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We study the primordial nucleosynthesis (BBN) in the stepwise scalar field model proposed by Tián
[Phys. Rev. D 101, 063531 (2020)], which provides a multiaccelerating Universe solution to the
cosmological coincidence problem and predicts that the scalar field may be non-negligible even in the
early Universe. The observed abundances of the light elements can be used to constrain the energy density
of the scalar field during the BBN era. We present a public MATLAB code to implement the BBN calculation
in the stepwise scalar field model. We show that the model can survive the BBN constraints. In particular,
this model incorporates a new solution to the possible deuterium problem: very early dark energy that
appears at the end of BBN. In addition, the BBN constraints, along with constraints from the cosmic late-
time acceleration, suggest that the Universe in the radiation era evolves in a chaotic accelerating manner,
rather than an oscillating scaling manner.
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I. INTRODUCTION

The current standard cosmological model holds that
there are two stages of accelerating expansion in the
Universe [1,2]. One is the early inflation, which is
proposed to solve the horizon and flatness problems
[3–5]. The other is the cosmic late-time acceleration,
which was confirmed by observations of supernovae [6,7].
Theoretically, there are many dark energy models to
explain the late-time acceleration, such as the cosmologi-
cal constant (the standard model), quintessence [8–11],
phantom [12], k-essence [13,14], and quintom [15–17].
However, these models share a common problem—the
cosmological coincidence problem, which states why the
energy density of dark energy is now on the same order of
magnitude as that of matter [18,19]. To solve this problem,
Dodelson et al. [20] proposed that the Universe may have
experienced periodic accelerating expansion in the past,
and the current acceleration is just a natural continuation.
Meanwhile, they implemented this scenario with a canoni-
cal scalar field model. This multiacceleration scenario
inspired many follow-up studies, including model exten-
sions [21–25] and confronting observations [26–29]. In
particular, inflation can be naturally unified into this
scenario [21,23,24], which makes the model more attrac-
tive. We proposed a new canonical scalar field model to
realize the multiacceleration scenario [30]. Hereafter, we
call this type of model a stepwise scalar field model since
the potential is similar to the staircase (see Fig. 1 in [30]
for an illustration). Furthermore, we found chaos and

period-doubling bifurcations in our model [31], which
were not identified in previous models. Our model also
naturally unifies inflation and predicts an extremely small
tensor-to-scalar ratio [32], which is consistent with current
observations [33].
As the literal meaning of multiacceleration expresses,

there should also be stages of accelerating expansion in the
early Universe, that is, stages dominated by dark energy.
How to detect dark energy in the early Universe? One
approach is the global cosmological parameter constraints
as did in [26,27,29]. This approach has strong model
dependencies and thus, is indirect. Another approach is
the primordial nucleosynthesis (big bang nucleosynthesis,
abbreviated BBN, see [34,35] for reviews), which could
probe the Universe with temperatures between 1012 K and
108 K. Given the great success (mainly about the helium-4
and deuterium abundances) of the standard BBN theory at
the time, Dodelson et al. [20] attempted to completely hide
the scalar field during the BBN era in their model. Here,
standard means there is no dark energy. There are other
similar works using BBN to constrain the upper limit of
the early dark energy density in specific models [36,37].
However, with the improvement of the measurement
uncertainties about nuclear reaction rates and cosmological
parameters, the standard BBN theory now seems to be
broken. In addition to the well-known primordial lithium
problem [38], there are inconsistencies between the theo-
retical prediction and observational abundance about deu-
terium [39,40]. The essence of this deuterium problem
remains unclear. On the one hand, it is still debatable
whether the deuterium problem really exists [41,42]. On the
other hand, if the deuterium problem does exist, its solution*tshuxun@bnu.edu.cn
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may hint at new physics, such as time-varying fundamental
constants [43]. The deuterium and lithium problems may
also shed light on the possible existence of dark energy in
the early Universe.
In this paper, we use BBN to test the stepwise scalar field

model proposed by us [30]. We focus on the following two
issues:
(1) Is it possible to completely hide the scalar field in

our model as did in [20]?
(2) Is there some kind of early dark energy profiles in

our model to solve the deuterium problem or even
the lithium problem?

Meanwhile, we require that the model under the same
parameter settings can explain the observed cosmic late-
time acceleration. In this paper, we intend to provide case
studies rather than global parameter constraints.
This paper is organized as follows. Section II summa-

rizes the BBN theory, including how to incorporate the
stepwise scalar field into the BBN calculation. Section III
describes our numerical results, including discussions
about the BBN results of the standard model, and models
with exponential scalar field and stepwise scalar field.
Conclusions are presented in Sec. IV. Throughout this
paper, we adopt the SI Units and retain all physical
constants unless otherwise stated. All reported uncertainties
represent 68% confidence intervals.

II. BASIC THEORY

BBN calculation requires one to solve a nuclear reaction
network in the expanding Universe at temperatures between
1012 K and 108 K (equivalently energy scales between
100 MeV and 0.01 MeV). The main BBN physics was
summarized in [44,45], and the results are widely used in
current BBN codes, e.g., NUC123 [46,47], PArthENoPE

[48–50], AlterBBN [51,52], and PRIMAT [35,39]. Here,
we summarize the BBN theory implemented in this paper,
which include all the key physics. The results are integrated
into a public MATLAB code, which is named BBNLab and is
available at [72]. Note that no physics in this section is
original. However, this summary, especially the explicit
expressions given in Eqs. (13) and (15), may be useful for
beginners and presents a clear basis for our futureBBNwork.

A. Evolution equations

The Universe is assumed to be described by the
flat Friedmann-Lemaître-Robertson-Walker metric ds2¼
−c2dt2þa2ðdx2þdy2þdz2Þ, where a ¼ aðtÞ is the cosmic
scale factor and c is the speed of light, and contains
photons, neutrinos, electrons, positrons, baryons, and a
canonical scalar field. Hereafter, we use the subscripts
fγ; ν; e−; eþ; b;ϕg to denote these ingredients, respectively,
use plasma to refer fphotonsþ electronsþ positronsþ
baryonsg, use the subscript matter to refer fplasmaþ
neutrinosg, and use the subscript total to refer

fmatter þ ϕg. During BBN era, we assume that the plasma
is in thermal equilibrium, while the neutrino gas is thermally
decoupled from the plasma.1 The scalar field interacts with
other species only through gravity. Nuclides considered in
the nuclear network, and their basic properties are listed in
Table I. Substituting the metric into the Einstein field
equations gives the Friedmann equation,

H2 ¼ 8πG
3

ðργ þ ρν þ ρe þ ρb þ ρϕÞ; ð1Þ

where H ≡ _a=a is the Hubble parameter, _≡ d=dt, G is the
Newtonian constant of gravitation, ρe ¼ ρe− þ ρeþ . The
mass densities (energy densities=c2) are given by

ργ ¼
π2k4BT

4
γ

15ℏ3c5
; ð2aÞ

ρν ¼
7Neff

ν π2k4BT
4
ν

120ℏ3c5
; ð2bÞ

ρe ¼
k4BT

4
γ

π2ℏ3c5

Z
∞

zγ

x2ðx2 − z2γÞ1=2

×

�
1

ex−ϕe þ 1
þ 1

exþϕe þ 1

�
dx;

¼ 2m4
ec3

π2ℏ3

X∞
i¼1

ð−1Þiþ1 coshðiϕeÞMðizγÞ; ð2cÞ

ρb ¼ nb
XNnuclei

i¼1

Yi

�
mi þ

3me

2zγ

�
; ð2dÞ

ρϕ ¼ c2

8πG

�
_ϕ2

2c2
þ VðϕÞ

�
; ð2eÞ

where kB is the Boltzmann constant, ℏ is the reduced Planck
constant, Tγ is the plasma temperature, Tν is the neutrino
temperature, Neff

ν ¼ 3.046 is the effective number of neu-
trinos [53], ∞ means positive infinity, zγ ≡mec2=ðkBTγÞ,
ϕe ≡ μe=ðkBTγÞ, me is the mass of electron, μe is the

1Note that neutrinos are in thermal equilibrium with the plasma
through weak interactions when the energy scale is higher than
2 MeV [35]. As the temperature drops, neutrino decoupling and
e� annihilation occur one after the other. Neither process is
instantaneous, and there is a temporal overlap between them. This
overlap results in a neutrino heating process from the e�
annihilation [53]. For simplicity, we assume that all the influences
of this neutrino heating process on BBN are reflected in a
constant Neff

ν [see Eq. (2b)]. After considering Neff
ν , the neutrino

gas can be regarded as expanding adiabatically. In addition, the
scalar field that appears during the e� annihilation may slightly
change the value ofNeff

ν as it affects the Hubble expansion rate. In
this paper, we ignore this possible modification and would like to
leave this issue to the future.
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chemical potential of the electron gas, MðxÞ is a special
function defined in the Appendix,mi is the mass of nuclide i
(see Table I), Yi ≡ ni=nb, ni is the number density of
nuclide i, nb is the total number density of baryons,Nnuclei is
the total species of nuclides, and VðϕÞ is the potential of the
scalar field (see Sec. II A 1). The conventions about the
scalar field and also ρϕ are consistent with [30]. The black-
body spectrum is used to derive Eq. (2a). The Fermi-Dirac
distribution with zero neutrino mass and chemical potential
is used to derive Eq. (2b). This assumption is reasonable as
the neutrino mass is much smaller than MeV=c2, and the
zero chemical potential is consistent with current observa-
tional constraints [35]. The Fermi-Dirac distribution with
μe þ μeþ ¼ 0, where μeþ is the positron chemical potential,
is used to derive the first equality of Eq. (2c). Here μe þ
μeþ ¼ 0 corresponds to the chemical equilibrium of the
e− þ eþ ↔ γ þ γ reaction. The series expansion in the
second equality of Eq. (2c) facilitates numerical calcula-
tions. The ideal gas model is used to derive Eq. (2d). The
internal degeneracy of particles has been taken into account
in the above results.
As we discussed before, aside from the gravitational

interaction, the thermodynamics of the plasma and neu-
trinos, and the dynamics of the scalar field are independent
of each other. Therefore, energy conservation provides
three other evolution equations. For plasma, we obtain

_ρplasma þ 3Hðρplasma þ pplasma=c2Þ ¼ 0; ð3Þ
where ρplasma ¼ ργ þ ρe þ ρb, pplasma ¼ pγ þ pe þ pb,
pe ¼ pe− þ peþ , and the pressures are given by

pγ ¼
1

3
ργc2; ð4aÞ

pe ¼
k4BT

4
γ

3π2ℏ3c3

Z
∞

zγ

ðx2 − z2γÞ3=2

×

�
1

ex−ϕe þ 1
þ 1

exþϕe þ 1

�
dx;

¼ 2m4
ec5

π2ℏ3zγ

X∞
i¼1

ð−1Þiþ1

i
coshðiϕeÞLðizγÞ; ð4bÞ

pb ¼ nbkBTγ

XNnuclei

i¼1

Yi; ð4cÞ

where LðxÞ is a special function defined in the Appendix.
The basic theory and assumptions used to derive the
above results are discussed in the previous paragraph.
For neutrinos, considering its pressure pν ¼ ρνc2=3, we
obtain

_Tν þHTν ¼ 0: ð5Þ

Integrating the above equation gives Tν ∝ a−1. For the
scalar field, the equation of energy conservation is exactly
its equation of motion [30],

ϕ̈þ 3H _ϕþ c2V 0 ¼ 0; ð6Þ

where V 0 ≡ dV=dϕ.
There are two other equations that are closely related to

baryons. One is the equation of baryon number conservation,

_nb þ 3Hnb ¼ 0: ð7Þ

The other is a constraint equation given by the electrical
neutrality of the Universe, which can be written as

ne− − neþ

nγ
¼ η

XNnuclei

i¼1

ZiYi; ð8Þ

where η≡ nb=nγ, and ne− , neþ , nγ are the number densities
of relevant ingredients, nγ ¼ 2ζð3Þm3

ec3=ðπ2ℏ3z3γÞ, and

ne− − neþ

nγ
¼ sinhϕe

2ζð3Þ
Z

∞

zγ

xðx2 − z2γÞ1=2
cosh xþ coshϕe

dx

¼ z3γ
ζð3Þ

X∞
i¼1

ð−1Þiþ1 sinhðiϕeÞLðizγÞ; ð9Þ

where ζðxÞ is the Riemann zeta function and ζð3Þ≈
1.2021. So far, roughly speaking, the above results deter-
mine the thermodynamics of the Universe: There are six
equations [Eqs. (1), (3), and (5)–(8)] and six variables
fa; Tγ; Tν;ϕe; nb;ϕg. Note that it is unnecessary to find the
solution of aðtÞ because other equations depend directly on
H rather than a.

TABLE I. Nuclides considered in the nuclear network, together with mass excessΔmi, mass number Ai, proton number Zi and spin si.
The data come from [54]. Mass excess is given in MeV. Note that the nuclide mass mi ¼ Aimu þ Δmi − Zime, where mu is the atomic
mass constant.

No. 1 2 3 4 5 6 7 8 9

Nuclide n p D T 3He 4He 6Li 7Li 7Be
Δmi 8.0713 7.2890 13.1357 14.9498 14.9312 2.4249 14.0869 14.9071 15.7690
Ai 1 1 2 3 3 4 6 7 7
Zi 0 1 1 1 2 2 3 3 4
si 1=2 1=2 1 1=2 1=2 0 1 3=2 3=2
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The rest is the nuclear reaction network, which rules the
evolution of Yi. The general form of a nuclear reaction can
be written as

Ni1ðAi1Zi1Þ þ Ni2ðAi2Zi2Þ þ � � � þ NipðAipZipÞ
↔ Nj1ðAj1Zj1Þ þ Nj2ðAj2Zj2Þ þ � � � þ NjqðAjqZjqÞ; ð10Þ

where AiZi denotes nuclide i (see Table I), and Ni is the
stoichiometric coefficient. The evolution of Yi takes the
form [35],

_Yi1 ¼
X

reactions with i1

Ni1

0
B@Γj1���jq→i1���ip

Y
Nj1
j1

� � �YNjq

jq

Nj1 ! � � �Njq !

− Γi1���ip→j1���jq
Y
Ni1
i1

� � �YNip

ip

Ni1 ! � � �Nip !

1
CA≡ Γi1 ; ð11Þ

where the sum includes all reactions involving nuclide i1,
Γi1���ip→j1���jq and Γj1���jq→i1���ip are the reaction rates (see
Sec. II A 2), and the last equality defines Γi. The nuclear
reactions considered in this work are listed in Table II.
These reactions are selected from Table 2 in [48] with the
criterion that the reactions involve only the nuclides listed
in Table I. As we will see, this nuclear reaction network
gives reasonable BBN predictions.
The above results form complete BBN evolution equa-

tions. However, Eqs. (3) and (8) are implicit and not
suitable for direct numerical calculations. Here, we convert
these two equations into explicit form. Multiplying Eq. (8)
by ζð3Þ=z3γ, differentiating the result with respect to t, and
substituting Eq. (11) into the result to eliminate _Yi, we
obtain

κ1 _ϕe þ κ2 _zγ ¼ κ3; ð12Þ

where the coefficients are given by

κ1 ¼
X∞
i¼1

ð−1Þiþ1i coshðiϕeÞLðizγÞ; ð13aÞ

κ2 ¼
X∞
i¼1

ð−1Þiþ1i sinhðiϕeÞL0ðizγÞ; ð13bÞ

κ3 ¼
π2ℏ3nb
2m3

ec3
XNnuclei

i¼1

ZiðΓi − 3HYiÞ; ð13cÞ

where L0ðxÞ≡ dL=dx and its explicit expression is given in
the Appendix. Expanding _ρplasma by f _ϕe; _zγ; _nb; _Yig, and
substituting Eqs. (7) and (11) to eliminate f _nb; _Yig, then
Eq. (3) can be rewritten as

κ4 _ϕe þ κ5 _zγ ¼ κ6; ð14Þ

where the coefficients are given by

κ4 ¼
X∞
i¼1

ð−1Þiþ1i sinhðiϕeÞMðizγÞ; ð15aÞ

κ5 ¼
π2ℏ3

2m4
ec3

�
−
4ργ
zγ

−
3menb
2z2γ

XNnuclei

i¼1

Yi

�

þ
X∞
i¼1

ð−1Þiþ1i coshðiϕeÞM0ðizγÞ; ð15bÞ

κ6 ¼
π2ℏ3

2m4
ec3

�
−3H

�
ργ þ ρe þ

pplasma

c2

�

−nb
XNnuclei

i¼1

Γi

�
mi þ

3me

2zγ

��
; ð15cÞ

where M0ðxÞ≡ dM=dx and its explicit expression is given
in the Appendix. The combination of Eqs. (12) and (14)
gives

TABLE II. The nuclear reaction network implemented in BBNLab. The n ↔ p reaction includes three weak reactions [see Eq. (37)
in [55]].

No. Reaction No. Reaction No. Reaction No. Reaction

01 n ↔ p 09 T þD ↔ nþ 4He 17 3Heþ 3He ↔ pþ pþ 4He 25 6LiþD ↔ nþ 7Be
02 pþ n ↔ γ þD 10 T þ T ↔ nþ nþ 4He 18 4HeþD ↔ γ þ 6Li 26 6LiþD ↔ pþ 7Li
03 Dþ n ↔ γ þ T 11 3Heþ n ↔ γ þ 4He 19 4Heþ T ↔ γ þ 7Li 27 7Liþ p ↔ 4Heþ 4He
04 Dþ p ↔ γ þ 3He 12 3Heþ n ↔ pþ T 20 4Heþ 3He ↔ γ þ 7Be 28 7Liþ p ↔ γ þ 4Heþ 4He
05 DþD ↔ nþ 3He 13 3HeþD ↔ pþ 4He 21 6Liþ n ↔ γ þ 7Li 29 7LiþD ↔ nþ 4Heþ 4He
06 DþD ↔ pþ T 14 3Heþ T ↔ γ þ 6Li 22 6Liþ n ↔ T þ 4He 30 7Beþ n ↔ pþ 7Li
07 T → ν̄e þ e− þ 3He 15 3Heþ T ↔ Dþ 4He 23 6Liþ p ↔ γ þ 7Be 31 7Beþ n ↔ 4Heþ 4He
08 T þ p ↔ γ þ 4He 16 3Heþ T ↔ nþ pþ 4He 24 6Liþ p ↔ 3Heþ 4He 32 7BeþD ↔ pþ 4Heþ 4He
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_ϕe ¼
κ3κ5 − κ2κ6
κ1κ5 − κ2κ4

; ð16Þ

_zγ ¼
κ1κ6 − κ3κ4
κ1κ5 − κ2κ4

: ð17Þ

So far, we can obtain the explicit expressions of the
first time derivative of fzγ; zν;ϕe; η;ϕ; _ϕ; Yig, where zν≡
mec2=ðkBTνÞ. Here, we replace fTν; nbg with fzν; ηg to
make the variables dimensionless. In addition, _zν ¼ Hzν
and _η ¼ 3π2ℏ3z2γnbð_zγ −HzγÞ=½2ζð3Þm3

ec3� can be easily
derived from the previous equations.
BBNLab adopts the variables fzγ; zν;ϕe; η;ϕ; _ϕ; Yig in

its numerical calculations. Furthermore, we change the
“time” variable from t to the e-folding number N, where
N ≡ lnða=a1Þ, a1 is the scale factor at one specific time
and its absolute value is meaningless. The transformation
of the evolution equations directly follows dX=
dN ¼ _X=H. Hereafter, we use the subscript “ini” to denote
the beginning of BBN. If we set the initial temperature to
1012 K, then N ∈ ½Nini; Nini þ 10� roughly corresponds to
1012 K ≤ Tγ ≲ 108 K. The exact value of Nini has no
physical effect as the BBN evolution equations do not
depend on N explicitly. The reason for keeping Nini here is
that it is an auxiliary value used to calculate the initial
conditions of the stepwise scalar field (see Sec. II B).
For clarity, we set Nini ¼ 0 for the standard model and
the exponential scalar field model (see Sec. II A 1).
The BBN evolution equations are stiff. In BBNLab,
we use the Matlab/ode23s solver with suitable option
structure to integrate this stiff system. We set the options
as odeset(’RelTol’,1E-10,’AbsTol’,1E-10,
’MaxStep’,1E-3) for Fig. 1, and odeset(’Rel
Tol’,1E-10,’AbsTol’, 1E-10,’MaxStep’,
2E-4) for Figs. 3 and 4. Details about ode23s can
be found in https://www.mathworks.com/help/matlab/ref/
ode23s.html. For all series expansions involved in our
numerical calculations, e.g., Eq. (2c), we adopt the results
up to the 20th order.

1. Models of the scalar field

The goal of this paper is to study BBN in the framework
of the stepwise scalar field model proposed in [30]. As a
comparison, we will also present the BBN results for
the standard model, in which no scalar fields exist, and the
exponential scalar field model [56,57]. Note that the
stepwise scalar field model is inspired by the exponential
scalar field model and these two models share some similar
features, e.g., the scaling property [31]. Discussions on the
exponential scalar field model may shed light on what kind
of the stepwise scalar field model can survive from the
BBN constraints.
In our conventions [30], the exponential potential reads

VðϕÞ ¼ V0 expð−λϕÞ; ð18Þ

where λ is a dimensionless constant, V0 is a constant in unit
of length−2, ϕ is dimensionless. Scaling solution is a main
mathematical property of this model [57]. In the radiation-
dominated Universe, the scaling solution requires λ > 2.
Furthermore, previous discussions on BBN require λ≳ 9
[36]. The potential of the stepwise scalar field model is
written as [30]

VðϕÞ ¼ V0 exp

�
−
λ1 þ λ2

2
ϕ −

αðλ1 − λ2Þ
2

sin
ϕ

α

�
; ð19Þ

where λ1, λ2 and α are dimensionless constants, V0 and ϕ
follow the previous conventions. Period-doubling bifurca-
tion together with the oscillating scaling and chaotic
accelerating solutions are the main mathematical properties
of this model [31]. In order to explain the cosmic late-time
acceleration and solve the accompanying coincidence
problem, we require fλ1þ λ2 > 4;0< λ2≲ 0.4;α¼Oð1Þg
[30]. Furthermore, we require λ2 ¼ Oð10−4Þ to unify
inflation [32].

2. Nuclear reaction rates

For clarity, we adopt the conventions that the forward
direction of the reactions listed in Table II and Eq. (10) is
taken as left to right. For the n ↔ p reaction, weak
interaction theory gives [55,58]

Γn→p ¼ K
Z

∞

1

xðxþ qÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p

ð1þ exzγ Þ½1þ e−ðxþqÞzν � dx

þ K
Z

∞

1

xðx − qÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p

ð1þ e−xzγ Þ½1þ eðx−qÞzν � dx; ð20aÞ

Γp→n ¼ K
Z

∞

1

xðx − qÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p

ð1þ exzγ Þ½1þ e−ðx−qÞzν � dx

þ K
Z

∞

1

xðxþ qÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 − 1

p

ð1þ e−xzγ Þ½1þ eðxþqÞzν � dx; ð20bÞ

where q ¼ ðmn −mpÞ=me ≈ 2.5310, mn and mp are the
neutron and proton mass, respectively, K ¼ 6.9503 ×
10−4 s−1 is the normalization constant computed by requir-
ing Γn→p ¼ 1=τn at low temperatures, τn ¼ 879.4 s is the
neutron lifetime [59]. The Fermi correction discussed in
[58] is ignored here. At high temperatures, we have zν ¼ zγ
so that Γn→p ¼ Γp→neqzγ , which is consistent with the
equilibrium abundances [see Eq. (25)]. For other reactions,
generally, the forward thermonuclear reaction rates in the
CGS units are given in the literature [35]. The forward
reaction rates read [35]
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Γi1���ip→j1���jq ¼
�
nbmu

g=cm3

�ðNi1
þ���þNip Þ−1

· Rt · ½s−1�; ð21Þ

where Rt is the numerical value of the thermonuclear
reaction rate in CGS units. The Rt actually used in the
present calculation and relevant references are presented in
the code. Most of the reaction rates we use are consistent
with those used in PRIMAT (Version 0.2.0) [39].
Especially, as did in [39], we adopt the most recent
measurements about the Dþ p → γ þ 3He reaction [60].
The deuterium abundance is sensitive to this reaction
[39,40] and is the core in our discussions. The last term
in Eq. (21) is the physical unit, i.e., the unit of Γi1���ip→j1���jq .
The inverse reaction rates read [35]

Γj1���jq→i1���ip ¼
�
nbmu

g=cm3

�ðNj1
þ���þNjq Þ−ðNi1

þ���þNip Þ

×
γj1���jq→i1���ip
γi1���ip→j1���jq

× Γi1���ip→j1���jq ; ð22Þ

where the dimensionless ratio,

γj1���jq→i1���ip
γi1���ip→j1���jq

¼ β1

�
Tγ

109 K

�
β2
exp

�
β3 · 109 K

Tγ

�
; ð23Þ

and the constant βi is given in our code. Note that each
nuclear reaction corresponds to a set of βi. Uncertainties
[61] of the reaction rates are not included in the present
calculation. More nuclear reactions and the uncertainties
will be considered in the future.

FIG. 1. Left: Dependence of fYP;D=H; 3He=H; 7Li=Hg in ηtoday for the exponential scalar field model (λ ¼ 8; 10; 16;∞) and
observational constraints. Due to radioactive decay, the T and 7Be abundance has been added into 3He and 7Li, respectively. Horizontal
shaded areas represent the observational abundances, while vertical shaded areas represent the Planck 2018 result on ηtoday (see the main
text for the values). Right: Evolution of the elements abundances,Ωϕ and wmatter for λ ¼ 10 and ηtoday ¼ 6.1374 × 10−10. Dashed curves
represent the equilibrium abundances. The fluctuations in Ωϕ and wmatter evolutions are caused by the e� annihilation.
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B. Initial conditions

Considering the neutrino-plasma thermal equilibrium,
we set the initial temperatures Tγ;ini ¼ Tν;ini ¼ 1012 K in
BBNLab. For the baryon-to-photon number ratio, we set
ηini ∈ 11=4 × ½10−10; 10−9� so that η ∈ ½10−10; 10−9� at the
ending of BBN. Here, the coefficient 11=4 is due to the
entropy transfer from e� pairs to photons [35].
The initial high temperature makes all nuclides in

statistical equilibrium, which includes thermal and chemi-
cal equilibrium. The initial number density of nuclide i
reads

ni;ini ¼
gi
ℏ3

�
mikBTγ;ini

2π

�
3=2

exp

�
μi;ini −mic2

kBTγ;ini

�
; ð24Þ

where gi ¼ 2si þ 1 is the spin degeneracy and μi;ini is the
initial chemical potential. The chemical potential of leptons
is negligible compared to that of baryons. Therefore,
we obtain μn;ini ¼ μp;ini based on the n ↔ p reaction.
Applying Eq. (24) to neutrons and protons, we obtain

nn;ini
np;ini

¼
�
mn

mp

�
3=2

exp

�ðmp −mnÞc2
kBTγ;ini

�
: ð25Þ

Initially, neutrons and protons are much more numerous
than other nucleons. Therefore, it is reasonable to adopt
nn;ini þ np;ini ¼ nb;ini, which in turn gives

Yn;ini ¼ 1=ð1þ np;ini=nn;iniÞ; ð26aÞ

Yp;ini ¼ 1 − Yn;ini: ð26bÞ

For other nuclides, we set Yi;ini ¼ 0 in BBNLab. Note that
we turn off all nuclear reactions except the n ↔ p reaction
until Tγ ¼ 1010 K. Once the full nuclear reaction network
is turned on, the heavier nuclides reach their equilibrium
abundances very quickly (see Fig. 1 for an illustration).
Therefore, it is reasonable to set Yi;ini ¼ 0 for the heavier
nuclides, and the final results is independent of this setting.
This strategy is also adopted by PRIMAT [35].
The initial value of ϕe can be obtained by numerically

solving Eq. (8). Here, we present a high temperature
approximate solution. The right side of Eq. (8) is much
less than 1 as η ≪ 1. For its left side, i.e., Eq. (9), one can
verify that limzγ→0 z3γLðizγÞ ¼ 2=i3 ¼ Oð1Þ, where zγ → 0

corresponds to the high temperature approximation.
Therefore, Eq. (8) indicates sinhðiϕeÞ ¼ OðηÞ ≪ 1 at the
beginning of BBN. Substituting the Taylor expansion
sinh x ¼ x into Eq. (8), we obtain

ϕe;ini ¼
ζð3Þηini

PNnuclei
i¼1 ZiYi;ini

z3γ;ini
P∞

i¼1ð−1Þiþ1iLðizγ;iniÞ
: ð27Þ

This result is consistent with Eq. (20) in [51].

The initial conditions of the scalar field, i.e., in principle,
the values of fϕini; _ϕini; V0g, are calculated as follows. For
the exponential scalar field model, we only consider the
scaling case and assume that the scalar field reaches the
scaling attractor at the beginning of BBN. Without loss of
generality, we can set ϕini ¼ 0 and use V0 to adjust the
potential energy. Then the initial conditions can be calcu-
lated as follows:
(1) x1;ini ¼ 4=ð ffiffiffi

6
p

λÞ, x2;ini ¼ 2=ð ffiffiffi
3

p
λÞ,

(2) Ωϕ;ini ¼ 4=λ2, ρmatter;ini ¼ ρplasma;ini þ ρν;ini,
ρtotal;ini ¼ ρmatter;ini=ð1 −Ωϕ;iniÞ,
Hini ¼ ð8πGρtotal;ini=3Þ1=2,

(3) _ϕini ¼
ffiffiffi
6

p
Hinix1;ini, V0 ¼ 3ðHinix2;ini=cÞ2.

Here, x1 and x2 are the dimensionless variables defined in
the dynamical system analysis [see Eq. (7a) in [30]] and
their initial values are given by the scaling solution,
Ωϕ is the relative energy density of the scalar field. For
the stepwise scalar field model, instead of the scaling
solution, we can use the numerical solution of the dynami-
cal system to give the values of x1 and x2 at the beginning
of BBN. The dynamical system is given by Eq. (8) with
wm ¼ 1=3 in [30], and we do not repeat the equations and
conventions here. Other subsequent steps are similar to the
exponential case. However, one difference is that the value
of ϕini is no longer fixed. Without loss of generality, we
assume 0 ≤ ϕini ≤ 2απ and use V0 to adjust the potential
energy. Details are as follows:
(1) Integrating the dynamical system in N ∈ ½0; Nini�

gives the values of fx1;ini; x2;ini; λini; νinig, i.e., the
values of fx1; x2; λ; νg at N ¼ Nini (see Fig. 2 for an
illustration). In this step, we set fx1 ¼ 0.75; x2 ¼
0.5; λ ¼ λ2 þ 2; ν ¼ νþðλÞg at N ¼ 0 for all follow-
ing calculations. Compared to setting the values at
N ¼ Nini directly, this step allows the system to enter
the possible attractor solution and makes the desired
values more natural. Note that λ is an variable in the
stepwise scalar field model, while it is a constant in
the exponential scalar field model; Nini is an aux-
iliary parameter and its absolute value have no
physical meaning (see also discussions in Sec. II A).

(2) Ωϕ;ini ¼ x21;ini þ x22;ini, ρmatter;ini ¼ ρplasma;ini þ ρν;ini,
ρtotal;ini¼ρmatter;ini=ð1−Ωϕ;iniÞ,Hini¼ð8πGρtotal;ini=3Þ1=2,

(3) ϕini ¼ α arccos ½ 2
λ1−λ2

· ðλini − λ1þλ2
2

Þ�, if νini > 0
then ϕini ¼ 2απ − ϕini,

(4) _ϕini ¼
ffiffiffi
6

p
Hinix1;ini, V ini ¼ 3ðHinix2;ini=cÞ2, V0 ¼

V ini exp ½λ1þλ2
2

ϕini þ αðλ1−λ2Þ
2

sin ϕini
α �.

Here, the third step gives the solution of Eqs. (7b) and (7c)
in [30]. Note that the function arccos returns values
in the interval ½0; π�, and thus, the final result satisfies
our initial assumption 0 ≤ ϕini ≤ 2απ. Considering
the initial temperature, the above procedure gives
V0 ∼ Gð100 MeVÞ4=ℏ3c7 ∼ 10−80l−2P , where lP is the
Planck length. This result is much smaller than that given
in [32]. However, there is no inconsistency in the model.
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The reason is that there is a degeneracy between the
absolute values of V0 and ϕini. Because the function sin
is periodic, increasing ϕini by several periods together with
a corresponding rescaled V0 does not affect the potential
and dynamics of the scalar field. In [32], we assumed
ϕ ≈ απ at the beginning of inflation and obtained
V0 ∼ 10−14l−2P . If we want to restore these results, what
we need to do is increase the above obtained ϕini by several
periods so that exp½−ðλ1 þ λ2Þϕini=2� ∼ 10−66. The BBN
results presented in this paper are independent of these
settings.

III. NUMERICAL RESULTS

To compare the theoretical predictions and observations,
we consider YP ≡ 4Y4He (the ratio of the abundance by mass
of helium-4), D/H, 3He=H and 7Li=H (the ratio of the
abundance of the isotope to hydrogen, and i=H≡ Yi=Yp).
Observational results are YP ¼ 0.2453� 0.0034 [62],
D=H¼ð2.527�0.030Þ×10−5 [63], 3He=H< ð1.1�0.2Þ×
10−5 [64], and 7Li=H ¼ ð1.58þ0.35

−0.28Þ × 10−10 [65]. The 3He
result is given by its abundance in our Galaxy, and the result
is adopted as an upper limit of the primordial abundance

because the post-BBN evolution of 3He is unclear [35,64].
As stated in Sec. II B, we compute the abundances for a
given scalar field model over the range ηtoday∈ ½10−10;10−9�,
which covers the Planck 2018 result ηtoday ¼ ð6.1374�
0.0383Þ × 10−10 [39,66]. Here, the subscript “today” means
the present epoch or equivalently, the ending of BBN.
In order to check the correctness of our code, we present

the equilibrium abundances. Omitting the subscript “ini” in
Eq. (26) gives the equilibrium abundances of neutron and
proton. This result is available at Tγ ∼ 1012 K. For other
nuclides, the equilibrium abundances are given by [35]

Yi;eq ¼ gi2ð3Ai−5Þ=2πð1−AiÞ=2ζð3ÞAi−1c3ð1−AiÞηAi−1

× YZi
p Y

Ai−Zi
n

�
miðkBTγÞAi−1

mZi
p m

Ai−Zi
n

�
3=2

exp

�
Bi

kBTγ

�
; ð28Þ

where the binding energy Bi ≡ ½Zimp þ ðAi − ZiÞ
mn −mi� × c2, and the relevant values are given in
Table I. If the temperature is low enough that the neutrons
and protons are not in thermal equilibrium, e.g.,
Tγ ∼ 1010 K, then Yi;eq should be calculated based on

(a)

(b)

FIG. 2. Evolution of the dark energy relative densityΩϕ for the stepwise scalar field model. The calculations are based on Eq. (8) with
wmðNÞ ¼ ð1=3Þ=½1þ expðN − NeqÞ� in [30]. This equation describes the evolution of the Universe from radiation era to matter era [31].
N ¼ Neq corresponds to matter-radiation equality, and we set Neq ¼ 100. We perform numerical calculations in N ∈ ½0; 150� and plot
the results withinN ∈ ½50; 150�. The model parameters are λ1 ¼ 20, λ2 ¼ 0.01 and α ¼ 0.08 for the subplot (a), and λ1 ¼ 10, λ2 ¼ 0.01,
α ¼ 0.24 for the subplot (b). To increase the robustness of our numerical algorithm, we set λ2 ¼ 0.01, rather than 10−4, which is favored
by discussions on inflation [32]. The initial conditions are x1;0 ¼ 0.75, x2;0 ¼ 0.5, λ0 ¼ λ2 þ 2 and ν0 ¼ νþðλ0Þ, which are the same as
the settings in Sec. II B. The colored shaded region illustrates how to set the initial conditions of the stepwise scalar field at Tγ ¼ 1012 K
in BBNLab (see discussions in the main text). The insets are the Fourier transform of ΩϕðNÞ with constant wm (wm ¼ 1=3 for the left
insets and wm ¼ 0 for the right insets). To plot this, we numerically solve the evolution equation in N ∈ ½0; 1000� and perform Fourier
transform in N ∈ ½100; 1000�. The initial conditions are the same as before. The blue vertical dashed lines denote foss ¼
3ð1þ wmÞ=½απðλ1 þ λ2Þ� [31]. In the Fourier plots, regular peaks correspond to the OSS, while random forest corresponds to the CAS.
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the exact values of Yn and Yp, rather than their equilibrium
values.

A. Exponential scalar field

Figure 1 presents the main BBN results for the expo-
nential scalar field model. The predicted abundances as a
function of ηtoday and the observed results are plotted in the
left part. The case of λ ¼ ∞ corresponds to the standard
BBN model, at which Ωϕ ¼ 0. Compared to PRIMAT, our
code gives a slightly lower 4He abundance, and consistent
abundances of D, 3He, and 7Li. The lower YP should be due
to the incomplete nuclear reaction network. However, the
difference is small relative to the observational uncertainty
and thus is ignorable. Importantly, our code recovers the
deuterium problem, which is first pointed out in [39] and
states that the predicted D/H abundance is lower than the
observational constraints. Using a scalar field to solve the
deuterium problem is the core in our following discussions.
Decreasing λ, that is, increasing Ωϕ during BBN, can
significantly increase the abundances of 4He and D. In
particular, we can solve the deuterium problem with λ ¼ 10.
A potential disadvantage here is that the predicted abun-
dance of 4He may exceed its observed value if we consider
the full PRIMAT nuclear reaction network. The case of
λ ¼ 8 gives too large YP, and D/H and will be ruled out by
the observations. This is consistent with the result given
by [36] (λ > 9 at 2σ C.L.). The abundances of 3He and 7Li
remain almost unchanged when λ changes from infinity to
8. Consistent with conventional cognition [37], our results
show that the exponential scalar field cannot solve the
primordial lithium problem [38].
The case of λ ¼ 10 deserves more discussion as it can

solve the deuterium problem. The evolution of the isotopes
as a function of Tγ and their equilibrium abundance are
depicted in the right part of Fig. 1. As the Universe expands
(temperature decreases), the evolution of neutron and proton
follow their equilibrium abundance until Tγ ≈ 2 × 1010 K.
Heavier nuclei are taken into account when Tγ ¼ 1010 K,
and their evolution follows the equilibrium abundance until
Tγ ≈ 6 × 109 K. Therefore, it is reasonable for BBNLab to
consider heavier nuclei starting from Tγ ¼ 1010 K. We also
plot the evolution of Ωϕ and the equation of state (EOS)
wmatter. During BBN era, Ωϕ remains almost constant (4%),
which corresponds to the scaling solution [57]. Small
fluctuations in Ωϕ are due to the fluctuations in wmatter,
which in turn results from the e� annihilation. Combining
the left and right parts of Fig. 1, we conclude that if the
relative scalar field energy density reaches 4%, then it can
result in observable influences on the final BBN predictions.
During BBN, such a scalar field may can affect the out-
of-equilibrium process of neutron and proton around
Tγ ≈ 2 × 1010 K, and the heavier nuclei evolution when
Tγ ≲ 6 × 109 K.

B. Stepwise scalar field

In the stepwise scalar field model, our previous work
established the following unified cosmic evolution sce-
nario: inflation [32], deflationary phase with very stiff
EOS [32], radiation era with oscillating scaling solution
(OSS) [31], and matter era with chaotic accelerating
solution (CAS) [30,31]. OSS during radiation era can
attenuate the sensitive dependence of the late-time cosmic
evolution on the early initial conditions and facilitate the
cosmological parameter constraints [31]. This is a prag-
matic choice rather than an observational confirmation. In
principle, the Universe can also evolve as a CAS during the
radiation era. The BBN discussions may shed light on the
real type of cosmic evolution during the radiation era.
We start from the OSS. Roughly speaking, Sec. III A

shows that Ωϕ ≈ 4% is a critical point for the BBN
constraints. Higher Ωϕ would be excluded from observa-
tions, while lower Ωϕ would have no observable effect. If
we expect OSS in the radiation era, then we require λ1 ≳ 20

because Ωϕ ≈ 16=ðλ1 þ λ2Þ2 [30] and λ2 ≪ 1 [32]. In
particular, λ1 ≈ 20 may can be used to solve the deuterium
problem as the exponential scalar field did. In Fig. 2(a), we
plot the evolution of ΩϕðNÞ in the radiation and matter
epochs for λ1 ¼ 20. Other parameter settings and calcu-
lation details can be found in the caption. The inserted
Fourier plots show that, under this parameter settings, the
Universe evolves as an OSS in the radiation era, and as a
CAS in the matter era. In the radiation era, Ωϕ ≈ 4% as we
expected. However, this parameter setting is difficult to
explain the cosmic late-time acceleration in the matter era.
An apparent difficulty is that Ωϕ cannot reach 70%, i.e.,
the current observed dark energy relative density [66].
Increasing λ1 will exacerbate this problem. Increasing α can
increase the maximum value ofΩϕ in the matter era but also
make the cosmic evolution in the radiation era enter the
CAS.2 Therefore, if λ1 ≳ 20, then the OSS in the radiation
era may be incompatible with the desired acceleration in the
matter era.
What we need is a small Ωϕ during BBN. To achieve

this, in addition to increasing λ1, we can also adjust the
evolution of the Universe in the radiation era to CAS. Note
that Ωϕ can be very close to 0 and 1 in a CAS but not in an
OSS [31]. Technically, decreasing λ1 or increasing α can
bring the system into the CAS phase. In Fig. 2(b), we plot
such a scenario. A key setting here is λ1 ¼ 10, and other
settings can be found in the caption. The model might
survive the BBN constraints if Ωϕ ≲ 4% during the main
BBN era. In addition, this parameter setting should also be
able to explain the cosmic late-time acceleration (mainly

2In current parameter settings, foss=2 component already
appears in the radiation era [see the left inset in Fig. 2(a)].
Further parameter changes will cause the system to quickly enter
the chaotic phase.
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Ωϕ ≈ 70% and the EOS wϕ ≈ −1) as shown in the right part
of Fig. 2(b) and the discussions in [30,31]. Note that, in the
matter era of Fig. 2(b), we tend to emphasize the existence
of the Ωϕ ¼ 70% points, rather than requiring it to occur
exactly at today, i.e., N ¼ Neq þ 8.13 [31]. Once the point
exists, we can adjust the initial conditions so that it occurs
right now, and this does not require fine-tuning [31].
For the same parameter settings as Fig. 2(b), we perform

detailed BBN calculations with BBNLab. The results are
shown in Figs. 3 and 4. In order to set the initial conditions
of the scalar field at Tγ ¼ 1012 K (see the discussions in
Sec. II), we need an auxiliary parameter Nini, which is
labeled in the figures. The colored shaded region in Fig. 2(b)
roughly corresponds to the BBN era of the Nini ¼ 70.2 case
in Fig. 3. Note that this correspondence is not strict, since
wmatter (i.e., wm in [31]) remains almost constant in the

former case, while wmatter is obviously time varying in the
latter case. Looking at the YP and D/H results in Figs. 3
and 4, we conclude that there do exist viable parameter
space in the stepwise scalar field model to explain the BBN
observations. In particular, the case of Nini ¼ 70.2 in Fig. 3
or Nini ¼ 78.5 in Fig. 4 could be used to solve the possible
deuterium problem [39].
For the cases of Nini ¼ 70.2 and Nini ¼ 78.5, the

evolutions of fYi;Ωϕ; wmatterg as a function of Tγ are
depicted in the corresponding right parts. There is one
difference between the two cases worth mentioning: the YP
predictions are different. Compared with the standard
model, the case of Nini ¼ 70.2 does not change YP while
the case of Nini ¼ 78.5 increases YP. This difference should
be due to the different values of Ωϕ when protons and
neutrons are out of equilibrium (see the second vertical

FIG. 3. The BBN results for the stepwise scalar field model with the auxiliary parameter Nini ¼ 70.0, 70.2, 70.3. The model
parameters are the same as in Fig. 2(b). In the right part, the vertical dash-dotted line marks the point where Ωϕ cross 4%. Others are the
same as in Fig. 1.
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dash-dotted line in the right parts of the figures). If Ωϕ

drops below 4% before protons and neutrons fall out of
equilibrium, then the scalar field would have no observable
effect on the isotope evolutions in this period. In the case of
Nini ¼ 70.2, the scalar field affects the isotope evolutions
only near the end of BBN, and only has an observable
effect on the deuterium abundance. This discussion also
provides a simple mechanism for solving the deuterium
problem: very early dark energy appears near the end of
BBN. Essentially, this mechanism is the core of solving the
deuterium problem with the stepwise scalar field. Finally,
we admit that no solution of the lithium problem was found
in the stepwise scalar field model.

IV. CONCLUSIONS

The stepwise scalar field model was constructed to solve
the cosmological coincidence problem [20,30]. A key idea

of this model is that the cosmic expansion has been
dominated by the scalar field many times, which indicates
that a non-negligible scalar field could have arisen at any
stage in the early Universe. If it appears during BBN era,
then the abundances of light elements will be affected due
to the increment of the Hubble expansion rate. In this paper,
we analyze the BBN consequences of the stepwise scalar
field proposed in [30]. We provide here a public MATLAB

program, BBNLab, which enables the BBN calculation in
the stepwise scalar field model. We find that BBN provides
a strong upper limit ð∼4%Þ to the nearly constant Ωϕ (see
Fig. 1). However, in the stepwise scalar field model,Ωϕ can
vary over several orders of magnitude and can remain less
than 4% over a wide period of time. Based on this, we show
examples where the stepwise scalar field can survive the
BBN constraints. The scalar field can be completely hidden
in BBN era, which restores the standard BBN results (see
the case of Nini ¼ 70.0 in Fig. 3 or Nini ¼ 78.2 in Fig. 4).

FIG. 4. Same as Fig. 3 but with Nini ¼ 78.2, 78.5, 78.8.
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A more interesting example is that the very early dark
energy that appears near the end of BBN can be used to
solve the possible deuterium problem [39] (see the case of
Nini ¼ 70.2 in Fig. 3).
In the stepwise scalar field model, the evolution of the

Universe can be divided into two categories: OSS and CAS
[31]. In order to facilitate the cosmological parameter
constraints, we argued that the Universe should evolve
as OSS in the radiation era [31]. This is a subjective
argument, not a result of observational constraints.
However, the above 4% upper limit, together with the
constraints from the cosmic late-time acceleration, rule out
the possibility of OSS in the radiation era. The examples
provided in this paper that not only survive the BBN
constraints, but also explain the cosmic late-time accel-
eration, are all belong to the category of CAS. Therefore,
we conclude that the Universe should evolve as a CAS in
the radiation era in the stepwise scalar field model. This
does not rule out the model, but brings difficulties to the
global cosmological parameter constraints: there may be
many local maxima in the posterior distribution [30]. How
to quantitatively describe such a posterior distribution is a
major task for our future work.
What kinds of observations could verify or rule out the

CAS scenario for the radiation era? Given the above
discussed difficulty of cosmological parameter constraints,
it is important to look for direct observations. Electro-
magnetic observations seem impossible due to the scatter-
ing of photons and free electrons. However, gravitational
waves and dark matter observations might be possible. The
stochastic gravitational wave background can be used to
infer the cosmic expansion history before BBN [67–69].
The possible axion detection provides an auxiliary probe

of the early Universe [70]. Future multimessenger
astronomy can directly probe the early Universe and test
the CAS scenario in our model.
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APPENDIX: SPECIAL FUNCTIONS

Here we summarize the special functions involved in the
BBN calculation,

MðxÞ ¼ 1

x

�
3

4
K3ðxÞ þ

1

4
K1ðxÞ

�
; ðA1Þ

M0ðxÞ ¼ −
�
24

x4
þ 5

x2

�
K1ðxÞ −

�
12

x3
þ 1

x

�
K0ðxÞ; ðA2Þ

LðxÞ ¼ 1

x
K2ðxÞ; ðA3Þ

L0ðxÞ ¼ −
�
1

x
þ 6

x3

�
K1ðxÞ −

3

x2
K0ðxÞ; ðA4Þ

where the second kind modified Bessel function [71],

KνðxÞ ¼
Z þ∞

0

e−x cosh θ coshðνθÞdθ: ðA5Þ

In MATLAB, KνðxÞ is calculated by besselkðν; xÞ.
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