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The effective approach in loop quantum cosmology (LQC) has provided means to obtain predictions
for observable quantities in LQC models. While an effective dynamics in LQC has been extensively
considered in different scenarios, a robust demonstration of the validity of effective descriptions for the
perturbative level still requires further attention. The consistency of the description adopted in most
approaches requires the assumption of a test field approximation, which is limited to the cases in which the
backreaction of the particles gravitationally produced can be safely neglected. Within the framework of
LQC, some of the main approaches to quantize the linear perturbations are the dressed metric, the hybrid
approaches and the closed or deformed algebra approach. Here, we analyze the consistency of the test field
assumption in these frameworks by computing the energy density stored in the particles gravitationally
produced compared to the background energy density. This analysis ultimately provides us with a
consistency test of the effective descriptions of LQC.
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I. INTRODUCTION

In the early 1980s the inflationary scenario brought new
perspectives for connection between fundamental physics
with experiment. Inflation was the first paradigm to make
concrete predictions for the structure of the large-scale
Universe based on causal physics [1]. Many decades later,
with the improvement on experiments aiming to accurate
measure the cosmic radiation background (CMB), several
inflationary scenarios still show good agreement with data
[2,3]. However, as it is well known, many inflationary
scenarios require the fields to be very homogeneous
initially or start with fine-tuned initial conditions. This
leaves inflation at a crossroads, since general relativity
(GR) inevitably implies an initial singularity, where it is not
clear how one should impose the initial conditions.
Inflation is very sensitive to Planck-scale physics [4].
The assumption adopted in inflationary cosmology that
“the spacetime can be treated classically” is clearly ques-
tionable. The well-known successes of inflation motivate
the community to search for means to past complete this
cosmological scenario with a more fundamental and con-
sistent quantum gravity theory in the ultraviolet (UV) scale.

Cosmological spacetimes have the advantage of sim-
plicity for being highly symmetric, since homogeneity
reduces to a finite number, the infinite number of degrees
that one would have otherwise. This favors the develop-
ment of spacetime quantization schemes. In particular, it
worth mentioning the recent progresses on the quantization
of cosmological spacetimes using the approach of loop
quantum gravity (LQG), a nonperturbative quantum gravity
theory which has opened new avenues to explore Planck-
scale physics. The reduced version of LQG is loop quantum
cosmology (LQC) [5–15], an approach which uses the
symmetries considered in cosmology. Besides allowing
for the construction of nonsingular early Universe models,
the increasing progress on the analysis of cosmological
fluctuations in LQC has bridged quantum gravity with
cosmological observations [16].
In the framework of LQC, the background evolution can

be divided into two classes: the kinetic-dominated bounce
and the potential-dominated bounce. A bounce which is
dominated by potential energy would either fail in pro-
ducing sufficient slow-roll inflation or lead to a too large
amount of expansion [17]. In the latter case, all the new
physics is washed out, and no signal from the quantum
regime is present. In the case of kinetic energy initial
domination, the early evolution can always be divided into
three phases after the contraction: the bouncing phase (with
equation of state ω ¼ 1), the transition phase (−1 < ω < 1)
and inflation (ω ≃ −1). The presence of these three stages is
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universal in the kinetic-dominated case and does not
depend on the form of the inflaton potential.
Unlike the general evolution of the background (zero

modes), the linear perturbations depend on the methods
used to quantize them. Within the framework of LQC, there
are mainly four different approaches: the dressed metric
[18,19], the closed or deformed algebra [20,21], the hybrid
[22] and separated universe approach [23,24].
In the dressed metric approach, the perturbative degrees

of freedom are quantized using the Fock quantization
procedure while the background metric is quantized by
the loop method. The quantum dynamics of the perturba-
tions can be described by a quantum field evolving in a
dressed background in the cases in which the energy
density of the perturbations are small compared to the
Planck energy. In the dressed metric approach, and also in
the other approaches considered in this work, if a potential
is added to the dominant field, the dynamics becomes too
complicated and in this case an effective field theory needs
to be adopted.
In the hybrid quantization approach, the background and

the perturbed degrees of freedom are also treated differ-
ently, since a LQG-like quantization of the background is
performed along with a Fock-like quantization of the
perturbations [25–30]. As a result of the nonhomogeneous
degrees of freedom being not loop but Fock quantized, the
kinematic Hilbert space is a tensor product of the individual
Hilbert space for each sector, that is, Hkin ¼ Hgrav

kin ⊗
Hmatt

kin ⊗ F [31]. While the background geometry is loop
quantized, the zero mode of the scalar field is quantized in
the standard Schrödinger representation, and the nonho-
mogeneous perturbations are Fock quantized. Similar to the
dressed metric approach, for sharply peaked semiclassical
background states, there exists an effective description of
the quantum dynamics, which greatly simplifies the
dynamical equations.1 Despite the hybrid approach also
providing effective perturbative equations that are similar to
the dressed approach, sharing several similarities with the
latter, they incorporate differently quantum gravity correc-
tions. This leads to a few differences [33]. In Ref. [31] a
robust evidence was provided of differences in predictions
between dressed and hybrid approaches due to the respec-
tive underlying constructions in the context of the modified
LQC-I model (mLQC-I) [34,35]. Although it has been
shown that, in the effective description, these approaches
do not lead to significant differences in the observable parts
of the spectrum, the behavior of the nonobservable part of
the CMB spectrum deserves investigation. As shown in
Ref. [36], for the case of the dressed metric approach, the
behavior of the nonobservable range of mode frequencies
would imply, if it were not for invalidating the effective

description of the approach, in a preinflationary phase
dominated by radiation, which would delay and shorten the
inflationary phase.
Another important framework is the closed or deformed

algebra approach [37,38], which considers effective con-
straints coming from the quantum corrections. In this
approach the effective constraint algebra must be closed
after the quantum corrections are considered. In this
approach one encounters the problem that the signature
of spacetime effectively changes from Lorentzian to
Euclidean at high curvatures [38,39]. The transition point
between Lorentzian and Euclidean spacetime implies a
“state of silence,” characterized by a vanishing speed of
sound, which can be interpreted as due to a decoupling of
different space points [40]. This effect comes from the
necessity to have a closed or deformed algebra of quantum
corrected effective constraints when including holonomy
corrections from loop quantum gravity.
Finally, it is important to alsomention the separate universe

approach [23,24]. This approach considers a spacetime with
small perturbations discretized in a lattice. At each cell, which
is considered to be homogeneous and noninteracting, loop
quantization is applied. The dynamics of cosmological
perturbations can be approximated by effective equations
whenever we have a sharply peaked wave function in each
cell.We also do not consider this approach since its results are
only applicable to infrared modes.
An important open question in all of the above

approaches concerns the choice of initial conditions for
the evolution of the nonhomogeneities. Usually, in the
traditional scenario, the initial data are set at the beginning
of inflation or during the slow-roll phase. However, the
situation is very different in LQC, since it is not clear where
to set the initial conditions and whether a vacuum state can
be defined at those points. This is one of the most important
conceptual questions to be understood in such scenarios.
As shown in Refs. [38,41–48], in addition to the differences
at the perturbative level, different choices of initial con-
ditions can severely affect the duration of inflation in LQC.
While in the dressed metric and hybrid approaches the

initial conditions are set either in the contracting phase or in
the bounce, in the closed or deformed algebra approach the
initial conditions must be set at the silent point, soon after
the bounce. This state is the beginning of the Lorentzian
phase in this approach and, in some sense, the beginning of
time [40]. As discussed in Ref. [38], this is the only known
initial condition that can lead to a spectrum compatible with
the observations in this approach. On the other hand, in the
dressed metric and hybrid approaches, both the usual
Bunch-Davis vacuum and adiabaticlike initial conditions
for the perturbations at the bounce, or at the contracting
phase, have been considered.
As mentioned before, most of the approaches in LQC

rely on effective descriptions to provide more treatable
equations for the nonhomogeneous sector. For such an

1For a different treatment on the hybrid approach, which does
not consider effective background equations, see, for example,
Ref. [32].

VICENTE, RAMOS, and GRAEF PHYS. REV. D 106, 043518 (2022)

043518-2



effective description to be valid, the backreaction of the
modes gravitationally produced must be negligible.
However, according to the Parker gravitational particle
production (GPP) mechanism [49,50], a test scalar field χ,
evolving from a prebounce Minkowski vacuum state to a
postbounce different Minkowski vacuum state, will
develop a final state containing χ particles, similarly to
linear cosmological perturbations on the cosmological
background. This effect is usually negligible in inflationary
phases, but in a bounce phase the situation can be different
[51–58]. In the dressed metric approach, the gravitational
particle production was calculated in Ref. [36]. In that work
it was shown that the relativistic particles gravitationally
produced during the bounce would come to dominate the
energy density of the Universe before inflation, which
invalidates the test field approximation required in this
approach. Motivated by this result, we revisit the particle
production in the dressed metric approach and we also
investigate whether the test field approximation is valid in
the closed or deformed algebra and in the hybrid
approaches. We proceed by comparing the energy density
stored in particles gravitationally produced with the back-
ground energy density in each approach.
This paper is organized as follows. In Sec. II, we

describe the background dynamics of the LQC model with
a kinetic-dominated bounce. In Sec. III, we present the
dynamics of the perturbative modes in the dressed metric,
hybrid and deformed or closed algebra approaches and
introduce the GPP mechanism. In Sec. IV, we present the
results for the energy density of the particles produced in
each case. Finally, our concluding remarks are presented
in Sec. V.

II. BACKGROUND MODEL

We consider LQC as the quantum background scenario,
which provides GR in the classical regime and quantum
corrected GR equations in the Planck regime. The scale
factor a arises from the definition of a fiducial fixed cubic
cell, with a volume described by v ¼ V0a3m2

Pl=ð2πγÞ, V0

being the comoving volume of a cell in LQC and γ the
Barbero-Immirzi parameter whose value we are going to
consider to be γ ≃ 0.2375, according to black hole entropy
calculations [59]. Above G is the Newtonian constant of
gravitation and the Planck mass is mPl ≡ 1=

ffiffiffiffi
G

p ¼
1.22 × 1019 GeV. The variable b denotes the conjugate
momentum to v and it is given by b ¼ −4πγPðaÞ=
ð3a2V0m2

PlÞ, where PðaÞ is the momentum conjugate to
the scale factor.
The quantum Friedmann equation, obtained by solving

the effective LQC equations, reads [45]

1

9

�
_v
v

�
2 ≡H2 ¼ sin2ð2λbÞ

4γ2λ2
¼ 8π

3m2
Pl

ρ

�
1 −

ρ

ρc

�
; ð2:1Þ

where λ ¼ ð48π2γ2=m4
PlÞ1=4 and b lies in the interval

ð0; π=λÞ. Above, ρ accounts for the energy density, ρc ¼
3m2

Pl=ð8πγ2λ2Þ ≈ 0.41m4
Pl represents the critical density

and the dot represents derivative with respect to the
cosmological time. The energy density ρ is connected to
the variable b through the relation ρ ¼ 3m2

Pl sin
2ðλbÞ=

ð8πγ2λ2Þ. For an energy density much smaller than the
critical density we reobtain GR as expected in the classical
limit. Due to quantum effects, the singularity is not present
in this framework and a bounce phase is obtained when the
energy density has a value close to the critical density. After
the bounce, the Universe transits into a decelerated expan-
sion phase with a subsequent inflationary phase.
The inflaton field can be considered as behaving as a

fluid with equation of state p ¼ ωρ. The solution for the
scale factor in LQC for single fluid is given by (see, e.g.,
Ref. [60])

aðtÞ ¼ aB

�
1þ γBð1þ ωÞ2

4

�
t
tPl

�
2
� 1

3ð1þωÞ
; ð2:2Þ

where γB ≡ 24πρc=m4
Pl ≃ 30.9 while tPl ≡ 1=mPl is the

Planck time. The evolution until the end of inflation can
be divided mainly into a contracting phase, a bounce phase
and the classical slow-roll phase.
We consider a cosmological background dominated by

the inflaton field with equation of motion

ϕ̈þ 3H _ϕþ V;ϕ ¼ 0; ð2:3Þ

where VðϕÞ is the potential energy of the field. We consider
in this setup also an extra scalar field denoted by χ, that
couples to ϕ and couples gravitationally to the Standard
Model particles, which behaves as a spectator field
[15,18,61,62]. This field will be produced gravitationally
in the bounce phase and it is assumed to be dynamically
relevant only in the postbounce evolution, particularly in
the preinflationary dynamics, where it might behave as
radiation. If we consider that χ has a very small mass in
comparison with the postbounce H parameter, then χ
will behave as radiation in the preinflationary phase.
The analysis of the GPP of a spectator scalar field has
already been considered in the dressed metric approach
[15,18,61,62] and in the hybrid approach [63]. The
equation of motion for the scalar perturbations as well
as the scalar field equations have the same form as in GR.
Later we are going to further analyze the particle produc-
tion associated to the field χ. Here we will follow an
analysis similar to the one used in Ref. [36], which was
originally applied to the dressed metric approach.
Below we summarize the results of Ref. [64], where a

full computation of the background dynamics in each phase
can be found. As an example, we consider in the following
the chaotic model for the inflaton field. However, as we will
see, the results for particle production in the dressed and
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hybrid approaches do not depend on the choice of the
potential for the inflaton field, as the GPP happens mainly
during the kinetic energy-dominated bounce phase.
However, we will see that, to obtain results for the closed
algebra approach, they will explicitly involve the back-
ground dynamics after the bounce phase.
For later reference, let us briefly review below the

background dynamics in LQC. We consider the chaotic
quadratic inflaton potential VðϕÞ ¼ m2ϕ2=2 as an example,
although the overall description is not expected to change
significantly for other forms of potentials.

A. Contracting phase

The scale factor in the classical contracting phase,
written in terms of the conformal time η (dt ¼ adη),
follows the expression

aðηÞ ¼ λ0η
2; with λ0 ¼

ainH2
in

4
; ð2:4Þ

where ain and Hin are the initial values for the scale factor
and for the Hubble parameter, respectively.
There are two timescales in our original system of

equations. One is given by 1=m, associated with the
classical evolution of the inflaton field. The other one is
1=

ffiffiffiffiffiffiffiffi
Gρc

p
, which is associated with the quantum regime.

The ratio between these two timescales is defined by the
quantity Γ:

Γ ¼ mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24πGρc

p ; ð2:5Þ

where Γ ≪ 1. Here, we assumem ¼ 10−6mPl, as suggested
by the observations. Since ρc ¼ 0.41m4

Pl, this leads to
Γ ∼ 2 × 10−7. By also defining

xðtÞ≡ mϕffiffiffiffiffiffiffi
2ρc

p ; yðtÞ≡ _ϕffiffiffiffiffiffiffi
2ρc

p ; ð2:6Þ

in the classical contracting phase, x and y can be
expressed as

xðtÞ ¼
ffiffiffiffiffiffiffiffi
ρðtÞ
ρc

s
sinðmtþ θ0Þ; ð2:7Þ

yðtÞ ¼
ffiffiffiffiffiffiffiffi
ρðtÞ
ρc

s
cosðmtþ θ0Þ: ð2:8Þ

When H ≈ −m=3, the term proportional to H in Eq. (2.3)
becomes dominant. It can be considered as the end of
the prebounce contracting phase and the start of the
bouncing phase. We denote the density at the end of the
contracting phase by ρA, which is given by ρA ¼ Γ2ρc,

so that before the bounce phase starts, there are still no
significant quantum effects.

B. Bounce phase

We can define the starting of the bounce phase
when ρ ¼ ρA. At this time, the quantities x and y can be
written as

xA ¼ Γ sin θA; yA ¼ Γ cos θA: ð2:9Þ

The inflaton field kinetic energy dominates in the bounce
phase and this phase is then like stiff matter, i.e., like a fluid
with equation of state ω ≈ 1. From Eq. (2.9), one can see
that we must have cos θA ∼ 1 due to the kinetic energy
domination in this phase. In particular, with (ω ≈ 1) from
Eq. (2.2), the scale factor reads

aðtÞ ¼ aB

�
1þ γB

t2

t2Pl

�1
6

: ð2:10Þ

The evolution of the inflaton field in this phase is
described by

ϕðtÞ ¼ ϕB � mpl

2
ffiffiffiffiffiffi
3π

p arcsinh

� ffiffiffiffiffi
γB

p t
tpl

�
; ð2:11Þ

where the plus sign applies when _ϕ > 0 and the minus
sign for _ϕ < 0. The inflaton amplitude at the bounce, ϕB,
expressed in terms of the variable xB, can be written as

xB ¼ xA − ϵΓ ln

�
1

2
Γ cos θA

�
; ð2:12Þ

where ϵ≡ sgnðcos θAÞ.

C. Slow-roll phase

In the starting of the slow-roll phase, a time we denote
by tSR, the energy density is ρ ≪ ρc and the Universe is
already classical. The time of the beginning of this phase
can be determined by solving _ρðtSRÞ ¼ 0. Having this
condition we can obtain the relation tSR ¼ tB þ f=m, in
which f can be written in terms of W (the Lambert
function), which is the solution of the equation
z ¼ WðzÞeWðzÞ. The function f is given by

f ≡
ffiffiffiffiffiffiffiffiffiffiffi
2

WðzÞ

s
; with z ¼ 8

Γ2
exp

�
2jxBj
Γ

�
: ð2:13Þ

For cos θA ∼ 1 and Γ ¼ 2 × 10−7 as we are considering, we
have that f ∼ 0.18.
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At the time tSR we have that [64]

xSR ¼ xA − 2ϵΓ ln

 
1

2
Γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j cos θAj

f

s !
: ð2:14Þ

Shortly after tSR, one has that ySR ≡ −ϵΓ and a very
small slow-roll parameter is achieved, as expected, and it
is given by

ϵH ¼ 3

���� Γ
xSR

����2; ð2:15Þ

which for the values of Γ and cos θA that we are using
assumes the value ϵH ∼ 0.003.
The Hubble parameter in this phase is given by

HðtÞ ¼ HSR

����1 − ϵ
Γ
xSR

mðt − tSRÞ
����; ð2:16Þ

where HSR ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGρc=3

p jxSRj (and aSR ¼ aBΓ−1=3).

III. SOLVING FOR THE QUANTUM FIELD
MODES IN LQC

We are interested in how the particle production of the
spectator scalar field χ could change the LQC preinfla-
tionary phase. In this section we will describe the mecha-
nism of GPP for each approach within the framework
of LQC.
The quantum fields are described using the standard

procedure for classical spacetimes, but using techniques
from LQG to incorporate quantum gravity effects [62],
which are suitable to treat curvature and matter densities at
the Planck scale. We first introduce each approach of LQC
we are considering in this paper, highlighting the equations
of motion for the Fourier modes of the spectator fields.
In the sequence, we introduce the general details about the
Parker mechanism for these fields, which has irrelevant
interactions with the other components of the Universe,
except for gravity.
One very important aspect is that in order to have a

solvable model, the usual procedure is to assume effective
equations based on the supposition that quantum correc-
tions due to fluctuations are small enough so that they have
negligible influence on the evolution of expectation values.
Including a significant backreaction would result that the
evolution becomes more quantum, i.e., more dependent on
how the quantum variables behave. The states can then be
deformed from a Gaussian initial distribution. The back-
reaction results in a change on the quantum state shape, and
this then affects the motion of its expectation values. This
effect is important for the long-term evolution of cosmol-
ogy. Therefore, in order for the usual quantization scheme
to be valid and to obtain a consistent solution in the
effective description, we must assure that the energy

density of perturbations is negligible compared to the
background energy density [61] during the whole evolu-
tion. Either the backreaction is ignored in the effective
equations, or we need to consider a complete quantum
gravity theory (for a further discussion on this aspect, see
for example Ref. [65]).
Regarding the evolution of the spectator field, we work

directly in terms of its Fourier k modes χk. The Fourier
expansion of the field χ in terms of the k modes, in
conformal time, reads

χðx; ηÞ ¼
Z

d3k

ð2πÞ3=2 ½χkðηÞake
−ik:x þ χ�kðηÞa†keik:x�; ð3:1Þ

where ak and a†k are the annihilation and creation oper-
ators, respectively, that satisfy the canonical commutation
relation. In the following, we introduce the dynamics for
the Fourier modes of the spectator field χk in each LQC
approach that we will be considering in this paper. This will
later provide us with means to verify the test field
supposition ρpert=ρbg ≪ 1.

A. Dressed metric approach

The effective equation of motion for the spectator field k
modes in the dressed metric approach reads [66]

χ00kðηÞ þ
�
k2 −

a00ðηÞ
aðηÞ þUdðηÞ

�
χkðηÞ ¼ 0; ð3:2Þ

where a00=a is given by [67]

a00

a
¼ 4π

3m2
Pl

a2
�
ρ

�
1þ 2

ρ

ρc

�
− 3p

�
1 − 2

ρ

ρc

��
; ð3:3Þ

where p is the pressure density, prime here indicates
derivative with respect to conformal time and UdðηÞ in
Eq. (3.2) is given by UdðηÞ ¼ a2ðf2VðϕÞ þ 2fV;ϕðϕÞ þ
V;ϕϕðϕÞÞ is the effective potential, with f ≡ ffiffiffiffiffiffiffiffiffi

2πG
p ðϕ0=aÞ=ffiffiffi

ρ
p

. In this approach, UðηÞ, a and η refer to the background
state quantum expectation values, Ψ0ða;ϕÞ. In the case of
background states sharply peaked, as often considered, we
can approximate the dressed effective quantities by their
peaked values UdðηÞ, a and η.
The effective potential Ud can be shown [41] to be

negligible during the whole bounce and transition phases.
Therefore the equation of motion in these regimes can be
written as

χ00kðηÞ þ
�
k2 −

a00ðηÞ
aðηÞ

�
χkðηÞ ¼ 0; ð3:4Þ

where −a00ðηÞ=aðηÞ corresponds to an effective square
mass term for the modes.
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From the scale factor [Eq. (2.10)], we can define the
characteristic momentum scale at the bounce, kB ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a00ðtÞ=aðtÞp jt¼tB ¼ ffiffiffiffiffiffiffiffiffiffi

γB=3
p

aBmPl. The quantity kB plays
the role of the characteristic energy scale at the bounce in the
dressed approach. It is also important to define the quantity
λ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aðtÞ=a00ðtÞp
which is the characteristic scale that plays

a role similar to the comoving Hubble radius. As is well
known, the modes with k ≫ kB are oscillatory since they are
inside the effective radius. On the other hand, modes with
k ≈ kB are inside the effective radius during the contracting
phase and then exiting λ during the bounce phase. After that
they enter again the effective radius in the transition phase.

B. Hybrid approach

The effective equation of motion for the spectator field
modes in the hybrid approach is given by [22,67]

χ00kðηÞ þ
�
k2 −

4π

3m2
Pl

a2ðρ − 3pÞ þ UhðηÞ
�
χkðηÞ ¼ 0; ð3:5Þ

where the variables are the same ones described in the
dressed metric approach, but now UhðηÞ ¼ a2ðV;ϕϕþ
48πGV þ 6a0ϕ0V;ϕ=ða3ρÞ − 48πGV2=ρÞ. In the bounce
phase, where the gravitational particle production is more
relevant, and up to the transition phase, the kinetic energy
of the scalar field dominates the energy content of the
Universe. In these regimes, we can neglect the contribution
of UhðηÞ such that Eq. (3.5) becomes

χ00k þ
�
k2 −

4π

3m2
Pl

a2ðρ − 3pÞ
�
χk ¼ 0; ð3:6Þ

with −4πa2ðρ − 3pÞ=ð3m2
PlÞ corresponding to the effective

square mass term for the modes in the hybrid case. Also,
in the transition phase, the energy density drops down
to about 10−12ρc [68], a00=a in Eq. (3.3) reduces to
4πa2ðρ − 3pÞ=ð3m2

PlÞ and we recover the standard expres-
sion of the Fourier modes, with the effective mass term as
in Eq. (3.6).
Analogously to the dressed metric approach, we can

also define a characteristic momentum scale in the hybrid
approach, which reads kH ¼ kB=

ffiffiffi
3

p
. The modes behave

similarly to the dressed metric approach, but now with
respect to the characteristic momentum kH, which is subtly
different from kB.
We can now draw a parallel between the hybrid and the

dressed metric approaches regarding the impact of its
quantization strategies in the evolution equations for the
modes [67]. The are two main differences in the evolution
equations. Firstly, the effective potentialUðηÞ is different in
each approach. However, since in the scenarios considered
here these potentials can always be neglected in the relevant
moments for GPP, it does not affect our results. Secondly,

and most important, the effective mass term is different
throughout the evolution in each approach.
These differences are due to the proper treatment of

the phase space of the perturbed Friedmann-Lemaître-
Robertson-Walker cosmologies in each formalism. In the
hybrid approach the standard procedure is to treat the whole
phase space as a symplectic manifold. The effective mass
term is thus expressed in terms of canonical variables, and
the expectation value of the operator which represents such a
canonical expression is then evaluated by using the effective
dynamics in LQC. On the other hand, in the dressed metric
case, there is no such global canonical symplectic structure
on the truncated phase space and therefore the effective mass
is afterward evaluated on the LQC effective solutions. In
Ref. [67], for example, the difference between the dressed
metric and hybrid approaches is explained in detail.
Despite the differences between the two approaches, the

procedure for obtaining the Bogoliubov coefficients in both
approaches, which is relevant for the GPP, is basically the
same. In both approaches one can realize that the equation
of motion for χk is analogous to a Schrödinger-type
equation having an effective mass term in Eq. (3.4) and
in Eq. (3.6) which acts as a potential, behaving effectively
as a barrier during the phase of the bounce. This potential,
VðηÞ≡ −m2

effðηÞ in each case, can be, during the bounce
phase, approximated by a Pöschl-Teller potential,

VPTðηÞ ¼ V0cosh−2½αðη − ηBÞ�; ð3:7Þ
for which we know the analytical solution. In the latter
equation, V0 is the effective potential’s height while
−2V0α

2 is the curvature of the potential at the maximum
point. In the dressed metric approach, the height V0 can be
obtained from the expression of a00=a, being equal to
V0 ¼ kB ¼ α2=6, while for the hybrid, the scale kB is
replaced by kH. Hereafter, we use the notation kB=H when
we want to refer to the characteristic scale at the bounce in
the dressed (kB) and hybrid approaches (kH), respectively.
The solution for χk, in the dressed and hybrid

approaches, can be written in the form of the standard
hypergeometric equation’s solution, given by [41]

χkðηÞ ¼ akxik=2αð1 − xÞ−ik=2α
× 2F1ða1 − a3 þ 1; a2 − a3 þ 1; 2 − a3; xÞ
þ bk½xð1 − xÞ�−ik=2α2 F1ða1; a2; a3; xÞ; ð3:8Þ

where x≡ xðηÞ ¼ f1þ exp½−2αðη − ηBÞ�g−1,

a1 ≡ 1

2

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 32πρc

3α2

r !
−
ik
α
; ð3:9Þ

a2 ≡ 1

2

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 32πρc

3α2

r !
−
ik
α
; ð3:10Þ
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a3 ≡ 1 −
ik
α
; ð3:11Þ

and ak and bk are integration constants to be determined by
the initial conditions.

C. Closed or deformed algebra approach

Within the framework of the closed or deformed algebra
approach, the effective equation of motion for the modes in
Fourier space is given by [20,21,69]

χ00kðηÞ þW2
k;effðηÞχkðηÞ ¼ 0; ð3:12Þ

where

W2
k;effðηÞ ¼ ΩðηÞk2 − z00ðηÞ

zðηÞ ; ð3:13Þ

Ω≡ 1 −
2ρ

ρc
: ð3:14Þ

WhenW2
k;eff < 0, the modes are outside the Hubble horizon

and are decaying or growing modes, whereas forW2
k;eff > 0

the modes are inside the Hubble horizon and are oscillatory.
In this approach, there is no effective potential UðηÞ like

in the dressed metric and hybrid ones. However, we need
to be careful with the factor Ω, which change signs at
ρ ¼ ρc=2. The instant t ¼ tS when ρ ¼ ρc=2, i.e., Ω ¼ 0, is
the so-called silent point. At tS all the space points are
uncorrelated [40]. Depending on the signature of Ω, there
can be two different regions: the Euclidean region
(ρc=2 < ρ < ρc) and the Lorentzian region (ρ < ρc=2).
In order to avoid difficulties in the calculations in the
Euclidean regime [70], it is usual to consider the modes
only in the Lorentzian region, which means that t ≥ tS.

D. Gravitational particle production

Let us now consider the evolution of the Fourier modes
χk of the (here assumed) massless spectator scalar field χ,
whose equation of motion represent a set of uncoupled
oscillators with a frequency which varies in time. Due to the
time variable frequency, we can define a different vacuum
for each instant η. The effect of GPP was introduced by
Parker [49,50], who developed an understanding about the
conditions for the definition of a particle number nðηÞ
which is time dependent, which are (i) its vacuum expect-
ation value varies sufficiently slowly with time as the
Universe expansion rate is enough slow and (ii) the period
of expansion must occur between the limit of two
(“Minkowskian”) vacuum states. In the following we
summarized the mathematical treatment of GPP.
The Hamiltonian for χkðηÞ can be written as follows:

HðηÞ ¼
Z

d3kð2Ekâ
†
k⃗
âk⃗ þ Fk⃗âk⃗â−k⃗ þ F�

k⃗
â†
k⃗
â†
−k⃗
Þ; ð3:15Þ

where

FkðηÞ ¼
1

2
ðχ0kðηÞÞ2 þ

ω2
k

2
ðχkðηÞÞ2; ð3:16Þ

EkðηÞ ¼
1

2
jχ0kðηÞj2 þ

ω2
k

2
jχkðηÞj2; ð3:17Þ

and ωkðηÞ is the frequency in the approximation of a
massless χ field. The diagonalized Hamiltonian is obtained
by performing the Bogoliubov transformation shown in the
following equation:

b̂k⃗ ¼ αkðηÞâk⃗ þ β�kðηÞâ†−k⃗; ð3:18Þ

where βkðηÞ and αkðηÞ satisfy the normalization constraint
given by jαkðηÞj2 − jβkðηÞj2 ¼ 1. The diagonalized
Hamiltonian can be written as

HðηÞ ¼
Z

d3kωkb
†
k⃗
bk⃗: ð3:19Þ

Equation (3.17) can then be written as follows:

EkðηÞ ¼ ωk

�
1

2
þ jβkðηÞj2

�
: ð3:20Þ

We can define the vacuum states j0ðaÞi and j0ðbÞi in a way
that ak⃗j0ðaÞi ¼ bk⃗j0ðbÞi ¼ 0. One can compute the number

operator N̂ðbÞ
k⃗

¼ b†
k⃗
bk⃗ expectation value in the vacuum

j0ðaÞi, as given by

nkðηÞ ¼ hðaÞ0jN̂ðbÞ
k⃗
j0ðaÞi ¼ jβkðηÞj2: ð3:21Þ

The quantity jβkðηÞj2 is interpreted as the particle number

per mode. The initial Minkowski vacuum states χðiÞk can

be related to the ones at a later time χðfÞk through the
Bogoliubov coefficients:

χðfÞk ðηÞ ¼ αkχ
ðiÞ
k ðηÞ þ βkχ

ðiÞ�
k ðηÞ: ð3:22Þ

When there are zero produced particles, βk ¼ 0 and the

normalization constraint implies αk ¼ 1 and χðiÞk ¼ χðfÞk .
With the above expressions we can compute npðηÞ, the

total particle number density, and ρpðηÞ, the energy density
gravitationally produced. The particle number density,
which is integrated over all modes, is given by

npðηÞ ¼
1

a3ðηÞL3

�
L
2π

�
3
Z

∞

0

d3knkðηÞ

¼ 1

2π2a3ðηÞ
Z

∞

0

dkk2jβkðηÞj2; ð3:23Þ
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whereas ρpðηÞ, the energy density associated to the
produced particles, is given by

ρpðηÞ ¼
1

2π2a4ðηÞ
Z

∞

0

dkk2ωkjβkðηÞj2: ð3:24Þ

Equations (3.23) and (3.24) give us the particle number
density and the energy density of the produced particles,
respectively.
It is important to mention that Eq. (3.24) gives the net

energy density produced between two Minkowskian vac-
uum states. On the other hand, we can also obtain the
energy density of produced particles due to the GPP effect
from the expectation value of the test field’s energy-
momentum tensor at a time η, that corresponds to [71]

ρEMp ðηÞ ¼ 1

4π2a4ðηÞ
Z

∞

0

dkk2½jχ0kðηÞj2 þ ω2
kjχkðηÞj2�:

ð3:25Þ

The Minkowskian initial condition set at the contracting
phase is called the Bunch-Davies (BD) vacuum [72].
Alternatively, it is also possible to impose an initial
condition at the bounce, which is the fourth-order adiabatic
vacuum state [73]. However, it is important to note that the
quantum contributions computed with a Bunch-Davies
vacuum initial condition and also with fourth-order adia-
batic vacuum are the same just in the case of modes with
k ≥ kB (k ≥ kH) in the dressed metric (hybrid approach).
For any other modes, the fourth-order adiabatic vacuum
state at the bounce may not be applicable [41], while the
Bunch-Davies vacuum can still be considered in the
contracting phase.
We can also mention other two types of initial con-

ditions, which are the nonoscillating vacuum [33,74,75]
and the silent point vacuum [40]. The former relates to a
method for minimizing the oscillations in the resulting
power spectrum of perturbations, which can be considered
in dressed and hybrid approaches, whereas the latter is
particular to the closed or deformed algebra approach and it
is necessary for its consistency.
Explicitly numerically solving for the mode equations

given above is computationally intensive. This is particu-
larly true in the regimes with rapidly oscillating high-
momentum modes. We need to also handle the UV
divergences that appear and then the particle production
energy density needs to be renormalized appropriately. A
typical approach is to use a Wentzel-Kramers-Brillouin
(WKB) approximation for the modes to tackle these
problems [76]. But even so, there are issues with both
how to fix the upper limit for the momentum integrals and
further issues in the infrared, which also demands to
consider a lower limit for the momentum integrals when
computing the total energy density due to GPP. This is also
not free from ambiguities. It is important, thus, to have a

computation as analytical as possible and in such ways one
can overcome the above mentioned issues but still having a
reliable computation for the GPP. In the following section,
we give approximate analytical solutions for the equations
of motion for the scalar modes in each approach and from
which we can estimate the GPP in appropriate ways.

IV. RESULTS

We present approximated analytical results for GPP in
the dressed metric, hybrid and closed or deformed algebra
approaches of LQC. To obtain these results, instead of fully
computing the real-time backreaction of the produced
particles in the background, we estimate the energy density
associated to those after the bounce and then compare the
result with the background energy density. As we are going
to see, these estimates are already sufficient for a qualitative
analysis. Later, we compare how the energy density of the
produced particles redshifts with the scale factor in com-
parison with the behavior of the dominant background
energy content. These results will help to gauge the validity
of each of those approaches in LQC. We compute the
energy density of gravitationally produced particles in each
approach, which consists in computing the corresponding
analytical expression for βk.

A. Dressed metric approach

From the results of Ref. [41], by matching the analytical
solutions for the bounce phase within the Pöschl-Teller
potential approximation, the transition and slow-roll phase,
the Bogoliubov coefficients can be obtained and they are
given by

αk ¼
ffiffiffiffiffi
2k

p �
ak

Γð2 − a3ÞΓða1 þ a2 − a3Þ
Γða1 − a3 þ 1ÞΓða2 − a3 þ 1Þ

þ bk
Γða3ÞΓða1 þ a2 − a3Þ

Γða1ÞΓða2Þ
�
eikηB ; ð4:1Þ

βk ¼
ffiffiffiffiffi
2k

p �
ak

Γð2 − a3ÞΓða3 − a1 − a2Þ
Γð1 − a1ÞΓð1 − a2Þ

þ bk
Γða3ÞΓða3 − a1 − a2Þ
Γða3 − a1ÞΓða3 − a2Þ

�
e−ikηB ; ð4:2Þ

where the pairs (αk, βk) and (ak, bk) are arbitrary constants
at the bounce phase and slow-roll inflation solution for the
k modes, respectively, and ηB is the conformal time at the
bounce. The Bogoliubov coefficients are determined when
we impose initial conditions, i.e., choose ak and bk.
Assuming the absence of particles at the onset of

inflation, one would impose that αk ¼ 1 and βk ¼ 0.
However the value of αk and βk must be obtained starting
from vacuum initial conditions in the previous phases. Two
different types of initial conditions were already considered
in the literature [41], which are the aforementioned BD
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vacuum in the contracting phase [77] and the fourth-order
adiabatic vacuum at the bounce [62], which are, respec-
tively, given by

χðBDÞk ðηÞ ¼ 1

2k
e−ikη; ð4:3Þ

χðWKBÞ
k ðηÞ ¼ 1

2k

�
1 −

1

4

k2B
k2

−
29

32

k4B
k4

þO
�
kB
k

�
6
�
; ð4:4Þ

where kB ¼ ffiffiffiffiffiffiffiffiffiffi
γB=3

p
aBmPl is the energy scale in the bounce

in the dressed approach. The “WKB” in Eq. (4.4) refers to
the WKB approximation, used to obtain this result. These
initial conditions lead to the same results for GPP in the
case considered here and as computed explicitly in
Ref. [36]. Setting the previous initial conditions, it then
follows from Eq. (4.2) that

jβkj2 ¼
1

2

�
1þ cos

�
πffiffiffi
3

p
��

csch2
�

πkffiffiffi
6

p
kB

�
: ð4:5Þ

Above jβkj2 corresponds to the number of particles per
mode k that were produced, namely nk. Using this quantity,
in Ref. [36] the energy density of particles produced with
and without backreaction was obtained. However, unlike
the procedure used in that reference, here we are going to
consider the contribution from all the modes for the density
of produced particles, not only the modes that in the
preinflationary phase exit and then reenter the effective
horizon. Note also that using all the modes is typically the
procedure adopted in studies of GPP in general [76]. The
produced modes are effectively considered as particles after
they reenter the horizon. Therefore, the energy density
stored in the produced particles is then given by

ρpðηÞ ¼
1

2π2a4ðηÞ
Z

∞

0

dkk2nkðηÞωk: ð4:6Þ

We then obtain that

ρpðηÞ ¼
1þ cosð πffiffi

3
p Þ

4π2a4ðηÞ
Z

∞

0

dkk3csch2
�

πkffiffiffi
6

p
kB

�
; ð4:7Þ

where we used nk ≡ jβkj2, where jβkj2 is given by Eq. (4.5)
and ωk ∼ k in the case of relativistic particles. By perform-
ing the integration, Eq. (4.7) gives

ρpðηÞ ≃ 12.5 × 10−3
k4B

a4ðηÞ ≃ 1.3
m4

Pl

a4ðηÞ : ð4:8Þ

We must remember that the background energy evolves
dynamically as stiff matter (since the kinetic energy of
the inflaton dominates in the bounce), with ρbg ¼ ρca−6.
However the gravitationally produced particles evolve like
relativistic matter, with ρp ∝ a−4. In a previous work [36],

it was estimated that, in order to remain subdominant
before and at the beginning of inflation, the energy density
on the produced particles must satisfy the condition
ρðtsÞ < 2 × 10−5m4

Pl. The time ts, when a00=a ¼ 0, is when
the maximum of GPP happens. This value was estimated by
considering an equal amount of energy density in radiation
and in the inflaton potential energy at the beginning of
inflation and then receding this radiation density backward
in time by multiplying it to a4 until the time t ¼ ts. By
assuming aB ¼ 1, at the time ts ¼ 0.3tPl, the scale factor is
found to be aðtsÞ ≈ 1.248. Thus, from Eq. (4.8) we can
estimate that ρpðtsÞ ≈ 0.54m4

Pl. Therefore, we confirm that,
in the context of the dressed metric approach, the GPP
density for relativistic χ particles will eventually dominate
the dynamics, which is inconsistent with the premise that
backreaction must be small for the dressed metric approach
to be valid and as far as the production of massless spectator
scalar particles are concerned.

B. Hybrid approach

The analytic form of the solutions and the matching
conditions in the hybrid approach are analogous to the
previous case (see Ref. [68] for more details). It is straight-
forward to obtain the Bogoliubov coefficients αk and βk by
matching the solutions in the bounce phase, transition phase
and slow-roll phase, whose procedure follows similarly to
that done for the dressed metric approach.
Considering the BD vacuum as the initial condition [43]

the Bogoliubov coefficients then reads now

jβkj2 ¼
1

2

�
1þ cos

� ffiffiffi
5

p
πffiffiffi
3

p
��

csch2
�

πkffiffiffi
6

p
kH

�
; ð4:9Þ

where, as already defined earlier, kH ¼ kB=
ffiffiffi
3

p
is the energy

scale at the bounce in the hybrid approach. The quantum
effects in both dressedmetric and hybrid approaches effective
equations are qualitatively the same [68] but exhibit two
quantitative differences. These differences are the character-
istic energy scales kB and kH and the numerical factor before
the hyperbolic function in Eqs. (4.5) and (4.9). In addition, in
the hybrid case we have a positive time-dependent effective
mass as one approaches the bounce, while in the dressed
metric case the time-dependent effective mass is negative
when approaching the bounce and around it [67].
Quantitatively, by comparing Eq. (4.5) with Eq. (4.9),

we notice that the only differences will be a factor of 1=
ffiffiffi
3

p
from the characteristic scale kH as compared to kB, in
addition to the factor of

ffiffiffi
5

p
in the cosine argument. Then,

the corresponding expression to Eq. (4.7) in the hybrid
approach is simply

ρpðηÞ ¼
1þ cos

� ffiffi
5

p
πffiffi
3

p
	

4π2a4ðηÞ
Z

∞

0

dkk3csch2
�

πkffiffiffi
6

p
kH

�
: ð4:10Þ
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Again, the integral is ultraviolet dominated and Eq. (4.10)
gives

ρpðηÞ ≃ 6.5 × 10−3
k4H

a4ðηÞ ≃ 7.5 × 10−2
m4

Pl

a4ðηÞ : ð4:11Þ

If we estimate the energy density stored in the particles
produced only for the modes that exit and reenter the
effective horizon λ during the preinflationary phase, we
obtain the value ρpðηÞ ¼ 10−3m4

Pl=a
4ðηÞ. Equation (4.11) is

only defined for t≳ ts, when the modes are well inside the
horizon to be considered as particles and which is the
moment when ρp assumes its highest value. From
Eq. (4.11), we obtain that ρðtsÞ ≈ 3.1 × 10−2m4

Pl for the
density of particles produced at t ¼ ts, which is approx-
imately the instant that GPP ceases. As discussed previ-
ously, in order to remain subdominant until the start of
inflation, the density in the produced particles must satisfy
the condition ρs < 2 × 10−5m4

Pl. Despite having shown
through Eq. (4.11) that ρs is smaller than the corresponding
quantity in the dressed metric approach, we can see that the
condition required for the produced particles not to domi-
nate the background energy density is still not satisfied in
the hybrid approach as well. Analogously to what happens
in the dressed approach, this invalidates the effective
description usually considered in these approaches as far
as the production of massless spectator scalar particles are
again involved.
Therefore, despite the difference in the maximum density

of produced particles, the conclusions for the dressed and
hybrid approaches will be basically the same. In Ref. [74]
(and more recently in Ref. [75]), another proposal was
suggested to select the initial vacuum state. It suggests to
select the initial conditions for each mode in order to
minimize the time variation of the spectator field amplitude
since the bounce until the starting of the inflationary phase.
As shown in Ref. [33], such “nonoscillating” initial con-
ditions lead to a primordial power spectrum without the large
oscillations. However, one can check that the number density
of particles produced in this case, given by the quantity jβkj2,
will not change considerably in our framework, since they
get rid of the oscillations by avoiding the fast oscillating term
which we have already averaged out in our analysis above.
Therefore, one should not expect that this method would
prevent excessive particle production. This motivates us to
move further to the investigation of the particle production
in another framework. In the next section we are going to
consider the closed or deformed algebra approach, which
consists in another way of treating the perturbations,
possibly leading to different results.

C. Closed or deformed algebra approach

Here we follow the same approach considered in the
previous cases to obtain the parameter βk in the closed

algebra approach. However, this case is rather more
involved than the previous ones. This is due to the fact
that the description of the propagation of the modes in the
transition from the Lorentzian to the Euclidean phase is not
so rigorous [40] due to the presence of the silent point. This
is called the signature change problem [64,70,78,79]. The
solution to this problem can be imposing initial conditions
for the modes at the silent point (t ¼ ts) in the Lorentzian
phase after the bounce, where the signature changes from
Euclidean to Lorentzian. In the silent point all points
become uncorrelated, since the space-dependent term in
the equation of motion for the modes drops out and the two-
point function in this surface becomes zero. Therefore, after
the silent point, in this approach, the modes χkðηÞ obey
Eq. (3.12). In particular, in the bounce and transition
phases, using the analytical approximations given by
Eqs. (2.10) and (2.11), from Eq. (3.14) we obtain that

ΩðηÞ ¼ τ2 − 1

τ2 þ 1
; ð4:12Þ

where τ ¼ t=τB [38].
We can obtain leading-order approximate solutions

for the mode functions of Eq. (3.12) using the uniform
asymptotic approximation) method [80,81]. The complete
evaluation of the solutions was presented in Ref. [38]. Here,
we summarize the main steps for completeness. First, by
appropriately changing variables, the mode equation can be
expressed in the form

d2χkðyÞ
dy2

¼ ½gðyÞ þ qðyÞ�χkðyÞ; ð4:13Þ

where y ¼ −kη and the functions g and q are defined as

gðyÞ ¼ 1 − τ2

1þ τ2
þ γB
4k2τ2

þ γBð18þ 21τ2 − τ4Þ
9k2τ2ðτ2 þ 1Þ5=3 ; ð4:14Þ

qðyÞ ¼ −
γB

4k2τ2
: ð4:15Þ

The analytical solution of Eq. (4.13) is found to be given
by [38]

χkðtÞ ¼
�
ξ

g

�
1=4

½akAiðξÞ þ bkBiðξÞ�; ð4:16Þ

where AiðξÞ and BiðξÞ are the Airy functions of the first and
second kind, respectively, and the parameter ξ is related to
the function g through

ξ ¼
8<
:
�
− 3k

2

R
t
tþ

ffiffi
g

p
a dt

	
2=3

; t < tþ;

−
�
3k
2

R
t
tþ

ffiffiffiffi−gp
a dt

	
2=3

; t > tþ;
ð4:17Þ

VICENTE, RAMOS, and GRAEF PHYS. REV. D 106, 043518 (2022)

043518-10



tþ being the turning point [where gðyÞ ¼ 0]. Also, the
Wronskian condition implies that

χk _χ
�
k − χ�k _χk ¼ i=a; ð4:18Þ

akb�k − a�kbk ¼ iπ=k: ð4:19Þ

The qualitative general behavior of the function gðyÞ
keeps the same for all modes, having only one turning point
for any k in the bouncing and transition phases. However,
the precise location of the turning point tþ depends on the
comoving wave number k.
Even though we cannot explicitly obtain the GPP in

general from the above equations, we can still get a clear
picture of GPP in the small- and long-wavelength
approximations.

1. The small-wavelength regime

In the transition phase, ξðtÞ approaches to asymptotic
negative infinity. In this region, the Airy functions assume
their asymptotic form. Considering the previous definitions
given above and together with the equation for the modes
given by Eq. (4.16), we can then write the solution for the
modes as

χkðtÞ ¼
1ffiffiffi

π
p ð−gÞ1=4



ak cos

�
2

3
ð−ξÞ3=2 − π

4

�

þ bk sin

�
2

3
ð−ξÞ3=2 − π

4

��
: ð4:20Þ

After some algebra, it is possible to show that Eq. (4.20)
can be put in the form

χk ¼
e−iπ=4

2
ffiffiffi
π

p ðak − ibkÞeikðη−ηfBÞ þ ðiak − bkÞe−ikðη−ηfBÞ:

ð4:21Þ

On the other hand, when the horizon goes to negative
infinity in the transition phase, the equation of motion for
the modes becomes

χ00k þ k2χk ¼ 0; ð4:22Þ

whose solution is

χk ¼
1ffiffiffiffiffi
2k

p ðα̃ke−ikη þ β̃keikηÞ: ð4:23Þ

By comparing Eqs. (4.21) and (4.23), we can match the
two sets of integration constants, which allows us to obtain
the coefficients in the UV limit:

αk ¼
ffiffiffiffiffiffi
k
2π

r
ðiak − bkÞeikηfB−iπ=4; ð4:24Þ

βk ¼
ffiffiffiffiffiffi
k
2π

r
ðak − ibkÞe−ikηfB−iπ=4; ð4:25Þ

where

ηfB ¼ ηf −
Z

ηf

ηþ

ffiffiffiffiffiffiffiffiffiffiffiffi
−gðηÞ

p
dη: ð4:26Þ

The coefficients ak and bk are obtained by matching the
power spectrum to the one given by GR. This is possible
because, in the regime that we are interested, the equation
of motion for the spectator field modes χk has the same
behavior as the equation of motion of the inflaton field and
of the curvature perturbations, which are basically due to
the inflaton fluctuations. Therefore, the dynamics of the
modes we are computing here must not present divergen-
ces, since those would be translated to divergences in the
power spectrum. In order to define a behavior for the scalar
modes that can be consistent with the observations in the
closed algebra approach, we will interpret such modes
analogously to the ones which will enter in the expression
for the power spectrum of the model. Its possible to show
that the only possible initial condition that allows compat-
ibility of the power spectrum with the current CMB data is
given by (for details, see, e.g., Ref. [38])

ak ¼
ffiffiffiffiffi
π

2k

r
; bk ¼ −i

ffiffiffiffiffi
π

2k

r
: ð4:27Þ

These coefficients lead to a spectrum equal to the classical
GR result in the observational window (the observed modes
in CMB correspond to the UV limit). By inserting these
coefficients in Eq. (4.25), we obtain that

αk ¼ ieiðkηfB−π=4Þ; βk ¼ 0: ð4:28Þ

Any other initial condition implies a correction term (with
respect to GR spectrum) proportional to the wave number,
which leads to a divergent spectrum in the UV. We can see
from the above expressions that jαkj2 ¼ 1, which is con-
sistent with the condition jαkj2 − jβkj2 ¼ 1. This corre-
sponds exactly to the classical case in GR. As the parameter
jβkj2 ¼ 0, this implies no gravitational particle production
in the UV limit of this model. Therefore, in this framework,
from the UV modes with such initial conditions (the only
ones that do not produce divergences), we see no particle
production in any scenario that provides a power spectrum
consistent with the data. However, as discussed in
Ref. [38], in the Planckian UV regime, new ingredients
are expected to take place, as modified dispersion relations,
for example, which could avoid possible divergences or
even change the behavior of the modes. In the absence
of a definite model for this regime, we are instead going to
focus on the case of IR modes in order to check whether
some considerably energy density can be gravitationally
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produced in this regime. Since in the UV regime either we
have no particle production or otherwise a new physics
would be coming into play, the lack of information required
to obtain definite results from the UV regime motivates us
to rediscuss the possible initial conditions in the context of
the IR modes. In the following we discuss the behavior of
such modes.

2. Long-wavelength regime

In the IR regime, k < mPl, through the bounce and
transition phases the equation for the modes is found to
have the solution

χkðηÞ ¼ akzðηÞ þ bkzðηÞ
Z

ηend

η�

dη0

z2ðηÞ þOðk2Þ; ð4:29Þ

where η� denotes some particular reference time. It can be
shown that this result leads to the following IR limit of the
power spectrum [64]:

PIR ≈
k3

2π2

����bk
Z

ηend

η�

dη0

z2ðηÞ
����2: ð4:30Þ

Here, we are going to consider initial conditions (i.e., the
expressions for ak and bk) that lead to a spectrum in
agreement with what we observe. Starting from Eq. (4.30),
we can consider different approaches that set the initial
conditions at the vicinity of the silent point. The choice of
the vicinity of the silent point to set the initial conditions is
justified in order to avoid the problems that can happen
due to the change of signature close to the bounce. The
calculations in the infrared regards the fact that, when the
term k2 is neglected, there can be analytical solutions of
the mode function equations. Let us first write a more
general parametrization to the coefficients:

ak ≡ a0kn; bk ≡ b0e−iθkl; ð4:31Þ

where θ is the relative phase between ak and bk. Besides, a0
and b0 are both positive and independent of k and have
dimensions of m−2n

Pl and m−2l
Pl , respectively. The quantities

ak and bk satisfy the Wronskian condition

akb�k − a�kbk ¼ i: ð4:32Þ

Considering the parametrization given by Eq. (4.31), the
above condition implies

2a0b0 sinðθÞ ¼ 1; nþ l ¼ 0: ð4:33Þ

Therefore, we can see that the only initial condition that can
imply a scale-invariant spectrum is

ak ∝ k3=2; bk ∝ k−3=2; ð4:34Þ

and it implies scale invariance at any time until the end of
inflation, since in the IR regime the term proportional to bk
in Eq. (4.29) will be dominant. The term bk can be obtained
by matching the solution for the modes in the contracting
and the bounce phase. It is straightforward to show that bk ¼
ð3i= ffiffiffi

2
p Þλ0k−3=2 (see, e.g., Ref. [64] for further details).

By comparing the expression given by Eq. (4.30) with
the GR spectrum we can identify that

PIR ≈
k3

2π2
jbkj2

�Z
ηend

η�

dη0

z2ðηÞ
�

2

¼ PGRjαk þ βkj2

≈ 2.2 × 10−9jαk þ βkj2: ð4:35Þ

Despite the initial conditions being related to the
Bogoliubov coefficients through Eq. (4.35), it is not
possible to identify which contribution corresponds spe-
cifically to βk, which enters in the expression of the particle
production. However, the above equation allows us to
establish an upper limit in βk. Taking into account the well-
known property jαk þ βkj ≲ jαkj þ jβkj and remembering
the normalization condition jαkj2 − jβkj2 ¼ 1, we can
show that

jαk þ βkj ≲ jαkj þ jβkj≲ 1þ 2jβkj: ð4:36Þ

Therefore, from Eq. (4.35) we obtain the limit

jβkj2 ≲ λ20 × 109

π2

����
Z

ηend

η�

dη0

z2ðηÞ
����2; ð4:37Þ

where ηend is the value of η at the end of inflation and
zðηÞ ¼ a _ϕ=H. In the above equation, we made use of
Eq. (4.35) and that bk ¼ ð3i= ffiffiffi

2
p Þλ0k−3=2. The integral in

Eq. (4.37) depends only on the background, being indepen-
dent of k. At this point it is important to stress that, while we
have argued that it can be meaningless to define two-point
correlation functions before the silent point, concerning the
background there is in fact no problem in starting the initial
conditions in the contracting phase. This was done in
Ref. [38] and we will consider the same here. In this case,
for the background dynamics we can consider the evolution
presented in Sec. II. During slow-roll inflation, when the
spectrum is computed, we have that zðηÞ2 ¼ 2a2ϵ, ϵ being
the slow-roll parameter given by ϵ ≃ _ϕ2=ð2H2Þ during
inflation. Therefore, from now on we can consider the
approximation zðηÞ ≈ aðηÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π=ð3m2

PlÞ
p

. Therefore, the
integration in Eq. (4.37) can be computed using
Eq. (2.16). This procedure leads in particular to the result

IðηeÞ≡
Z

ηend

η�

dη0

a2ðηÞ ¼
−m
18λ0

1

j cos θAj
ln

 
1

2
Γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j cos θAj

f

s !
:

ð4:38Þ
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In the above expression we can use the valuesm ¼ 10−6mPl,
Γ ¼ 2 × 10−7, f ≈ 0.18, λ0 ¼ ainH2

in=4 and cos θA ≈ 1,
as obtained and discussed in Sec. II. One must remember
that Γ is the ratio between timescales as defined in Eq. (2.5),
while the quantity Γ cos θA corresponds to the value of y at
the onset of the bounce phase. The quantity f is associated
with the time of the beginning of the slow-roll phase, since
tSR ¼ tB þ f=m with f defined in Eq. (2.13). With such
values, we obtain that Eq. (4.38) is estimated to be
IðηeÞ ∼ 10−6=λ0. Therefore, using the expression for bk,
Eq. (4.37) becomes

jβkj2 ≲ λ20 × 109

π2
IðηeÞ2
16

≈ 10−5: ð4:39Þ

By substituting jβkj2 from the equation above in Eq. (4.6),
we obtain the following expression for the estimated upper
limit on the density of particles gravitationally produced:

ρp ≲ 10−5

2π2a4

Z
mPl

0

dkk3 ≈
10−6

a4
m4

Pl; ð4:40Þ

where we only have integrated modes with k≲mPl since we
are restricted to the IR limit. In the latter equation, we have
considered ωkðηÞ ≈

ffiffiffiffiffiffiffiffiffiffi
ΩðηÞp

k, since the modes only contrib-
ute to the density of particles after they are well inside
the effective horizon. Also, we see that the expression of ωk
has a correction factor in the closed algebra approach [see
Eqs. (3.13) and (3.14)], which is given by ΩðηÞ ¼ 1–2ρ=ρc.
In the silent point we have Ω ¼ 0, and after that ΩðηÞ
increases until it reaches the value Ω ¼ 1, when ρ ≪ ρc.
Since ΩðηÞ does not depend on k, we simply consider its
upper limit Ω ¼ 1 in the above equation, since we want to
obtain an upper limit for the density of produced particles.
The fact that Ω is zero at the silent point and then increases
means that in fact the particles start being produced right
after the silent point. Since the particles produced behave as
radiation, its energy density will then evolve as

ρp ¼ ρsa−4; ð4:41Þ

where ρs is the density of particles produced right after the
silent point. By comparing it with Eq. (4.40), we can see that

ρs ≲ 10−6m4
Pl; ð4:42Þ

which is right after the silent point, when the important
modes are already inside the horizon. In order to know if the
produced particles will not dominate the energy content of
the Universe before inflation, we must compare the density
of particles produced, ρp, with the background energy
density ρbg at the beginning of inflation. Unlike the particles
produced, which behave as radiation, ρp ¼ ρsa−4, the
background energy density, on the other hand, evolves as
stiff matter, ρbg ¼ ρca−6, before inflation sets in. Therefore,

in order for the density of produced particles not to come to
dominate before the onset of inflation, we must have the
following condition satisfied:

ρsa−4 < ρca−6

and which must be satisfied in the beginning of inflation.
The value of the scale factor in the beginning of inflation
depends on the value of some parameters associated with
the initial conditions. However, since the evolution of the
background is the same in all approaches, based on previous
works (see, e.g., Refs. [47,48] for example) we can estimate
an amount of 4 − 5e-folds of preinflationary expansion
(from the bounce to the beginning of inflation). In the case
of four preinflationary e-folds, we have that in the onset of
inflation ainfl ∼ 55. We can consider that near the silent point
ρs ¼ ρc=2 ∼ ρca−6s , which leads to a−6s ∼ 1=2 and, conse-
quently, a6s ∼ 2. Therefore, it is a good approximation to
consider as ≈ 1. Considering this value, the condition for the
produced particles not to come to dominate can be written as
ρs ≲ 10−4m4

Pl. Since Eq. (4.42) shows that ρs ∼ 10−6m4
Pl, we

can safely conclude that the particles gravitationally pro-
duced will not dominate the background energy density
before inflation in the deformed algebra approach. This
proves that the test field approximation is consistently valid
in this approach with this choice of initial conditions, unlike
in the hybrid and dressed approaches.
The violation of adiabaticity happens during a short time

interval around the bounce phase. This coincides with the
phase when the main modes exit the effective horizon.
These modes will then reenter the horizon after the bounce
phase, when they start behaving as actual particles.
Therefore, the backreaction is expected to be not strong
enough to change our conclusions. This is also corrobo-
rated by a previous analysis made in Ref. [36], which was,
however, restricted to the dressed case (for related work on
the backreaction of GPP in general, see, e.g., Ref. [82]).

V. CONCLUSIONS

Given the importance of the effective description of LQC
in providing means to obtain the relevant cosmological
quantities, it is of utmost importance to further analyze the
validity of such a description. Motivated by the results
obtained in a previous work [36], we extended the analysis
of the backreaction from gravitational particle production
to other approaches.
Firstly, for the hybrid approach, we obtain a result

similar to the case of the dressed metric one, where the
energy density stored in the particles produced during the
bounce phase dominates the energy content of the Universe
prior to inflation. Therefore, if we extend the validity of the
effective description beyond the test field approximation,
this would imply a preinflationary radiation-dominated
phase in these scenarios. This scenario would be similar
to a model including the radiation effects in LQC, as
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studied in Ref. [47]. A radiation-dominated phase in the
earlier stages of expansion in these scenarios tends to imply
a small delay in the beginning of the inflationary phase in
such models. Also, the backreaction effect leads to a state
significantly different from the BD vacuum at the begin-
ning of inflation. Indeed, radiation has been shown to be an
important factor in setting initial conditions for inflation
appropriately (see, e.g., Ref. [83] for a further discussion).
However, since one should not expect that the dressed
metric and hybrid approaches could be consistent in such a
regime, this analysis actually put in check the validity of
these approaches with the initial conditions considered.
On the other hand, in the case of the closed algebra

approach, we obtain that the process of gravitational particle
production leads to a negligible backreaction effect. The
energy stored in the produced particles is very small com-
pared to the energydensityof thebackground all thewayup to
the onset of inflation. This result was obtained by considering
initial conditions in the vicinity of the silent point, which is
justified in order to avoid problems coming from a signature
change close to the bounce. Our result corroborates the
validity of the test field approximation in this framework,
showing the robustness of the effective description of LQC in
the closed algebra approach. Nevertheless we must point out

that this result is strictly related to the initial conditions which
are chosen in such away that guarantees the consistencyof the
model with CMB data. Any dynamics that could lead to
significant particle production in this scenario would imply a
divergent power spectrum.
In order to further confirm the analytical results obtained

here, it would be important to perform a numerical analysis
capable of including the backreaction effects of the par-
ticles in the background simultaneously to its production.
This will be done in a future work.
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