, K. K. Boddy, M.

Kamionkowski, and R. Murgia, Phys. Rev. D 103,
123542 (2021).

[34] M. Kamionkowski, J. Pradler, and D. G. E. Walker, Phys.
Rev. Lett. 113, 251302 (2014).

[35] D. J. E. Marsh, Phys. Rep. 643, 1 (2016).
[36] T. Banks, M. Dine, P. J. Fox, and E. Gorbatov, J. Cosmol.

Astropart. Phys. 06 (2003) 001.
[37] T. Rudelius, J. Cosmol. Astropart. Phys. 04 (2015) 049.
[38] J. Stout, J. High Energy Phys. 05 (2022) 168.
[39] R. Bousso and J. Polchinski, J. High Energy Phys. 06 (2000)

006.
[40] L. Susskind, arXiv:hep-th/0302219.
[41] C. Vafa, arXiv:hep-th/0509212.
[42] E. Palti, Fortschr. Phys. 67, 1900037 (2019).
[43] T. D. Brennan, F. Carta, and C. Vafa, Proc. Sci., TASI2017

(2017) 015.
[44] M. van Beest, J. Calderón-Infante, D. Mirfendereski, and I.

Valenzuela, arXiv:2102.01111.
[45] P. Agrawal, G. Obied, and C. Vafa, Phys. Rev. D 103,

043523 (2021).
[46] L. A. Anchordoqui, I. Antoniadis, D. Lüst, J. F. Soriano, and

T. R. Taylor, Phys. Rev. D 101, 083532 (2020).
[47] D. Kim, Y. Kim, Y. K. Semertzidis, Y. C. Shin, and W. Yin,

Phys. Rev. D 104, 095010 (2021).
[48] Planck Collaboration, Astron. Astrophys. 641, A5 (2020).
[49] Planck Collaboration, Astron. Astrophys. 641, A8 (2020).
[50] A. J. Ross, L. Samushia, C. Howlett, W. J. Percival, A.

Burden, and M. Manera, Mon. Not. R. Astron. Soc. 449,
835 (2015).

[51] F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-
Smith, L. Campbell, Q. Parker, W. Saunders, and F. Watson,
Mon. Not. R. Astron. Soc. 416, 3017 (2011).

[52] S. Alam et al. (BOSS Collaboration), Mon. Not. R. Astron.
Soc. 470, 2617 (2017).

[53] D. M. Scolnic et al., Astrophys. J. 859, 101 (2018).
[54] T. M. C. Abbott et al. (DES Collaboration), Phys. Rev. D

105, 023520 (2022).
[55] S. Aiola et al. (ACT Collaboration), J. Cosmol. Astropart.

Phys. 12 (2020) 047.
[56] S. K. Choi et al. (ACT Collaboration), J. Cosmol. Astropart.

Phys. 12 (2020) 045.
[57] J. C. Hill et al., Phys. Rev. D 105, 123536 (2022).
[58] T. L. Smith, V. Poulin, and M. A. Amin, Phys. Rev. D 101,

063523 (2020).
[59] P. Agrawal, F.-Y. Cyr-Racine, D. Pinner, and L. Randall,

arXiv:1904.01016.
[60] S. Alexander and E. McDonough, Phys. Lett. B 797,

134830 (2019).
[61] M.-X. Lin, G. Benevento, W. Hu, and M. Raveri, Phys. Rev.

D 100, 063542 (2019).
[62] J. Sakstein and M. Trodden, Phys. Rev. Lett. 124, 161301

(2020).
[63] F. Niedermann and M. S. Sloth, Phys. Rev. D 103, L041303

(2021).
[64] F. Niedermann and M. S. Sloth, Phys. Rev. D 102, 063527

(2020).
[65] N. Kaloper, Int. J. Mod. Phys. D 28, 1944017 (2019).
[66] K. V. Berghaus and T. Karwal, Phys. Rev. D 101, 083537

(2020).
[67] L. Knox and M. Millea, Phys. Rev. D 101, 043533 (2020).
[68] S. Tsujikawa,Classical QuantumGravity 30, 214003 (2013).
[69] M.-X. Lin, M. Raveri, and W. Hu, Phys. Rev. D 99, 043514

(2019).
[70] V. Poulin, T. L. Smith, and A. Bartlett, Phys. Rev. D 104,

123550 (2021).
[71] M.-X. Lin, W. Hu, and M. Raveri, Phys. Rev. D 102,

123523 (2020).
[72] F. McCarthy, J. C. Hill, and M. S. Madhavacheril, Phys.

Rev. D 105, 023517 (2022).
[73] J. Lesgourgues, arXiv:1104.2932.
[74] D. Blas, J. Lesgourgues, and T. Tram, J. Cosmol. Astropart.

Phys. 07 (2011) 034.
[75] J. Torrado and A. Lewis, Cobaya (2019).
[76] A. Lewis, arXiv:1910.13970.
[77] A. Gelman and D. B. Rubin, Stat. Sci. 7, 457 (1992).
[78] M. Powell, Department of Applied Mathematics and Theo-

retical Physics, Technical Report DAMTP 2009/NA06
2009, https://www.damtp.cam.ac.uk/user/na/NA_papers/
NA2009_06.pdf.

[79] C. Cartis, J. Fiala, B. Marteau, and L. Roberts, arXiv:
1804.00154.

[80] C. Cartis, L. Roberts, and O. Sheridan-Methven, arXiv:
1812.11343.

[81] A. Spurio Mancini, D. Piras, J. Alsing, B. Joachimi, and
M. P. Hobson, Mon. Not. R. Astron. Soc. 511, 1771 (2022).

[82] A. Moss, E. Copeland, S. Bamford, and T. Clarke, arXiv:
2109.14848.

[83] G. Obied, H. Ooguri, L. Spodyneiko, and C. Vafa,
arXiv:1806.08362.

EARLY DARK SECTOR, THE HUBBLE TENSION, AND THE … PHYS. REV. D 106, 043525 (2022)

043525-23

https://doi.org/10.1088/1475-7516/2019/10/044
https://doi.org/10.1088/1475-7516/2019/10/044
https://doi.org/10.1088/1475-7516/2019/10/029
https://doi.org/10.1088/1475-7516/2019/10/029
https://doi.org/10.1093/mnras/sty1939
https://doi.org/10.1093/mnras/sty1939
https://doi.org/10.1088/1475-7516/2020/05/032
https://arXiv.org/abs/2112.04510
https://arXiv.org/abs/1907.05922
https://doi.org/10.1051/0004-6361/202038861
https://doi.org/10.1007/s00159-021-00137-4
https://doi.org/10.1007/s00159-021-00137-4
https://doi.org/10.1093/mnras/stab1588
https://doi.org/10.1093/mnras/stab1588
https://doi.org/10.1038/s42005-021-00628-x
https://doi.org/10.1038/s42005-021-00628-x
https://doi.org/10.3847/1538-4357/ac12cf
https://doi.org/10.3847/1538-4357/ac12cf
https://arXiv.org/abs/2110.09562
https://doi.org/10.1103/PhysRevD.104.L081303
https://doi.org/10.1103/PhysRevD.104.L081303
https://doi.org/10.1103/PhysRevD.105.063535
https://doi.org/10.1093/mnras/stw2805
https://doi.org/10.1093/mnras/stw2805
https://doi.org/10.1051/0004-6361/201834878
https://doi.org/10.1093/pasj/psz010
https://doi.org/10.1093/pasj/psz010
https://doi.org/10.1103/PhysRevD.103.123542
https://doi.org/10.1103/PhysRevD.103.123542
https://doi.org/10.1103/PhysRevLett.113.251302
https://doi.org/10.1103/PhysRevLett.113.251302
https://doi.org/10.1016/j.physrep.2016.06.005
https://doi.org/10.1088/1475-7516/2003/06/001
https://doi.org/10.1088/1475-7516/2003/06/001
https://doi.org/10.1088/1475-7516/2015/04/049
https://doi.org/10.1007/JHEP05(2022)168
https://doi.org/10.1088/1126-6708/2000/06/006
https://doi.org/10.1088/1126-6708/2000/06/006
https://arXiv.org/abs/hep-th/0302219
https://arXiv.org/abs/hep-th/0509212
https://doi.org/10.1002/prop.201900037
https://doi.org/10.22323/1.305.0015
https://doi.org/10.22323/1.305.0015
https://arXiv.org/abs/2102.01111
https://doi.org/10.1103/PhysRevD.103.043523
https://doi.org/10.1103/PhysRevD.103.043523
https://doi.org/10.1103/PhysRevD.101.083532
https://doi.org/10.1103/PhysRevD.104.095010
https://doi.org/10.1051/0004-6361/201936386
https://doi.org/10.1051/0004-6361/201833886
https://doi.org/10.1093/mnras/stv154
https://doi.org/10.1093/mnras/stv154
https://doi.org/10.1111/j.1365-2966.2011.19250.x
https://doi.org/10.1093/mnras/stx721
https://doi.org/10.1093/mnras/stx721
https://doi.org/10.3847/1538-4357/aab9bb
https://doi.org/10.1103/PhysRevD.105.023520
https://doi.org/10.1103/PhysRevD.105.023520
https://doi.org/10.1088/1475-7516/2020/12/047
https://doi.org/10.1088/1475-7516/2020/12/047
https://doi.org/10.1088/1475-7516/2020/12/045
https://doi.org/10.1088/1475-7516/2020/12/045
https://doi.org/10.1103/PhysRevD.105.123536
https://doi.org/10.1103/PhysRevD.101.063523
https://doi.org/10.1103/PhysRevD.101.063523
https://arXiv.org/abs/1904.01016
https://doi.org/10.1016/j.physletb.2019.134830
https://doi.org/10.1016/j.physletb.2019.134830
https://doi.org/10.1103/PhysRevD.100.063542
https://doi.org/10.1103/PhysRevD.100.063542
https://doi.org/10.1103/PhysRevLett.124.161301
https://doi.org/10.1103/PhysRevLett.124.161301
https://doi.org/10.1103/PhysRevD.103.L041303
https://doi.org/10.1103/PhysRevD.103.L041303
https://doi.org/10.1103/PhysRevD.102.063527
https://doi.org/10.1103/PhysRevD.102.063527
https://doi.org/10.1142/S0218271819440176
https://doi.org/10.1103/PhysRevD.101.083537
https://doi.org/10.1103/PhysRevD.101.083537
https://doi.org/10.1103/PhysRevD.101.043533
https://doi.org/10.1088/0264-9381/30/21/214003
https://doi.org/10.1103/PhysRevD.99.043514
https://doi.org/10.1103/PhysRevD.99.043514
https://doi.org/10.1103/PhysRevD.104.123550
https://doi.org/10.1103/PhysRevD.104.123550
https://doi.org/10.1103/PhysRevD.102.123523
https://doi.org/10.1103/PhysRevD.102.123523
https://doi.org/10.1103/PhysRevD.105.023517
https://doi.org/10.1103/PhysRevD.105.023517
https://arXiv.org/abs/1104.2932
https://doi.org/10.1088/1475-7516/2011/07/034
https://doi.org/10.1088/1475-7516/2011/07/034
https://arXiv.org/abs/1910.13970
https://doi.org/10.1214/ss/1177011136
https://www.damtp.cam.ac.uk/user/na/NA_papers/NA2009_06.pdf
https://www.damtp.cam.ac.uk/user/na/NA_papers/NA2009_06.pdf
https://www.damtp.cam.ac.uk/user/na/NA_papers/NA2009_06.pdf
https://www.damtp.cam.ac.uk/user/na/NA_papers/NA2009_06.pdf
https://www.damtp.cam.ac.uk/user/na/NA_papers/NA2009_06.pdf
https://www.damtp.cam.ac.uk/user/na/NA_papers/NA2009_06.pdf
https://www.damtp.cam.ac.uk/user/na/NA_papers/NA2009_06.pdf
https://arXiv.org/abs/1804.00154
https://arXiv.org/abs/1804.00154
https://arXiv.org/abs/1812.11343
https://arXiv.org/abs/1812.11343
https://doi.org/10.1093/mnras/stac064
https://arXiv.org/abs/2109.14848
https://arXiv.org/abs/2109.14848
https://arXiv.org/abs/1806.08362


[84] M. Raveri, W. Hu, and S. Sethi, Phys. Rev. D 99, 083518
(2019).

[85] L. Heisenberg, M. Bartelmann, R. Brandenberger, and A.
Refregier, Phys. Rev. D 98, 123502 (2018).

[86] Y. Akrami, R. Kallosh, A. Linde, and V. Vardanyan,
Fortschr. Phys. 67, 1800075 (2019).

[87] H. Akaike, Information theory and an extension of the
maximum likelihood principle, in Selected Papers of
Hirotugu Akaike (Springer, New York, NY, 1973),
pp. 199–213.

[88] C.-P. Ma and E. Bertschinger, Astrophys. J. 455, 7
(1995).

MCDONOUGH, LIN, HILL, HU, and ZHOU PHYS. REV. D 106, 043525 (2022)

043525-24

https://doi.org/10.1103/PhysRevD.99.083518
https://doi.org/10.1103/PhysRevD.99.083518
https://doi.org/10.1103/PhysRevD.98.123502
https://doi.org/10.1002/prop.201800075
https://doi.org/10.1086/176550
https://doi.org/10.1086/176550

