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We derive analytic covariance matrices for the N-point correlation functions (NPCFs) of galaxies in the
Gaussian limit. Our results are given for arbitrary N and projected onto the isotropic basis functions given by
spherical harmonics andWigner3j symbols.A numerical implementationof the 4PCFcovariance is compared
to the sample covariance obtained from a set of lognormal simulations, Quijote dark matter halo catalogues,
and MultiDark-Patchy galaxy mocks, with the latter including realistic survey geometry. The analytic
formalism gives reasonable predictions for the covariances estimated frommock simulations with a periodic-
box geometry. Furthermore, fitting for an effective volume and number density by maximizing a likelihood
based onKullback-Leibler divergence is shown to partially compensate for the effects of a nonuniformwindow
function. Our result is recently shown to facilitate NPCF analysis on a realistic survey data.
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I. INTRODUCTION

Large-scale structure (LSS) is a powerful observable
with which to elucidate cosmic evolution. To characterize
its spatial distribution, various summary statistics have
been proposed, of which the most prominent are the two-
point statistics, i.e., the two-point correlation function
(2PCF) and its Fourier-space counterpart, the power spec-
trum (e.g., Refs. [1,2]).
Although two-point statistics fully capture information

in the early Universe, assuming a standard inflationary
model with adiabatic perturbations, gravitational evolution
induces nonlinearities in the LSS at late times, spreading
information into higher-order statistics. Furthermore, dif-
ferent mechanisms during inflation can generate distinctive
non-Gaussian signatures [3–7]. These two effects justify
pushing beyond the power spectrum or 2PCF. Examples
include the three-point correlation function (3PCF) [8–14],

the bispectrum [15–19], skew spectra [20,21], the marked
density field [22,23], and the integrated bispectrum and
trispectrum [24,25]. Methods such as baryon acoustic
oscillation (BAO) reconstruction [26–30], forward model-
ing of the galaxy density field [31–34], and machine
learning techniques have also been proposed as alternative
but complementary approaches to summary statistics.
Previous work has demonstrated that combining two-
and higher-point statistics can break the degeneracy
between linear bias and the amplitude of matter fluctua-
tions, tighten constraints on standard ΛCDM parameters
[35–38], and provide further insights into the neutrino mass
[39–44] and modified gravity [45,46]. Gravitational evo-
lution imprints a useful shape on the N-point statistics; in
Ref. [47], it was shown that for N ¼ 3 this shape can
potentially provide complementary information to BAO
reconstruction when it is used as standard ruler.
To infer cosmological parameters from the N-point

correlation functions (NPCFs) using Bayes’ theorem with
a Gaussian likelihood, a covariance matrix is required.*jiamin.hou@ufl.edu
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Usually, this is obtained by sampling independent realiza-
tions of the statistic from simulations. However, this
approach introduces sampling variance, which then prop-
agates into the parameter estimates [48–51]. To reduce this
variance, the number of mock catalogs must be much larger
than the dimension of the NPCFs; if the statistic contains
many bins, the computational cost of this poses a signifi-
cant challenge.
An alternative approach is to compute the covariances

analytically. This has been intensively studied especially
for two- and three-point statistics [10,52–62]. Philcox et al.
[63] recently developed an efficient algorithm to measure
the NPCF for arbitrary N; given the high dimensionality of
the NPCFs for large N, this poses a further challenge for
covariance estimation. Thus far, few studies have consid-
ered the covariance of the NPCFs with N > 3. To address
this, here we derive an analytic expression for the NPCF
covariance at arbitraryN. In order to efficiently characterize
the NPCF we work with the isotropic basis functions
developed in Ref. [64]; these have rotational symmetry
in 3D, and may be related to the quantum-mechanical
angular momentum basis states.
An important assumption in our modeling is that the

two-point statistics are the dominant contribution to the
covariance, i.e., we ignore contributions from three- and
higher-point statistics. To test this assumption, we use
simulations that include non-Gaussian effects. For the
majority of this paper, we assume the two-point statistics
to be isotropic, such that the spatial distribution of the
galaxy pairs is independent of the line of sight (LOS). In
practice, a galaxy’s peculiar velocity, induced by its local
gravitational environment, does give rise to redshift-space
distortions (RSD) and thus breaks isotropy. Although the
main tests in this paper focus on the isotropic case, in the
Appendix E we show an analytic expression that includes
the effects of RSD by expanding the anisotropic two-point
statistics in multipoles with respect to the LOS. Finally, we
compare the results of our formalism to the covariance
estimated from mock catalogs with a realistic survey
geometry.
In Sec. II we briefly review the isotropic basis and its

properties, before the NPCF estimator is defined in Sec. III.
In Sec. IV we present our formalism for the theoretical
covariance in the Gaussian random field (GRF) limit: we
start with the basic elements as building blocks for
constructing the Gaussian covariance, present the general
formalism for the NPCF covariance, and end with explicit
expressions for the case of N ¼ 4. In Sec. V we compare
our numerical implementation of the Gaussian NPCF
covariance to a set of lognormal mocks, a set of halo
catalogs from N-body simulations using Quijote simula-
tions and Patchy mocks, where the latter include realistic
survey geometry. We summarize our results in Sec. VI.
Appendices A, B, and D provide intermediate derivation

steps as well as consistency checks, Appendix C discusses
the covariance contribution from the disconnected piece of
the NPCF estimators, and Appendix E presents the deri-
vation of the covariance including RSD. The code for
computing the covariance of the connected 4PCFs is
publicly available [65].

II. REVIEW OF THE ISOTROPIC BASIS
FUNCTIONS

In this section we provide a summary of the isotropic
basis functions, including a number of important properties
that will be needed later for the derivation of the theoretical
covariance. Further details can be found in Ref. [64].

A. Construction of the isotropic basis functions

In our notation, the isotropic functions PΛ are sums of
products of n spherical harmonics Ylm multiplied by a
product of Clebsch-Gordan coefficients, denoted by CΛM.
They are constructed so as to be invariant under simulta-
neous rotation of all n coordinates:

PΛðR̂Þ ¼
X

m1…mn

CΛMYl1m1
ðr̂1Þ � � �Ylnmn

ðr̂nÞ; ð1Þ

where R̂ stands for a collection of unit vectors r̂1;…; r̂n.
Each unit vector r̂i is associated with a rotation generatorLi,
i.e., the angular momentum operator. The isotropic PΛ
function is an eigenfunction of each operator L2

i with
eigenvalue liðli þ 1Þ and of the operator ðPn

i¼1LiÞ2 with
eigenvalue zero (see also the discussion in Ref. [66] for a
generalization of this toD dimensions).We denote the orbital
angular momenta by li, withmi being their projections onto
the z axis [67]. For n > 3 the combination of a given set of
orbital angular momenta l1;…;ln is not unique: we need to
specify intermediate orbital angular momenta. These are
constructed from the primary orbital angular momenta, for
example, ðL1 þL2Þ2 with eigenvalue l12ðl12 þ 1Þ, and
analogously for ðL1 þL2 þL3Þ2, etc. For brevity, we
hereafter call the li “primary” angular momenta, and
the l12, l123, … “intermediate” angular momenta.
Further, we use Λ to indicate the collection of angular
momenta fl1;l2; ðl12Þ;l3; ðl123Þ;…;lng, with intermedi-
ate angular momenta in the brackets, and M to represent
the collection of azimuthal angular momentum com-
ponents fm1; m2;…; mng, with each mi ¼ f−li;…;lig,
m12 ¼ f−l12::;…;l12::g, and

P
N−1
i mi ¼ 0. In our con-

vention, the primary angular momenta l1;l2;… follow the
ordering of the unit vectors: l1 corresponds to r̂1, l2

corresponds to r̂2, etc.
The CΛM coefficient can be expressed using Wigner 3j

symbols:
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CΛM ¼ EðΛÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l12 þ 1

p
× � � � ×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l12…n−2 þ 1

p X
m12…

ð−1Þκ
�
l1 l2 l12

m1 m2 −m12

��
l12 l3 l123

m12 m3 −m123

�
� � �

×

�
l12…n−2 ln−1 ln

m12…n−2 mn−1 mn

�
; ð2Þ

where EðΛÞ ¼ ð−1Þ
P

i
li and κ ¼ l12 −m12 þ l123−

m123 þ � � � þ l12…n−2 −m12…n−2. If the sum of the angular
momenta is even, then EðΛÞ ¼ 1 and PΛ is real. Otherwise,
EðΛÞ ¼ −1 and PΛ is imaginary. For n ¼ 2 and n ¼ 3, CΛM
becomes

Cll
0

mm0 ¼ ð−1Þl−mffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p δKl;l0δKm;−m0 ;

Cl1l2l3m1m2m3
¼ ð−1Þl1þl2þl3

�
l1 l2 l3

m1 m2 m3

�
; ð3Þ

with δKlil0i
being the Kronecker delta. The result in the second

line is nonzero onlywhenl1,l2, andl3 satisfy the triangular
inequality, jl1 − l2j ≤ l3 ≤ l1 þ l2. Furthermore, if any of
the angular momenta are zero, the second line reduces to the
first (see Eq. 34.3.1 of Ref. [68]).
The form of the CΛ

M coefficient is chosen to ensure
orthonormality of the isotropic basis functions. The ortho-
normality relation is

Z
dR̂PΛðR̂ÞP�

Λ0 ðR̂Þ

¼ δKl1l01
δKl2l02

× � � � × δKl12l012
× � � � × δKlnl0n : ð4Þ

Using this, we can expand an arbitrary isotropic function in
this basis,

ζðRÞ ¼
X
Λ
ζΛðRÞPΛðR̂Þ;

with R≡ fr1; r2;…; rng and R≡ fr1; r2;…; rng. By
invoking the orthonormality relation (4), we can obtain
the expansion coefficient

ζΛðRÞ ¼
Z

dR̂ζðRÞP�
ΛðR̂Þ:

In our context, ζðRÞ is the N-point correlation function.
If we expand the function in the basis PΛ, parity-even
correlators will have real coefficients, but parity-odd
correlators will have purely imaginary coefficients.

B. Useful properties

As we will see in Sec. IVA, the covariance matrix
calculation in the isotropic basis involves pairs of galaxyN-

tuplets. In the limit in which our calculation proceeds, we
assume that the density fluctuations are a Gaussian random
field and hence we focus on products of correlations
between pairs of points. Each of the two N-tuplets can
be understood as a “primary” galaxy at absolute positions x
and x0, respectively. The two primaries are separated by a
vector s. To increase the symmetry of our calculation, we
pretend that the primaries have relative positions around x
and x0 of r0 and r00; at the end, we will take the limit that
these go to zero, but retaining them in intermediate steps
turns out to simplify the derivation. Around each “primary”
there are then three “secondaries” whose relative positions
are given by fr1; r2; r3g and fr01; r2; r3g, respectively.
We then examine connections between galaxies from the

“unprimed” family and the “primed” family; these con-
nections occur by going along a vector r, then along s, and
then along r0. Thus, any connection gives rise to a three-
argument isotropic basis function. The setup is shown
in Fig. 2.
For an N-point function covariance, we have 2N density

points, and so the number of pairs is N. Thus, the number of
connections is also N, and so we are motivated to look at
products of N isotropic functions of three arguments, i.e.,Q

N−1
i¼0 Plil0il

00
i
ðr̂i; r̂0i; ŝÞ. Furthermore, since we are interested

only in the radial information, the angular part will be
integrated over. Before we dive into the calculation, it is
useful to summarize some useful properties of the isotropic
basis thatwewill repeatedly encounter in the rest of thepaper.

1. Rotation averaging a product of isotropic functions

Consider a product of p spherical harmonics. If we
represent integration over the rotations R by dR withR
dR ¼ 1 then, as shown in Ref. [64], averaging over the

rotation group projects out the isotropic components:

Z
dR

Yp
j¼1

Yljmj
ðRr̂jÞ ¼

X
Λ
CΛMPΛðR̂Þ:

The result is nonzero only if
P

j mj ¼ 0 and the li satisfy a
generalized triangular inequality, namely, that they can be
combined to make a state of zero total angular momentum.
The sum over Λ includes all possibilities that can be
constructed from the given primary lj.
The rotational average of a product of p spherical

harmonics with a common argument is determined in a
similar fashion:
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Z
dR

Yp
j¼1

Yljmj
ðRr̂Þ ¼ ð4πÞ−p=2

Yp
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lj þ 1

q X
Λ
CΛMC

Λ
0

¼ ð4πÞ−p=2
X
Λ
DP

ΛC
Λ
0 C

Λ
M;

where M stands for all of the mj and the subscript
0≡ f0; 0;…g, and the sum is over all Λ consistent with
the given li (by the introduction of intermediate l12, etc.).
We have defined the following coefficient involving the
primary angular momenta:

DP
Λ ¼

Yp
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lj þ 1

q
:

The superscript P stands for “primary.” Since we will use it
often, we write out DP

Λ for p ¼ 3 explicitly:

DP
lil0il

00
i
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2li þ 1Þð2l0

i þ 1Þð2l00
i þ 1Þ

q
:

The product of p isotropic functions with three arguments
can be explicitly expressed in terms of spherical harmonics as

Yp
i¼1

Plil0il
00
i
ðr̂i; r̂0i; ŝÞ

¼
Yp
i¼1

X
mi;m0

im
00
i

C
lil0il

00
i

mim0
im

00
i
Ylimi

ðr̂iÞYl0im
0
i
ðr̂0iÞYl00i m

00
i
ðŝÞ: ð5Þ

Since the isotropic basis does not encode the absolute
orientation of each galaxy N-tuplet, we can average over
orientation of the r̂i, r̂0i, and ŝ via Eq. (5) with the relative
orientations of directional vectors within each galaxy
N-tuplet fixed. Following this, we find

Z
dRdR0dS

Yp
i¼1

Plil0il
00
i
ðr̂i; r̂0i; ŝÞ

¼ ð4πÞ−p=2
X
ΛΛ0Λ00

QΛΛ0Λ00
DP

Λ00CΛ
00

0 PΛðR̂ÞPΛ0 ðR̂0Þ; ð6Þ

where Λ, Λ0, and Λ00 are formed from the primary compo-
nents li, l0

i, and l
00
i , respectively. We introduce the quantity

QΛΛ0Λ00 ¼
Yp
i¼1

X
mi;m0

i;m
00
i

C
lil0il

00
i

mim0
im

00
i
CΛMC

Λ0
M0CΛ

00
M00 ; ð7Þ

where the subscripts M, M0, and M00 stand for collections of

fmig, fm0
ig, and fm00

i g. Since C
lil0il

00
i

mim0
im

00
i
has a mixture of

angular momenta, we write out its components explicitly.

2. Orthogonality relation for and product of isotropic
functions

We note that after the rotation average in Eq. (6), there is
a product of isotropic functions with arguments R̂. Since
the PΛ are a complete basis, it is possible to write products
of two isotropic basis functions with the same argument as
a sum of single isotropic basis functions weighted by a
coupling coefficient:

PΛðR̂ÞPΛ0 ðR̂Þ ¼
X
Λ00

EðΛ00ÞGΛΛ0Λ00
PΛ00 ðR̂Þ; ð8Þ

where the phase EðΛ00Þ in the coefficient arises due to the
conjugation property of the isotropic function P�

Λ00 ðR̂Þ ¼
EðΛ00ÞPΛ00 ðR̂Þ and we define GΛΛ0Λ00

as the generalized
Gaunt integral [64],

GΛΛ0Λ00 ≡
Z

dR̂PΛðR̂ÞPΛ0 ðR̂ÞPΛ00 ðR̂Þ

¼ ð4πÞ−p=2
�Yp
i¼1

DP
lil0il

00
i
C
lil0il

00
i

000

�
QΛΛ0Λ00

: ð9Þ

From its definition we see that GΛΛ0Λ00
is symmetric inΛ;Λ0,

and Λ00; we include its explicit evaluation for n ¼ 2, 3, and
4 in Appendix A.

3. Reordering of arguments

The isotropic function is expressed with arguments
r̂1;…; r̂n with the canonical ordering i ¼ 1;…; n (index
sorted from small to large in ri). When we later consider the
covariance, the contraction of the overdensity fields may be
permuted such that the canonical ordering of the indices
is no longer guaranteed. The isotropic functions with
permuted arguments can be expanded in terms of the
canonically ordered ones (since these latter form a com-
plete basis) as

PΛðR̂GÞ ¼
X
Λ0

BG−1

Λ;Λ0PΛ0 ðR̂0Þ; ð10Þ

where G denotes the permutation of the set f1; 2;…; ng.
The reordering coefficient of the inverse permutation,
BG−1

Λ;Λ0 , can be obtained by applying the orthogonality
relation

BG−1

Λ;Λ0 ≡
Z

dR̂PΛðR̂GÞP�
Λ0 ðR̂0Þ

¼
X
M

Cl1l2l12…ln
m1m2m12…mnC

lG1lG2l012…lGn
mG1mG2m0

12
…mGn

Yn
i¼1

δKl0ilGi−1
; ð11Þ

where G−1 denotes the inverse permutation of G. Here,
products of Kronecker deltas ensure that Λ and Λ0 have the
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same primary angular momenta; however, they may still
differ in intermediate angular momenta.

III. N-POINT CORRELATION FUNCTIONS

The NPCF is defined as

ζðr1; r2;…; rN−1Þ
≡ hδðxÞδðxþ r1Þδðxþ r2Þ � � � δðxþ rN−1Þi; ð12Þ

where the galaxy overdensity is given by δðxÞ ¼
nðxÞ=n̄ − 1, where nðxÞ is the galaxy number density with
mean n̄ and hδi ¼ 0. The angle bracket denotes the
ensemble average of the overdensity field.
The expectation value in Eq. (12) can be expanded as a

sum of combinations of overdensity fields at different
spatial positions. In the N ¼ 4 case, the full 4PCF reads

ζðr1; r2; r3Þ ¼ ξðr1Þξðr2 − r3Þ þ ξðr2Þξðr1 − r3Þ
þ ξðr3Þξðr1 − r2Þ þ ζcðr1; r2; r3Þ

≡ ζdcðr1; r2; r3Þ þ ζcðr1; r2; r3Þ; ð13Þ

which consists of two parts. The connected four-point
function ζcðr1; r2; r3Þ captures the non-Gaussian part of
the signal. We denote the other terms, composed of the
products of two-point correlation functions, as the dis-
connected part, ζdcðr1; r2; r3Þ. For N ¼ 4 the disconnected
terms coincide with the 2PCF that sourced by Gaussian
statistics. For N > 4, however, the disconnected piece can
also receive non-Gaussian contributions, such as 2PCFþ
3PCF for the 5PCF. Our interest here is the non-Gaussianity
induced by the higher-order statistics. For this purpose, we
employ a connected-only estimator that subtracts all of the
disconnected pieces at the estimator level. (For details
regarding the connected-only estimator, see our companion
paper [69].)
In the limit of large volumes V, we can replace the

ensemble average by a spatial integral by invoking ergo-
dicity. This motivates the general NPCF estimator

ζ̂ðr1; r2;…; rN−1Þ ¼
Z

dx
V

δðxÞδðxþ r1Þδðxþ r2Þ

× � � � δðxþ rN−1Þ; ð14Þ

which is unbiased. Using orthonormality to project this
onto the isotropic basis PΛ (using n ¼ N − 1) for given
primary angular momenta Λ≡ fl1;l2; ðl12Þ;…;lN−1g as
in Eq. (4), we obtain the estimator

ζ̂Λðr1; r2;…; rN−1Þ ¼
Z

d3x
V

δðxÞ
YN−1

i¼1

Z
dr̂iδðxþ riÞ

× P�
Λðr̂1; r̂2;…; r̂N−1Þ: ð15Þ

Explicitly, for the 4PCF, we find

ζ̂Λðr1; r2; r3Þ ¼
Z

d3x
V

δðxÞ
Z

dr̂1dr̂2dr̂3δðxþ r1Þ

× δðxþ r2Þδðxþ r3ÞP�
l1l2l3

ðr̂1; r̂2; r̂3Þ:
ð16Þ

Throughout this paper we make two important assump-
tions. First, we work in the Gaussian limit for the
covariance calculation. Even though the gravitationally
induced higher-order statistics entering the covariance in
principle do not vanish, we assume that they are suppressed
compared to the two-point statistics. This assumption greatly
simplifies the derivation below as we will only need to
consider the contractions between two overdensity fields,
and thus may express results entirely in terms of the 2PCF or
the power spectrum. This assumption will be addressed
belowby comparing theGaussian covariance to that obtained
fromN-body simulations. Second, we assume that the 2PCF,
and likewise the power spectrum, are isotropic. The majority
of the paper is based on this assumption; however, Sec. V
includes a comparison between the theoretical isotropic
Gaussian covariance numerical simulations including
RSD, which breaks rotational invariance.
We use the following conventions for Fourier transforms:

δ̃ðkÞ ¼
Z

d3re−ik·rδðrÞ; δðrÞ ¼
Z
k
eik·rδ̃ðkÞ; ð17Þ

where we define
R
k ≡ð2πÞ−3 R d3k. The 2PCF ξðrÞ and

power spectrum PðkÞ are related by

hδðriÞδðrjÞi ¼ ξðjri − rjjÞ ¼
Z
k
PðkÞeik·ðri−rjÞ: ð18Þ

Hereafter, we assume isotropy, and thus assume PðkÞ≡
PðkÞ, with k ¼ jkj and ξðrÞ≡ ξðrÞ. In Appendix E we
discuss how to go beyond the assumption of an isotropic
power spectrum.

IV. DERIVATION OF THE GAUSSIAN NPCF
COVARIANCE MATRICES

The covariance matrix for the NPCF is defined as

Covðζ̂ðRÞ; ζ̂ðR0ÞÞ
≡ hζ̂ðRÞζ̂�ðR0Þi− hζ̂ðRÞihζ̂�ðR0Þi

¼
Z

d3x
V

d3x0

V

�YN−1

i¼0

δðxþ riÞδðx0 þ r0iÞ
�
− hζ̂ðRÞihζ̂�ðR0Þi

¼
Z

d3s
V

�YN−1

i¼0

δðxþ riÞδðxþ r0iþ sÞ
�
− hζ̂ðRÞihζ̂�ðR0Þi;

ð19Þ
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where ζ̂ðRÞ is the NPCF estimator with coordinates
R ¼ fr1; r2;…; rN−1g, with an analogous definition for
R0. Going from the second to the third line we have defined
the separation vector between the primary galaxies of the
two N-plets as s≡ x0 − x, and dropped the spatial integral
over x, assuming statistical homogeneity. Strictly, we first
need to apply a Poisson average to discrete tracers, giving
rise to the shot noise term. Here we use abbreviated
notation and replace PðkÞ → PðkÞ þ n̄−1, for number
density n̄, when we later compare our analytic results to
those from the simulations. We label the vertices containing
r0 and r00 as primary vertices (with r0 ¼ r00 ¼ 0) and label
the (N − 1) points with separations r1; r2;…; rN−1 relative
to the primary as endpoints. In the Gaussian limit we only
need to calculate contractions between pairs of overdensity
fields. The NPCF covariance has 2N overdensity fields and
thus forms N pairs of contractions.
Whereas the definition of the covariance matrix given in

Eq. (19) (evaluated under the assumption of Gaussianity)
includes all possible contractions of 2N density fields, in
this section we consider only pairs that are contractions
between unprimed and primed families, i.e., between ri and
r0j. We term these contractions (and the corresponding
covariance matrix contribution) “fully coupled” as they
fully couple the unprimed and primed families. Any self-
contraction (i.e., involving contraction of two density fields
within the same family, i.e., between ri and rj with i ≠ j)
arises from the disconnected contributions to the NPCF. We
term any covariance contribution that includes at least one
self-contraction “partially coupled.” All such contributions
vanish in the covariance of the connected-only estimator
[69]. This fact allows us to focus on the fully coupled
covariance terms. The introduction of the connected-only
estimator implies that the disconnected terms can be

isolated and that the calculation of their associated partially
coupled covariance is not strictly needed; we provide its
derivation in Appendix C 1 for completeness.
Below, we derive a general expression for the fully

coupled NPCF covariance matrix under the assumption that
the density fields are Gaussian distributed. In order to offer
a more intuitive understanding of the coupling structure, we
also present a diagrammatic approach to the calculation.
We note that the 3PCF covariance can be obtained from

the results we present here. This covariance has already
been derived via a different approach in Ref. [55]. We used
our formalism to do the derivation and compared with this
earlier result as a check; up to normalization and phase
conventions we found agreement, and we do not display the
derivation here [70]. Instead, after treating the case for
general N, we then proceed to the 4PCF covariance as an
example.

A. Basic elements for the covariance

We first consider the coupling between two endpoints,
specifically, δðxþ riÞ from the unprimed family and δðxþ
sþ r0jÞ from the primed family, with i and j between 0 and
N − 1. Such a contraction is represented by the tripolar
structure in Fig. 1. The primary vertices r0 and r00 are
indexed as a convenience for keeping track of the permu-
tations of unprimed and primed density fields; we will need
such permutations later in the calculation. However, once
we have computed our desired contractions in the isotropic
basis, we may evaluate the result at r0 ¼ 0 and r00 ¼ 0,
since we place the primary vertices at x and x0, respectively.
We display this approach in Fig. 1.
Expanding the contraction hδðxþ riÞδðxþ sþ r0jÞi in

the isotropic basis, we find

hδðxþ riÞδðxþ sþ r0jÞi≡ ξðjr0j þ s − rijÞ ¼ ð4πÞ3=2
X
lil0jL

i−liþl0
jþLflil0jLðri; r0j; sÞDP

lil0jL
C
lil0jL
000 Plil0jL

ðr̂i; r̂0j; ŝÞ: ð20Þ

A detailed derivation of this can be found in Appendix B. The highlighted radial part corresponds to diagram 4 in Fig. 1. To
simplify what follows, we introduce the f integral

fl1l2l3ðr1; r2; r3Þ≡
Z

k2dk
2π2

PðkÞjl1ðkr1Þjl2ðkr2Þjl3
ðkr3Þ; ð21Þ

following Eq. (64) in Ref. [10]. In practice, this is computed in radial bins, wherein we average each spherical Bessel
function (sBF) over ri with weight r2i [see Eq. (D2)]. Importantly, the bin average commutes with the integral and can be
done prior to the k integration, which avoids performing the integral over fine radial bins.
We now consider the forms of Eq. (20) when i and j assume different values. There are three distinct cases. First, we have

a primary-to-primary coupling (the highlighted radial part corresponds to diagram 1 in Fig. 1):

hδðxþ r0Þδðxþ sþ r00Þijr0¼r0
0
¼0 ¼ ξðjr00 þ s − r0jÞjr0¼r0

0
¼0 ¼ ð4πÞ3=2f000ð0; 0; sÞP000ð0; 0; ŝÞ: ð22Þ
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Second, we have a primary–to–endpoint coupling. These couplings can be obtained by taking one of r0 or r00 and their
associated angular momenta to zero. In the first line below, the primary is unprimed and the endpoint is primed. In the
second line, we give the alternate choice, easily obtained by symmetry. Below, the highlighted radial parts correspond to
diagrams 2 and 3 in Fig. 1. We have

hδðxþ r0Þδðxþ sþ r0jÞijr0¼0 ¼ ξðjr0j þ s − r0jÞjr0¼0 ¼ ð4πÞ3=2
X
l0

ð−1Þl0f0l0l0 ð0; r0j; sÞDP
0l0l0C0l

0l0
000 P0l0l0 ð0; r̂0j; ŝÞ; ð23Þ

hδðxþ riÞδðxþ r00 þ sÞijr0
0
¼0 ¼ ξðjsþ r00 − rijÞjr0

0
¼0 ¼ ð4πÞ3=2

X
l

fl0lðri; 0; sÞDP
l0lC

l0l
000Pl0lðr̂i; 0; ŝÞ: ð24Þ

Finally, we have an endpoint–to–endpoint coupling, which is already given by Eq. (20).

B. Fully coupled Gaussian covariance

1. General formalism for fully coupled Gaussian NPCF covariance

The covariance defined in Eq. (19) can be expanded into the isotropic basis. Using Eq. (20), each pair contraction can be
written as a Fourier transform of the power spectrum, which can be expressed as a product of the basic elements with
tripolar structure defined in Sec. IVA:

FIG. 1. Diagrammatic representation of the basic elements used as building blocks for the fully coupled (i.e., connected) covariance.
Coupling between the overdensity fields across the unprimed and primed families [corresponding to density fields from the first and
second NPCFs in Eq. (19)] is represented by a tripolar structure [diagrams 1–4, cf. Eqs. (20)–(23)]. Each tripolar structure depends on
three vectors: ri, r0j, and s. We use dotted lines to represent the separation vector s. The open circle attached to the end of the dotted lines
can be connected to the one leg of the coupling kernel in diagram 5. Dashed lines depict primary vertices for r0 or r00 and solid lines are
for endpoints with nonzero i or j. Diagram 5 is the coupling kernel arising from the rotational average over the unit vectors r, r0, and s
[cf. second line in Eq. (26)]. In the N ¼ 4 case the coupling kernel has four legs. The lower-left diagram (with the cartoon telescope)
shows our coordinate convention. x denotes the absolute coordinate; ri and r0j are the relative coordinates for the unprimed and primed
families, respectively. s is the separation vector between the two families.
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Covðζ̂ðRÞ; ζ̂ðR0ÞÞ ¼
X
Λ;Λ0

EðΛ0ÞCovΛ;Λ0 ðR;R0ÞPΛðR̂ÞPΛ0 ðR̂0Þ

¼
Z

d3s
V

X
G

YN−1

i¼0

hδðxþ rGiÞδðxþ r0i þ sÞijrG0¼r0
0
¼0

¼
Z

d3s
V

ð4πÞ3N=2
X
G

YN−1

i¼0

X
lGil0iLi

i−lGiþl0
iþLiflGil0iLi

ðrGi; r0i; sÞDP
lGil0iLi

C
lGil0iLi

000 PlGil0iLi
ðr̂Gi; r̂0i; ŝÞjrG0¼r0

0
¼0;

ð25Þ

where we define CovΛ;Λ0 ðζðRÞ; ζðR0ÞÞ≡ CovΛ;Λ0 ðR;R0Þ and use the conjugation property P�
Λ0 ðR̂0Þ ¼ EðΛ0ÞPΛ0 ðR̂0Þ. We

denote the permutation by G, with a total of N! permutation terms. Since the basis is isotropic, we can apply Eq. (6) and
rotationally average over dR, dR0, and dS [with the normalization

R
dS ¼ ð4πÞ−1 R dŝ]:

X
Λ;Λ0

EðΛ0ÞCovΛ;Λ0 ðR;R0ÞPΛðR̂ÞPΛ0 ðR̂0Þ ¼
Z

s2ds
V

4πð4πÞ3N=2
X
G

X
LGL0Λ00

YN−1

i¼0

i−lGiþl0iþLiflGil0iLi
ðrGi; r0i; sÞDP

lGil0iLi
C
lGil0

iLi

000

× ð4πÞ−N=2QLGL0Λ00
DP

Λ00CΛ
00

0 PLG
ðR̂ðNÞ

G ÞPL0 ðR̂0ðNÞÞjrG0¼r0
0
¼0

¼
Z

s2ds
V

4πð4πÞ3N=2
X
G

X
LGL0Λ00

YN−1

i¼0

i−lGiþl0iþLiflGil0iLi
ðrGi; r0i; sÞ

× GLGL0Λ00
DP

Λ00CΛ
00

0 PLG
ðR̂ðNÞ

G ÞPL0 ðR̂0ðNÞÞjrG0¼r0
0
¼0; ð26Þ

where we denote LG ≡ flG0;lG1;…;lGðN−1Þg, L0 ≡
fl0

0;l
0
1;…;l0

N−1g as the angular momenta associated with
the R and R0 vectors, Λ00 ≡ fL0; L1;…; LN−1g as the
angular momentum associated with the separation vector
s, and M00 ¼ fM0;M1;…;MNg. The highlighted coeffi-
cients give rise to the coupling kernel in diagram 5 of
Fig. 1. Notice that the isotropic basis used herein has N
coordinates [instead of N − 1, as in the NPCF definition of
Eq. (15)], given that we evaluate the function at r0 ¼ 0 and
r00 ¼ 0 with corresponding angular momenta lG0 ¼ 0 and
l0
0 ¼ 0. Later, we will project the covariance onto the

(N − 1) basis; for clarity, we distinguish the two with the

superscript (N). Since both PLG
ðR̂ðNÞ

G Þ and PL0 ðR̂0ðNÞÞ
contain a factor Y00ðr̂0Þ ¼ ð4πÞ−1=2, we find a total

prefactor ð4πÞ−1. This cancels with our normalization
convention for the rotational average. The noncanonically

ordered isotropic function, PLG
ðR̂ðNÞ

G Þ, can be rewritten
using the reordering coefficient defined in Eq. (11):

PLG
ðR̂ðNÞ

G Þ ¼
X
J

BG−1

LG;J
PJðR̂ðNÞÞ: ð27Þ

Finally, we project the covariance onto the isotropic basis
P�

ΛðR̂Þ and P�
Λ0 ðR̂0Þ and perform an angular average over r

and r0. Orthogonality forces J → Λ andL0 → Λ0, giving the
general form for the NPCF covariance:

CovΛ;Λ0 ðR;R0Þ ¼ ð4πÞ3N=2

Z
s2ds
V

X
G

X
Λ00;LG

ð−1Þ½−ΣðΛÞ−ΣðΛ0ÞþΣðΛ00Þ�=2BG−1

LG;ΛG
LGΛ0Λ00

DΛ00CΛ
00

0

YN−1

i¼0

flGil0iLi
ðrGi; r0i; sÞjrG0¼r0

0
¼0;

ð28Þ

where ΣðΛÞ ¼ P
i li, ΣðΛ0Þ ¼ P

i l
0
i, and ΣðΛ00Þ ¼ P

i Li.
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2. Fully coupled Gaussian 4PCF covariance

Henceforth, we will focus on the fully coupled covari-
ance of the 4PCF. To derive this, we can use the general
form given in Eq. (28); however, as an explicit verification,
we construct the 4PCF covariance in a different manner.
Noticing that contractions with the primary vertices lead to
basis functions involving zero angular momenta, and we
split the fully coupled covariance into two different cases:
those involving a mutual coupling of the primary vertices
δðr0Þ and δðr00 þ sÞ (left panel of Fig. 2) and those where

the primary vertices couple to the endpoints of the opposite
family (right panel of Fig. 2).
In this decomposition, the fully coupled covariance can

be written as

CovðfcÞΛ;Λ0 ðR;R0Þ ¼ CovðfcÞ;IΛ;Λ0 ðR;R0Þ þ CovðfcÞ;IIΛ;Λ0 ðR;R0Þ: ð29Þ

Next, we will discuss these two cases.
Case I: In this scenario the contraction of the eight

density fields leads to the term

IIðR;R0; sÞ≡ hδðxþ r0Þδðxþ sþ r00Þijr0¼r0
0
¼0

× hδðx0 þ riÞδðx0 þ sþ r01Þihδðx00 þ rjÞδðx00 þ sþ r02Þihδðx000 þ rkÞδðx000 þ sþ r03Þi
¼

X
G

ξðjsþ r00 − r0jÞξðjsþ r01 − rG1jÞξðjsþ r02 − rG2jÞξðjsþ r03 − rG3jÞjr0¼r0
0
¼0;

where we define the shorthand II in the first line. Here,
fi; j; kg denotes a permutation of the set f1; 2; 3g, which
does not include the primary vertices at r0 and r00. There are
3! ¼ 6 options by which to contract the remaining three
density fields from the primed and unprimed families. In

the second line we introduce the notation G to denote a
permutation, with fi; j; kg ¼ fG1; G2; G3g. The six per-
mutations are given explicitly in Table I. Using the basic
elements constructed in Eq. (20), we can express the
product of the four 2PCFs as

IIðR;R0; sÞ ¼
X
G

Y3
i¼0

ð4πÞ3=2
X
lGil0iL

i−lGiþl0iþLiflGil0iLi
ðrGi; r0i; sÞDP

lGil0
iLi
C
lGil0iL
000 PlGil0iLi

ðr̂Gi; r̂0i; ŝÞjr0¼r0
0
¼0; ð30Þ

where we denote the collection of angular momenta as
LG ¼ f0;lG1;lG2;lG3g, L0 ¼ f0;l0

1;l
0
2;l

0
3g, and Λ00 ¼

f0; L1; L2; L3g. In principle, these should all involve
intermediate angular momenta; however, the angular mo-
mentum associated with the primary vertex is set to be zero,
and thus the intermediate momenta are uniquely defined.

Performing a rotational average of dR, dR0, and dS over
r̂Gi, r̂0i, and ŝ leads to the quantity QΛGΛ0Λ00

and a prefactor
ð4πÞ−2 for N ¼ 4. When combined with the coefficients

DP
lGil0iLi

and C
lGil0iLi

000 for i ¼ 0;…; 3 [cf. Eqs. (6) and (9)],

we obtain the generalized Gaunt integral. The Gaunt

Case I Case II

r3

r0 r0

r1
r2

r3

s

r2
r1

r3

r0r0

r1
r2

r3

s

r2
r1

FIG. 2. Schematic for the fully coupled 4PCF covariance (i.e., the covariance of the connected 4PCF). We split the covariance into two
cases. In Case I, the primary vertices (red dots, labeled by r0 and r00) from the primed and unprimed families are mutually coupled and all
of the endpoints (labeled by ri and r0i) are coupled. In Case II, the primary vertices are each coupled to an endpoint from the opposite
family.
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integral forN ¼ 4 involves a product of two 9j symbols and
intermediate angular momenta given in Eq. (A3). However,
one of the 9j symbols can be reduced due to the presence of

zero angularmomenta, and the fully determined intermediate
angularmomenta:l12 ¼ lG1,l0

12 ¼ l0
1, andl12 ¼ lG1. The

Gaunt integral in this case reads

GΛGΛ0Λ00 ¼ ð4πÞ−2DP
lG1l01L1

Y3
i¼0

DP
lGil0iΛi

C
lGil0iLi

000

8<
:

0 lG1 lG1

0 l0
1 l0

1

0 L1 L1

9=
;
8<
:

lG1 lG2 lG3

l0
1 l0

2 l0
3

L1 L2 L3

9=
;

¼ ð4πÞ−2
Y3
i¼0

DP
lGil0iΛi

C
lGil0

iLi

000

8<
:

lG1 lG2 lG3

l0
1 l0

2 l0
3

L1 L2 L3

9=
;; ð31Þ

where DP
lG1l01L1

in the first line is cancelled by the first 9j

symbol, leaving only one 9j symbol in the second line. Here
we introduce a Levi-Civita symbol, defined by EG ¼ 1 if
fG1; G2; G3g is an even permutation of f1; 2; 3g and −1
otherwise. The values of EG for each permutation G are
given in Table I. Practically, this leads to a prefactor of
ð−1Þl1þl2þl3 if the permutation is odd, and unity otherwise.
For the even-parityΛ this phase does not play a role, but it is
of importance for odd-parity Λ.
Using Eq. (10), we can restore the canonical ordering

in R̂G ¼ fr̂G1; r̂G2; r̂G3g. For the 4PCF covariance, the

reordering coefficient BG−1

LG;J
for ðN − 1Þ ¼ 3 involves only

a phase and the product of three Kronecker deltas:

BG−1

LG;J
¼ ð−1ÞΣðΛÞð1−EGÞ=2

Y3
i¼1

δKjilGi−1
: ð32Þ

Performing angular averages over R̂ and R̂0 allows us to set
J → Λ and pick out the coefficients of the isotropic basis
PΛðR̂Þ and PΛ0 ðR̂0Þ. Altogether, we arrive at the final form
for Case I:

CovðfcÞ;IΛ;Λ0 ðR;R0Þ ¼ ð4πÞ4
X
G

ð−1ÞΣðΛÞð1−EGÞ=2
X

L1L2L3

DP
L1L2L3

CL1L2L3

000

8<
:

lG1 lG2 lG3

l0
1 l0

2 l0
3

L1 L2 L3

9=
;

×
Z

s2ds
V

Y3
i¼1

½ð−1Þð−lGi−l0
iþLiÞ=2DP

lil0iLi
C
lGil0iLi

000 ξðsÞflGil0iLi
ðrGi; r0i; sÞ�: ð33Þ

For illustration, we consider the limit where the corre-
lation function ξðsÞ becomes a Dirac delta function, and the
power spectrum consequently becomes unity. This limit

enables a direct evaluation of both Eq. (30) and its
representation (33), providing a useful cross-check of our
calculation.
From Eq. (30), we see that ξðsÞ → δ½3�D ðsÞ implies that

s → 0. Consequently, we have that r01 → rG1, r02 → rG2,
r03 → rG3. We now consider the representation in terms of f
integrals. For the first, taking PðkÞ → 1 gives

f000ð0; 0; sÞ ¼
Z

k2dk
2π2

j0ðksÞ ¼
1

4πs2
δ½1�D ðsÞ: ð34Þ

This is simply a representation of the 3D Dirac delta
function with spherical symmetry, which is expected
since f000ð0; 0; sÞ ¼ ξðsÞ.
The other f integrals can be similarly evaluated in the

limit s → 0 [and again, PðkÞ ¼ 1]. We have

TABLE I. Explicit forms of the six permutations appearing in
the Case I covariance terms. These arise from the various options
for contracting density fields in Eq. (30). Each term involves a
contraction between rGi and r0i. We additionally give the Levi-
Civita permutation factor EG for each.

G1 G2 G3 EG

1 2 3 1
1 3 2 −1
2 3 1 1
2 1 3 −1
3 1 2 1
3 2 1 −1
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lim
s→0

flGil0iLðrGi; r0i; sÞ

¼ lim
s→0

Z
k2dk
2π2

jlGiðkrGiÞjl0iðkr0iÞjLðksÞ

¼
Z

k2dk
2π2

jlGiðkrGiÞjl0iðkr0iÞ

¼ 1

4πrGir0i
δ½1�D ðrGi − r0iÞδKlGil0i : ð35Þ

For the first equality we have noted that, as s → 0, only j0
is nonzero, meaning L → 0 and hence l → l0 due to the 3j

symbol in Eq. (33). We recognize this integral as a Dirac
delta function, as before.
As shown in Fig. 4, this result implies that, in the limit

of uniform power spectra, the covariance for two tetra-
hedra is nonvanishing only when (1) they have zero
separation length and one of their vertices is coincident,
and (2) their sides are the same length, i.e., when one
tetrahedron can be perfectly rotated in 3D to overlap with
the other.
Case II: Here we consider sets of contractions that

involve couplings between primary vertices and endpoints
across the two families. Each is of the form

IIIðR;R0; sÞ≡ hδðxþ riÞδðxþ sþ r00Þihδðx0 þ r0Þδðx0 þ sþ r0i0 Þijr0¼r0
0
¼0

× hδðx00 þ rjÞδðx00 þ sþ r0j0 Þihδðx000 þ rkÞδðx000 þ sþ r0k0 Þi
¼

X
G;H

ξðs − rG1Þξðsþ r0H1Þξðs − rG2 þ r0H2Þξðs − rG3 þ r0H3Þ; ð36Þ

where fi; j; kg and fi0; j0; k0g are permutations of the set
f1; 2; 3g. We write the two sets of permutations as
fi;j;kg¼fG1;G2;G3g, fi0;j0;k0g¼ fH1;H2;H3g, where
one set follows a cyclic permutation, due to the explicit
contraction with the primary vertex. Given the symmetry
among the pair ordering, i.e., fj; j0g ↔ fk; k0g, we can
always fix the permutation of one set of endpoints and let the

other set explore all permutations. Here we choose G to
follow a cyclic permutation (giving rise to a factor of 3), with
H being a standard permutation including six terms. In total,
there are 18 permutations in this scenario. For clarity, we
write them explicitly in Table II. As before, the primary
vertices at r0 and r00 are not permuted.
Including the basic covariance elements, we can write

IIIðR;R0; sÞ ¼
X
G;H

ð4πÞ3=2
X
lG1L1

flG10lG1ðrG1; 0; sÞDP
lG10lG1

ClG10lG1000 PlG10lG1ðr̂G1; 0; ŝÞ

× ð4πÞ3=2
X
l0
H1
L1

ð−1Þl0H1f0l0H1
l0H1

ð0; r0H1; sÞDP
0l0H1

l0H1
C
0l0H1

l0H1

000 P0l0
H1
l0H1

ð0; r̂0H1; ŝÞ

×
Y3
i¼2

ð4πÞ3=2
X

lGil0
HiLi

i−lGiþl0
HiþLiflGil0HiLi

ðrGi; r0Hi; sÞDD
lGil0HiLi

C
lGil0HiLi

000 PlGil0HiLi
ðr̂Gi; r̂0Hi; ŝÞ; ð37Þ

where the collection of angular momenta is LG ¼
flG1;0;lG2;lG3g,L0

H¼f0;l0
H1;l

0
H2;l

0
H3g, andΛ00 ¼ flG1;

l0
H1;L2;L3g.
To restore the canonical ordering for R̂G ¼ fr̂G1;

r̂G2; r̂G3g and R̂0
H ¼ fr̂0H1; r̂

0
H2; r̂

0
H3g, we again use the

reordering coefficients, in the form

BG−1

LG;J
¼ ð−1ÞΣðΛÞð1−EGÞ=2

Y3
i¼1

δKjilGi−1
;

BH−1

L0
H;J

0 ¼ ð−1ÞΣðΛ0Þð1−EHÞ=2
Y3
i¼1

δKj0il0Hi−1
: ð38Þ

Since we restrictG to cyclic permutations, BG−1

LG;J
is merely a

Kronecker delta with a trivial phase. Additionally, the

phase factor ΣðΛ0Þ does not play a role for even-parity
Λ, but is of importance for odd-parity Λ.
As before, we proceed by performing a rotational

average over dR, dR0, and dS, which leads to a generalized
Gaunt integral, involving two 9j symbols, and a sum over
intermediate angular momenta. The presence of zero
angular momenta simplifies the intermediate coefficients,
such that l12 ¼ lG1, l0

12 ¼ l0
H1, and, consequently,

l00
12 ≡ L1. We do not need to consider permutation of

the angular momenta L because their allowed range is fixed
once the unprimed li and the primed angular momenta l0

i

are explicitly given (due to the triangular inequality). With
these considerations, the generalized Gaunt integral for
N ¼ 4 can be simplified as
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GLGL0
HΛ

00 ¼ ð4πÞ−2ðDP
lG1l0H1

0
Þ2
Y3
i¼1

½DP
lGil0HiLi

�ClG10lG1000 C
0l0H1

l0H1

000 C
lG2l02L2

000 C
lG3l03L3

000

×

8<
:

lG1 0 lG1

0 l0
H1 l0

H1

lG1 l0
H1 L1

9=
;
8<
:

lG1 lG2 lG3

l0
H1 l0

H2 l0
H3

L1 L2 L3

9=
;

¼ ð4πÞ−2ð−1ÞlG1þl0H1DP
lG2l0H2

L2
DP

lG3l0H3
L3
C
lG2l02L2

000 C
lG3l03L3

000

8<
:

lG1 lG2 lG3

l0
H1 l0

H2 l0
H3

L1 L2 L3

9=
;; ð39Þ

where the first 9j symbol yields a factor of ðDP
lG1l0H1

Þ−2. The two 3j symbols involving zero angular momentum cancel with

DP
lG1l0H1

, giving rise to an overall phase factor.

From the definition of the coefficients we find

DP
Λ00CΛ

00
0 ¼ ð−1ÞL1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lG1 þ 1Þð2l0

H1 þ 1Þð2l00
1 þ 1Þð2l00

2 þ 1Þð2l00
3 þ 1Þ

q
× C

lG1l0H1
L1

000 CL1L2L3

000 : ð40Þ

We proceed by combining Eqs. (38)–(40), inserting these expressions into the definition of the covariance, and projecting
out the coefficients proportional to PΛðR̂Þ and PΛ0 ðR̂0Þ. Noting that lG1 þ l0

H1 þ L1 must be an even integer (or else

C
lG1l0H1

L1

000 is zero), this factor can be dropped from the overall phase. Altogether, we arrive at the final form for Case II:

CovðfcÞ;IIΛ;Λ0 ðR;R0Þ ¼ ð4πÞ4
X
G;H

ð−1ÞΣðΛ0Þð1−EHÞ=2
X

L1L2L3

DP
L1L2L3

CL1L2L3

000

8<
:

lG1 lG2 lG3

l0
H1 l0

H2 l0
H3

L1 L2 L3

9=
;

×
Z

s2ds
V

Y3
i¼1

½ð−1Þð−lGi−l0HiþLiÞ=2DP
lGil0HiLi

C
lGil0HiLi

000 �

× flG10lG1ðrG1; 0; sÞf0l0H1
l0H1

ð0; r0H1; sÞflG2l0H2
L2
ðrG2; r0H2; sÞflG3l0H3

L3
ðrG3; r0H3; sÞ: ð41Þ

TABLE II. Explicit forms of the 18 permutations appearing in the Case II covariance terms. These arise from the
various options for contracting density fields in Eq. (36), in particular the contraction of rþ rG1 with r00, r with
r00 þ r0H1, r0 þ rG2 with r00 þ r0H2, and r0 þ rG3 with r00 þ r0H3 (noting the symmetry of the final two terms). We
additionally give the permutation factors EG and EH for each.

G1 G2 G3 H1 H2 H3 EG EH

1 2 3 1 2 3 1 1
1 2 3 1 3 2 1 −1
1 2 3 2 1 3 1 1
1 2 3 2 3 1 1 −1
1 2 3 3 1 2 1 1
1 2 3 3 2 1 1 −1
2 3 1 1 2 3 1 1
2 3 1 1 3 2 1 −1
2 3 1 2 1 3 1 1
2 3 1 2 3 1 1 −1
2 3 1 3 1 2 1 1
2 3 1 3 2 1 1 −1
3 1 2 1 2 3 1 1
3 1 2 1 3 2 1 −1
3 1 2 2 1 3 1 1
3 1 2 2 3 1 1 −1
3 1 2 3 1 2 1 1
3 1 2 3 2 1 1 −1
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FIG. 3. Diagrammatic representation of a fully coupled covariance matrix with Case I shown in the upper panel and Case II in the
lower panel (as in Fig. 2). Each case can be broken down into two elementary structures: (a) a tripolar structure arising from the
contraction between overdensity fields from the primed and unprimed families, and (b) a coupling kernel given by the rotational average
over r, r0, and s. Moreover, since the covariance involves two primary vertices (one from the primed and the other from the unprimed
family), there are two dashed lines connected to either each other or a solid line. All three pieces are multiplied, summed over the angular
momenta, and integrated over s. In this figure we use Gi and Hi to denote permutations. For N ¼ 4, the phase ð−1ÞΣðΛÞð1−EGÞ=2 or
ð−1ÞΣðΛ0Þð1−EHÞ=2 can be directly read off from the plot as one goes around clockwise: an even permutation in the ordering of angular
momenta corresponds to a positive Levi-Civita symbol and always gives a positive phase, while an odd permutation can flip the sign of
the phase for parity-odd correlators. Diagrams 2 and 3 in Fig. 1 can be distinguished from each other by reading the diagram clockwise
(i.e., one cannot change one into the other by a 2D rotation in the page). The following steps are used to build the “snowflake” diagrams
on the right-hand sides of the equation: (1) take the tripolar structures and multiply them with the coupling kernel, and then (2) perform
an integral over the radial part s of the separation vectors.

FIG. 4. Covariance calculation for the 4PCF in the limit of zero separation (i.e., where ξ becomes a Dirac delta function). Left column:
in Case I, this limit implies that the two tetrahedra overlap at their origin with s → 0, r01 → rG1, r02 → rG2, and r03 → rG3. Right column:
the same limit in Case II implies that the two tetrahedra also overlap but with one of the primary vertices sitting on an endpoint from the
other family. Consequently, we find s → rG1, s → −r0H1, s → r0H2 − rG2, and s → r0H3 − rG3.
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As before, if we take the limit that the 2PCF is a Dirac
delta function, ξðs − rG1Þ → δ½3�D ðs − rG1Þ implies the limit
s → rG1. Recalling PðkÞ ¼ 1, the f integral associated with
the second correlation function becomes

lim
s→rG1

f0l0H1
l0
H1
ð0; r0H1; sÞ

¼ lim
s→rG1

Z
k2dk
2π2

jlðkrG1Þjlðkr0H1Þ

¼ 1

4πrG1r0H1

δ½1�D ðrG1 − r0H1Þ: ð42Þ

In addition, we have s → rGi − r0Hi for i ¼ 2, 3. In this case,
the resulting integral of three spherical Bessel functions can
be simplified using Eq. (3.21) of Ref. [71], which we do not
duplicate here. However, the former work shows the result
to be zero unless the three vectors s, rGi, and r0Hi form a
closed triangle, coinciding with our delta function
assumption [72]. This result is unsurprising because the
Dirac delta function can be written as an integral of a
product of spherical Bessel functions. It is interesting to
consider the physical picture (see Fig. 4). When the
correlation functions approach delta functions in Case II,
the two tetrahedra also overlap but with their primary
vertices sitting on the endpoint of that side; in particular,
that side of the tetrahedra must have the same length as the
separation vector of each family.
Notably, Cases I and II have similar mathematical

structures, with essentially no differences induced by
distinguishing between the primary vertices and the end-
points. Combining both cases allows us to recover the
general form [see Eq. (28)] including all 4! ¼ 24 permu-
tation terms. We additionally note that all of the above
derivations could be performed in the spherical harmonics
basis and would have the same results. We will not repeat
this derivation here. Finally, the calculation of the 4PCF
covariance for Case I and II can be diagrammatically
represented in Fig. 3.

V. NUMERICAL IMPLEMENTATION AND
COMPARISON WITH SIMULATIONS

A. Implementation of the connected covariance

The ingredients for the analytic covariance calculation
from Eq. (28) comprise the f integrals, a set of coefficients
including the product of DP

Λ, Wigner 3j and 9j symbols,
and the phase. In practice, we compute all of these elements
using PYTHON. For efficiency, we evaluate the Wigner 3j
and 9j symbols using the SymPy package. We precompute
the f integrals for each radial bin, as well as the coupling
coefficients, before assembling the covariance. These are
stored in dictionary format and loaded during the calcu-
lation. To compute the f integral, which involves fine
binning in k and s, we use an analytic form for the bin-
averaged spherical Bessel functions [see Eq. (D2)], which
is exact and speeds up the implementation. We use 5000

points in k ∈ ½10−4; 5� h Mpc−1 and 4100 points in
s ∈ ½10−5; 103� h−1 Mpc, with both linearly spaced. We
choose these ranges and grid sizes such that, on the one
hand, the arrays fit in the same memory block managed by
NumPy, and on the other hand, they cover the integration
range of interest with sufficiently small grid size. Given
that our aim is to measure the 4PCF up to lmax ¼ 4,
we compute the f integrals up to l ¼ 8 (considering
L ¼ lþ l0). To verify the numerical evaluation and
implementation of the bin-averaged f integral, we compare
the resulting forms to an analytic solution for the integral of
a product of three spherical Bessel functions [73], modified
to accommodate for the bin averaging. This is discussed in
Appendix D.

B. Comparison with log-normal simulations

We now compare the theoretical covariance to those
extracted from simulations. First, we use a set of 1000
log-normal mocks at redshift z ¼ 2with a number density of
∼1.5 × 10−4 ½h−1Mpc�−3 and volume V ¼ 3.9 ½Gpc=h�3.
While itmay seemmore prudent to construct simulations that
match our assumption of Gaussianity, this is nontrivial, since
we require a discrete density field. In principle, one could use
a set of discrete particles which are assigned the Gaussian
random field value as weights. However, this approach does
not correctly reproduce the covariance, since it puts multiple
galaxies at the same position and effectively enhances the
shot noise. The log-normal mocks are generated using
NBODYKIT [74], where the overdensity fields are evolved
according to the Zel’dovich approximation (lowest-order
Lagrangian perturbation theory) [75,76]. We prepare mocks
in both real and redshift space in order to investigate the
impact of RSD on the covariance. The input linear power
spectrum is generated with the cosmological parameters
fΩm;Ωbh2;h;ns;σ8g¼f0.31;0.022;0.676;0.97;0.8g with
a linear bias b1 ¼ 1.8. The 4PCFs are measured using
the Encore code [77] at ten radial bins centered at rbin ¼
f27; 41;…; 153g h−1Mpc with a bin width of 14 h−1Mpc.
In this setup, these log-normalmocks have a low level of non-
Gaussianity due to the high redshift and have a relatively high
shot noise.
The sample covariance estimated from mock simulations

is defined as

Cmock ¼
1

Nmock − 1

XNmock

i¼1

ðζðiÞ − ζ̄ÞðζðiÞ − ζ̄ÞT; ð43Þ

where the data vector ζðiÞ (with dimension Nbins) is the
4PCF measured from the ith mock simulation, and ζ̄ is the
mean over all Nmock realizations. Since the mean is
estimated from the mocks themselves, the definition
includes the prefactor ðNmock − 1Þ−1.
When computing the f integrals in real space, we use the

same input power spectrum that was used to generate the
log-normal mocks. In redshift space the power spectrum is
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additionally multiplied by the isotropic Kaiser factor
ðb2 þ 2fb=3þ f2=5Þ=b2, with f being the logarithmic
derivative of the linear growth factor with respect to the
scale factor [78]. In both cases, we damp the power spectra
by exp ð−ðk=k0Þ2Þ to avoid numerical issues, setting
k0 ¼ 1½Mpc−1h�. We find that the shot noise term is
sensitive to the precise form of the exponential damping
function. For the log-normal mocks, which feature a large
shot noise, we observe better agreement between theory
and simulations when the shot noise damping is not
included.
Figure 5 shows a comparison between the theoretical and

sample covariance from the log-normal mocks for angular
momenta fΛ;Λ0g ¼ f000; 000g in real space. The 2D plot
in the first panel shows the model prediction for the fully
coupled 4PCF correlation matrix M, where the correlation
matrix is the covariance matrix C normalized by its
diagonal terms, i.e., Mij ¼ Cij=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
CiiCjj

p
. We arrange the

radial bins in the following manner: we start by fixing bins
in r1 and r2 and loop over r3, then move to the next radial
bin in r2 at the same fixed r1 and again loop over r3, before
moving to the next bin in r1. This is repeated until all
possible radial binning combinations are explored; this
specific way of arranging the bins is denoted as the net bin
index. During this process we force the radial bin arrange-
ment to be r1 < r2 < r3. In total, we have C3

10 ¼
10!=ð7!3!Þ ¼ 120 radial bins. The radial bin arrangement
also leads to the block structure in the covariance matrix.
The second panel of Fig. 5 shows the measurement from

1000 log-normal mocks in real space with the inset
showing the measurements of the full 4PCF from

Gaussian mocks. Comparing the first and second panels,
we can see that the analytic covariance is able to capture
the off-diagonal features. The covariance for fΛ;Λ0g ¼
f000; 000g is mostly positive as a result of the autocovar-
iance for the angular momenta themselves. The third panel
shows a comparison of the diagonal elements of these two
matrices on a log scale. The extended panels at the top and
right of the first panel in Fig. 5(a) show the Gaussian 4PCF
model in real space, where the (disconnected) Gaussian
4PCF consists of a product of two 2PCFs. (See Appendix A
of Ref. [69] for a derivation.) Since the 2PCF is approx-
imately given by a declining power law, the combination
with our radial bin arrangement leads to the sawtooth shape
of the 4PCF. The extended panels at the top and right of
the second panel of Fig. 5(b) are the measured full 4PCF
(including both connected and disconnected terms) in real
space. They both assist the visualization of the block
structure of the correlation matrices.
In order to quantify the similarity between the Gaussian

model prediction and the mock measurements, we perform
a test, which we call the “the half-inverse test.” This
considers the matrix

S≡ C−1=2
modelCmockC

−1=2
model − 1; ð44Þ

where 1 is the identity matrix. If the two covariances were
identical S which would vanish [79]. Figure 6 shows the
half-inverse test in the left panel, with the eigenvalues of the
4PCF covariance inferred from the model (solid blue curve)
and the mocks (dotted black curve) shown in the right
panel. If the analytic and sample covariance matrices agree,

(a) (b) (c)

FIG. 5. Comparison of the analytic and sample covariance matrices for a set of lognormal simulations. The first and second panels show
the comparison of the correlation matrix (defined by Mij ¼ Cij=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
CiiCjj

p
) for angular momenta fΛ;Λ0g ¼ f000; 000g in real space.

Panel (a) gives the model prediction for the fully coupled 4PCF correlation matrix, and the panels above and to the left show the
(disconnected) Gaussian 4PCF model in real space. The horizontal and vertical axes indicate 120 radial bins, ordered so that
r1 < r2 < r3. This gives rise to the block structure in the matrix and the sawtooth shape of the correlation functions. Panel (b) shows the
correlation matrix estimated from 1000 log-normal mocks, with the extended panels showing the measured full 4PCF from the log-
normal mocks in real space. Panel (c) shows a comparison of the diagonal elements of the two covariance matrices; we note that the
values (vertical axis) are logarithmically scaled.
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the half-inverse matrix should follow a Wishart distribution
[80,81] and we expect the standard deviation of half-
inverse matrix elements to scale as 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
Nmock

p
∼ 0.03,

where Nmock ¼ 1000 is the number of mocks. The standard
deviation of the diagonal elements should be 2 times larger
than that of the off-diagonal ones, since the expression for
the variance of a Wishart distribution contains a Kronecker
delta for matrix elements i ¼ j.
For the log-normal mocks, the mean of the half-inverse

matrix elements is hSi ¼ 2.3 × 10−3, which is much
smaller than their standard deviation. However, we observe
a residual in the diagonal terms; indeed, the mean of these is
0.180. If we decompose the theoretical covariance into its
diagonal eigenvalue matrix D and a unitary matrix V of
eigenvectors, we can write C−1=2

model ¼ VD−1=2V−1. If the
eigenbasis of the analytic covariance is close enough to
the mock-estimated one, the half-inverse test reduces to the

ratio between the eigenvalues of the two covariances. Here,
we see that the eigenvalues of the model covariance are
slightly lower than those of the mock covariance. A
possible explanation for this residual is that the log-normal
mocks have intrinsically high shot noise, which can
generate non-Gaussian (but Poissonian) terms in the
covariance that require modeling beyond the Gaussian
approximation. Another possibility arises from the choice
of input power spectrum. Here, we used the power
spectrum that generated the log-normal mock, instead of
that measured from the log-normal mocks. Due to the log-
normal transformation of the density fields, and post-
Zel’dovich evolution, the two spectra could differ slightly.
Figure 7 is similar to Fig. 5, but shows a comparison

between the two sets of covariances in redshift space.
Compared to the real-space correlation matrix, we see that
RSD slightly enhances the off-diagonal structure for

(a) (b)

FIG. 6. Left: half-inverse test comparing the log-normal simulations and the analytic covariance, both of which are shown in Fig. 5. If
the covariance matrices agree, both the mean and the off-diagonal elements should be noisy fluctuations around zero. For clarity, we plot
only the lower triangle, and give the standard deviation for the off-diagonal elements (σnondiag), for the diagonal elements (σdiag), and for
all elements combined (σall). Right: comparison between the eigenvalues of the analytic covariance (solid curve) and log-normal mock
covariance (dotted curve).

(a) (b) (c) (d)

FIG. 7. Same as Fig. 5, but comparing the analytic and log-normal covariances in redshift space. Here we show the results of the half-
inverse test in the same format as Fig. 6(a). The model also works well in redshift space in that it shows comparable coupling structure
for the correlation matrices and the diagonal elements of the covariances. However, we do observe a residual in the diagonal elements of
the matrix for the half-inverse test.

HOU, CAHN, PHILCOX, and SLEPIAN PHYS. REV. D 106, 043515 (2022)

043515-16



fΛ;Λ0g ¼ f000; 000g. The agreement in the diagonal ele-
ments and the half-inverse test are of a similar level compared
to the real-space test,with a similar diagonal residual found in
the half-inverse test as well. Although our numerical imple-
mentation of the 4PCF covariance ignores higher-order
angular momentum contribution arising from RSD. A more
rigorous treatment of this effect can be found in Appendix E.
This comparison shows that the RSD effect can be largely
accounted for by simply modeling the covariance using an
input power spectrum equal to the RSD monopole. Finally,
we note that the RSD doubles the amplitude of the Gaussian
4PCF model and the full 4PCF measured from the mocks in
the extended panels of Figs. 7(a) and 7(b). These quantities
are dominated by the two-point statistics and the increase in
the amplitude is approximately given by the Kaiser factor to
the fourth power.

C. Comparison with Quijote simulations

To further understand the non-Gaussianity arising from
gravitational evolution and to test thevalidity of ourGaussian
assumption, we compare the theoretical covariance formal-
ism to the sample covariancemeasured from theQuijote halo
catalogs [82]. Each of the Quijote simulations has a box size
ofV ¼ 1.0 ½h−1Gpc�3, a fiducial cosmology fΩm;Ωb; h; ns;
σ8g ¼ f0.3175; 0.049; 0.6711; 0.9624; 0.834g, zero neu-
trino mass, and is at redshift z ¼ 0.5 [83].
We test our algorithm on 100 Quijote halo catalogs

created from 10243 cold dark matter particles. Halos are
identified using a particle number cut Nparticle > 150 per
halo, which corresponds to Mcut ¼ 1.2 × 1013 ½h−1M⊙�.
This gives 2 times lower shot noise compared to the log-
normal mocks. As before, the catalogs are prepared both in
real and redshift space, and we use the same radial binning.
The f integral is constructed from the power spectrum
monopole measured from the Quijote halo catalogs for both
real and redshift space. For this set of simulations we apply

exponential damping to both the power spectrum and
shot noise.
Figure 8 shows a comparison for fΛ;Λ0g ¼ f000; 000g

in real space. Again, we see a positive matrix, but this time
with an enhanced off-diagonal feature, due to the lower
shot noise (approximately lower by a factor of 2 than that of
the log-normal mocks). Figure 9 gives a comparison for the
cross order fΛ;Λ0g ¼ f000; 101g in real space. Again, the
analytic correlation matrix is able to capture the features in
the off-diagonal elements seen in the mocks. The overall
negative structure in the correlation matrix is due to the
anticorrelation between the 4PCFs ζ000 and ζ101. Since we
correlate two different angular distributions, we expect the
structure of the covariance to be asymmetric. The right
panel shows the diagonal elements of the cross covariance
for the theoretical model and the Quijote simulation; here,
the model covariance slightly underpredicts the covariance
diagonal at the small scales seen at the peaks of the
sawtooth shape, but overall the ratio between the sample
and mock covariance oscillates around unity with a
mean hCmock

ii =Cmodel
ii i ∼ 0.96.

To quantify the similarity between the model predictions
and simulations, we again utilize the half-inverse test. The
left panel in Fig. 10 shows the results for fΛ;Λ0g ¼
f000; 000g, while the right panel shows fΛ;Λ0g ¼
f000; 101g, both of which are in real space. In order to
invert the cross covariance, we build a full matrix which
includes the autocovariance fΛ;Λ0g ¼ f000; 000g and
fΛ;Λ0g ¼ f101; 101g, which doubles the size of the
matrix. In this case, we do not observe any residuals in
the diagonal of the matrix. Given 100 halo catalogs, the
standard deviation is expected to be of order 1=

ffiffiffiffiffiffiffiffi
100

p ¼
0.1, matching that found from the data.
In addition, we also perform a comparison for fΛ;Λ0g ¼

f000; 101g in redshift space, shown in Fig. 11. Compared
to the real space, RSD enhances the diagonals by a factor of
∼2.3 for this cross covariance term, but its overall shape is

(b)(a) (c)

FIG. 8. Same as Fig. 5, but for the Quijote halo catalog in real space, using 100 simulations. For the simulations with non-negligible
non-Gaussianity, the model can adequately predict various features of the correlation matrix, with a good match for the diagonal
elements of the covariance as well.
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almost unaffected. From the right panel, we see that the
diagonal elements of the theoretical covariance slightly
underpredict those estimated from Quijote simulations at
small scales, but the mean of the ratio is close to unity,
with hCmock

ii =Cmodel
ii i ∼ 1.04. This is also demonstrated in

Fig. 11(d), which shows no residual from the half-inverse
test. In principle, we could extend our model to include RSD
effects as described in Appendix E; we leave this effort for
future work.

D. Comparison with the MultiDark-Patchy mocks

Finally, to test the impact of the nonuniform survey
geometry, we compare our Gaussian covariance model to a

set of MultiDark-Patchy mocks [84,85] produced for the
Sloan Digital Sky Survey’s Baryon Oscillation
Spectroscopic Survey (BOSS) data release 12 (DR12)
[86,87]. In this test, we focus on the set of Patchy mocks
that match the galaxy clustering of the BOSS constant
stellar mass (CMASS) luminous red galaxy (LRG)
sample at an effective redshift zeff ¼ 0.57 in the north
Galactic cap (NGC). The mock catalogs were constructed
using the Planck cosmology fΩm;Ωb;h;ns;σ8g¼
f0.307115;0.048206;0.6777;0.9611;0.8288g.
For simulations in a cubic box, the volume V entering the

theoretical covariance is simply given by the box size, and
the number density is the ratio between the number of
particles (galaxies or halos) and the volume. For a sample

(a) (b) (c)

FIG. 9. Same as Fig. 5, but for the Quijote halo catalog in real space. Here, we plot the cross covariance with angular momenta
fΛ;Λ0g ¼ f000; 101g.

(a) (b)

FIG. 10. Half-inverse test for the analytic covariance and sample covariance of the Quijote halo catalog in real space, in the format of
Fig. 6(a). Left: angular momenta Λ ¼ f000g and Λ0 ¼ f000g. Right: cross covariance with angular momenta Λ ¼ f000g and
Λ0 ¼ f101g. For comparison we show the full matrix with fΛ;Λ0g ¼ f000; 000g þ f000; 101g þ f101; 000g þ f101; 101g. The
standard deviations for the off-diagonal elements (σnondiag), the diagonal elements (σdiag), and all of the elements (σall) are given in the
insets.
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with survey geometry and a radial selection function, we
generalize the volume and number density estimator of
Refs. [61,88]:

Veff ¼
½R d3rn4ðrÞw4ðrÞ�2R

d3rn8ðrÞw8ðrÞ ;

n̄eff ¼
R
d3rn8ðrÞw8ðrÞR
d3rn7ðrÞw8ðrÞ ; ð45Þ

where nðrÞ is the number density of the sample as a function
of redshift and wðrÞ is the galaxy weight (including both
systematic and weights following [89] (hereafter FKP
weights ). To calculate this, we apply the default weights
provided in the Patchy mocks. These are given by [90]

wtot ¼ wfkp · wveto · wfiber collision; ð46Þ

where the FKP weight is wfkp¼½1þ104ðh−1MpcÞ3 ·nðrÞ�−1,
wveto is a binary indicatingwhether theobject is excludedbya
veto mask or not, and wfiber collision is a fiber collision weight.
For Patchy NGC, we obtain n̄ ¼ 3.2 × 10−4 ðh−1MpcÞ−3
and Veff ¼ 1.9 ðh−1GpcÞ3. However, we caution that this is
only an approximation and does not fully account for the
survey geometry, even for the 2PCF covariance [61].
The input power spectrum is measured from the Patchy

mocks and then fitted using the effective field theory of
large-scale structure [91,92] including one-loop bias, RSD,
counterterms, and infrared resummation [93–95], imple-
mented using the Class-PT code [96]. The 4PCF is
measured from 999 Patchy mocks with random catalogs
of the same volume but 50× larger in number of objects
than the data, and the same radial binning scheme as before.
As above, we apply a Gaussian damping to the power
spectrum and shot noise, which is equivalent to convolving
with a Gaussian smoothing kernel in real space.
To compute the likelihood when performing an analysis

of an NPCF measured from data, or to perform a Fisher
forecast, we must invert the covariance matrix. Inverting
a covariance inferred directly from mocks requires the

number of mocks to be larger than the dimensionality of
the data vector, Nmock > Nd. However, in the 4PCF case,
we face a high-dimensional data vector and this invertibility
condition is generally not fulfilled.
There do exist approaches to bypass this issue, such

as the data compression scheme of Ref. [16]. This data
compression scheme requires a diagonalizable initial esti-
mate of the covariance, and it then looks for the most
informative subspace of the eigenbasis by ranking eigen-
vectors according to S=N. This subspace may be chosen to
be much lower-dimensional, and hence the covariance in
this subspace can be estimated directly from mocks and
still inverted. However, the initial estimate used to get the
eigenbasis has the full number of degrees of freedom; since
diagonalization is the same fundamental problem as matrix
inversion, one therefore cannot use the mock-based covari-
ance as this initial estimate. Rather, our analytic covariance
may be used as the initial estimate, as indeed was done
in Ref. [69].
The analytic covariancematrix formalismdoesnot include

the window function. However, the 4PCF itself can be edge
corrected (as inRef. [63]), so theGRF that corresponds to this
is the unwindowed density field. Hence, the appropriate
power spectrum to use in our template is the unwindowed
power spectrum.
We optimize the effective number density and survey

volume used in our template by fitting to the noisy covariance
measured from the mocks. Our motivation is that decreasing
the number density roughly mimics the effect of non-
Gaussianity and RSD, as well as possibly capturing some
of the window function effect outlined above. The difference
between the nominal and effectivevolumes can be interpreted
as a leading-order correction to the covariance of the survey
geometry. Such optimization helps to bring the analytic
covariance as close to the mock-based one as possible, which
benefits the analysis of the measured 4PCF [69].
To compute this, we create a 2D grid of parameters,

scanning over both the number density and the effective
volume. We maximize a log-likelihood based on the
Kullback-Leibler (KL) divergence using the expected
Wishart distribution for mock covariances [97], following

(a) (b) (c) (d)

FIG. 11. Same as Fig. 7, but for the Quijote halo catalog with angular momenta fΛ;Λ0g ¼ f000; 101g including RSD. The analytic
covariance well describes the structure of the sample covariance in this scenario.
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O’Connell et al. [98] and Philcox et al. [99]. This has the
advantage that it only requires the analytic covariance to be
inverted. The log-likelihood involves both the Gaussian
covariance and the sample covariance measured from
Patchy mocks:

− logL1ðn̄; VeffÞ ¼
Nmock

2
½TrðC−1

modelðn̄; VeffÞCmocksÞ
− log detC−1

modelðn̄; VeffÞ� þ � � � : ð47Þ

As a test, we optimize the likelihood for the Patchy
NGC region using fΛ;Λ0g ¼ f000; 000g. The 2D grid
is constructed using n̄ ∈ ½0.2; 4.4� × 10−4 ðh−1MpcÞ−3

with an interval of 2 × 10−5 ðh−1 MpcÞ−3 and V−1
eff ∈

½0.2; 5� ðh−1GpcÞ3 in 40 volume bins. Figure 12 shows
a 2D interpolation of the log-likelihood. The degeneracy
direction shows an inverse scaling relation between the
number density and volume; this is as expected, since
lowering the number density increases the shot noise,
which increases the overall amplitude of the covariance,
but it can be suppressed by a higher volume. In fact, the
volume can already be uniquely defined for a given number
density by maximizing the log-likelihood in Eq. (47):
Veff ¼ Nd=Tr½C−1

modelCmock�, where Nd is the dimen-
sionality of the corresponding data vector. For the
Patchy NGC region, the optimized number density and
volume are given by n̄¼2.6×10−4 ðh−1MpcÞ−3 and Veff ¼
1.07 ðh−1GpcÞ3, respectively. We also perform the same
fitting procedure for the south Galactic cap, obtaining n̄ ¼
2.4 × 10−4 ðh−1MpcÞ−3 and Veff ¼ 0.37 ðh−1GpcÞ3.
The comparison of the correlation matrix for fΛ;Λ0g ¼

f000; 000g is shown in Fig. 13. The left and middle panels
show the optimized correlation matrix from the model
prediction and the covariance obtained from the Patchy
NGC mocks, respectively. The right panel shows a com-
parison for the diagonal elements of the analytic covariance
model with and without optimization (solid red curve and
dotted black curve, respectively), and the Patchy mocks
(dashed grey curve). Figure 14 shows the half-inverse test
in the left panel, with the right panel giving the covariance
matrix eigenvalues predicted by the analytic model before
optimization (dotted black curve), after optimization (solid
red curve), and estimated from the Patchy mocks (grey
curve). Before applying the optimization, there is a clear
mismatch between the theoretical prediction and the mock
measurement, both in terms of its diagonal elements and the
eigenvalues. The mean of the half-inverse matrix gives
hSi ¼ 6 × 10−4, while the mean of the diagonal is 0.0048.

FIG. 12. Log-likelihood for the parameters n̄ and Veff obtained
from fitting the analytic covariance to the sample covariance of
1000 Patchy mocks (including redshift-space effects and non-
uniform survey geometry). The likelihood is constructed using
the KL divergence, as in Eq. (47).

(b)(a) (c)

FIG. 13. Same as Fig. 5 but for 999 Patchy mocks. These include both RSD and survey geometry. The third panel shows a comparison
of the diagonal elements for the Patchy covariance (grey dashed curve), and analytic covariance with and without optimization (red solid
curve and black dotted curve, respectively).
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Since the previous tests using the Quijote mocks indicate
no obvious deviations from RSD not nonlinearity, we thus
suspect that the offset is due to the survey geometry. Fitting
for the number density and effective volume, we find that
one can moderately compensate for this effect.
To this end, we also perform a parameter fit for 13

covariance terms for l1 ≤ 1. We find the optimized number
density and volume n̄ ¼ 2.4 × 10−4 ðh−1 MpcÞ−3 and
Veff ¼ 1.16 ðh−1 GpcÞ3. Figure 15 shows a comparison
of the correlation matrices estimated from the Patchy NGC
mocks and the model prediction; for visibility, we show 11
terms. The approach and the code developed in this work

have no fundamental limitation regarding lmax; we chose to
show up to lmax ¼ 4 simply because this is aligned with the
choicemade in our 4PCF analysis on BOSS data [69], which
uses this same maximum for the data analysis. Despite an
overall good agreement between themock correlationmatrix
and themodel one, we find that different angular momentum
orders are affected by the non-Gaussianity and survey
geometry in different ways. As such, the number density
and effective volume optimized for a specific angular
momentum combination is not necessarily the optimal
combination for the others. This indicates a fundamental
limitation of the fitting approximation.

(a) (b)

FIG. 14. Left: half-inverse test for the model applied to the Patchy NGC mocks for angular momenta fΛ;Λ0g ¼ f000; 000g, as in
Fig. 6(a). Right: comparison of the eigenvalues for the theoretical covariance before optimization (dotted black curve), after optimization
(solid red curve), and from the Patchy mocks (dashed grey curve).

FIG. 15. Comparison of correlation matrices estimated from Patchy NGC mocks (left) and model (right). Here we display 11 different
choices of Λ, with each submatrix being the correlation between angular momentum sets fΛ;Λ0g ¼ fl1l2l3;l0

1l
0
2l

0
3g. The shot noise

and volume entering the analytic covariance are optimized using 13 choices of Λ (those involving the first angular momentum being less
than or equal to one). Overall, we find reasonably good agreement between the Gaussian model and the sample covariance. We see some
differences in the off-diagonal terms, and these differences increase with increasing angular momenta. The diagonal terms are relatively
consistent with each other, mostly as a result of the parameter fitting.
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VI. SUMMARY

Summary statistics, such as the N-point correlation
functions, can effectively capture cosmological information
from the spatial distribution of LSS. Throughout the past
decades, significant work has been devoted to developing
pipelines for the analysis of two-point statistics, focused
primarily on the extraction of the BAO position and the
growth parameter, fσ8 [100–108]. The next generation of
surveys—e.g., the Dark Energy Spectroscopic Instrument
[109], the Euclid satellite [110,111], and the Rubin
Observatory [112]—will map out much larger survey
volumes with increased statistical power, facilitating analy-
sis beyond the two-point function.
Higher-order statistics allow us to gain new insight into

gravity-induced nonlinearities and neutrino masses, par-
ticularly in combination with two-point statistics. Further,
they can be used to study scalar parity violation, which
cannot be probed at all for NPCFs with N ≤ 3. A particular
challenge is that higher-order statistics usually imply high
dimensionality; if one pursues a simulation-based covari-
ance estimation, a large number of mocks are required,
which is computationally demanding.
In this paper we discussed an analytic approach to

computing the NPCF covariance. In particular, we decom-
posed the NPCF into the isotropic basis functions described
in Ref. [64], and computed the covariance in this basis.
Assuming the density field to be statistically isotropic (i.e.,
ignoring RSD), this is a natural basis to use, since it has full
3D rotational symmetry.
When constructing higher-order NPCFs, it is important

to subtract any contributions which also appear in the
lower-order statistics, i.e., to use only the connected NPCF.
As we have shown, the full NPCF covariance matrix can be
written as a sum of two pieces, denoted as fully coupled and
partially coupled, with only the former contributing to the
covariances of connected NPCFs. We presented a general
formalism for the NPCF covariance under the assumption
of Gaussianity, which we can further break down into basic
elements as contractions between two overdensity fields.
Each basic element consists of an f integral [Eq. (21)] with
coefficients involving products of angular momenta and 3j
symbols multiplied by a phase. We showed that the general
NPCF covariance can be built directly out of these basic
elements by invoking properties of the isotropic basis
functions. In the N ¼ 4 case, we explicitly derived the
analytic form for the 4PCF covariance, introducing a
diagrammatic representation to assist with understanding
of the coupling structure. We also numerically imple-
mented the analytic formalism for this case.
We compared our theoretical model—which assumes

Gaussianity, isotropy, and a uniform survey geometry—to
simulations with various levels of realism, including the
log-normal mocks (which have high redshift and high shot

noise, but suppressed gravitational nonlinearity) and the
Quijote simulations (which have low redshift and low shot
noise, and include nonlinear effects). One of the most
interesting conclusions from these numerical tests is that,
even though our naive Gaussian model takes neither RSD
nor gravitational non-Gaussianities into account, it produ-
ces a reasonably accurate estimate of the Quijote cova-
riances in real and redshift space. However, despite a good
overall match for the log-normal mocks, we did observe
spurious residuals via the half-inverse test. In particular, we
found a residual in the diagonal elements, which is likely
due to beyond-Gaussian correlators induced by shot noise
effects. Finally, we also tested our model using the Patchy
mocks. These have a realistic survey geometry, matching
that of the BOSS DR12 CMASS sample. We consider the
possibility in the difference can be ascribed to the survey
geometry, but we defer full exploration of this issue to
future work. Here we account for the difference by fitting
for the number density and the effective volume by
maximizing a likelihood based on the KL-divergence.
Our companion paper [113] showed that the theoretical
covariance can be used as an important tool to facilitate data
compression [16,114], allowing a detection of gravitation-
ally induced non-Gaussianity from the BOSS 4PCF.
This work represents an important step along the path to

constraining cosmology using higher-point functions. A
number of extensions are possible, in particular, including
modeling of window function effects, numerical imple-
mentation of the covariances including RSD, extensions to
higher-order statistics such as the 5PCF and 6PCF, and a
more thorough study of the performance of the Gaussian
model in the limit of high shot noise.
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APPENDIX A: EXPLICIT RESULTS FOR THE GENERALIZED GAUNT
INTEGRALS WITH n= 2, 3, AND 4

In Sec. II B we discuss the generalized Gaunt integral; here, we present explicit results for n ¼ 2, 3, and 4, following
Ref. [64]. This uses the definition of Eq. (9), which includes the quantity QΛΛ0Λ00

. For n ¼ 2, given the definition of Q in
Eq. (7), we have Λ → ðl;lÞ, Λ0 → ðl0;l0Þ, and Λ00 → ðl00;l00Þ. This leads to

GΛΛ0Λ00 ¼ ð4πÞ−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2l0 þ 1Þð2l00 þ 1Þ

p �
l l0 l00

0 0 0

�
2

: ðA1Þ

This is a rescaling of the well-known result [115] for the coefficient when a product of two Legendre polynomials is
expanded into a sum over single Legendre polynomials.
For n ¼ 3 the generalized Gaunt integral is given by

GΛΛ0Λ00 ¼ ð4πÞ−3=2QΛΛ0Λ00 Y3
i¼1

�
li l0

i l00
i

0 0 0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2li þ 1Þð2l0

i þ 1Þð2l00
i þ 1Þ

q

¼ ð4πÞ−3=2
8<
:

l1 l0
1 l00

1

l2 l0
2 l00

2

l3 l0
3 l00

3

9=
;

Y3
i¼1

�
li l0

i l00
i

0 0 0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2li þ 1Þð2l0

i þ 1Þð2l00
i þ 1Þ

q
; ðA2Þ

where we have used the definitions of C
lil0il

00
i

000 [see Eq. (4)] andDP
lil0il

00
i
[see Eq. (5)], and the quantityQΛΛ0Λ00

is given by a 9j

symbol, after summing over mi, m0
i, and m00

i (for i ¼ 1; 2; 3).

For n ¼ 4, expanding the QΛΛ0Λ00
quantity leads to ten Wigner 3j symbols, and consequently the product of two 9j

symbols. The detailed derivation of this was given in Sec. VI.4 and Eq. 71 Ref. [64], leading to the final result:

GΛΛ0Λ00 ¼ ð4πÞ−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l12 þ 1Þð2l0

12 þ 1Þð2l00
12 þ 1Þ

q Y4
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2li þ 1Þð2l0

i þ 1Þð2l00
i þ 1Þ

q �
li l0

i l00
i

0 0 0

�

×

8<
:

l1 l2 l12

l0
1 l0

2 l0
12

l00
1 l00

2 l00
12

9=
;
8<
:

l12 l3 l4

l0
12 l0

3 l0
4

l00
12 l00

3 l00
4

9=
;: ðA3Þ

APPENDIX B: DERIVATION OF THE BASIC COVARIANCE ELEMENTS

1. Real space

Here we derive the basic covariance elements presented in Sec. IVA. Without loss of generality, we consider only the
contraction between a single pair of endpoints, neglecting the subindices and denoting the positions as r and r0. The
coupling between two endpoints across the unprimed and primed families can be expanded as

hδðxþ rÞδðxþ sþ r0Þi ¼ ξðjr0 þ s − rjÞ ¼
Z
k
eik·ðr0þs−rÞPðkÞ

¼ ð4πÞ3
X
lm

X
l0m0

X
LM

il
0þL−l

Z
k
PðkÞjl0 ðkr0ÞjLðksÞjlðkrÞ

× Y�
l0m0 ðk̂ÞYl0m0 ðr̂0ÞYLMðk̂ÞY�

LMðŝÞY�
lmðk̂ÞYlmðr̂Þ; ðB1Þ

where, as stated in Sec. III, we have assumed isotropy [i.e., that PðkÞ ¼ PðkÞ] in the first equality. The second equality
arises from applying the plane-wave expansion three times. Performing the angular integral over k̂ gives the Gaunt integral:
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Gmm0M
ll0L ≡

Z
dΩkY�

lmðk̂ÞY�
l0m0 ðk̂ÞY�

LMðk̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2l0 þ 1Þð2Lþ 1Þ

4π

r �
l l0 L

0 0 0

��
l l0 L

m m0 M

�

¼ ð4πÞ−1=2DP
ll0LC

ll0L
000 Cll

0L
mm0M: ðB2Þ

Inserting the definition of the f integral [see Eq. (21)], Eq. (B1) becomes

hδðxþ rÞδðxþ sþ r0Þi ¼ ð4πÞ3
X
ll0L

X
mm0M

i−lþl0þLð4πÞ−1fll0Lðr; r0; sÞð4πÞ−1=2DP
ll0LC

ll0L
000 Cll

0L
mm0MYlmðr̂ÞYl0m0 ðr̂0ÞYLMðŝÞ

¼ ð4πÞ3=2
X
ll0L

i−lþl0þLfll0Lðr; r0; sÞDP
ll0LC

ll0L
000 Pll0Lðr̂; r̂0; ŝÞ: ðB3Þ

Finally, we give expressions for the contraction of two overdensity fields from the same family. These self-coupling terms
do not occur in the calculation of the covariance of the connected NPCF, but do appear if one considers a covariance which
includes the disconnected piece (as in Appendix C). In this case, ri and rj denote two endpoints from the same family. As
before, we apply the plane-wave expansion to the exponentials in Eq. (18), and then integrate over k̂ to find

hδðxþ riÞδðxþ rjÞi ¼ ξðjri − rjjÞ ¼
Z

k2dk
2π2

PðkÞ
X
l

jlðkriÞjlðkrjÞð2lþ 1ÞLlðr̂i · r̂jÞ

¼ ð4πÞ3=2
X
l

ð−1Þl ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p
fll0ðri; rj; 0ÞPll0ðr̂i; r̂j; 0Þ: ðB4Þ

In the second line, we have written our result in terms of the N ¼ 3 isotropic functions to maintain a consistent structure for
all of the basic elements. If one of the two overdensity fields is a primary, the expectation value is simply a 2PCF:

hδðxþ r0Þδðxþ riÞijr0→0 ¼ ξðjri − r0jÞjr0→0

¼ ð4πÞ3=2f000ðr; 0; 0ÞP000ðr̂; 0; 0Þ: ðB5Þ

2. Redshift space

Below, we derive the basic elements in redshift space, as a preparation for the fully coupled covariance with RSD
discussed in Appendix E. We first expand the power spectrum in terms of Legendre polynomials:

PðkÞ ¼
X
λ

PλðkÞLλðk̂ · n̂Þ

¼
X
λμ

4π

2λþ 1
PλðkÞY�

λμðk̂ÞYλμðn̂Þ; ðB6Þ

where PλðkÞ is the λth Legendre multipole of the power spectrum (where λ is even) and n̂ is the line of sight.
The expectation value of the product of two overdensity fields now reads

hδðxþ rÞδðxþ r0 þ sÞi ¼
Z
k
eik·ðr0þs−rÞPðkÞ

¼
Z
k
eik·ðr0þs−rÞX

λμ

4π

2λþ 1
PλðkÞY�

λμðk̂ÞYλμðn̂Þ

¼
Z

dk̂
4π

Z
k2dk
2π2

ð4πÞ3
X
ll0L

X
mm0M

il
0þL−ljl0 ðkr0Þjl00 ðksÞjlðkrÞY�

l0m0 ðk̂ÞY�
LMðk̂ÞY�

lmðk̂Þ

× Yl0m0 ðr̂0ÞYLMðŝÞYlmðr̂Þ
X
λμ

4π

2λþ 1
PλðkÞY�

λμðk̂ÞYλμðn̂Þ: ðB7Þ

We can perform an angular integral over k̂:
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Z
dk̂Y�

lmðk̂ÞY�
l0m0 ðk̂ÞY�

LMðk̂ÞY�
λμðk̂Þ ¼

X
L̄

ð−1ÞM̄Gll0L̄
mm0M̄G

L̄Lλ
−M̄Mμ

¼ ð4πÞ−1
X
L̄

ð−1ÞM̄DP
ll0Lλð2L̄þ 1ÞCll0L̄mm0M̄C

L̄Lλ
−M̄Mμ

Cll
0L̄

000 CL̄Lλ000

¼ ð4πÞ−1DP
ll0LλC

ll0Lλ
mm0m00μC

ll0Lλ
0000 ; ðB8Þ

because of the additional LOS direction n̂, we need to consider isotropic functions with four arguments:

Pll0Lλðr̂; r̂0; ŝ; n̂Þ ¼
X

mm0Mμ

Cll
0Lλ

mm0MμYlmðr̂ÞYl0m0 ðr̂0ÞYLMðŝÞYλμðn̂Þ: ðB9Þ

To incorporate the power spectrum multipole decomposition, we extend the definition of the f integral as follows:

fλl1l2l3ðr1; r2; r3Þ ¼
Z

k2dk
2π2

PλðkÞjl1ðkr1Þjl2ðkr2Þjl3ðkr3Þ: ðB10Þ

The redshift-space basic covariance element can thus be written as

hδðxþ rÞδðxþ r0 þ sÞi ¼ ð4πÞ2
X
ll0Lλ

i−lþl0þL 1

2λþ 1
DP

ll0LλC
ll0Lλ
0000 fλll0Lðr; r0; sÞPll0Lλðr̂; r̂0; ŝ; n̂Þ: ðB11Þ

APPENDIX C: PARTIALLY COUPLED 4PCF
COVARIANCE

1. Fully coupled and partially coupled covariances

In Sec. IV B we present the fully coupled covariance,
which is the relevant part for the connected NPCF estimator.
As before, the connected estimator is obtained by subtracting
the disconnected piece from the full estimator as in Eq. (13).
This feature is now included in the Encore code, and is
discussed at length in our companion paper [69]. For
completeness, however, in this appendix we will discuss
how one may estimate the partially coupled covariance.
We first sketch our reasoning for ignoring the partially

coupled terms in the connected 4PCF covariance.
Following the definition of our estimator, the fully coupled
covariance can be written as

CovfcðR;R0Þ≡ Covðζ̂c; ζ̂cÞ
¼ Covðζ̂; ζ̂Þ − Covðζ̂dc; ζ̂Þ
− Covðζ̂; ζ̂dcÞ þ Covðζ̂dc; ζ̂dcÞ; ðC1Þ

where the first term in the second equality—the covariance
of the full estimator—is simply the covariance obtained
from all combinations of eight overdensity fields. We use
hδδδδi to denote the full estimator; given the symmetry, any
one of the overdensity fields can be thought of as a primary
vertex, with the position of its neighbors fixed relative to

the primary. As before, the covariance of the full estimator
consists of both fully and partially coupled parts. Below, we
give an example of a contraction that leads to a partially
coupled term (here with angle brackets representing spatial
integrals rather than statistical expectations):

The disconnected estimator is represented by hδδihδδi.
Again, we know that the relative position between over-
density fields appears within a h� � �i integral, but the
relative position between two h� � �i is free. This leads us
to consider only the self-coupling contractions within an

integral such as ; this contraction is, by definition,

a 2PCF. Contractions such as must be integrated

over the unfixed pair separation vector, resulting in an
additional volume factor V−1, which leads to a strong
suppression. Below, we list the contractions that contribute
to the partially coupled covariance at leading order:
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After counting the permutations, we find 72 terms in each
case, all of which cancel. This leads only to corrections of
Oððr3c=VÞ2Þ and higher, where rc ∼ 100 h−1Mpc is the
correlation length. This correction is typically ∼0.1% and
hence can be neglected when comparing to the measure-
ments from the mock simulations with a box length of
Lbox ∼Oð1Þ h−1Gpc. We thus conclude that the fully
coupled covariance does represent that of the connected
4PCF in the large-volume limit.

2. Analytic form

For completeness, we also derive analytic expressions
for the partially coupled covariance. These contributions
are composed of similar structures to the basic elements
shown in Sec. IVA and can be divided into four pieces, as
shown in Fig. 16. All terms involve a self-coupling, i.e.,
the contraction of overdensity fields within a primed or
unprimed family. As a result, the basis function will end up

with one of the angular momenta being zero, with the other
two being equal. This implies that the partially coupled
covariance can be fully characterized by just l and l0. The
fundamental idea of the derivation is similar to that
underlying the fully coupled covariance derivation. First,
we identify the basic elements that contribute to the given
cases. Second, we apply a rotational average over the three
direction vectors r̂, r̂0, and ŝ and reorder the permuted
coordinates into canonical ordering. Third, we project the
covariance onto the isotropic basis, picking out the terms
proportional to PΛðR̂Þ and PΛ0 ðR̂0Þ. Here we necessarily
need to introduce both permutations G and H because self-
contraction breaks the symmetry of the coupling structure.
As before, we restrict G to cyclic permutations, allowingH
to explore all possibilities.
Case I: The partially coupled covariance in this case

contains the self-contraction between primary vertices, r0
and r00, and endpoints of their own family (see Fig. 16).
This can be expressed as

IIðR;R0; sÞ ¼ hδðxþ r0Þδðxþ rG1Þihδðxþ sþ r00Þδðxþ sþ r0H1Þijr0¼0;r0
0
¼0

× hδðxþ rG2Þδðxþ sþ r0H2Þihδðxþ rG3Þδðxþ sþ r0H3Þi: ðC2Þ

Inserting the definition of the basic elements defined in Sec. IVA, we find

FIG. 16. Diagrams for the partially coupled covariance. This figure is analogous to Fig. 2, but gives the terms necessary to model the
disconnected 4PCF covariance.
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IIðR;R0; sÞ ¼
X
G;H

ð4πÞ3=2f000ðrG1; 0; 0ÞP000ðr̂G1; 0; 0Þð4πÞ3=2f000ð0; r0H1; 0ÞP000ð0; r̂0H1; 0Þ

× ð4πÞ3=2
X

lG2l0H2
L2

i−lG2þl0H2
þL2flG2l0H2

L2
ðrG2; r0H2; sÞDP

lG2l0H2
L2
C
lG2l0H2

L2

0 PlG2l0H2
L2
ðr̂G2; r̂0H2; ŝÞ

× ð4πÞ3=2
X

lG3l0H3
L3

i−lG3þl0H3
þL3flG3l0H3

L3
ðrG3; r0H3; sÞDP

lG3l0H3
L3
C
lG3l0H3

L3

000 PlG3l0H3
L3
ðr̂G3; r̂0H3; ŝÞ: ðC3Þ

Given that the sum of the orbital angular momentum must be an even number, lG2 ¼ l0
H2 and lG3 ¼ l0

H3, the sum reduces
to one over l;l0;l00, with L ¼ ðl;lÞ, L0 ¼ ðl0;l0Þ, and L00 ¼ ðL;LÞ. As a reminder, the coefficients C andDP are given in
Eqs. (4) and (5), respectively. Integrating over s, we find

Z
d3s
V

IIðR;R0; sÞ ¼
X
G;H

X
LG;L0

H

Z
s2ds
V

ξðrG1Þξðr0H1Þð4πÞ4
X
ll0L

ð−1Þlþl0þLfll0LðrG2; r0H2; sÞfll0LðrG3; r0H3; sÞ

× ðDP
ll0LÞ2ðCll

0L
000 Þ2QðllÞðl0l0ÞðLLÞDP

LLC
LL
00 PLG

ðr̂G1; r̂G2; r̂G3ÞPL0
H
ðr̂0H1; r̂

0
H2; r̂

0
H3Þ; ðC4Þ

where the rotational average over dS gives a factor of 4π, following our normalization convention. LG has one angular
momentum of zero with the other two being equal; the same goes for L0

H. Expressing the two-argument isotropic basis
functions in terms of those with three arguments, for example, Pllðr̂G2; r̂G3Þ ¼ ð4πÞ1=2P0llðr̂G1; r̂G2; r̂G3Þ, we obtain an
additional 4π. We now insert the definition of the generalized Gaunt integral for N ¼ 2 [see Eq. (A2)], giving

Z
d3s
V

IIðR;R0; sÞ ¼
X
G;H

X
LG;L0

H

Z
s2ds
V

ξðrG1Þξðr0H1Þð4πÞ4
X
ll0L

ð−1Þlþl0
fll0LðrG2; r0H2; sÞfll0LðrG3; r0H3; sÞ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2l0 þ 1Þ

p
ð2Lþ 1Þ

�
l l0 L

0 0 0

�
2

PLG
ðr̂G1; r̂G2; r̂G3ÞPL0

H
ðr̂0H1; r̂

0
H2; r̂

0
H3Þ: ðC5Þ

Using Eq. (11), we may restore the arguments to canonical order:

PLG
ðR̂GÞ ¼

X
J

BG−1

LG;J
PJðR̂Þ;

PL0
H
ðR̂0

HÞ ¼
X
J0
BH−1

L0
H;J

0PJ0 ðR̂0Þ: ðC6Þ

In this case, BG−1

LG;J
and BH−1

L0
H;J

0 are given by products of Kronecker deltas since one of the angular momenta is zero. Since the

partially coupled covariance always leads to products of two f integrals, it is useful to introduce the g integral, defined by

Z
s2dsfllλðr1; r2; sÞfl0l0λðr01; r02; sÞ ¼

Z
k2dk
ð2πÞ3 jlðkr1Þjlðkr2Þjl0 ðkr

0
1Þjl0 ðkr02ÞP2ðkÞ

≡ glll0l0 ðr1; r2; r01; r02Þ: ðC7Þ

It is worth noting that, unlike the f integral, the g integral has dimensions of volume. The coefficient ð2πÞ−3 appears due to
the definition of the f integral, together with the coefficient in the identity for the integral of two sBFs:

Z
s2dsjλðsaÞjλðsbÞ ¼

π

2ab
δDða − bÞ: ðC8Þ

Together with the relation

X
L

ð2Lþ 1Þ
�
l l0 L

0 0 0

�
2

¼ 1; ðC9Þ
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we find the final expression for the partially coupled covariance Case I:

CovðpcÞ;IΛ;Λ0 ¼
X
G;H

X
LG;L0

H

ð4πÞ4
V

ð−1Þlþl0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2l0 þ 1Þ

p
ξðrG1Þξðr0H1Þglll0l0 ðrG2; rG3; r0H2; r

0
H3ÞBG−1

LG;ΛB
H−1

L0
H;Λ

0 : ðC10Þ

Here we keep the inverse reordering coefficient to make clear that the partially coupled covariance only contributes to the
collection of the three angular momenta with the following form: fΛ;Λ0g ¼ f0ll; 0l0l0g þ 8 perms.
Case II: In this case, only one of the primary vertices is connected intra-family wise (as shown in Fig. 16). It can happen

that the primary vertex of the primed tetrahedron is coupled to an unprimed vertex, or the other way around. By symmetry,
we need only discuss one of the two possibilities. The contraction of the eight overdensity fields can be expressed as

IIIðR;R0; sÞ ¼ hδðxþ r0Þδðxþ rG1Þihδðxþ rG2Þδðxþ sþ r00Þijr0¼r0
0
¼0

× hδðxþ sþ r0H1Þδðxþ sþ r0H2Þihδðxþ rG3Þδðxþ sþ r0H3Þi: ðC11Þ

In terms of the basic elements, IIIðR;R0; sÞ becomes

IIIðR;R0; sÞ ¼
X
G;H

ð4πÞ3=2f000ðrG1; 0; 0ÞP000ðr̂G1; 0; 0Þ

× ð4πÞ3=2
X
l0H1

ð−1Þl0H1fl0H1
l0
H1
0ðr0H1; r

0
H2; 0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l0

H1 þ 1

q
Pl0H1

l0H1
0ðr̂0H1; r̂

0
H2; 0Þ

× ð4πÞ3=2
X
lG2

ð−1ÞlG2flG20lG2ðrG2; 0; sÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lG2 þ 1

p
PlG20lG2ðr̂G2; 0; ŝÞ

× ð4πÞ3=2
X

lG3l0H3
L3

i−lG3þl0H3
þL3flG3l0H3

L3
ðrG3; r0H3; sÞDP

lG3l0H3
L3
C
lG3l0H3

L3

000 PlG3l0H3
L3
ðr̂G3; r̂0H3; ŝÞ: ðC12Þ

Averaging over dS involves only two angular momenta, lG2 and L3, enforcing lG2 ¼ L3 ≡ l. Similarly, averaging over
dR involves just lG2 and lG3 and sets lG2 ¼ lG3 ≡ l. Finally, since r̂0H1 and r̂0H2 are already combined into an isotropic
function, the integration over dR0 effectively involves only r̂0H3 and will result in l0

H3 ¼ 0. The imaginary phase also
becomes unity.
Using the definition given in Eq. (C7), we have

Z
s2dsfl0lðrG2; 0; sÞfl0lðrG3; r0H3; sÞ ¼ gl0l0ðrG2; 0; rG3; r0H3Þ; ðC13Þ

in this case, the g integral can be reduced to an f integral. The final form of Case II reads

CovðpcÞ;IIΛ;Λ0 ¼
X
G;H

X
LG;L0

H

ð4πÞ4
V

ð−1Þlþl0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2l0 þ 1Þ

p
ξðrG1Þfl0l00ðr0H1; r

0
H2; 0Þgl0l0ðrG2; 0; rG3; r0H3ÞBG−1

LG;ΛB
H−1

L0
H;Λ

0 :

ðC14Þ

The case in which an unprimed primary vertex δðr0Þ couples to an endpoint from the primed family δðr0iÞ follows similarly.
Case III: The next form to consider occurs when both of the primed vertices are coupled to a vertex from the opposite

family. In this case,

IIIIðR;R0; sÞ ¼ hδðxþ rG1Þδðxþ rG2Þihδðxþ sþ r0H2Þδðxþ sþ r0H3Þi
× hδðxþ r0Þδðxþ sþ r0H1Þihδðxþ rG3Þδðxþ sþ r00Þijr0¼r0

0
¼0: ðC15Þ

Naively, this case also involves an isotropic function of the form P0ll; however, the rotational average over the end-point
vectors forces their paired angular momenta to be zero.
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Inserting our basic elements, we have

IIIIðR;R0; sÞ ¼
X
G;H

ð4πÞ3=2
X
lG1

flG1lG10ðrG1; rG2; 0Þð−1ÞlG1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lG1 þ 1

p
PlG1lG10

ðr̂G1; r̂G2; 0Þ

× ð4πÞ3=2
X
l0H1

fl0H1
l0H1

0ðr0H1; r
0
H2; 0Þð−1Þl

0
H1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l0

H1 þ 1

q
Pl0H1

l0H1
0ðr̂0H1; r̂

0
H2; 0Þ

× ð4πÞ3=2
X
l0H3

f0l0H3
l0H3

ð0; r0H3; sÞð−1Þl
0
H3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l0

H3 þ 1

q
P0l0H3

l0H3
ð0; r̂0H3; sÞ

× ð4πÞ3=2
X
lG3

f0lG3lG3
ð0; rG3; sÞð−1ÞlG3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lG3 þ 1

p
P0lG3lG3ð0; r̂G3; sÞ: ðC16Þ

In this case, the rotation average over dR will leave only the lG3 ¼ 0 term since r̂G1 and r̂G2 are already combined into an
isotropic function. Similarly, averaging over dR0 will force l0

H3 ¼ 0, allowing us to simplify lG1 ≡ l and l0
H1 ≡ l0.

Therefore, the two f integrals associated with lG3 and l0
H3 are given by

Z
s2dsf000ð0; rG3; sÞf000ð0; r0H3; sÞ ¼ g0000ð0; rG3; 0; r0H3Þ; ðC17Þ

where we have used the identity for the integral of a product of two sBFs given in Eq. (C8). The final form of Case III reads

CovðpcÞ;IIIΛ;Λ0 ¼
X
G;H

X
LG;L0

H

ð4πÞ4
V

ð−1Þlþl0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ1Þð2l0 þ1Þ

p
fll0ðrG1;rG2;0Þfl0l00ðr0H1;r

0
H2;0Þg0000ð0;rG3;0;r0H3ÞBG−1

LG;ΛB
H−1

L0
H;Λ

0 :

ðC18Þ

Case IV: Finally, consider the direct contraction between two primary vertices, accompanied by the contraction of two
endpoints from each family,

IIVðR;R0; sÞ ¼ hδðxþ r0Þδðxþ sþ r00Þijr0¼r0
0
¼0

× hδðxþ rG1Þδðxþ rG2Þihδðxþ sþ r0H2Þδðxþ sþ r0H3Þihδðxþ rG3Þδðxþ sþ r0H1Þi: ðC19Þ

As before, inserting the basic elements leads to

IIVðR;R0; sÞ ¼
X
G;H

ð4πÞ3=2f000ð0; 0; sÞP000ð0; 0; ŝÞ

× ð4πÞ3=2
X
lG1

ð−1ÞlG1flG1lG10ðrG1; rG2; 0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lG1 þ 1

p
PlG1lG10ðr̂G1; r̂G2; 0Þ

× ð4πÞ3=2
X
l0H1

ð−1Þl0H2f0l0H2
l0H2

ð0; r0H2; r
0
H3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l0

H2 þ 1

q
P0l0H2

l0H2
ð0; r̂0H2; r̂

0
H3Þ

× ð4πÞ3=2
X

lG3l0H1
L3

i−lG3þl0H1
þL3flG3l0H1

L3
ðrG3; r0H1; sÞDP

lG3l0
H1
L3
PlG3l0H1

L3
ðr̂G3; r̂0H1; ŝÞ; ðC20Þ

simplifying lG1 ≡ l and l0
H2 ≡ l0. We can see that the rotational average over dS forces L3 ¼ 0, and thus lG3 ¼ l0

H1.
Moreover, since r̂G1 and r̂G2 are already in an isotropic configuration in Pll0ðr̂G1; r̂G2; r̂G3Þ, the only allowed values of
lG3 and l0

H1 are zero. It follows that the isotropic functions reduce to constants: PlG3l0H1
L3
ðr̂G3; r̂0H1; ŝÞ ¼ ð4πÞ−3=2 and

flG3l0H1
L3
ðrG3; r0H1; sÞ ¼ f000ðrG3; r0H1; sÞ. Integrating over s and using Eq. (C7), we find

Z
s2dsf000ð0; 0; sÞf000ðrG3; r0H1; sÞ ¼ g0000ð0; 0; rG3; r0H1Þ: ðC21Þ
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The final form of Case IV is given by

CovðpcÞ;IVΛ;Λ0 ¼
X
G;H

X
LG;L0

H

ð4πÞ4
V

ð−1Þlþl0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2l0 þ 1Þ

p

× fll0ðrG1; rG2; 0Þf0l0l0 ð0; r0H2; r
0
H3Þg0000ð0; 0; rG3; r0H1ÞBG−1

LG;ΛB
H−1

L0
H;Λ

0 : ðC22Þ

APPENDIX D: ANALYTIC SOLUTION FOR INTEGRAL OF PRODUCT
OF THREE SPHERICAL BESSEL FUNCTIONS

When radial binning is included, the f integral is evaluated with the bin-averaged sBFs:

fl1l2l3ðr1; r2; r3Þ ¼
Z

k2dk
2π2

PðkÞj̄l1ðk; r1Þj̄l2
ðk; r2Þjl3

ðk; r3Þ; ðD1Þ

where the bin-averaged sBFs are defined as

j̄li
ðk; riÞ ¼

R
r2drjliðkriÞΘðriÞR

r2drΘðriÞ
: ðD2Þ

Here ΘðriÞ is a binning function equal to unity within bin ri and zero elsewhere.
In order to check the evaluation and implementation of the f integral, we compare the numerical result to an analytic form

available when we take a toy model power spectrum. If one uses a power-law power spectrum kn as a toy model, these
integrals have solutions as presented in Ref. [116] and expended upon in Ref. [117]. Here we use a power law damped by an
exponential, and the needed base result can be found in Eq. (24) of Ref. [73]:

Ieðp; q;m; n;l; a; b; cÞ ¼
Z

∞

0

expð−pkÞkqjmðakÞjnðbkÞjlðckÞdk: ðD3Þ

In particular, we specialize to q ¼ 2, which is given by Eq. (26) of Ref. [73]. We also set p ¼ 500 andm ¼ n ¼ l ¼ 0. For
f000ða; b; cÞ we then have

Iexpð1; 2; 0; 0; 0; a; b; cÞ ¼
1

4abc
ð−Tabcþþþ þ Tabc

−þþ þ Tabcþ−þ þ Tabcþþ−Þ: ðD4Þ

Here, we have introduced the notation that Tabc
��� ≡ tan−1½ð�a� b� cÞ=p�. In practice, the sBFs with arguments a and b

must be bin averaged, and can be written as

j̄0ðakÞ ¼
3½a2maxj1ðamaxkÞ − a2minj1ðaminkÞ�

kða3max − a3minÞ
; ðD5Þ

where the recurrence relation (Rayleigh’s formula) gives

j1ðxkÞ ¼ −
1

k
d
dx

j0ðxkÞ: ðD6Þ

Replacing the sBF with the bin-averaged one given by Eq. (D5) and inserting the result into Eq. (D4) (setting q ¼ 6 in order
to use the analytic solution), we have
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Iexpð1; 6; 0; 0; 0; a; b; cÞ ¼
Z

∞

0

expð−kÞk6j̄0ðakÞj̄0ðbkÞj0ðckÞdk

¼ 3

a3max − a3min

3

b3max − b3min

�
a2maxb2max

d
damax

d
dbmax

Iexpð1; 2; 0; 0; 0; amax; bmax; cÞ

−a2minb
2
max

d
damin

d
dbmax

Iexpð1; 2; 0; 0; 0; amin; bmax; cÞ

−a2maxb2min
d

damax

d
dbmin

Iexpð1; 2; 0; 0; 0; amax; bmin; cÞ

þa2minb
2
min

d
damin

d
dbmin

Iexpð1; 2; 0; 0; 0; amin; bmin; cÞ
�
: ðD7Þ

In the above equation we obtain four types of terms, differing by their lower or upper bounds in a or b. Next, we focus on the
general form d

da
d
db Iexpð…Þ:

d
da

d
db

Iexpð…Þ ¼ d
da

d
db

�
1

4abc
ð−Tabcþþþ þ Tabc

−þþ þ Tabcþ−þ þ Tabcþþ−Þ
�
: ðD8Þ

Due to the symmetry of these expressions, in what follows we may focus on just the first term, Tabcþþþ:

d
da

d
db

�
1

4abc
Tabcþþþ

�
¼ d

da
d
db

�
1

4abc
tan−1½ðcþ bþ aÞ=p�

�

¼ 1

4a2b2c

�
tan−1½ðcþ bþ aÞ=p� − aþ b

p
1

ðaþ bþ cÞ2=p2 þ 1
−
ab
p3

2ðaþ bþ cÞ
ððaþ bþ cÞ2=p2 þ 1Þ2

�
:

ðD9Þ

This form remains the same for the rest of the Tabc
��� terms,

except for the signs. Inserting Eq. (D9) into Eq. (D7), we
obtain the final result shown in Fig. 17 (dotted black
curves) after integrating over c. As an example, we evaluate

the integral for the two cases a ¼ 153 h−1 Mpc, b ¼
27 h−1Mpc and a ¼ 41 h−1Mpc, b ¼ 55 h−1 Mpc. In
both cases the numerical implementation and the analytic
solution display excellent agreement.

APPENDIX E: GAUSSIAN NPCF COVARIANCES
INCLUDING RSD

Here we extend our general expression for the real-space
covariance to include RSD. As a preparation for the
derivation, we extend the Q quantity to involve four
angular momenta:

QΛΛ0Λ00Λ000 ¼
YN
i¼1

X
mim0

iMiμi

C
lil0iLiλi
mim0

iMiμi
CΛMC

Λ0
M0CΛ

00
M00CΛ

000
M000 ; ðE1Þ

where the CΛ
M coefficient is defined in Eq. (2) with

HΛΛ0Λ00Λ000 ¼ ð4πÞ−N=2

�YN
i¼1

DP
lil0iLiλi

C
lil0iLiλi
0000

�
QΛΛ0Λ00Λ000

:

ðE2Þ

Furthermore, averaging over isotropic functions of four
arguments gives

FIG. 17. Comparison of the numerical and analytic implemen-
tations of the bin-averaged f integral, setting l1 ¼ l2 ¼ l3 ¼ 0,
and using a damped power-law power spectrum. We evaluate the
integral at radial bin centers a and b as given in the legend, and
their units are h−1 Mpc.
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Z
dRdR0dSdN

YN
i¼1

Plil0
il

00
i λi
ðr̂i; r̂0i; ŝ; n̂Þ ¼ ð4πÞ−N

X
LL0Λ00Λ000

QLL0Λ00Λ000
DP

Λ00CΛ
00

0 DP
Λ000CΛ

000
0 PLðR̂ðNÞÞPL0 ðR̂0ðNÞÞ: ðE3Þ

For the fully coupled covariance including RSD we start from Eqs. (25) and (B11):

X
Λ;Λ0

EðΛ0ÞCovΛ;Λ0 ðR;R0ÞPΛðR̂ÞPΛ0 ðR̂0Þ ¼
Z

d3s
V

ð4πÞ2N
X
G

YN−1

i¼0

X
lGil0iLiλi

1

2λi þ 1
i−lGiþl0iþLi

×DP
lGil0iLiλi

C
lGil0

iLiλi
0000 fλilGil0iLi

ðrGi; r0i; sÞPlGil0iLiλiðr̂Gi; r̂0i; ŝ; n̂Þjr0¼r0
0
¼0: ðE4Þ

Next, we apply the rotational average over r̂, r̂0, ŝ, and n̂. The rotational average over n̂ is justified as the isotropic 4PCF
must be invariant under rotations. We find

X
Λ;Λ0

EðΛ0ÞCovΛ;Λ0 ðR;R0ÞPΛðR̂ÞPΛ0 ðR̂0Þ ¼
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0
¼0; ðE5Þ

as before, going from R̂ðNÞ
G → R̂G leads to a factor of ð4πÞ−1=2, which cancels with the normalization factor arising from dS.

Next, we use the reordering coefficient to restore the canonical ordering of the arguments, and project both sides onto the
isotropic basis PΛðR̂Þ and PΛ0 ðR̂0Þ. This yields the final form:

CovΛ;Λ0 ðR; R0Þ ¼ ð4πÞ3N=2
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