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Axionlike particles (ALPs) are promising dark matter candidates. They are typically described by a
classical field, motivated by large phase space occupation numbers. Here we show that such a description is
accompanied by a quantum effect: squeezing due to gravitational self-interactions. For a typical QCD axion
today, the onset of squeezing is reached on μs scales and grows over millennia. Thus within the usual
models based on the classical Schrödinger-Poisson equation, a type of Gross-Pitaevskii equation, any
viable ALP is nonclassical. We also show that squeezing may be relevant on the scales of other self-
gravitating systems such as galactic haloes, or solitonic cores. Conversely, our results highlight the
incompleteness and limitations of the classical single field description of ALPs.

DOI: 10.1103/PhysRevD.106.043517

I. INTRODUCTION

The search for dark matter is one of the main challenges
of modern physics. A viable and popular dark matter
candidate is a light (mass m ≪ 1 eV) self-gravitating
quantum scalar field, such as the QCD axion or any other
axionlike particle (ALP). Extensive experimental searches
focus on its distinct wavelike signatures [1–3], and its
theoretically expected coupling to matter [4–6]. This type
of ALP dark matter, also including ultralight or “fuzzy dark
matter,” is usually described by a classical scalar field rather
than particles [7–16]. The classical field description is
motivated by the de Broglie wave length ƛdeB ¼ ℏ=ðmvrmsÞ
being significantly larger than the interparticle distance d,
and thus the mean phase space occupation number
ðƛdeB=dÞ3 is large. If a misalignment mechanism produces
the ALP then initially it would be in a coherent state [7,8],
and thus a classical field.
An open question is whether dark matter can exhibit

observable quantum features. The difference between quan-
tum and classical dynamics can be subtle, and there are
several nonclassicality measures in quantum information

science [17]. One such nonclassicality witness is the
inability to represent the system in terms of classical
mixtures of coherent states. The most prominent quantum
effect of this form is squeezing [18]. In the context of
quantum optics, squeezing of bosonic systems is a well-
established benchmark for nonclassicality that has been
observed in a range of different systems [19–22], with many
applications in quantum-enhanced metrology [23] and
quantum information processing [24,25]. The electromag-
netic case is also instructive to understand the difference
between the classical and quantum states of the ALP. The
starting point of quantum optics and our understanding of
the difference between classical and quantumcoherencewas
the Hanburry-Brown-Twiss experiment [26]. It focused
on the correlation between intensities from a beam of light
that is received at two spatially separated detectors. While
the observed correlations can be described classically,
Glauber [27] and Sudrashan [28] used it to develop a
quantum description of light that showed how one could
distinguish classical from quantum effects: photon number
correlations can exhibit classical or quantum features—the
latter typically referred to as antibunching. Squeezed light is
a particular quantum state that may exhibit such quantum
signatures that can be verified experimentally. As we will
show in this work, ALPs may well be in such a state.
In this paper we consider the dynamics of a self-

gravitating quantum field and show that it undergoes rapid
self-squeezing due to self-interactions, a quantum feature
that cannot be captured by a classical field description. Our
results hold in the standard framework used for describing a
classical scalar field, the Gross-Pitaevskii equation (GPE)
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in the form of the Schrödinger-Poisson equation. The
squeezing happens on μs timescales and is continuously
reproduced. We show formation of squeezing in three
different physical scenarios: on cosmological scales, galac-
tic scales, and in solitonic cores that form in a galactic
centers. These scenarios have the common feature that they
are approximately self-gravitating. On even smaller scales,
such as haloscopes (ground based experiments searching
for axions) [29] we find that squeezing becomes negligible
even if the galactic halo undergoes strong squeezing. A
QCD axion, for example, reaches 9 dB squeezing—
reduction of the vacuum noise for one quadrature (and
simultaneous increase for the opposite quadrature) by an
order of magnitude—after less than 100 μs for the cos-
mological volume down to the solitonic core volume. Thus,
under standard assumptions about the dynamical descrip-
tion of the ALP, we arrive at the result that an initial
“classical” quantum state quickly evolves into a non-
classical squeezed state. In contrast to previous works
[14,30], here we find an example of quantum behavior that
forms very rapidly. The results suggest that either ALPs
exhibit non-negligible quantum features or that the usually
adopted classical description by a single classical GP scalar
field is incomplete.

II. THE ALP MODEL

We model the axionlike particle using a nonrelativistic
scalar quantum field ψ̂ðx; tÞ. In a cosmological setting it is
embedded in a homogeneously and isotropically expanding
Friedmann-Robertson-Walker (FRW) universe. The result-
ing Heisenberg equation of motion of ψ̂ðx; tÞ is, see for
instance [31],

iℏ∂tψ̂ðx;tÞ¼−
ℏ2

2mAðtÞ2∇
2ψ̂ðx;tÞþmΦ̂ðx;tÞψ̂ðx;tÞ;

∇2Φ̂ðx;tÞ¼4πGm
AðtÞ ðψ̂†ðx;tÞψ̂ðx;tÞ− ψ̂†ðx;tÞψ̂ðx;tÞÞ; ð1Þ

where AðtÞ is the scale factor, which appears due to our
use of comoving coordinates x. We remove the homo-
geneous mode, denoted by the overbar, from the source
of the gravitational potential in the Poisson equation.
Our approach therefore does not quantize the homo-
geneous mode of the ALP. This allows us to avoid an
IR divergence and conceptual issues of such a Newtonian
quantum cosmology. The homogeneous mode obeys the
Friedmann equation HðtÞ2 ¼ 8πG

3
ρ0AðtÞ−3. Here, AðtÞ is

the scale factor of the universe normalized to Aðt0Þ ¼ 1,
where t0 is the present age of the universe. H ¼ _AðtÞ=AðtÞ
is the Hubble expansion rate, and ρ0 ¼ mn0 the present-
day mean energy density of the ALP, with n0 the present
ALP mean number density and m the mass of the ALP.
We set the speed of light as c ¼ 1. For simplicity, we
neglect here other types of matter and the cosmological

constant.1 To be consistent with the gravitational potential
being entirely due to the ALP in (1) we focus on a purely
ALP dominated background cosmology. For our pur-
poses, this is a sufficiently accurate description of the
late universe. While a cosmological constant could be
trivially included (and will not change the order of
magnitude of our results), inclusion of other types of
clustering matter would require a quantum mechanical
modeling which is beyond the scope of this paper, but will
likely play a crucial role in the quantum-classical tran-
sition of the ALP.

A. Hartree ansatz

Our approach to solve the Heisenberg equation (1) is to
impose the Hartree ansatz for the wave function of the ALP
quantum field, and—crucially—the assumption that this
ansatz remains dynamically valid, which guarantees the
validity of the GPE [32–35]. By doing so, we treat the ALP
in a conservative way since the GPE remains valid, but at
the same time obtain an analytically tractable nonlinear
quantum description. The large squeezing at very short
timescales that we find here is precisely due to guaranteeing
the validity of the GPE by assuming the Hartree ansatz.
Thus our results show that squeezing should arise whenever
this ansatz is justified.
The Hartree ansatz for the ALP quantum state implies

that only a single mode with mode function ψðx; tÞ and
operator âðtÞ is relevant such that approximately

ψ̂ðx; tÞ ¼ ψðx; tÞffiffiffiffi
N

p âðtÞ; ð2Þ

with all other modes cδψðx; tÞ contributing to ψ̂ðx; tÞ
neglected. This means that negligence of these other
modes defines ψðx; tÞ and âðtÞ through (2). The normali-
zation

ffiffiffiffi
N

p
is for convenience and implies that the

resulting GPE, for quantum states jΨðtiÞi containing N
(or approximately N) particles, will not depend on N in
the limit N → ∞.2 Examples of such Hartree states are
“nonclassical” Fock states jNi ¼ 1ffiffiffiffi

N!
p ðâ†ðtiÞÞN j0i, or

“classical” coherent states jαi ¼ e−N=2
P∞

n¼0
αnffiffiffi
n!

p jni, with
α ¼ ffiffiffiffi

N
p

so that ψ̂ðx; t0Þjαi ¼ ψðx; t0Þjαi. The state jαi
describes a classical field configuration ψðx; t0Þ with
negligible quantum fluctuations Varðψ̂Þ1=2=ψ ¼ N−1=2.

1Inclusion of a cosmological constant is straightforward and
would not affect our approach based on (1), the order of
magnitude of our results and our conclusions. On the other
hand, inclusion of additional degrees of freedom will affect
the quantum coherence, as discussed in Sec. III.

2The GPE field is normalized to
R
V d

3xjψðx; tÞj2 ¼ N, so that
the spatial average is jψ j2 ¼ N=V ≡ n0. Here V is the comoving
volume, assumed to be very large, roughly the size of the Hubble
volume H−3

0 .
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B. System of Kerr and Gross-Pitaevski equations

Projecting the Heisenberg equation (1) onto the mode
function, that is 1ffiffiffi

N
p

ℏ

R
V d

3xðψ�ðx; tÞEq:ð1ÞÞ, we obtain the
Kerr oscillator equation for âðtÞ:

i∂tâðtÞ ¼ ωðtÞâðtÞ þ 2χðtÞâ†ðtÞâðtÞâðtÞ ð3aÞ

with coefficients (see Appendix E for a more rigorous
derivation),

ωðtÞ≡ ω̃ðtÞ − μðtÞ; ð3bÞ

μðtÞ≡ 1

N
i
Z
V
d3xψ�ðx; tÞ∂tψðx; tÞ; ð3cÞ

ω̃ðtÞ≡ 1

N
ℏ

2mA2ðtÞ
Z
V
d3xj∇ψðx; tÞj2; ð3dÞ

χðtÞ≡ 1

2N2

m
ℏ

Z
V
d3xΦðx; tÞjψðx; tÞj2 ð3eÞ

¼ −
1

2N
ωðtÞ: ð3fÞ

The last equality (3f) follows from the Gross-Pitaevskii
equation for ψðx; tÞ, which is identical in form to the
Heisenberg equation (1) with all the “hats” removed; see
Appendix E for a derivation.
Note that the common approach in the ALP literature is

to set ψ̂ðx; tÞ → ψðx; tÞ, and thus âðtÞ → ffiffiffiffi
N

p
. While this

indeed solves (3), it is not strictly a valid solution since it
does not satisfy ½â; â†� ¼ 1. It neglects the quantum noise
which undergoes strong squeezing and can therefore grow
in time, as we will now show.
The relevant dynamics of â is equivalent to a Kerr-

Hamiltonian which is well known in quantum optics
[19,36] and in the context of Bose—Einstein condensates
(BECs) [32]. An initially coherent state jα ¼ ffiffiffiffi

N
p i evolves

unitarily according to the Hamiltonian Ĥ ¼ ℏωâ†âþ
ℏχâ†â†â â, with time-independent parameters ω and χ.
The Heisenberg equation of motion iℏ _̂a ¼ ½â; Ĥ� is equiv-
alent to (3) with time-independent coefficients and with the
solution âðtÞ ¼ e−itðωþ2â†ðtiÞâðtiÞχÞâðtiÞ. As we show below,
assuming these parameters to be constant is a good approxi-
mation for the timescaleswe consider. In the followingwe set
ti ¼ 0 to simplify expressions.

C. Quadrature squeezing

Defining the quadrature operator X̂θðtÞ ¼ âðtÞe−iθþ
â†ðtÞeiθ, where θ is the quadrature angle, squeezing is
present at θ ¼ θ−ðtÞ if the minimal variance V−ðtÞ≡
VarðX̂θ−ðtÞðtÞÞ < 1 is below the vacuum level (see
Appendix A for more details). One effect of the non-
linearity is to generate such squeezing, which is still

described in the Gaussian approximation and takes place
on much shorter timescales than non-Gaussian effects such
as generation of superposition states [36]. In the limit of
large N, the minimal variance is given explicitly in
Appendix B, Eq. (B3). We define the squeezing timescale
as the time on which V−ðtÞ crosses below e−2 ≃ 0.135, i.e.,
the vacuum noise is reduced by a factor 0.135 (or about
9 dB squeezing). Or in terms of the squeezing parameter

rðtÞ≡ −
1

2
lnV−ðtÞ; ð4Þ

the squeezing timescale is rðtsqzÞ ¼ 1. This yields

Njχjtsqz ≃
1

2
sinhð1Þ ≃ 0.6: ð5Þ

For large N, V−ðtÞ approaches 0 very closely, with its
minimum corresponding to a maximum of rðtÞ given

rmax ≃ lnð3−1=225=6N1=6Þ ≃ lnðN1=6Þ; ð6Þ

with rðtmaxÞ ¼ rmax and

Njχjtmax ≃ 2−5=3N1=6 ≃ 0.3N1=6: ð7Þ

The squeezing angle defining the orientation of the
squeezed quadrature can be approximated by

θ−ðtÞ ≃ sgnðχtÞ π
4
−
1

2
arctanð2χNtÞ − ðωþ 2χNÞt; ð8Þ

which for t > tsqz approximately corotates with the
classical solution acðtÞ ¼ αe−itðωþ2χNÞ of the Kerr model
which is a good approximation to the mean hâðtÞi. The
conjugate quadrature with θþ ¼ θ− þ π=2 is exactly anti-
squeezed. The N-dependent phase shift provided by the
arc tangent approximately cancels for t > tsqz with the
remaining offset at tmax vanishing as sgnðχtmaxÞN−1=6, thus
producing an approximately amplitude-squeezed state.3

D. Estimation of the Kerr model parameters

We can express the parameters (3f) that govern the
dynamics and the squeezing in terms of known cosmo-
logical parameters and the ALP mass. We estimate ω̃ðaÞ by
treating ψðx; tÞ in perturbation theory (see Appendix D), or
by solving for it numerically using the full GPE. In both
cases one approximately finds

ℏ
m
ω̃ðAÞ ¼ KðAÞ ≃ 1

2
v2rms ¼

1

2
Av2rmsðA ¼ 1Þ; ð9Þ

3Equation (8) corrects previous results, Eqs. (26)–(28) in [37].
We also note that our expressions for rmax and tmax are more
accurate than those presented in Eq. (8) of [38].
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where mK is the average ALP kinetic energy, and v2rms is
the density weighted average of the ALP velocity field
squared, see [31], or in the context of cold dark matter
(CDM) Eq. 106 in [39]. Numerical simulations show
v2rmsðA ¼ 1Þ ≃ 10−6 in the present-day universe. This is
the result of nonlinear structure formation through gravi-
tational instability of ψ from primordial density perturba-
tions. On scales larger than ƛdeB ¼ ℏ=ðmvrmsÞ, jψðx; tÞj2
and the density of cold dark matter are virtually the
same [1,10,31,40]. Therefore estimating KðtÞ can be
done with any conventional CDM N-body simulation or
CDM perturbation theory. The squeezing timescales are
determined by χ which is related to the average potential
energy W ¼ ℏ

mNχ [31]. Using the Layzer-Irvine equation
d
dA ½AðWðAÞ þ KðAÞÞ� ¼ −KðAÞ, Eq. 47 of [31], we get
with KðAÞ ∝ A from (9), W ¼ − 3

2
K. Thus combined

ωðtÞ¼ 3ω̃ðtÞ; χðtÞ¼−
3

2

ω̃ðtÞ
N

; μðtÞ¼−2ω̃ðtÞ: ð10Þ

We have therefore tied all parameters appearing in the Kerr
oscillator to a simple expression for ω̃ðtÞ, Eq. (9), entirely
fixed by known cosmological parameters and the ALP
mass m.
The number N of axions in the volume V, with

V1=3 ≲H−1
0 , is approximately

N ≃H−3
0

ρ0
m

¼ 1093
10−5 eV

m
: ð11Þ

Note that this number deviates from ALP mode occupation
numbers used elsewhere in the literature, e.g., 1061 in [41]
and 1026 in [13] which refer to phase space occupation
numbers in the early and late universe, respectively. Our N
is the occupation number of the single GP mode.

E. Onset of squeezing

We find the squeezing timescale of the ALP in the
present-day universe from (5), (9), and (10) to be

tsqz ≃
1

ω̃
≃

ℏ
mv2rms

¼ ƛdeB
vrms

≃A¼1 10−5 eV
m

66 μs: ð12Þ

We have thus shown that squeezing is rapidly generated for
an ALP, much faster than the age of the universe ≃H−1

0 ≃
1018 s for all m > 10−22 eV. In other words, the single
mode treatment of the ALP predicts quantum effects for the
full mass range of viable ALP models on cosmologically
short timescales. This also justifies our approximation of
the Kerr model parameters by the their present-day values,
since j _ω=ωj ≃ j_χ=χj ≃H. Note that the (quantum) squeez-
ing timescale ƛdeB=vrms of the operator âðtÞ essentially
coincides with the (classical) coherence timescale of the GP
field ψðx; tÞ, see for instance [42].

For a QCD axion with m ≃ 10−5 eV, this timescale is
about 66 μs. One can compare this to other quantum
mechanical timescales appearing in the Kerr model, such
as the Ehrenfest timescale tEhr ¼ N1=2tsqz, or Schrödinger
“cat” creation time tcat ¼ Ntsqz [36]. Both of these time-
scales far exceed the age of the universe for the ALP
mass range.

F. Maximal squeezing

The maximum squeezing that can be produced in ALPs
is obtained by inserting (11) into (6):

rmax ≃ 36þ 1

6
ln
10−5 eV

m
: ð13Þ

This immense squeezing is similar in size to the squeezing
of inflaton perturbations produced during inflation, which
is known to lead to observably large quantum signatures
[43–46]. The time tmax, Eq. (7), at which maximal
squeezing is reached, is

tmax ¼ 0.5tsqzN1=6 ≃
�
10−5 eV

m

�
7=6

3500 yr: ð14Þ

Therefore even the extreme squeezing rmax would be easily
reached in the present universe, justifying our use of
constant Kerr model parameters, for m ≥ 10−12 eV.
Since ωþ 2Nχ ¼ 0 the squeezing angle evolves

slowly between θ− ≃ − π
4
and θ− ≃ − π

4
N−1=6 in the interval

0 < t≲ tmax. This implies that there is an approximately
fixed quadrature for which squeezing remains strongest and
grows as rðtÞ over an extended period tmax.
As an example we show in Fig. 1 the evolution of an

initial coherent state with α ¼ 2000 into a squeezed
coherent state using the Wigner representation. Over time,
the quadrature squeezing grows as the quadrature rotates,
while the number fluctuation remains constant (see the
Appendices B and C for more details).
We also consider two other physical situations with

drastically smaller volumes for which the GPE dynamics,
or equivalently the Hartree ansatz, may be better justified:
galactic haloes and solitonic cores in dark matter haloes.
The calculations are analogous to the cosmological case,
but without the scale factor in Eq. (1). The details are
presented in the Appendices H and I, and the results are
summarized in Table I. Importantly, the onset of squeezing
is independent of N, thus similar timescales tsqz are found.
In Appendix I we also show that squeezing of axions
contained in a volume that is not gravitationally bound,
such as an axion haloscope. In this scenario the haloscope
volume is part of a larger gravitationally bound volume,
the galactic halo which is modeled using the Hartree
state ansatz adopted in this paper, and exhibit negligible
squeezing.
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The simple approximation used here is common in the
study of ALPs; it assumes a single GP mode (the Hartree
ansatz which assures the validity of the GPE). This GP
mode may well approximate some physical situations such
as the solitonic core.

III. DISCUSSION

Some important conclusions can be drawn from the
results based on this simple model. One is that the quantum
effect described here accompanies the dynamics whenever
the GP assumption is established through the common

Hartree ansatz. Thus even for large occupancies a single
classical field description that is commonly assumed in
ALP cosmology [10–16] is incomplete. Our results there-
fore also highlight the need to scrutinize the range of
validity of the GP ansatz in cosmology, which is at the core
of many predictions of ALP behavior such as interference
fringes [1]. Another conclusion is that the quantum effect
we describe would be continuously regenerated on very
short timescales even if the ALP state were to collapse onto
a coherent state through environmental decoherence.
While a similar nonrelativistic QFT description for ALPs

was previously used [14,48–51], the specific quantum
effect we isolate here is novel in the context of ALPs
and takes place on much shorter timescales than other
expected quantum phenomena. This squeezing timescale is
related to some previous findings. It matches the “classical
break time” introduced in [30], which characterizes the
onset of nonlinearities in the classical description. It can
also be related to the thermalization timescale found in
[41,48], where a plane wave mode expansion was used to
study thermalization of macroscopically occupied modes.
The relaxation of these modes forms a BEC with an
extension of the entire Hubble patch [48]. This thermal-
ization timescale can be related to our squeezing timescale
as Htth ≃ 1

Htsqz
. Thus mode thermalization and self-squeez-

ing are efficient at distinct periods with thermalization
happening before self-squeezing.
It is instructive to compare our results to quantum effects

in laboratory BECs. Quantum revivals due to the Kerr effect
have been demonstrated [52], as well as spin-squeezing of
internal states [53]. The ground state of a trapped BEC has
been shown to be a squeezed displaced state [54], as found
here, see the Appendix G. However, in lab experiments the
trapping typically dominates self-interactions and the free-
fall time is very short. Thus dynamical generation of self-
squeezing as described here has not been observed yet, but
a related theory for cold atoms has been developed [55–57]
and experiments with self-squeezed BECs might become
feasible in the near future.
From a purely theoretical perspective, our results

show that quantum effects are present in ALPs even in
the limit where one typically assumes a purely classical
description—the GP equation from the Hartree ansatz is in
fact accompanied by a quantum effect that cannot be
avoided. But experimentally, it would be a challenging
task to show nonclassicality, more formidable than verifi-
cation of ALPs in the first place. To understand this better,
let us consider the verification of squeezing of light which
was developed theoretically and experimentally in the
1980s using homodyne detection [58,59], which measures
the squeezed quadratures directly but which also requires
control of a reference coherent state. Axions, if they exist,
would be very difficult to control due to their feeble
interactions such that a homodyne detection scheme and
other forms of quantum state tomography, see e.g., [60],

FIG. 1. Squeezing generated through unitary time
evolution of a dark matter coherent state jαi in the Hartree
approximation visualized by the Wigner function Wðz; tÞ ¼
ðπℏÞ−1hαjD̂ðzÞð−1Þâ†âD̂†ðzÞjαi, see [47], where D̂ðzÞ ¼
ezâ

†−z�â. Darker hues of blue correspond to larger values of
W. Top: initial coherent state. Middle: onset of squeezing.
Bottom: maximal achievable squeezing for

ffiffiffiffi
N

p ¼ 2000. The
initial time t ¼ 0 is an arbitrary moment in the late universe (i.e.,
close to today). The red (large) dot indicates the classical solution
aclðtÞ ¼ α ¼ 2000, and the black (small) dot the quantum mean
field hâðtÞi. The classical solution is time independent since (3f)
holds for the ALP.

TABLE I. Timescales and size of squeezing due to gravitational
self-interactions of the ALP, for various physical scenarios. tsqz
refers to the timescale on which 9 dB squeezing (r ¼ 1) is
formed, while tmax is the time for which the maximal squeezing
rmax is reached. In comparison, tEhr is the Ehrenfest timescale
which is often considered as a benchmark for the breakdown of
the classical field description. Our results show that quantum
effects arise on much shorter timescales.

Cosmology Solitonic core Milky Way

tsqz ðμsÞ 66ð10−5 eV
m Þ 1400ð10−5 eV

m Þ 33ð10−5 eV
m Þ

tmax (yr) 3500ð10−5 eV
m Þ76 0.5ð10−5 eV

m Þ43 33000ð10−5 eV
m Þ76

rmax 36þ 1
6
lnð10−5 eV

m Þ 24þ 1
3
lnð10−5 eV

m Þ 32þ 1
6
lnð10−5 eV

m Þ
tEhr (yr) 1035ð10−5 eV

m Þ32 1021ð10−5 eV
m Þ2 1032ð10−5 eV

m Þ32
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that require control of a reference quantum state seem
unrealizable for the axion. Thus the proposals to detect
squeezing in condensed cold atoms mentioned in the
previous paragraph, e.g., [55–57], might not be applicable
to axions. Another idea is to attempt to transfer the
squeezing of the axion field into a squeezing of the
haloscope’s cavity mode and then infer the squeezing of
that electromagnetic mode using the methods for detecting
squeezed light. This approach might not be able to detect
the Kerr-squeezing of the Hartree mode because the
squeezing of the axion field on scales of the haloscope
volume is severely reduced, see Appendix I. Thus, the
indirect tests through interferometeric correlation functions
as mentioned in the Introduction might be better suited for
squeezing verification in axions. This could be achieved by

measuring the intensity correlation function Gð2Þ
I ðt − t0Þ ¼

hâ†ðtÞâ†ðt0ÞâðtÞâðt0Þi [61,62]. At t ¼ t0 squeezed states of

light can have 0 < Gð2Þ
I =hâ†âi < 1 so that detected photons

are “antibunched,” whereas for a coherent state this is equal
to 1 as a consequence of the Poissonian statistics. Any other
classical phase space distribution of the electromagnetic
radiation field can only exceed this value, which is why
squeezed light is called nonclassical. In the case of Kerr-
squeezing discussed in this paper, however, the squeezing
antibunching does not occur, see the dashed line in Fig. 3.
This is related to the fact that the fundamental dynamics
preserves the number state. It is thus expected that detecting
the squeezing of the axion, given a detection of the axion in
the first place, will be a difficult task and will require new
approaches or the study of indirect consequences on other
fields.
A multimode treatment will not necessarily inhibit

squeezing, which is an inherent consequence of the self-
interactions. For instance number-squeezing was experi-
mentally observed in a multi-well-trapped BEC [63], and in
the context of scalar field dark matter quadrature squeezing
of the GP mode has been observed to persist in a toy model
where the Hartree ansatz was replaced by five Fourier
modes [64]. Multiple localization sites, analogs of ALP
DM haloes, are known to lead to the emergence of several
macroscopically occupied GP-like fields [65]. A systematic
approach that reveals the necessity for and determines the
dynamics of additional mode functions has been estab-
lished in [34,66], and applied to what could be considered
analog situations of ALP cosmology [67,68]. These latter
studies revealed that collision events between BEC solitons
composed of attractively interacting atoms can necessitate a
dynamical increase of required c-number fields, even if the
initial state was accurately described by a single GP field.
Large squeezing is also prone to decoherence when addi-
tional interactions are taken into account [46,69]. For
example, adding baryons would a priori prevent the pure
state Hartree ansatz (2) for the ALP that is used throughout
this paper. Other extensions of relevance will be the
addition of unresolved modes of the ALP or even more

exotic coupling mechanisms such as time-dilation induced
effects [70]. These will add to the decoherence of the
system and likely limit the attainable squeezing. But since it
is constantly regenerated we expect squeezing to persist at
least on some timescales. The multimode treatment, inclu-
sion of environments, and resulting decoherence will be
considered in subsequent work.

IV. CONCLUSION

In this paper we have shown quantum squeezing in ALP
models of dark matter, using the Hartree approximation
which guarantees the validity of the Gross-Pitaevskii
equation. Our results highlight the quantum nature of the
models, even when they are expected to yield purely
classical results. Nonclassical squeezed states are contin-
uously formed at very short timescales in different physical
scenarios. On the one hand, our results motivate searches
for observable signatures of quantum effects of ALP dark
matter. On the other hand, the results challenge the validity
of the simple models that are routinely employed in ALP
cosmology.
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Note added.—After submission of this article a related
work appeared [71], in which two-mode squeezing of the
axion is discussed. The mechanism and the type of
squeezing studied in [71] is different from that discussed
here. In our mechanism squeezing is due to self-gravity,
i.e., the nonlinear self-interaction of inhomogeneities of the
scalar field in the late universe, whereas in [71] squeezing
of the inhomogeneous modes of the axion is a linear
process due to the strong time dependence of the expansion
of space in the very early inflationary universe [43–46].

APPENDIX A: QUADRATURE VARIANCE AND
SQUEEZING

A quadrature is defined as

X̂θðtÞ ¼ âðtÞe−iθ þ â†ðtÞeiθ; ðA1Þ

and has variance

VarðX̂θðtÞÞ ¼ 1þ 2ðhâ†ðtÞâðtÞi − jhâðtÞij2Þ
þ e−2iθVarðâðtÞÞ þ e2iθVarðâ†ðtÞÞ ðA2Þ
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where VarðÔÞ≡ hÔ2i − hÔi2. The minimizing angle θ− is

e2iθ−ðtÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðâðtÞÞ
Varðâ†ðtÞÞ

s
ðA3Þ

leading to the minimal variance V−ðtÞ≡ VarðX̂θ−ðtÞÞ,

V−ðtÞ ¼ 1þ 2ðhâ†ðtÞâðtÞi − jhâðtÞij2Þ − 2jVarðâðtÞÞj:
ðA4Þ

Since Varðâ†ðtÞÞ ¼ ðVarðâðtÞÞÞ� the only necessary ingre-
dients are hâðtÞi, hâ2ðtÞi, and hâ†ðtÞâðtÞi.

APPENDIX B: DETAILS OF THE KERR MODEL

It is convenient to write Ĥ ¼ ℏðω − χÞn̂þ ℏχn̂2 because
the linear and nonlinear parts of Ĥ commute in this form so
that U ¼ e−iĤt=ℏ ¼ e−iðω−χÞtn̂e−iχtn̂2 . For a coherent state
jαi this implies hâ†âi ¼ jαj2 ¼ N. We assume again with-
out loss of generality that α ¼ ffiffiffiffi

N
p

.
To evaluate V− and θ− in the Kerr model, the only

additional quantities we need are hâi and hâ2i. We calculate
these expectation values using the result eÂB̂e−Â ¼P∞

k¼0
1
k! ½Â; B̂�k, where ½Â;B̂�k¼½Â;½Â;B̂�k−1�, ½Â; B̂�0 ¼ B̂.

Assigning Â ¼ iĤt=ℏ and B̂ ¼ â, or B̂ ¼ â2, gives Û−1â Û
and Û−1â2Û which can be evaluated using ½â; â†� ¼ 1, and
results in

hâi ¼ hαjÛ−1â Û jαi
¼ αe−iωte−2N sin2ðχtÞe−iN sinð2χtÞ; ðB1Þ

hâ2i ¼ hαjÛ−1â2Ûjαi
¼ α2e−i2ðωþχÞte−2N sin2ð2χtÞe−iN sinð4χtÞ: ðB2Þ

Inserting this into (A3) and (A4) gives the squeezing angle
θ−ðtÞ and size V−ðtÞ for the Kerr oscillator. The resulting
expressions are difficult to analyze further analytically due
to their nonalgebraic structure. In [38] a very accurate
algebraic approximation for V−ðtÞ has been obtained by
substituting N → τ=ðχtÞ and performing a Taylor expan-
sion in t (with τ fixed) which gives

V−ðtÞ ≃ 1 − 4τsþ 8τ2 þ 8τ3ð5þ 12τ2Þ
Ns

−
16τ4

N
;

s≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4τ2

p
;

τ≡ Njχjt: ðB3Þ

Note that V−ðtÞ is independent of the sign of χ. To obtain
the squeezing timescale we hold τ fixed while taking the
limit N → ∞ in (B3). Then we solve − 1

2
lnV−ðtsqzÞ ¼ 1 for

tsqz to obtain (12). To obtain the time of maximal squeezing

we replace jχjt → τ̃N−5=6 in (B3), and while holding τ̃
fixed, we expand in 1=N. The leading term is

V−ðτ̃Þ ≃ N−1=3 2
9τ̃6 þ 1

24τ̃2
: ðB4Þ

Taking a τ̃ derivative, we find the minimum at τ̃max ¼ 2−5=3,
which gives (7). Inserting this back into V−ðτ̃maxÞ corre-
sponding to rmax ¼ − 1

2
lnV−ðτ̃maxÞ results in (7). Figure 2

shows tsqz, tmax, and rmax as a function of N, and compares
our approximations (dot-dashed) for (5), (7), and (6) to
their exact result (full lines).
Finally we calculate θ−. We proceed in a similar fashion

as we did for V−. We insert (B1) and (B2) into
VarðâÞ=ðVarðâÞÞ� and we replace N → T=ðχtÞ. Then we
take the log and Taylor expand the result in χt with the
result

θ− ≃ −
i
4
ln

�
e−i4ωt

e−8iTð2T þ iÞ
2T − i

�
ðB5Þ

¼ −
i
4
ln

�
2T þ i
2T − i

�
− ωt − 2T: ðB6Þ

This can be simplified into the expression (8). The signum
function in (8) arises due a branch cut in the log.

APPENDIX C: SQUEEZED COHERENT STATES

Displacement operator

D̂ðβÞ ¼ eβâ
†−β�â ðC1Þ

and squeeze operator

FIG. 2. Squeezing timescales tsqz and tmax (upper panel) and
maximal squeezing (lower panel), and their scaling with N, for
the Kerr model. Full lines are exact, dashed lines approximations
used in the main text.
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ŜðζÞ ¼ e
1
2
ðζ�â2−ζðâ†Þ2Þ ðC2Þ

have the properties

D̂†ðβÞâ D̂ðβÞ ¼ âþ β; ðC3Þ

Ŝ†ðζÞâ ŜðζÞ ¼ â coshðρÞ − â†e2iϕ sinhðρÞ; ðC4Þ

where

ζ ¼ ρe2iϕ ðC5Þ

with ρ ≥ 0. A squeezed coherent state is defined as

jβ; ζi ¼ D̂ðβÞŜðζÞj0i: ðC6Þ

Evaluating (A4), (A3) we find

hâi ¼ β; ðC7Þ

V− ¼ e−2ρ; ðC8Þ

θ− ¼ ϕ: ðC9Þ

Since we know hâðtÞi, V−ðtÞ≕ e−2rðtÞ and θ−ðtÞ for the
Kerr oscillator, see (B1), (B3), (8), we can construct an
approximate solution to the Kerr oscillator quantum state in
the Schrödinger picture as jΨSCðtÞi ≃ jhâðtÞi; rðtÞe2iθ−ðtÞi.
In the main text we have approximated hâi ≃ acðtÞ. This is
justified because we consider quantum evolution only up to
the time tmax ≃ 0.5N1=6tsqz which is much smaller than the
Ehrenfest time tEhr ¼ N1=2tsqz.
The squeezed coherent state approximation breaks down

due to non-Gaussianities around the time tmax. In order to
verify that a squeezed coherent state is a good approxi-
mation to the Kerr-evolved coherent state until tmax we
evaluate

Varðn̂Þ ¼ 1

4
ðcoshð4ρÞ − 1Þ þ Nðcoshð2ρÞ

− cosð2ϕÞ sinhð2ρÞÞ ðC10Þ

for the squeezed coherent state j ffiffiffiffi
N

p
; rðtÞe2iϕi with

ϕ ¼ θ−ðtÞ and ϕ ¼ 0 in Fig. 3. We see that inclusion
of the squeezing orientation is crucial to match the value
Varðn̂Þ ¼ N of the Kerr-evolved coherent state. This
also explains the “coincidence” of θ−ðtmaxÞ ≃ π

4
N−1=6

and V1=2
þ ≃ N1=6. As can be seen in the lower panel of

Fig. 1, this combination of angle and vertical extension of
the phase space distribution leads to an order unity range in
radial direction that is independent of N.

APPENDIX D: PERTURBATION THEORY
ESTIMATE OF KðAÞ

The goal of this appendix is to show the physical origin,
the approximate order of magnitude, as well as the
A-scaling of the kinetic energy KðAÞ. This result was used
TO derive a relation (10) between μ and ω̃ appearing in the
Kerr oscillator equation (3). A more precise estimate of
KðAÞ could be extracted from a cosmological N-body or
Schrödinger-Poisson simulation if needed.
The mean kinetic energy mKðAÞ and the mean

potential energy mWðAÞ of an ALP can be evaluated in
perturbation theory. Here we use linear perturbation theory
of cold dark matter modeled by a pressureless perfect fluid,
with particle density nðx; tÞ and velocity field uðx; tÞ
satisfying the Euler-Poisson equation. Since approximately
ℏ2

m2 j∇ψðx; tÞj2 ¼ nðx; tÞjuðx; tÞj2, see e.g., [10,31], the
mean kinetic energy per mass is

KðAÞ ¼ 1

2A2N

Z
V
d3xnðx; AÞu2ðx; AÞ ðD1Þ

¼ 1

2N

Z
V
d3xnðx; AÞv2ðx; AÞ ðD2Þ

where v ¼ u=A is the peculiar velocity field, and u is the
canonical velocity field. In linear perturbation theory the
comoving density field can be written as nðx; AÞ ¼ n0ð1þ
δðx; AÞÞ with the density perturbation δðx; AÞ related to the
velocity field via ∇ · v ¼ −AHδðx; AÞ. During the assumed
matter dominated expansion _A=A ¼ H ¼ H0A−3=2 we thus
get to leading order in perturbation theory

KðAÞ ≃ 1

2V

Z
V
d3xv2ðx; AÞ ðD3Þ

FIG. 3. Varðn̂Þ for a squeezed coherent state jβ; ρe2iϕi with
β ¼ ffiffiffiffi

N
p ¼ 106 and ρ ¼ rðtÞ with 0 ≤ rðtÞ ≤ rmax of the Kerr

oscillator (B3). Inserting ϕ ¼ 0 corresponds to amplitude squeez-
ing, accompanied by n̂-squeezing, whereas inserting ϕ ¼ θ−ðtÞ
of the Kerr evolution prevents n̂-squeezing. The dashed line
shows Varðn̂Þ for a reference Kerr state.
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¼ A
2V

Z
V
d3xv2ðx; A ¼ 1Þ: ðD4Þ

In Fourier space, taking the limit V → ∞, this becomes

KðAÞ ≃ A
2
H2

0

Z
d3k
ð2πÞ3

jδkðA ¼ 1Þj2
k2

ðD5Þ

¼ 1

2
Av2rmsðA ¼ 1Þ; ðD6Þ

v2rmsðA ¼ 1Þ ≔ H2
0

Z
dk
2π2

Pðk; A ¼ 1Þ; ðD7Þ

where we used the ergodic theorem to replace
jδkj2 → Pðk ¼ jkjÞ, and performed the angular integrals.
For a standard matter power spectrum PðkÞ this evaluates to
10−5. The actual value of v2rms used in the main text is about
a ten times smaller due to our negligence of the cosmo-
logical constant. Inclusion of a cosmological constant in
linear perturbation would give rise to an overall prefactor
f2 ¼ 0.27 and slightly shallower scaling than A, namely
K ∝ ðAHfÞ2. Here f ≃Ω6=11

m is the growth rate of linear
matter density perturbations, Ωm ¼ Ωm;0A−3H2

0=H
2 the

fraction of matter, and H ¼ H0ðΩm;0A−3 þ 1 −Ωm;0Þ1=2
the expansion rate.

APPENDIX E: DERIVATION OF THE COUPLED
GPE AND KERR OSCILLATOR

Throughout this section we work in the Schrödinger
picture, so that the quantum state jΨðtÞi of the nonrelativistic
ALP is time dependent. For simplicity we discard the
cosmological evolution, so that the Hamiltonian is

Ĥ ¼
Z

d3x
ℏ2

2m
∇ψ̂†ðxÞ∇ψ̂ðxÞ

−
Gm2

2

Z
d3xd3x0

ψ̂†ðxÞψ̂†ðx0Þψ̂ðxÞψ̂ðx0Þ
jx − x0j : ðE1Þ

jΨðtÞi satisfies the Schrödinger equation

iℏ∂tjΨðtÞi ¼ ĤjΨðtÞi: ðE2Þ

The Hartree ansatz for an n-particle wave function in the
Schrödinger picture is

Ψnðx1;…; xn; tÞ ¼ ϕðx1; tÞ…ϕðxn; tÞ: ðE3Þ

Here we introduced the normalized one-particle wave
function ϕðx; tÞ. This n-particle state can be written basis
independent as jn; ti ¼ 1ffiffiffi

n!
p ðb̂†ðtÞÞnj0i, where b̂†ðtÞ≡R

d3xϕðx; tÞψ̂†ðxÞ and ψ̂†ðxÞ is the time-independent
field operator in the Schrödinger picture. A generic

(e.g., initially coherent) Hartree state jΨðtÞi then takes
the form

jΨðtÞi ¼
X∞
n¼0

cnðtÞjn; ti: ðE4Þ

Our goal is to derive evolution equations for ϕðx; tÞ and
cnðtÞ. Varying the action S ¼ R

dthΨðtÞjĤ − iℏ∂tjΨðtÞi
with respect to ϕ�ðx; tÞ and c�nðtÞ gives

iℏ∂tϕðx; tÞ¼−
ℏ2

2m
∇2ϕðx; tÞþn2ðtÞ− n̄ðtÞ

n̄2ðtÞ mΦðx; tÞϕðx; tÞ;

ðE5Þ

∇2Φðx; tÞ≡ 4πGmn̄ðtÞjϕðx; tÞj2; ðE6Þ

iℏ∂tcnðtÞ ¼ hn; tjĤ − iℏ∂tjn; ticnðtÞ; ðE7Þ

hn; tjℏ−1Ĥ − i∂tjn; ti ¼ nðωðtÞ − χðtÞÞ þ n2χðtÞ; ðE8Þ

n̄ðtÞ≡X
n

jcnðtÞj2n; ðE9Þ

n2ðtÞ≡X
n

jcnðtÞj2n2; ðE10Þ

ωðtÞ≡ ω̃ðtÞ − μðtÞ; ðE11Þ

ω̃ðtÞ≡
Z

d3x
ℏ
2m

j∇ϕðx; tÞj2; ðE12Þ

μðtÞ≡ −i
Z

d3xϕ�ðx; tÞ∂tϕðx; tÞ; ðE13Þ

χðtÞ≡ m
2ℏn̄ðtÞ

Z
d3xΦðx; tÞjϕðx; tÞj2: ðE14Þ

Neglecting the time dependence of ω and χ we find

cnðtÞ ¼ cnðt ¼ 0Þe−itððω−χÞnþχn2Þ; ðE15Þ

which is the solution of the Schrödinger equation for a Kerr
oscillator. For an initial coherent state jΨðt ¼ 0Þi ¼ jαi
with α ¼ ffiffiffiffi

N
p

we have cnðt ¼ 0Þ ¼ e−N=2 Nn=2ffiffiffi
n!

p so that

n̄ðtÞ ¼ N and n2ðtÞ ¼ N2 þ N. The ϕ evolution equations,
(E5) and (E6), then simplify to

iℏ∂tϕðx; tÞ ¼ −
ℏ2

2m
∇2ϕðx; tÞ þmΦðx; tÞϕðx; tÞ; ðE16aÞ

∇2Φðx; tÞ≡ 4πGmNjϕðx; tÞj2; ðE16bÞ

which is the GPE used in the main text, after redefining
ψ≡ϕ

ffiffiffiffi
N

p
and restoring the scale factor AðtÞ.
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Equations (E15), (E16) then establish the validity of the
constraints

R
d3xjϕðx; tÞj2 ¼ 1 and

P
n jcnðtÞj2 ¼ 1, which

we could have enforced via Lagrange multipliers [34].
Noticing that hn; tjĤ − iℏ∂tjn; ti ¼ hnjĤjni, with jni ¼
jn; t ¼ 0i and Ĥ ¼ ℏðω − χÞn̂þ ℏχn̂2, we verify (3) for
âðtÞ ¼ eiĤt=ℏb̂ðt ¼ 0Þe−iĤt=ℏ in the Heisenberg picture.
In the main text we have worked in the Heisenberg

picture where ψ̂ðx; tÞ ¼ ϕðx; tÞâðtÞ. As a check let us
compare the result of the mean field hαjψ̂ðx; tÞjαi ¼
ϕðx; tÞhαjâðtÞjαi in the Heisenberg picture to that in the
Schrödinger picture hΨðtÞjψ̂ðxÞjΨðtÞi. For this we assume
ψ̂ðxÞ ¼ ϕðx; tÞb̂ðtÞ. This seems somewhat odd since ψ̂ðxÞ
should be time independent but is not. This is merely an
artifact of restricting the field operator to contain only the
single GP mode, and does not pose a problem. We thus
have hΨðtÞjψ̂ðxÞjΨðtÞi ¼ ϕðx; tÞhΨðtÞjb̂ðtÞjΨðtÞi. Let us
focus on hΨðtÞjb̂ðtÞjΨðtÞi and switch to the “Kerr picture”
that we define through jΨKðtÞi≡P

n cnðtÞjn; t ¼ 0i.
Clearly, hΨðtÞjb̂ðtÞjΨðtÞi ¼ hΨKðtÞjb̂ðt ¼ 0ÞjΨKðtÞi. This
equals to hΨKðt ¼ 0ÞjeiĤt=ℏb̂ðt ¼ 0Þe−iĤt=ℏjΨKðt ¼ 0Þi ¼
hαjâðtÞjαi, and we have established the equivalence to the
Heisenberg picture calculation. Similar calculations estab-
lish the equivalence of all correlators and thus in particular
the squeezing.
In summary, using a variational ansatz for a quantum

state in the Hartree approximation we have derived the
coupled GP and Kerr oscillator equations for an initial
coherent state of a nonrelativistic ALP field.

APPENDIX F: SQUEEZED STATE
APPROXIMATION

In the “Kerr picture” where ψ̂Kðx; tÞ ¼ ψðx; tÞ âðtiÞffiffiffi
N

p and
jΨKðtÞi ¼ e−iĤt=ℏjαi, the quantum state can be approxi-
mated by a squeezed coherent state

jΨSC
K ðtÞi ¼ D̂ðacðtÞÞŜðrðtÞe2iθ−ðtÞÞj0i; ðF1Þ

where D̂ðβÞ ¼ eβâ
†ðtiÞ−β�âðtiÞ and ŜðζÞ ¼ e

1
2
ðζ�â2ðtiÞ−ζðâ†ðtiÞÞ2Þ

are the displacement and squeezing operators, respectively
[61]. Properties of this state are shown in Figs. 1 and 3 (the
curve labeled by θ−).
A “classical” wave function jΨcl

KðtÞi would then be a
state with âðtiÞjΨcl

KðtÞi ¼ acðtÞjΨclðtÞi at all times, which
is only true for a coherent state jΨcl

KðtÞi ¼ D̂ðacðtÞÞj0i. The
fidelity jhΨcl

KðtÞjΨSC
K ðtÞij2 ¼ jh0jŜðrðtÞe2iθ−ðtÞÞj0ij2 decays

at the squeezing time tsqz indicating deviation from the
classical approximation.

APPENDIX G: GROUND STATE IN A
SINGLE-GP-MODE APPROXIMATION

If thermalization as described in [48] indeed keeps the
axion at its momentary ground state jΨ0ðtÞi, then it might

be natural to expect that this ground state is related to our
squeezed state. Reference [48] does not explore the nature
of this ground state. However, the ground state of a self-
interacting BEC in the single mode approximation is
discussed in [32,54]. To leading order in a perturbative
solution â ¼ αþ δâ, this ground state is found to be a
squeezed coherent state

jΨ0ðtÞi ≃ e−iμ0tjΨðtmaxÞi; ðG1Þ

matching our approximate solution (F1) at tmax apart from
some irrelevant global phase. Squeezing in the Kerr
model reaches a maximum only because the quantum state
ceases to be well approximated by a Gaussian after tmax.
Interestingly, the relation to the BEC ground state might
persist even when non-Gaussianities are included: it was
found in [32,54] that the ground state Wigner function of
the Kerr Hamiltonian is bent into a “banana” producing a
so-called number-squeezed state.

APPENDIX H: SOLITONIC CORES

For the solitonic core case, the relevant parameter to
compute in order to obtain the squeezing timescale is

Nχ ≡ 1

2N
m
ℏ

Z
V
d3xΦðx; tÞjψðx; tÞj2; ðH1Þ

where we have assumed that χ is constant in time for the
timescales in which we are interested. Assuming a spheri-
cally symmetric dark matter halo and making use of the
radial core density profile in [1], it is straightforward to find
the Newtonian potential by solving the Poisson equation.
Inserting (H1) into (5), we get

tsqz ≃ 2 × 108
�

m
10−22 eV

��
rc
kpc

�
2

yr; ðH2Þ

where rc is the solitonic core radius. It is convenient to
express the squeezing timescale in terms of the host halo
mass Mh. To achieve that, we make use of the relation
between the core radius rc and the core mass Mc [1]

rc
kpc

¼ 5.5 × 107

ð m
10−22 eVÞ2

M⊙

Mc
ðH3Þ

and then express the core mass in terms of the host halo
mass Mh [72]

Mc ¼
1

4
ffiffiffi
α

p ðζðzÞ
ζð0ÞÞ

1
6
ð4.4 × 107Þ23

m
10−22 eV

M
2
3
⊙M

1
3

h; ðH4Þ

where z ¼ A−1 − 1. For further details, the reader is
referred to [72]. The squeezing timescale as a function
of the host halo mass is given by
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tsqz ¼ 7 × 1014
�
10−22 eV

m

��
M⊙

Mh

�2
3

yr: ðH5Þ

For a dark matter halo of massMh ¼ 2 × 1012 M⊙ we find

tsqz ≃ 1400

�
10−5 eV

m

�
μs ðH6Þ

The number of axions inside the solitonic core is

N ¼ Mc

m
≃ 3 × 1062

�
10−5 eV

m

�
2

: ðH7Þ

Having obtained the squeezing timescale and the total
number of axions inside a solitonic core, it is straightfor-
ward to compute tmax, rmax, and tEhr. The values can be
found in the main text (Table I).

APPENDIX I: AXION HALOSCOPE AND
MILKY WAY

The Hartree, or single mode, ansatz can only be applied
to sufficiently isolated systems. In the present context of a
purely dark matter dominated universe this means that the
volume to which we can apply the Hartree ansatz must be to
a good approximation self-gravitating. This was the case
for the entire universe and the solitonic core. The axions
within a haloscope volume are not self-gravitating, in the
sense that their motion is dominated by the external galactic
gravitational potential and not their self-gravity. To remain
consistent with the Hartree ansatz, the premise of this
work, we assume that the whole galactic halo—plausibly
the smallest self-gravitating volume containing the
haloscope—is described by a Hartree state under time
evolution and then focus on the squeezing within a
subvolume comprising the haloscope as the observable.
This provides an estimate of the squeezing timescale for
axions within a haloscope.
The entire galactic halo contains N axions and the

assumed Hartree ansatz implies that the only relevant
operator is

â ¼
Z

d3xϕ�ðx; tÞψ̂ðx; tÞ; ðI1Þ

where ϕðx; tÞ ¼ ψðx; tÞ= ffiffiffiffi
N

p
is the 1-particle wave func-

tion of a galactic axion. We now decompose ϕðx; tÞ into

two orthogonal functions ϕh ≔
ffiffiffi
N

pffiffiffiffiffi
Nh

p ϕðx; tÞθhðxÞ and

ϕh̄ ≔
ffiffiffi
N

pffiffiffiffiffiffiffiffiffi
N−Nh

p ϕðx; tÞð1 − θhðxÞÞ, where θhðxÞ equals 1

within the haloscope and vanishes outside of it, and Nh
is the number of axions in the haloscope. We then have

â ¼
ffiffiffiffiffiffi
Nh

p ffiffiffiffi
N

p b̂þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N − Nh

p ffiffiffiffi
N

p ĉ ðI2Þ

with ½â; â†� ¼ ½b̂; b̂†� ¼ ½ĉ; ĉ†� ¼ 1, ½b̂; ĉ†� ¼ ½ĉ; b̂†� ¼ 0

and ½b̂; â†� ¼
ffiffiffiffiffi
Nh

p ffiffiffi
N

p , and

b̂ ¼
Z

d3xϕ�
hðx; tÞψ̂ðx; tÞ; ðI3Þ

ĉ ¼
Z

d3xϕ�̄
h
ðx; tÞψ̂ðx; tÞ: ðI4Þ

A similar decomposition has been employed in [73,74] to
investigate the entanglement between a subvolume and the
remaining part of a BEC. The squeezing of the haloscope
mode b̂ is given by

Vh
−ðtÞ ¼ 1þ 2ðhb̂†ðtÞb̂ðtÞi − jhb̂ðtÞij2Þ − 2jVarðb̂ðtÞÞj;

ðI5Þ

where we assume as before that the initial quantum state
(the quantum state in the Heisenberg picture) of the galactic
halo is in an âðtiÞ-mode squeezed coherent state jαi. We
have shown that unitary evolution can be approximated
by ÛðtÞ ¼ D̂ð ffiffiffiffi

N
p ÞŜðrðtÞe2iθ−ðtÞÞD̂†ð ffiffiffiffi

N
p Þ, see Eqs. (C1),

(C2), and (F1). Using the commutation relation between â
and b̂ operators we find using a calculation similar to that
presented in Appendix B

D̂†ðαÞb̂ D̂ðαÞ ¼ b̂þ
ffiffiffiffiffiffi
Nh

p ffiffiffiffi
N

p α; ðI6Þ

Ŝ†ðζÞb̂ ŜðζÞ ¼
ffiffiffiffiffiffi
Nh

p ffiffiffiffi
N

p ðâ coshðrÞ − â†e2iθ− sinhðrÞÞ; ðI7Þ

with α ¼ ffiffiffiffi
N

p
and ζ ¼ re2iθ− . Using these results (I5) can

be simplified most easily in the “Kerr picture,” see
Appendix F, to give

Vh
−ðtÞ ¼ 1þ Nh

N
ðV−ðtÞ − 1Þ; ðI8Þ

where V−ðtÞ ¼ e−2rðtÞ is the minimal variance of â. Note
that although this result looks quite intuitive it is nontrivial
since the â-squeezed coherent state is not a product state of
a b̂-squeezed coherent state and a ĉ-squeezed coherent
state, such that the haloscope subvolume is entangled with
the rest of the halo.
This means that at tsqz, defined by V−ðtsqzÞ ¼ e−2, when

the galactic âmode gets significantly squeezed, the b̂mode
squeezing is

Vh
−ðtsqzÞ ¼ 1þ Nh

N
ðe−2 − 1Þ; ðI9Þ

or assuming Nh=N ≪ 1
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rhðtsqzÞ ≃ 0.43
Nh

N
≪ rðtsqzÞ ¼ 1: ðI10Þ

Thus, the squeezing of a subvolume (b̂ mode) is
significantly reduced compared to squeezing of the full
volume (â mode), and bounded by Nh=N, the ratio
of the number of axions in the subvolume and the total
number of axions. Similarly, the maximum squeezing of
the b̂ mode is drastically reduced. Since rmax < ∞, one
finds

rhðtmaxÞ≲ 0.5
Nh

N
≪ rmax: ðI11Þ

For the galactic halo we assume a stationary Navarro—
Frenk—White density profile [75]

ρðrÞ ¼ ρ0
r
Rs
ð1þ r

Rs
Þ2 ðI12Þ

to calculate χ. The parameters ρ0 and Rs vary from halo to
halo. Solving the Poisson equation, the gravitational
potential is

ΦðrÞ ¼ −
4πGρ0R2

s
r
Rs

ln
�
1þ r

Rs

�
ðI13Þ

so that

Nχ ¼ 1

2

1

Nℏ

Z
V
d3xΦðxÞρðxÞ: ðI14Þ

A sufficiently accurate approximation to the total gravita-
tional energy is given by

Nχ ≃
1

2

MMW

Nℏ
Φ̄ ≃ −

1

2

m
ℏ
10−6 ðI15Þ

where Φ̄ ≃ 10−6 is the average Galactic potential and
MMW ≃ 1012 M⊙ the Galactic mass. Substitution of Nχ
into (5) gives

tsqz ≃ 30

�
10−5 eV

m

�
μs: ðI16Þ

To evaluate the timescale of maximal squeezing (and its
magnitude expressed by rmax) we need

N ¼ MMW

m
¼ 1083

�
10−5 eV

m

�
: ðI17Þ

Furthermore, we need to find the approximate number of
axions in the axion haloscope volume [76]

Nh ¼
M
m

¼ ρðr¼ 8 kpcÞVh

m
≃6×1018

�
10−5 eV

m

�
: ðI18Þ

Inserting this into (6) and (7) we get

rmax ≃ lnðN1=6Þ ≃ 31.8þ 1

6
ln

�
10−5 eV

m

�
ðI19Þ

and

tmax ≃ 0.5tsqzN1=6 ≃ 33000

�
10−5 eV

m

�7
6

yr: ðI20Þ

For comparison, we find that the Ehrenfest timescale is
approximately tEhr ¼

ffiffiffiffi
N

p
tsqz ≃ 1032ð10−5 eV

m Þ32yr.
Finally, let us evaluate the numerical value of the

squeezing of the haloscope mode at tsqz and tmax. We find
from (I10) and (I11) that

rhðtsqzÞ ≃ rhðtmaxÞ≲ 0.5
Nh

N
¼ 10−65: ðI21Þ
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Oberthaler, Nature (London) 464, 1165 (2010).

[24] H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C.
Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu et al.,
Science 370, 1460 (2020).

[25] O. Hosten, N. J. Engelsen, R. Krishnakumar, and M. A.
Kasevich, Nature (London) 529, 505 (2016).

[26] R. H. Brown and R. Q. Twiss, London, Edinburgh, and
Dublin, Philos. Mag. J. Sci. 45, 663 (1954).

[27] R. J. Glauber, Phys. Rev. 131, 2766 (1963).
[28] E. Sudarshan, Phys. Rev. Lett. 10, 277 (1963).
[29] P. Sikivie, Phys. Rev. Lett. 51, 1415 (1983).
[30] G. Dvali and S. Zell, J. Cosmol. Astropart. Phys. 07 (2018)

064.
[31] M. Kopp, K. Vattis, and C. Skordis, Phys. Rev. D 96,

123532 (2017).
[32] A. S. Parkins and D. F. Walls, Phys. Rep. 303, 1 (1998).
[33] S. S. L. Pitaevskii, Bose-Einstein Condensation, The

International Series of Monographs on Physics (Oxford
University Press, New York, 2003).

[34] O. E. Alon, A. I. Streltsov, and L. S. Cederbaum, Phys. Lett.
A 362, 453 (2007).

[35] L. Erdos, B. Schlein, and H.-T. Yau, Ann. Math. 172, 291
(2010).

[36] B. Yurke and D. Stoler, Physica (Amsterdam) 151B+C, 298
(1988).

[37] R. Tanaś, A. Miranowicz, and S. Kielich, Phys. Rev. A 43,
4014 (1991).

[38] J. Bajer, A. Miranowicz, and R. Tanaś, Czech. J. Phys. 52,
1313 (2002).

[39] M. P. Hertzberg, Phys. Rev. D 89, 043521 (2014).
[40] P. Mocz, L. Lancaster, A. Fialkov, F. Becerra, and P.-H.

Chavanis, Phys. Rev. D 97, 083519 (2018).
[41] P. Sikivie and Q. Yang, Phys. Rev. Lett. 103, 111301 (2009).
[42] P. W. Graham and S. Rajendran, Phys. Rev. D 88, 035023

(2013).
[43] L. P. Grishchuk and Y. V. Sidorov, Phys. Rev. D 42, 3413

(1990).
[44] A. Albrecht, P. Ferreira, M. Joyce, and T. Prokopec, Phys.

Rev. D 50, 4807 (1994).
[45] D. Polarski and A. A. Starobinsky, Classical Quantum

Gravity 13, 377 (1996).
[46] E. Nelson and C. Jess Riedel, arXiv:1711.05719.
[47] K. E. Cahill and R. J. Glauber, Phys. Rev. 177, 1882 (1969).

[48] O. Erken, P. Sikivie, H. Tam, and Q. Yang, Phys. Rev. D 85,
063520 (2012).

[49] N. Banik, A. Christopherson, P. Sikivie, and E. M.
Todarello, arXiv:1509.02081.

[50] P. Sikivie and E. M. Todarello, Phys. Lett. B 770, 331
(2017).

[51] S. S. Chakrabarty, S. Enomoto, Y. Han, P. Sikivie, and E. M.
Todarello, Phys. Rev. D 97, 043531 (2018).

[52] M. Greiner, O. Mandel, T. W. Hänsch, and I. Bloch, Nature
(London) 419, 51 (2002).

[53] C. Gross, J. Phys. B 45, 103001 (2012).
[54] J. A. Dunningham, M. J. Collett, and D. F. Walls, Phys. Lett.

A 245, 49 (1998).
[55] M. T. Johnsson and S. A. Haine, Phys. Rev. Lett. 99, 010401

(2007).
[56] S. Wüster, B. Dabrowska-Wüster, S. M. Scott, J. Close, and

C. Savage, Phys. Rev. A 77, 023619 (2008).
[57] S. A. Haine and M. T. Johnsson, Phys. Rev. A 80, 023611

(2009).
[58] H. P. Yuen and V.W. S. Chan, Opt. Lett. 8, 177 (1983).
[59] G. L. Abas, V.W. S. Chan, and T. K. Yee, Opt. Lett. 8, 419

(1983).
[60] A. I. Lvovsky and M. G. Raymer, Rev. Mod. Phys. 81, 299

(2009).
[61] D. F. Walls, Nature (London) 306, 141 (1983).
[62] G. Leuchs, in Frontiers of Nonequilibrium Statistical

Physics (Springer, New York, 1986), pp. 329–360.
[63] C. Orzel, A. K. Tuchman, M. L. Fenselau, M. Yasuda, and

M. A. Kasevich, Science 291, 2386 (2001).
[64] A. Eberhardt, A. Zamora, M. Kopp, and T. Abel, Phys. Rev.

D 105, 036012 (2022).
[65] L. S. Cederbaum and A. I. Streltsov, Phys. Lett. A 318, 564

(2003).
[66] O. E. Alon, A. I. Streltsov, and L. S. Cederbaum, Phys. Rev.

A 77, 033613 (2008).
[67] G. C. Katsimiga, G. M. Koutentakis, S. I. Mistakidis, P. G.

Kevrekidis, and P. Schmelcher, New J. Phys. 19, 073004
(2017).

[68] A. Sreedharan, S. Choudhury, R. Mukherjee, A. Streltsov,
and S. Wüster, Phys. Rev. A 101, 043604 (2020).

[69] W. H. Zurek, Nature (London) 412, 712 (2001).
[70] I. Pikovski, M. Zych, F. Costa, and Č. Brukner, Nat. Phys.

11, 668 (2015).
[71] J. L. J. Kuß and D. J. E. Marsh, Open J. Astrophys. 4, 11

(2021).
[72] H.-Y. Schive, M.-H. Liao, T.-P. Woo, S.-K. Wong, T.

Chiueh, T. Broadhurst, and W.-Y. P. Hwang, Phys. Rev.
Lett. 113, 261302 (2014).

[73] C. Simon, Phys. Rev. A 66, 052323 (2002).
[74] J.-W. Lee, J. Korean Phys. Soc. 73, 1596 (2018).
[75] J. F. Navarro, C. S. Frenk, and S. D. M. White, Astrophys. J.

462, 563 (1996).
[76] S. J. Asztalos, G. Carosi, C. Hagmann, D. Kinion, K. van

Bibber, M. Hotz, L. J. Rosenberg, G. Rybka, J. Hoskins, J.
Hwang, P. Sikivie, D. B. Tanner, R. Bradley, and J. Clarke,
Phys. Rev. Lett. 104, 041301 (2010).

NONCLASSICALITY OF AXIONLIKE DARK MATTER THROUGH … PHYS. REV. D 106, 043517 (2022)

043517-13

https://doi.org/10.1116/5.0025819
https://doi.org/10.1016/0030-4018(83)90264-X
https://doi.org/10.1038/387471a0
https://doi.org/10.1038/387471a0
https://doi.org/10.1088/1464-4266/4/1/201
https://doi.org/10.1126/science.aac5138
https://doi.org/10.1126/science.aac5138
https://doi.org/10.1038/nature08919
https://doi.org/10.1126/science.abe8770
https://doi.org/10.1038/nature16176
https://doi.org/10.1080/14786440708520475
https://doi.org/10.1080/14786440708520475
https://doi.org/10.1103/PhysRev.131.2766
https://doi.org/10.1103/PhysRevLett.10.277
https://doi.org/10.1103/PhysRevLett.51.1415
https://doi.org/10.1088/1475-7516/2018/07/064
https://doi.org/10.1088/1475-7516/2018/07/064
https://doi.org/10.1103/PhysRevD.96.123532
https://doi.org/10.1103/PhysRevD.96.123532
https://doi.org/10.1016/S0370-1573(98)00014-3
https://doi.org/10.1016/j.physleta.2006.10.048
https://doi.org/10.1016/j.physleta.2006.10.048
https://doi.org/10.4007/annals.2010.172.291
https://doi.org/10.4007/annals.2010.172.291
https://doi.org/10.1016/0378-4363(88)90181-7
https://doi.org/10.1016/0378-4363(88)90181-7
https://doi.org/10.1103/PhysRevA.43.4014
https://doi.org/10.1103/PhysRevA.43.4014
https://doi.org/10.1023/A:1021867510898
https://doi.org/10.1023/A:1021867510898
https://doi.org/10.1103/PhysRevD.89.043521
https://doi.org/10.1103/PhysRevD.97.083519
https://doi.org/10.1103/PhysRevLett.103.111301
https://doi.org/10.1103/PhysRevD.88.035023
https://doi.org/10.1103/PhysRevD.88.035023
https://doi.org/10.1103/PhysRevD.42.3413
https://doi.org/10.1103/PhysRevD.42.3413
https://doi.org/10.1103/PhysRevD.50.4807
https://doi.org/10.1103/PhysRevD.50.4807
https://doi.org/10.1088/0264-9381/13/3/006
https://doi.org/10.1088/0264-9381/13/3/006
https://arXiv.org/abs/1711.05719
https://doi.org/10.1103/PhysRev.177.1882
https://doi.org/10.1103/PhysRevD.85.063520
https://doi.org/10.1103/PhysRevD.85.063520
https://arXiv.org/abs/1509.02081
https://doi.org/10.1016/j.physletb.2017.04.069
https://doi.org/10.1016/j.physletb.2017.04.069
https://doi.org/10.1103/PhysRevD.97.043531
https://doi.org/10.1038/nature00968
https://doi.org/10.1038/nature00968
https://doi.org/10.1088/0953-4075/45/10/103001
https://doi.org/10.1016/S0375-9601(98)00386-7
https://doi.org/10.1016/S0375-9601(98)00386-7
https://doi.org/10.1103/PhysRevLett.99.010401
https://doi.org/10.1103/PhysRevLett.99.010401
https://doi.org/10.1103/PhysRevA.77.023619
https://doi.org/10.1103/PhysRevA.80.023611
https://doi.org/10.1103/PhysRevA.80.023611
https://doi.org/10.1364/OL.8.000177
https://doi.org/10.1364/OL.8.000419
https://doi.org/10.1364/OL.8.000419
https://doi.org/10.1103/RevModPhys.81.299
https://doi.org/10.1103/RevModPhys.81.299
https://doi.org/10.1038/306141a0
https://doi.org/10.1126/science.1058149
https://doi.org/10.1103/PhysRevD.105.036012
https://doi.org/10.1103/PhysRevD.105.036012
https://doi.org/10.1016/j.physleta.2003.09.058
https://doi.org/10.1016/j.physleta.2003.09.058
https://doi.org/10.1103/PhysRevA.77.033613
https://doi.org/10.1103/PhysRevA.77.033613
https://doi.org/10.1088/1367-2630/aa766b
https://doi.org/10.1088/1367-2630/aa766b
https://doi.org/10.1103/PhysRevA.101.043604
https://doi.org/10.1038/35089017
https://doi.org/10.1038/nphys3366
https://doi.org/10.1038/nphys3366
https://doi.org/10.21105/astro.2106.03528
https://doi.org/10.21105/astro.2106.03528
https://doi.org/10.1103/PhysRevLett.113.261302
https://doi.org/10.1103/PhysRevLett.113.261302
https://doi.org/10.1103/PhysRevA.66.052323
https://doi.org/10.3938/jkps.73.1596
https://doi.org/10.1086/177173
https://doi.org/10.1086/177173
https://doi.org/10.1103/PhysRevLett.104.041301

