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We propose the generic no-scale inflation inspired from string theory compactifications. We consider the
Kähler potentials with an inflaton field φ, as well as one, two, and three Kähler moduli. Also, we consider
the renormalizable superpotential of φ in general. We study the spectral index and tensor-to-scalar ratio in
details, and find the viable parameter spaces which are consistent with the Planck and BICEP/Keck
experimental data on the cosmic microwave background (CMB). The spectral index is ns ≃ 1−2=N ∼
0.965 for all models, and the tensor-to-scalar ratio r is r ≃ 12=N2, 83=N4 and 4=N2 for the one, two and
three moduli models, respectively. The particular r for two moduli model comes from the contributions of
the non-negligible higher order term in potential. In the three moduli model, the scalar potential is similar to
the global supersymmetry, but the Kähler potential is different. The E model with α ¼ 1 and T model with
α ¼ 1=3 can be realized in the one modulus model and the three moduli model, respectively. Interestingly,
the models with quadratic and quartic potentials still satisfy the current tight bound on r after embedding
into no-scale supergravity.
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I. INTRODUCTION

It is well known that inflation solves several problems in
the standard cosmology theory such as the horizon prob-
lem, flatness problem, and large structure of the Universe,
etc., [1–5]. The almost scale-invariant density perturbation
spectrum predicted by inflation is qualitatively consistent
with the cosmological observations, in particular, the
cosmic microwave background radiation (CMB). With
the advent of the era of precise cosmology, more and more
observations have given or will give strong constraints on
the inflationary models. From the Planck 2018 results on
the CMB measurements [6], the scalar spectral index ns,
tensor-to-scalar ratio r, and scalar amplitude As for the
power spectrum of the curvature perturbations are con-
strained to be ns ¼ 0.9649� 0.0042, r0.002 ≤ 0.056, and
As ¼ 2.10 × 10−9, respectively. Combining with BICEP/
Keck data, the tensor-to-scalar ratio is further limited to
r0.05 ≤ 0.036 at 95% confidence level (C.L.) [7]. Such a

tight bound on r is a big challenge to a lot of previously
popular inflationary models. Interestingly, the inflationary
models inspired from the string low-energy effective actions
can have small tensor-to-scalar ratios r < 0.01 [8–12].
Supersymmetry provides a natural solution to the gauge

hierarchy problem in the particle physics Standard Model
(SM), and is the promising new physics beyond the SM.
Especially, the scalar masses can be stabilized, and the
superpotential is nonrenormalized. Thus, to stabilize the
inflaton potential, we need to consider supersymmetry.
Moreover, gravity plays an important role in the early
Universe during inflation, so it seems to us that super-
gravity theory inspired from string theory is a natural
framework for inflationary model building. However,
supersymmetry breaking scalar masses are at the order
of the gravitino mass in general, and then at the order of the
Hubble parameter due to the large vacuum energy density
during inflation. Thus, the slow-roll parameter η is at the
order one Oð1Þ during inflation, which conflicts with the
slow-roll conditions. This gives rise to the so-called η
problem [13–15]. As we know, there are a few elegant
solutions: no-scale supergravity [16–24], shift symmetry in
the Kähler potential [25–37], and helical phase inflation
[38–41], etc.
No-scale supergravity has a vanishing cosmological

constant naturally, and then evades the anti-de Sitter
(AdS) vacua in the generic supergravity theory [16–18].
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Interestingly, no-scale supergravity can be realized by the
Calabi-Yau compactification with standard embedding of
the weakly coupled heterotic E8 × E8 theory [19], as well
as by the similar compactification of M theory on S1=Z2

[20]. The Kähler potential of no-scale supergravity inspired
by the above string theory compactifications [19,20] is

K ¼ −3 logðT þ T̄ − 2jφij2Þ; ð1Þ

where T is the Kähler moduli, and φi denote the matter,
Higgs and inflaton fields. In this paper, for simplicity, we
shall neglect dilaton field and complex structure moduli,
and only consider inflaton field φ in the following. Because
Kähler potential is a logarithmic real function, the η
problem is solved, and the inflaton potential can have flat
directions as well. In particular, considering the no-scale
supergravity and a Wess-Zumino superpotential, one can
obtain the Rþ R2 Starobinsky model elegantly [21,22]. In
addition to φ, T can be inflaton field as well [22,23]. Of
course, the predicted ns and r are compatible with the CMB
observations. For the relevant studies on string inflations,
please see Refs. [42–50].
On the other hand, a generalized model named α-

attractor inflation is build by introducing a parameter α
related to the curvature of the inflaton Kähler manifold
[51]. The inflationary attractors [11,12,52–58] such as T
models and E models predict the tensor-to-scalar ratio r by
a factor α, which are consistent with the current observa-
tions and can be tested in the future. In particular, to
generalize the above no-scale inflation, one can introduce
an α factor in the Kähler moduli

K ¼ −3α logðT þ T̄ − 2jφj2Þ; ð2Þ

and then study the unified no-scale attractors [55].
Because the above simple no-scale inflation is very

interesting, we have strong motivation to study the generic
no-scale inflation inspired by the string theory compacti-
fications. The first question is what are the generic no-scale
supergravity theories inspired by the string theory com-
pactifications. Previously, one of us (T. L.) has already
studied various orbifold compactifications of M theory on
T6=Z3, T6=Z6, T6=Z12, as well as the compactification by
keeping singlets under SUð2Þ ×Uð1Þ symmetry, and then
the compactification on S1=Z2 [59]. Thus, the generic no-
scale inflation can be inspired by these compactifications.
Inspired by the compactification by keeping singlets under
SUð2Þ × Uð1Þ symmetry and then the compactification on
S1=Z2 [59], we can consider the Kähler potential with two
Kähler moduli T1;2 and one chiral field φ as follows:

K ¼ −2 logðT1 þ T̄1 − 2jφj2Þ − logðT2 þ T̄2Þ: ð3Þ

Also, inspired by the orbifold compactifications of M
theory on T6=Z12 and S1=Z2 [59], we can consider the

Kähler potential with three Kähler moduli T1;2;3 and one
chiral field φ as follows:

K ¼ − logðT1 þ T̄1 − 2jφj2Þ − logðT2 þ T̄2Þ
− logðT3 þ T̄3Þ: ð4Þ

Previously, a few relevant studies have been done. A
chaotic inflation in no-scale supergravity with string
inspired moduli stabilization, which has two moduli, is
obtained from type IIB string compactification with an
anomalous Uð1ÞX gauged symmetry [60]. The tensor-to-
scalar ratio is consistent with BICEP/Keck experimental
data. In a recent paper [61] with Gong, we have studied the
primordial black holes and secondary gravitational waves
for the generic no-scale inflation with Kähler potentials in
Eq. (3). However, the systematical studies on the generic
no-scale inflation have not been done yet.
In this paper, we shall perform the systematical studies

on the generic no-scale inflation with Kähler potentials in
Eqs. (1), (3), and (4). We consider φ as an inflaton field, and
the renormalizable superpotential of φ in general. We study
the spectral index and tensor-to-scalar ratio in detail, and
find the viable parameter spaces which are consistent with
the Planck and BICEP/Keck experimental data on the
cosmic microwave background (CMB). The spectral index
is ns ≃ 1−2=N ∼ 0.965 for all models, and the tensor-to-
scalar ratio is r ≃ 12=N2, 83=N4 and 4=N2 for the one, two
and three moduli models, respectively. The predicted r for
two moduli models is clearly different from that for other
two models due to the non-negligible higher order term,
which will be explained in detail in Sec. V. In the three
moduli model, the scalar potential is similar to the global
supersymmetry, but the Kähler potential is different. The E
model with α ¼ 1 and T model with α ¼ 1=3 can be
realized in the one modulus model and the three moduli
model, respectively. Interestingly, the models with quad-
ratic and quartic potentials still satisfy the current tight
bound on r after embedding into no-scale supergravity.
Based on the string compactifications, the coefficients of

the logarithmic term are integers in Kähler potential. Thus,
it is interesting to build the generic no-scale α-attractor
inflation. We propose the following Kähler potential:

K ¼ −3α logðT þ T̄ − 2jφj2Þ− 3ð1− αÞ logðT 0 þ T̄ 0Þ; ð5Þ

where 0 < α ≤ 1. From the phenomenological point of
view, the generic attractor will relate the above three kinds
of models with each other, and the predicted ns − r curves
are consistent with CMB experimental results. We shall
preform the detailed study, which will be given elsewhere
in the future.
This paper is organized as follows. We briefly discuss the

generic no-scale supergravity theories inspired by the string
theory compactifications in Sec. II. We show the generic
slow-roll inflation model and field transformation in
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Sec. III. Then we study the cosmological predictions ns and
r for the inflationary models with one, two and three
moduli in Secs. IV–VI. Finally in Sec. VII, we make
conclusions with a brief discussion. In the following, we set
the reduced Planck mass M2

Pl ¼ 8πG ¼ 1 for simplicity.

II. THE GENERIC NO-SCALE SUPERGRAVITY
THEORIES INSPIRED BY THE STRING THEORY

COMPACTIFICATIONS

The Lagrangian of the N ¼ 1 supergravity can be
written in the form

L ¼ −
1

2
Rþ Kj̄

i∂μφ
i
∂
μφ̄j̄ − V; ð6Þ

where the Kähler metric is Kj̄
i ≡ ∂

2K=ð∂φi
∂φ̄j̄Þ. The

effective scalar potential is

V ¼ eG
�
∂G
∂φi ðK−1Þij̄

∂G
∂φ̄j̄

− 3

�
; ð7Þ

where the Kähler function is G≡ K þ ln jWj2, and ðK−1Þij̄
is the inverse of the Kähler metric. Introducing Kähler
covariant derivative

DiW ≡Wi þ KiW; ð8Þ

we obtain the scalar potential

V ¼ eK½DiWðK−1Þij̄Dj̄W̄ − 3jWj2�: ð9Þ

To study the inflation in the generic no-scale super-
gravity theories inspired by the string theory compactifi-
cations, we parametrize the generic Kähler potential and
superpotential as follows:

K¼−N1 logðT1þ T̄1−2jφj2Þ−
X
i¼2;3

Ni logðTiþ T̄iÞ; ð10Þ

W ¼
X3
i¼0

aið
ffiffiffi
2

p
φÞi; ð11Þ

where N1 þ N2 þ N3 ¼ 3, Ti are Kähler moduli, and φ is
inflaton field. According to the number of Kähler moduli
Ti, we shall classify the inflationary models as one moduli
model, two moduli model, and three moduli model [61].
We also consider WT ¼ 0, and the η problem is avoided
since no large mass term is generated [62,63]. For sim-
plicity, we assume inflation along the ReðφÞ direction as
well. Moreover, the Kähler metric and covariant deriva-
tive are

Kj̄
i ¼

0
BBBBB@

N1

X2 0 0 − 2N1φ
X2

0 N2

Y2
2

0 0

0 0 N3

Y2
3

0

− 2N1φ̄
X2 0 0 2N1Y1

X2

1
CCCCCA ð12Þ

DiW ¼ W
�
− N1

X − N2

Y2
− N3

Y3

2N1φ̄
X þ Wφ

W

�
; ð13Þ

where X ≡ T1 þ T̄1 − 2jφj2, Yi ≡ Ti þ T̄i. Thus, the gene-
ral scalar potential can be written as

V ¼ jWφj2
2N1XN1−1YN2

2 YN3

3

: ð14Þ

In the following section, we will study inflationary
models with typical Kähler potential in the general no-
scale supergravity model. Then we will compare the
predictions of these models with CMB observations in
order to find the observational constraints on the parameter
space of the models.

III. INFLATIONARY MODELS

We assume that all the real components of the complex
fields which do not drive inflation have been stabilized,
whereas the inflaton field remains dynamical. Following
Refs. [21,22,64–66], the real and imaginary parts ofmodulus
Ti can be stabilized by adding ðTi þ T̄i − 1Þ4 terms and
ðTi − T̄iÞ4 terms into the log terms of theKähler potential. In
this paper, we fix the moduli Ti with vacuum expectation
values (VEVs) 2hReðTiÞi ¼ ci and hImðTiÞi ¼ 0. Also,
without loss of generality, we assume the inflation trajectory
along the real part of the φ direction. The scalar potential in
the Jordan frame is

V ¼ V0

jWφj2
ðc1 − 2jφj2ÞN1−1

; ð15Þ

where V0 ¼ 1=ð2N1c
N2

2 cN3

3 Þ. The inflationary model with
N1 ¼ 1 is similar to that with the global supersymmetry.
The kinetic term in terms of the field φ in Eq. (6) is

noncanonical, so we need to define a new canonical field χ,
which satisfies

1

2
∂μχ∂

μχ ¼ Kφφ̄∂μφ∂
μφ̄ ð16Þ

with

Kφφ̄ ¼ 2N1ðT1 þ T̄1Þ
ðT1 þ T̄1 − 2jφj2Þ2 : ð17Þ
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By integrating the above equation, we get the field trans-
formation

φ ¼
ffiffiffiffiffi
c1
2

r
tanh

�
χffiffiffiffiffiffiffiffi
2N1

p
�
: ð18Þ

Then the scalar potential in the Einstein frame is

V ¼ V1sech2mðbχÞða1 þ 2a2
ffiffiffiffiffi
c1

p
tanhðbχÞ

þ 3a3c1tanh2ðbχÞÞ2; ð19Þ

where V1¼N−1
1 cm1 c

−N2

2 c−N3

3 and b¼ 1=
ffiffiffiffiffiffiffiffi
2N1

p
,m¼ 1−N1.

Furthermore, the T model and the E model [51] will be
realized by setting N1 ¼ 1 with a1 ¼ a3 ¼ 0 and N1 ¼ 3

with a1 ¼ 0, respectively. Defining φ ¼ ðϕþ iξÞ= ffiffiffi
2

p
and

taking T models for example, the squared masses of ξ are
m2

ξ ¼ 8a22=ðc2c3Þ for the φ2 model and m2
ξ ¼ 36a23ϕ

2=
ðc2c3Þ for the φ4 model.
In the following calculations, the new canonical field χ is

regarded as inflaton. The slow-roll parameters are

εðχÞ ¼ M2
Pl

2

�
Vχ

V

�
2

; ηðχÞ ¼ M2
Pl

Vχχ

V
: ð20Þ

The CMB observations in terms of slow-roll parameters are
ns ¼ 1−2εþ 6η and r ¼ 16ε. Under the slow-roll approxi-
mation, the power spectrum can be expressed by

As ¼
1

24π2M2
Pl

V
ε
; ð21Þ

and is fixed to 2.10 × 10−9 by choosing the proper
parameter V0 in our calculations.

IV. ONE MODULUS INFLATIONARY MODEL

The simple no-scale supergravity model with one modu-
lus [16,18] can be realized via the Calabi-Yau compacti-
fication with standard embedding of the weakly coupled
heterotic E8 × E8 theory [19] and M theory on S1=Z2 [20].
Assuming a Kähler potential of the form

K ¼ −3 ln ðT þ T̄ − 2jφj2Þ ð22Þ

and substituting N1 ¼ 3 and N2 ¼ N3 ¼ 0 into Eq. (14),
the scalar potential in the Jordan frame and the Einstein
frame become

V ¼ jWφj2
6ðc1 − 2jφj2Þ2

¼ V0e
−2

ffiffi
2
3

p
χð1þ A1e

ffiffi
2
3

p
χ þ B1e

2
ffiffi
2
3

p
χÞ2; ð23Þ

where V0 ¼ ða1−2a2
ffiffi
c

p þ3a3c1Þ2
48c2

1

, A1 ¼ 2ða1−3a3c1Þ
a1−2a2

ffiffiffiffi
c1

p þ3a3c1
, and

B1 ¼ a1þ2a2
ffiffiffiffi
c1

p þ3a3c1
a1−2a2

ffiffiffiffi
c1

p þ3a3c1
.

A. Zero parameter models

First, we consider the inflationary case only with one
term in the numerator of the potential (23), which can be
rewritten as

a1 ¼ a2 ¼ 0; V ¼ 3a23sinh
4

�
χffiffiffi
6

p
�
;

a1 ¼ a3 ¼ 0; V ¼ a22
3c

sinh2
� ffiffiffi

2

3

r
χ

�
;

a2 ¼ a3 ¼ 0; V ¼ a21
3c2

cosh4
�

χffiffiffi
6

p
�
: ð24Þ

The minimum of potential is at χm ¼ 0 and inflation will
occur on the left or right branches. However, in these
models, the second order slow-roll parameters are

a1 ¼ a2 ¼ 0; ηðχÞ ¼ 2coth2
�

χffiffiffi
6

p
�
þ 2

3
;

a1 ¼ a3 ¼ 0; ηðχÞ ¼ 4

3

�
coth2

� ffiffiffi
2

3

r
χ

�
þ 1

�
;

a2 ¼ a3 ¼ 0; ηðχÞ ¼ 2tanh2
�

χffiffiffi
6

p
�
þ 2

3
: ð25Þ

Therefore, inflation is unbearable since slow-roll condi-
tions ε; jηj ≪ 1 are unsatisfied and η → 8=3 in the
limit χ → ∞.

B. a1 = 0 case: A1 +B1 = − 1
For a1 ¼ 0, the two parameters A1 and B1 relate with

each other as A1 þ B1 ¼ −1, and defining a new parameter
d ¼ 3a3

ffiffiffiffiffi
c1

p
=2a2, the potential (23) becomes

V ¼ V0ð1 − e−
ffiffi
2
3

p
χÞ2ððe

ffiffi
2
3

p
χ þ 1Þ þ dðe

ffiffi
2
3

p
χ − 1ÞÞ2; ð26Þ

with V0 ¼ a22=12c1. The similar inflation in the simple
Wess-Zumino model has been previously discussed by
Ellis et al. [21]. Here for completeness, we will go through
it as well. The potential with different parameter d are
shown in Fig. 1(a). We note that the potential remains the
same after both parameter d and field χ becoming −d and
−χ. Therefore, we will only discuss the negative d in the
following calculation.
When d is larger than −1, there is a vacuum at χ ¼ 0.

When d is smaller than −1, there are two minima at χm1
¼ 0

and χm2
¼

ffiffi
6

p
2
logðdþ1

d−1Þ, and amaximumat χM ¼
ffiffi
6

p
4
logðdþ1

d−1Þ.
From the evolution of the slow-roll parameters in Fig. 2, the
possible inflationary trajectories locate in the region ½0;∞�
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for d≳ −1 and the region ½χm1
; χm2

� for d ≲ −1. Others are
ruled out due to the steep potential, and the slow-roll
conditions ε; jηj < 1 are not satisfied. The cosmological
predictions ns and r for themodel in Eq. (26) are numerically
shown in Fig. 1(b) and the inflationary trajectory is in the
large field region χ ∼ 5MPl. The parameter d locates in a tiny
range around �1.

1. E-model realization

Particularly, when d ¼ −1 or 2a2 ¼ −3a3
ffiffiffiffiffi
c1

p
, the E

model for φ2 [11,51] or Starobinsky inflation model

[21,24] with potential V ¼ V0ð1 − e−
ffiffiffiffiffiffi
2=3

p
χÞ2 is realized,

shown in Table I. The potential can be expanded as

V ¼ V0ð1 − 2e−
ffiffiffiffiffiffi
2=3

p
χ þ e−2

ffiffiffiffiffiffi
2=3

p
χÞ: ð27Þ

The spectrum index, tensor-to-scalar ratio, and e-folding
number are expressed in the form [21,24]

ns ≃ 1 −
8

3
e−

ffiffiffiffiffiffi
2=3

p
χ þOðe−2

ffiffiffiffiffiffi
2=3

p
χÞ

r ≃
64

3
e−2

ffiffiffiffiffiffi
2=3

p
χ þOðe−4

ffiffiffiffiffiffi
2=3

p
χÞ

N ≃
3

4
e

ffiffiffiffiffiffi
2=3

p
χ þOðe−2

ffiffiffiffiffiffi
2=3

p
χÞ ð28Þ

and

(a) (b)

FIG. 1. Inflationary potential (a) and the r versus ns predictions (b) for the inflaton potential in Eq. (26) with parameter d ¼ �δ.

(a) (b)

FIG. 2. The evolution of the slow-roll parameters (a) ϵ and (b) η for the inflaton potential in Eq. (26).

TABLE I. The realization of T and E models in one modulus and three moduli models.

Cases V ∝ jWφj2=ðc1 − 2φ2Þ2
a1 ¼ 0; 2a2 ¼ −3a3

ffiffiffiffiffi
c1

p
VJ ∝

jφð1− ffiffi
2

p
φÞj2

ðc1−2jφj2Þ2 VE ∝ ð1 − e−
ffiffiffiffiffiffi
2=3

p
χÞ2 E model for φ2

Cases V ∝ jWφj2
a1;3 ¼ 0 VJ ∝ jφj2 VE ∝ tanh2 ðχ= ffiffiffi

2
p Þ T model for φ2

a1;2 ¼ 0 VJ ∝ jφ2j2 VE ∝ tanh4 ðχ= ffiffiffi
2

p Þ T model for φ4
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ns ≃ 1 −
2

N
; r ≃

12

N2
: ð29Þ

Thus, the predictions ns ¼ ½0.960; 0.967� and r ¼ ½0.0033;
0.0048� for N ¼ ½50; 60� are consistent with Planck and
BICEP/Keck experiments [6,7]. Similarly with the gener-
alization in Ref. [51], replacingN1 with αN1, a factor αwill
be added to the leading term of r and the E models of α
attractors are achieved.

C. a2 = 0 case

The potential becomes

V ¼ V0e
−2

ffiffi
2
3

p
χððe

ffiffi
2
3

p
χ þ 1Þ2 þ dðe

ffiffi
2
3

p
χ − 1Þ2Þ2 ð30Þ

with V0 ¼ a21=48c
2
1 and d ¼ 3a3c1=a1. The potential is an

even function in terms of inflaton χ, shown in Fig. 3. So we
will consider inflation in the positive field regime. When
d > −1, there is only one minimum at χm ¼ 0 for the
potential and the slow-roll inflation is not allowed due to ϵ,
η > 1. When d < −1, there are two minima at χm1;m2 ¼ffiffiffiffiffiffiffiffi
3=2

p
log ð−ð1� ffiffiffiffiffiffi

−d
p Þ2=ð1þ dÞÞ and one maximum at

χM ¼ 0 for the potential. From Fig. 4, the slow-roll
parameters are ε → 4=3 and η → 8=3 in the limit

χ → ∞, thus inflation only happens in the region
½ϕM;ϕm1�. The predicted observations ns and r are also
shown in Fig. 3(b).

D. a3 = 0 case

The potential becomes

V ¼ V0ð1þ e−
ffiffi
2
3

p
χÞ2ððe

ffiffi
2
3

p
χ þ 1Þ þ dðe

ffiffi
2
3

p
χ − 1ÞÞ2 ð31Þ

with V0 ¼ a21=48c
2
1 and d ¼ 2a2

ffiffiffiffiffi
c1

p
=a1. The potential is

shown in Fig. 5(a), and remains the same when both
parameter d and field χ become negative. Thus, we will
seek the inflation trajectory with d ≤ 0. There is a mini-

mum at χm¼
ffiffi
3
8

q
logð 2

dþ1
−1Þ for potential with −1< d≤ 0

and a minimum at
ffiffi
3
2

q
logðd−1dþ1

Þ with d < −1. From the

evolution of slow-roll parameters in Fig. 5(b), we find that
inflation impossibly happens for the model in Eq. (31).

E. General case

To discuss the general case for the inflation model with
one modulus, we will start again with the potential in
Eq. (23). The slow-roll parameters are

(a) (b)

FIG. 3. Inflationary potential (a) and the r versus ns predictions (b) for the inflaton potential in Eq. (30) with parameter d < −1.

(a) (b)

FIG. 4. The evolution of the slow-roll parameters (a) ϵ and (b) η for the inflaton potential in Eq. (30).
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εðχÞ ¼ 4ðB1e
2

ffiffi
2
3

p
χ − 1Þ2

3
�
1þ A1e

ffiffi
2
3

p
χ þ B1e

2
ffiffi
2
3

p
χ
�
2
; ηðχÞ ¼

4
�
2þ A1e

ffiffi
2
3

p
χ þ A1B1e

ffiffi
6

p
χ þ 2B2

1e
4

ffiffi
2
3

p
χ
�

3ð1þ A1e
ffiffi
2
3

p
χ þ B1e

2
ffiffi
2
3

p
χÞ2

: ð32Þ

In the limit χ → �∞, ε → 4=3 and η → 8=3, inflation cannot be realized since the slow-roll conditions cannot be satisfied.
By solving Vχ ¼ 0, three extreme points are obtained as

(a) (b)

FIG. 5. Inflationary potential (a) and the evolution of the slow-roll parameters (b) for the inflaton potential in Eq. (31). The solid and
dashed lines correspond to ϵ and η, respectively.

(a)

(b) (c)

FIG. 6. Inflationary potential (a) and the r versus ns predictions (b)–(c) for the inflaton potential in Eq. (23). Also, (b) has B1 < 0, and
(c) has A1 < 0, B1 > 0 and A2

1 > 4B1.
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χ1 ¼ −
1

2

ffiffiffi
3

2

r
logðB1Þ;

χ2 ¼
ffiffiffi
3

2

r
log

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
1 − 4B1

p
þ A1

2B1

�
;

χ3 ¼
ffiffiffi
3

2

r
log

�
sgn½B1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
1 − 4B1

p
− A1

2B1

�
: ð33Þ

The potential with different parameters is shown in Fig. 6(a).
WhenB1 < 0, there is only oneminimum for the potential at
χm ¼ χ3, and the CMB predictions are shown in Fig. 6(b).
The spectral index ns is increasing as jA1j decreasing or jB1j
increasing. When A1 < 0, B1 > 0 and A2

1 > 4B1, there is a
maximum at χM ¼ χ1, and two minima at χm1;m2 ¼ χ2;3.
Thus, the possible inflationary trajectories are from χM to χm1

or to χm2, where the CMB predictions are shown in Fig. 6(c).
As jA1j ≫ B1, the potential goes back to the casewitha2 ¼ 0
and the inflation gives the properCMBobserved value;while
for other parameter spaces, there is only oneminimum for the
potential at χm ¼ χ1, i.e., Vðχ1Þ ¼ ðA1 þ 2

ffiffiffiffiffiffi
B1

p Þ2. To avoid
the cosmological constant problem, the two parameters are
related as A1 ¼ −2

ffiffiffiffiffiffi
B1

p
. Thus, the slow-roll parameters in

Eq. (32) become

εðχÞ ¼ 4

3

�
1þ ffiffiffiffiffiffi

B1

p
e

ffiffi
2
3

p
χ

1 −
ffiffiffiffiffiffi
B1

p
e

ffiffi
2
3

p
χ

�2

≥
4

3
;

ηðχÞ ¼ 8

3

ð1þ ffiffiffiffiffiffi
B1

p
e

ffiffi
2
3

p
χ þ B1e

2
ffiffi
2
3

p
χÞ

ð1 − ffiffiffiffiffiffi
B1

p
e

ffiffi
2
3

p
χÞ2

≥
8

3
:

If we ignore the cosmological constant problem, i.e.,
A1 ≠ −2

ffiffiffiffiffiffi
B1

p
, the slow-roll parameters in Eq. (32) are in

the ranges of

0 ≤ εðχÞ < 4

3
;

4

3
≤ ηðχÞ < 8

3
:

The slow-roll conditions are violated due to the steep slope.
We also show the evolution of slow-roll parameters for

models with A1 ¼ −1, B1 ¼ 1=4 and A1 ¼ −1, B1 ¼ 50 in
Fig. 7.

V. TWO MODULI INFLATIONARY MODEL

In this section, we consider the no-scale inflation model
realized via the orbifold compactification of M theory on
T6=Z12 by keeping singlets under SUð2Þ ×Uð1Þ sym-
metry, and then the compactification on S1=Z2 [59], where
the Kähler potential with two moduli T1;2 and one chiral
superfield φ is

K ¼ −2 logðT1 þ T̄1 − 2jφj2Þ − logðT2 þ T̄2Þ: ð34Þ

Here, for simplicity we neglect the irrelevant scalar fields.
The scalar potential in Jordan frame is

V ¼ jWφj2
4c2ðc1 − 2jφj2Þ : ð35Þ

After field transformation with φ ¼ ffiffiffiffiffiffiffiffiffiffi
c1=2

p
tanh ðχ=2Þ, it

becomes

V ¼ V0

1þ A2eχ þ B2e2χ

eχð1þ eχÞ2 ; ð36Þ

with V0 ¼ ða1−2a2 ffiffiffiffi
c1

p þ3a3c1Þ2
8c1c2

, A2 ¼ 2ða1−3a3c1Þ
a1−2a2

ffiffiffiffi
c1

p þ3a3c1
and

B2 ¼ a1þ2a2
ffiffiffiffi
c1

p þ3a3c1
a1−2a2

ffiffiffiffi
c1

p þ3a3c1
.

A. a1 = 0 case

The scalar potential is

V ¼ V0

ð1 − eχÞ2ð1þ 1þd
1−d e

χÞ2
eχð1þ eχÞ2 ; ð37Þ

where V0 ¼ ð2a2 − 3a3
ffiffiffiffiffi
c1

p Þ2=8c2 and d ¼ 3a3
ffiffiffiffiffi
c1

p
=2a2.

From Fig. 8, the potential remains the same after both
parameter d and field χ become negative. Therefore, in the
following we will only discuss inflation with d ≥ 0.
When d >

ffiffiffiffiffiffiffiffiffiffiffiffiffi
27=32

p
, the potential has three extreme

points: χm1 < χM < χm2 ¼ 0. There are four trajectories for
inflation: on the left side of the minimum χm1, from the
maximum χM to its minima χm1;m2 and on the right sides of
the minimum χm2. However, slow-roll inflation cannot
occur on the left side of χm1 and on the right side of χm2,
since the slow-roll parameters ε → 1=2 and η → 1 when
jχj > 5MPl, as shown in Fig. 9. Moreover, we find that
inflation cannot end on the trajectory from χM to χm1, and
slow-roll inflation is not permitted from χM to χm2 because
of ηðχMÞ greater than 1.
When 0 ≤ d ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffi
27=32

p
, the potential has a minimum at

χm2 and the potential has an inflection point when
d ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

27=32
p

. Here, we will discuss the impossibility for
FIG. 7. The evolution of the slow-roll parameters. Solid and
dashed lines are corresponding to ε and η, respectively.
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the inflation along the right side of the minimum. For the
sake of convenience, we choose d ¼ 0, where the potential
becomes

V ¼ 2a22
c2

sinh2
�
χ

2

�
: ð38Þ

In this case, the slow-roll parameters are

εðχÞ ¼ 1

2
coth2

�
χ

2

�
;

ηðχÞ ¼ 1

2
coshðχÞcsch2

�
χ

2

�
: ð39Þ

The parameter η is larger than 1 on the whole trajectory.
Therefore, slow-roll inflation cannot be obtained when
d ¼ 0. Similarly, inflation from the right side of χm2 ¼ 0

for all d and from the left side of χm1 for d >
ffiffiffiffiffiffiffiffiffiffiffiffiffi
27=32

p
is

not allowable as well.
Thus, the feasible inflationary trajectory is on the left

side of χm2 ¼ 0 for 0 < d ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffi
27=32

p
. Similar to the

Starobinsky-like E model with one modulus, the predicted
r that satisfy the experimental limits are obtained from a
tiny region for the parameter d≲ ffiffiffiffiffiffiffiffiffiffiffiffiffi

27=32
p

. The results are

shown in Fig. 10, where we also show triple-pack bench-
mark points corresponding to the central and 2σ bound
values for observed ns. Thus, the spectrum index is
increasing as the parameter d is decreasing. From the
numerical calculations, one notes that inflation initials at
χ� ≃ −2.26MPl, the higher order term ð1þd

1−d e
χÞ2 of the

numerator in Eq. (37) is not small and cannot be ignored.
When d ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

27=32
p

, the tensor-to-scalar ratio r and
e-folding number are approximate to be

(a) (b)

FIG. 8. The inflaton potential in Eq. (37). (a) The potential remains the same after both parameter d and field χ become negative.
(b) The potential with d ≥ 0.

(a) (b)

FIG. 9. The evolution of the slow-roll parameters (a) ϵ and (b) η for the inflaton potential in Eq. (37).

FIG. 10. The r versus ns predictions for the inflaton potential in
Eq. (37) with parameter d ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

27=32
p

δ.
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r ≃
8ð5 − 3ð8 ffiffiffi

6
p þ 13Þeχ þ 3ð32 ffiffiffi

6
p þ 77Þe2χÞ2

ð5þ ð24 ffiffiffi
6

p þ 59ÞeχÞ2

N ≃
824 − 336

ffiffiffi
6

p

ð11 ffiffiffi
6

p
− 24Þeχ − 103

ffiffiffi
6

p þ 252

and

r ≃
8192ð49 − 20

ffiffiffi
6

p Þ
N4

≃
83.60
N4

: ð40Þ

For N ¼ 50–60, the predicted r is about 10−5 and con-
sistent with numerical calculations.

B. a2 = 0 case

The scalar potential becomes

V ¼ V0

ððeχ þ 1Þ2 þ dðeχ − 1Þ2Þ2
e−χðeχ þ 1Þ2 ð41Þ

with V0 ¼ a21=ð8c1c2Þ and d ¼ 3a3c1=a1. It is an even
function in terms of χ. Thus, for simplicity, we will study
inflation in the positive region χ > 0, as shown in Fig. 11.
There is a minimum and maximum at χ ¼ 0 for the
potential with d ≥ −1=2 and d ¼ −1, respectively.
Also, there is a maximum at χM ¼ 0 and two minima at
χm ¼ log ð−ð1þ 3d� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dð2dþ 1Þp Þ=ðdþ 1ÞÞ and χm ¼

log ð−ð1 − d� 2
ffiffiffiffiffiffi
−d

p Þ=ðdþ 1ÞÞ respectively for −1 <
d < −1=2 and d < −1. However, the slow-roll inflation
cannot end. To understand this behavior, we choose
d ¼ −1, and the corresponding slow-roll parameters in
terms of the field χ are

εðχÞ ¼ 1

2
−

2eχ

ðeχ þ 1Þ2 ; ηðχÞ ¼ 1 −
6eχ

ðeχ þ 1Þ2 : ð42Þ

Thus, we have εð0Þ ¼ 0, ηð0Þ ¼ −1=2. For χ > 0, we have
0 < ϵ < 1=2, −1=2 < η < 1, and η → 1 as χ → ∞. Thus,
we cannot exit the slow-roll inflation.

C. a3 = 0 case

The scalar potential with a3 ¼ 0 becomes

V ¼ V0e−χððeχ þ 1Þ þ dðeχ − 1ÞÞ2; ð43Þ

where V0 ¼ a21=8c1c2 and d ¼ 2a2
ffiffiffiffiffi
c1

p
=a1. Because the

potential is invariant as d → −d and χ → −χ (see Fig. 12),
we only need to study the cosmological predictions with
d ≥ 0. There is a minimum at χm ¼ log ðj1 − dj=ð1þ dÞÞ.
Note that VðχmÞ is larger than 0 with d < 1, we have the
cosmological constant problem. However, it still does
not have slow-roll inflation with d ≥ 1. The slow-roll
parameters are

εðχÞ ¼ ðeχ þ ξÞ2
2ðeχ − ξÞ2 ; ηðχÞ ¼ 1þ 2ξeχ

ðeχ − ξÞ2 ð44Þ

with ξ ¼ ðd − 1Þ=ðdþ 1Þ. For d ≥ 1, we obtain η ≥ 1, and
thus the slow-roll conditions cannot be satisfied.

D. General case

Now, we discuss the general case whose inflaton
potential is

V ¼ V0

ððeχ þ 1Þ2 þ d1ðeχ − 1Þððeχ þ 1Þ þ d2ðeχ − 1ÞÞÞ2
eχðeχ þ 1Þ2

ð45Þ

with V0 ¼ a21=8c1c2, d1 ¼ 2a2
ffiffiffiffiffi
c1

p
=a1 and d2 ¼

3a3
ffiffiffiffiffi
c1

p
=2a2. The potential remains the same after both

parameters d1, d2 and field χ become negative. Thus, we
will only discuss inflation with d2 ≥ 0. The potential and r
versus ns predictions are shown in Fig. 13. The possible
inflation is along the flat trajectory χ < 0. Similar to the
a1 ¼ 0 case, the inflation is sensitive to the parameter d2
and the benchmark points corresponding to the central and
2σ bound values for observation ns are also shown in
Fig. 13(b). The solid and dashed lines are corresponding to
N ¼ 50 and N ¼ 60, respectively. From the numerical
results, we know that the spectrum index increases as the

FIG. 11. Inflaton potential in Eq. (41). FIG. 12. Inflaton potential in Eq. (43).
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parameter d2 decreases. Moreover, the tensor-to-scalar ratio
r predicted from models with d1 < 0 is larger than that with
d1 > 0. We plot r versus ns for models with d1 ¼
�30;�90 in Fig. 13(c).

VI. THREE MODULI INFLATIONARY MODEL

In this section, we consider no-scale inflation realized by
the orbifold compactifications of M theory on T6=Z12 as
well as S1=Z2 [59], which has three moduli and the Kähler
potential is given by Eq. (10) with N1 ¼ N2 ¼ N3 ¼ 1.
Stabilizing the muduli with Ti ¼ T̄i ¼ ci=2, the scalar
potential along the real part of field φ is given by

V ¼ jWφj2
2c2c3

: ð46Þ

The three moduli inflationary model is similar to that with
the global supersymmetry, and has a non-negative scalar
potential, but the Kähler potential is different. Redefining
the canonical field χ with φ ¼ ffiffiffiffiffiffiffiffiffiffi

c1=2
p

tanh ðχ= ffiffiffi
2

p Þ, the
potential becomes

V ¼ V0

ð1þ A3e
ffiffi
2

p
χ þ B3e2

ffiffi
2

p
χÞ2

ð1þ e
ffiffi
2

p
χÞ4

ð47Þ

with V0 ¼ ða1−2a2 ffiffiffiffi
c1

p þ3a3c1Þ2
c2c3

, A3 ¼ 2ða1−3a3c1Þ
a1−2a2

ffiffiffiffi
c1

p þ3a3c1
, and

B3 ¼ a1þ2a2
ffiffiffiffi
c1

p þ3a3c1
a1−2a2

ffiffiffiffi
c1

p þ3a3c1
.

A. T-model realization: a1;3 = 0 and a1;2 = 0 cases

When a1;3 ¼ 0, the inflation model in Eq. (46) reduces to
V ∝ φ2. We know that the chaotic inflation [67,68] predicts

ns ≃ 1 −
2

N
; r ≃

8

N
; ð48Þ

which will give a larger r ∼ 0.14 for N ∼ 55 and the
inflation with a quadratic potential is ruled out by the
Planck and BICEP/Keck experiments [6,7]. After field
transformation, the T model [51] for the φ2 inflation model
is achieved with potential as

V ¼ V0 tanh2
�

χffiffiffi
2

p
�
: ð49Þ

Similar, the T model [51] for φ4 is realized with a1;2 ¼ 0

and the potential is given by V ¼ V0 tanh4 ðχ=
ffiffiffi
2

p Þ. We list
the realization of the T model in the three moduli model in
Table I. If the factor N1 is generalized to αN1, the T model
of the α attractor can be obtained.

(a)

(b) (c)

FIG. 13. The r versus ns predictions (b),(c) for the inflaton potential (a) in Eq. (45).
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For the T model for φ2n, the slow-roll parameters are

ε ¼ 4n2csch2ð
ffiffiffi
2

p
χÞ;

η ¼ 4nð2n − cosh ð
ffiffiffi
2

p
χÞÞcsch2ð

ffiffiffi
2

p
χÞ: ð50Þ

The inflation ends at χe ¼ sinh−1ð2nÞ= ffiffiffi
2

p
with ε ¼ 1.

Then the e-folding number can be rewritten in terms of
the inflaton at horizon crossing χ�:

N ¼ 1

4n
cosh ð

ffiffiffi
2

p
χÞ
				χ�
χe

¼ 1

4n
ðcosh ð

ffiffiffi
2

p
χ�Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n2 þ 1

p
Þ: ð51Þ

The cosmological predictions are given by

ns ¼ 1 −
2ðnþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n2 þ 1

p
þ 4nNÞ

nþ 2N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n2 þ 1

p
þ 4nN2

r ¼ 16n

nþ 2N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n2 þ 1

p
þ 4nN2

: ð52Þ

Comparing with Eq. (48), the spectral index changes a
little, whereas the tensor-to-scalar ratio is effectively sup-
pressed by the factor 4=N2: ns ¼ 0.9602, r ¼ 0.0016 for
N ¼ 50, and ns ¼ 0.9668, r ¼ 0.0011 for N ¼ 60.

B. a1 = 0 case

The effective potential of scalar field φ is

V ¼ 4

c2c3

			 ffiffiffi
2

p
a2φþ 3a3φ2

			2; ð53Þ

and can be rewritten as a three-term polynomial inflation
model V ¼ V0jϕþ αϕ2j2 which predicts a large tensor-to-
scalar ratio r ∼ ½0.025; 0.249� [69] and the parameter space
is partially ruled out by the latest limits. However, the field
φ is noncanonical in the no-scale SUGRA models. In the
following discussion, one will find that tensor-to-scalar
ratio r is suppressed by 1=N2 rather than 1=N.
Using the field transformation, the potential with canoni-

cal field χ can be rewritten in the general form Eq. (47) with

V0 ¼ ð2a2 ffiffiffiffi
c1

p −3a3c1Þ2
c2c3

, A3 ¼ 6a3c1
2a2

ffiffiffiffi
c1

p −3a3c1
, B3 ¼ − 2a2

ffiffiffiffi
c1

p þ3a3c1
2a2

ffiffiffiffi
c1

p −3a3c1
.

The two parameters A3 and B3 are interrelated,
A3 þ B3 ¼ −1. After defining a new parameter
d ¼ −3a3

ffiffiffiffiffi
c1

p
=2a2, they become A3 ¼ −2d=ðdþ 1Þ and

B3 ¼ d − 1=ðdþ 1Þ. The potential can be rewritten with
two parameters V0 and d as follows:

V ¼ V0

ðdðe
ffiffi
2

p
χ − 1Þ2 − e2

ffiffi
2

p
χ þ 1Þ2

ð1þ e
ffiffi
2

p
χÞ4

: ð54Þ

The parameter V0 ¼ 4a22c1=c2c3 can be fixed by the power
spectrum As ¼ 2.10 × 10−9 [6] at horizon crossing. One

can find that the potential Vð−d;−χÞ equals Vðd; χÞ, which
indicates that the negative trajectory χ < 0 with d < 0 will
give the same observations with positive trajectory χ > 0
with d > 0, and vice versa. For convenience, we study the
inflation by setting d > 0. Inflation with d ¼ 0 was
discussed in the previous subsection.
The potential in terms of inflaton field χ with different

parameter d are shown in Fig. 14. There is a minimum at
χ ¼ 0, and the inflation will occur on the negative branch
R1 (χ < χm region). Since the steep trajectory in the region
of χ < 0 weakly depends on the parameter d, the potential
goes back to that in the previous a1;3 ¼ 0 case (T model)
and the predictions are ns ≃ 0.9602 and r ≃ 0.0016 for
N ¼ 50, as well as ns ≃ 0.9667 and r ≃ 0.0011 for N ¼ 60.
Next, we will study inflation on the positive field branch
χ > 0. Similar to the a1;3 ¼ 0 case, the potential with d <
1=2 only has one minimum at χ ¼ 0. The inflation can
occur at both branches χ > 0 and χ < 0, however, the two
inflation trajectories are not symmetric. When the inflation
occurs at the positive branch χ > 0, ns and r are very
sensitive to d. The numerical results are shown in Fig. 15 and
ns has a maximum when d ¼ 0.465: ns ¼ 0.9636ð0.9697Þ
for e-folders N ¼ 50ð60Þ. When 0.5 < d ≤ 1, the potential
has a minimum at χm ¼ 0 and a maximum at χM ¼ffiffiffi
2

p
tanh−1 ð1=2dÞ. There are three possible inflation trajec-

tories, labeled as R1 (χ < χm region), R2 (χm < χ < χM
region), and R3 (χ > χM region). The parameter is restricted
to a range 0.5 < d < 0.55 for the R2 trajectory due to small
ns and lack of e folds. The scalar spectral index ns decreases
as d is increasing and the numerical results are shown in
Fig. 16(a). The last trajectory R3 is ruled out since the
potential is too flat where the inflation either cannot end or
cannot last long enough. When d > 1, the potential has two
minima at χm1

¼ 0 and χm2
¼ ffiffiffi

2
p

tanh−1 ð1=dÞ and one
maximum at χM ¼ ffiffiffi

2
p

tanh−1 ð1=2dÞ. Thus, there are four
possible trajectories, labeled as R1 (χ < χm region), R2

(χm1
< χ < χM region), R3 (χM < χ < χm2

region), and
R4 (χ > χm2 region). As discussed above, the inflation in
R2 and R3 is forbidden since the e-folding numbers are not
enough. The inflation on R4 is similar to that on negative

FIG. 14. Inflaton potential in Eq. (54).
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branchR1 and the results are shown in Fig. 16(b). At last, the
above results are summarized in Fig. 17.
As discussed above, e−

ffiffi
2

p
χ� is small as the mode crossing

the horizon, then potential (54) is expanded up to the
leading order in e−2bχ as

V ∝ ð1 − ae−2bχ þOðe−4bχÞÞ; ð55Þ

where a ¼ 4ð1 − 2dÞ=ð1 − dÞ and b ¼ 1=
ffiffiffi
2

p
. The spec-

trum index, tensor-to-scalar ratio, and e-folding number
are

ns ≃ 1 − 8ab2e−2bχ þOðe−4bχÞ ð56Þ

r ≃ 32a2b2e−4bχ þOðe−8bχÞ ð57Þ

(a)

(b) (c)

FIG. 15. (a) The r versus ns predictions for the inflaton potential in Eq. (54) with d ≤ 1=2, (b) ns versus the parameter d, and (c) r
versus the parameter d. The circles and triangles correspond to d ¼ 0 (T model for φ2) and d ¼ 1=2, respectively.

(a) (b)

FIG. 16. The r versus ns predictions for the inflaton potential in Eq. (54) with (a) 1=2 < d ≤ 1 and (b) d > 1.
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N ≃
e2bχ

4ab2
þOðe−4bχÞ ð58Þ

and

ns ≃ 1 −
2

N
; r ≃

2

b2N2
: ð59Þ

Thus, the predictions ns ¼ ½0.960; 0.967� and r ¼ ½0.0016;
0.0011� for N ¼ ½50; 60� are consistent with the Planck
2018 results [6].

C. a2 = 0 case

When a2 ¼ 0, the potential with canonical field χ can be
rewritten as

V ¼ V0

�
1þ d tanh2

�
χffiffiffi
2

p
��

2

ð60Þ

with V0 ¼ a21=c2c3 and d ¼ 3a3c1=a1, and we show the
potential with different d in Fig. 18. From the plots, one
notes that the positive and negative branches are symmetric,
and here we will only discuss the inflation for the positive
branch. Thus, we need to find the possible parameter space

of d for inflation. The slow-roll parameters are given by the
following analytic form:

ε ¼ 16d2tanh2ðbχÞ
ððdþ 1Þ cosh ð2bχÞ − dþ 1Þ2 ;

η ¼ dð1 − 2ξ1 cosh ð2bχÞ þ ξ2 cosh ð4bχÞÞsech6ðbχÞ
6ð3d − 1Þðdtanh2ðbχÞ þ 1Þ2 ;

with ξ1 ¼ ð5dþ 1Þ=ð9d − 3Þ and ξ2 ¼ ðdþ 1Þ=ð9d − 3Þ.
Solving the equations of ε ¼ 1 and jηj ¼ 1, we get

ε ¼ 1 → d1 ¼
2cosh2ðbχÞ coth ðbχÞ

4 ∓ sinh ð2bχÞ ;

jηj ¼ 1 → d2 ¼
8<
:

ðΔ1�Δ2Þcoth2ðbχÞ
cosh ð4bχÞþ16 cosh ð2bχÞ−65

ðΔ3�Δ4Þcoth2ðbχÞ
cosh ð4bχÞ−16 cosh ð2bχÞþ63

; ð61Þ

where Δ1 ¼ 8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh ð4bχÞ − 4 cosh ð2bχÞ þ 4

p
, Δ2 ¼

coshð4bχÞþ8coshð2bχÞ−17, Δ3¼ 8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5−4coshð2bχÞp

,
and Δ4 ¼ cosh ð4bχÞ − 8 cosh ð2bχÞ þ 15. Due to the
complicated formula, we plot d versus χ=MPl in Fig. 19
and find that the inflation will occur at the regime jdj > 1=2
since inflaton will go down to the vacuum of potential
without truncation when jdj < 1=2. The evolution of slow-
roll parameters in terms of inflaton field are shown
in Fig. 20.
When d > 1=2, there is a minimum for the potential at

χm ¼ 0, and the gradient increases as d increases, which
indicates that inflation can be truncated only with large d.
Based on the evolution of slow-roll parameters from
Fig. 20, one can find that inflation will end if the condition
ε ¼ 1 is satisfied when d > 1.937, whereas inflation will
first end at η ¼ 1 until d > 2.291. The predictions ns and r
for N ¼ 50 and 60 are shown with dashed lines in Fig. 21.
As d is rising, the scalar spectral index ns is increasing. In
the limit d → ∞, the constant term 1 can be ignored in the
potential (60) and then the α attractor T model for ϕ4 [51]
can be achieved. As the parameter d locates in the range

FIG. 17. The r versus ns predictions for the inflaton potential in
Eq. (54). The circles and triangles correspond to d ¼ 0 (T model
for φ2) and d ¼ 1=2, respectively.

FIG. 18. Inflaton potential in Eq. (60). FIG. 19. The parameter d with respect to inflaton χ=MPl.

LINA WU and TIANJUN LI PHYS. REV. D 106, 043514 (2022)

043514-14



−1 < d < −1=2, there is only a maximum for the potential
at χ ¼ 0. However, slow-roll inflation cannot happen due to
the large jηj. While d < −1, there is a maximum at χ ¼ 0

and two minima at χm ¼ � ffiffiffi
2

p
tanh−1ð ffiffiffiffiffiffiffiffiffiffiffi

1=jdjp Þ. From the
evolution of the slow-roll parameters, inflation only occurs
at the region χ > χm and the predictions are shown with
solid lines in Fig. 21. The spectral index ns and the tensor-
to-scalar ratio r slightly depend on the parameter d, and ns
improves when the parameter d goes from −∞ to −1. In the
limit d → −1, the inflaton χ� ∼ 6MPl and e−

ffiffi
2

p
χ� is small

when the pivot scale leaves the horizon, so the potential
(60) can be expanded as

V ≃ V0ð1þ dÞ2
�
1 −

4d
1þ d

e−
ffiffi
2

p
χ

�
2

: ð62Þ

The E model [11,51] is carried out and the predicted
observations are

ns ≃ 1 −
8ð4N þ 1Þ
ð1 − 4NÞ2 ; r ≃

64

ð1 − 4NÞ2 : ð63Þ

The numerical results of the predictions for T and E models
are also shown as circles and triangles in Fig. 21, respec-
tively. One notes that the zeroth and first order in e−

ffiffi
2

p
χ

expansion for the potential of T and E models are identical,
however, the precise predictions are different due to the
distinction at the higher orders when

ffiffiffi
2

p
χ ≃Oð1Þ. We

conclude the possible parameter space for d in Table II.

D. a3 = 0 case

The inflaton potential in terms of canonical field χ is

V ¼ V0

�
1þ d tanh

�
χffiffiffi
2

p
��

2

; ð64Þ

FIG. 20. The evolutions of the slow-roll parameters ε, η for the inflaton potential in Eq. (60).

FIG. 21. The CMB predictions for the model in Eq. (60). The
circles and triangles are corresponding to the T and the E model,
respectively.

TABLE II. The possible parameter space for d.

Condition

d

a2 ¼ 0 case a3 ¼ 0 case

ε ¼ 1 ½−∞;−1Þ
∪ ½2.2911;∞�

½−∞;−1� ∪ ½1;∞�

jηj ¼ 1 [0.5, 2.2911] ½−1;−0.5774�
∪ ½0.5774; 1�

No truncation ½−0.5; 0.5� ½−0.5774; 0.5774�
No slow roll ½−1;−0.5� � � �
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with V0 ¼ a21=c2c3 and d ¼ 2a2
ffiffiffiffiffi
c1

p
=a1. The inflaton

potential is shown in Fig. 22(a), and we will only con-
sider inflation with d > 0, given the equivalent potential
under the exchange ðd; χÞ ↔ ð−d;−χÞ. The slow-roll
parameters are

ε ¼ d2sech4ðbχÞ
ð1þ d tanh ðbχÞÞ2 ;

η ¼ dsech4ðbχÞð2d − d cosh ð2bχÞ − sinh ð2bχÞÞ
ð1þ d tanh ðbχÞÞ2 : ð65Þ

Under the slow-roll conditions, the solutions for the
parameter d with respect to inflaton χ are

ε ¼ 1 → d1 ¼
2cosh2ðbχÞ

sinh ð2bχÞ � 2
;

jηj ¼ 1 → d2 ¼
(
− 2 cosh ðbχÞðΔ1�Δ2Þ

8 cosh ð2bχÞþcosh ð4bχÞ−17
−2i cosh ðbχÞ�sinh ð2bχÞ

2i sinh ðbχÞ�ð3−cosh ð2bχÞÞ
; ð66Þ

where Δ1 ¼ 5 sinh ðbχÞ þ sinh ð3bχÞ, and Δ2 ¼
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh ð2bχÞp

. From Figs. 22(b) and 23, one can find that

(a) (b)

FIG. 22. Inflaton potential in Eq. (64) (a) and its possible parameter space for d (b).

FIG. 23. The evolution of the slow-roll parameters ε and η.
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it is hard to end inflation when jdj < 0.5774 due to the too
flattened potential. When d ∈ ½0.5774; 1�, inflation ends
first as the condition jηj¼1 is satisfied, even the condition
ε¼ 1 has a solution as d > 0.8. There is no extreme point
for the potential and the inflaton rolls from the positive to
the negative region. The numerical predictions are given by
dotted lines in Fig. 24 and the spectral index ns increases
with d increasing. With other d ≥ 1, there is a minimum for
the potential and inflation can happen in the two trajecto-
ries, right and left sides of the minimum. In both branches,
inflation ends when the condition ε ¼ 1 is satisfied. The
predicted ns and r for inflation on the right and left
trajectories are given by solid and dashed lines, respec-
tively, in Fig. 24. As parameter d is increasing, the index ns
on the right trajectory increases, while ns on the left
trajectory decreases. The possible choices for parameter
d are also shown in Table II.
As discussed before, in the limit d → ∞, the constant

term 1 can be ignored and the potential in Eq. (64) returns

to tanh2ðχ= ffiffiffi
2

p Þ, which is identical to the potential of the T
model for φ2 [51]. In this way, the left and right trajectories
are symmetric and give the same cosmological predictions,
which makes the connection of solid lines and dashed lines
in Fig. 24. While in the limit d → 1, the E model can be
realized by expanding the potential in Eq. (64) on the left

trajectory as V ∝ ð1 − 2d
1þd e

−
ffiffi
2

p
χÞ2. That is why our models

connect the T model and the E model in a different
approximation.

E. General case

Finally, we discuss the following generic potential in
Eq. (47). Similarly, the parameter V0 can be determined by
the constraint As ¼ 2.1 × 10−9 at horizon crossing. There
are three extreme points for the potential:

χ1 ¼
1ffiffiffi
2

p log

�
A3 − 2

A3 − 2B3

�
;

χ2 ¼
1ffiffiffi
2

p log

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
3 − 4B3

p þ A3

2B3

�
;

χ3 ¼
1ffiffiffi
2

p log

�
−
A3 − sgnðB3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
3 − 4B3

p
2B3

�
: ð67Þ

The potential with different parameters is shown in Fig. 25.
For A3 > 2 and B3 < 0, the potential has a maximum at
χM ¼ χ1 and a minimum at χm ¼ χ3. Similarly, inflation
occurs in the regions ½χM; χm� and ½χm;∞� since the slow-
roll conditions are violated in the region ½−∞; χM�. The
cosmological predictions in both regions are shown
in Fig. 26. The slow-roll parameters and number of
e-folding are

ε ¼ 4e2
ffiffi
2

p
χðδ0 − δ4e

ffiffi
2

p
χÞ2

ðe
ffiffi
2

p
χ þ 1Þ2ð1þ A3e

ffiffi
2

p
χ þ B3e2

ffiffi
2

p
χÞ2

;

η ¼ 4e
ffiffi
2

p
χðδ0 þ 2δ1e

ffiffi
2

p
χ − 3δ2e2

ffiffi
2

p
χ þ 2δ3e3

ffiffi
2

p
χ þ B3δ4e4

ffiffi
2

p
χÞ

ðe
ffiffi
2

p
χ þ 1Þ2ð1þ A3e

ffiffi
2

p
χ þ B3e2

ffiffi
2

p
χÞ2

;

N ¼ 1

4

�
−

1

δ0
e−

ffiffi
2

p
χ −

B3

δ4
e

ffiffi
2

p
χ þ

ffiffiffi
2

p
γ1

δ20
χ −

2γ2
δ20δ

2
4

log ðe
ffiffi
2

p
χδ4 − δ0Þ

�
; ð68Þ

where δ0 ¼ A3 − 2, δ1 ¼ A2
3 − 5A3 þ 2B3 þ 4, δ2 ¼ 2A2

3−
3A3ðB3 þ 1Þ þ 4B3, δ3¼A2

3−5A3B3þ2B3ð2B3þ1Þ, δ4 ¼
A3 − 2B3, γ1 ¼ A2

3 − 2B3 − 2, and γ2 ¼ ðA2
3 − 4B3Þð−A3þ

B3 þ 1Þ2. In order to obtain a prediction within the 2σ
region of the Planck results, we need B3 ⪅ −450. Then
these new parameters are approximated to be

δ1∼ 2B3; δ2∼ ð4−3A3ÞB3; δ3 ∼ 4B2
3; δ4 ∼−2B3:

Thus, the tensor-to-scalar ratio approximately is

r ¼ 16ε ≃
4δ24

ðB3e
ffiffi
2

p
χÞ2

∼ 256e−2
ffiffi
2

p
χ :

In the region ½χM; χm�, the pivot scale leaves the horizon at
χ� ∼ −5MPl, and the tensor-to-scalar ratio is 10−4, which is
consistent with numerical calculations. Moreover, in the

FIG. 24. The r versus ns predictions for the inflaton potential in
Eq. (64). The circles and triangles correspond to T and E models,
respectively.
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limit B3 → −∞, the slow-roll parameters are independent
on the parameter A3. Thus, the predictions are ns ≃ 0.9608,
r ≃ 3.8 × 10−4 forN ¼ 50 and ns ≃ 0.9672, r ≃ 2.7 × 10−4

for N ¼ 60, which locate in the 2σ region of the Planck
results and are shown as circles in Fig. 26(a). In the figure,
the black scatters of the numerical predictions form a fan

where the two boundaries and vertex of the fan come from
the limits A3 → 2, A3 → ∞ and B3 → −∞, respectively.
There is a minimum at χm ¼ χ3 for the potential as setting
A3 ¼ 2 and B3 < 0, so there are two inflationary trajecto-
ries for which the predicted ns and r are also shown in
Fig. 26.

(a) (b)

FIG. 26. The r versus ns predictions for the inflaton potential in Eq. (47) with A3 ≥ 2 and B3 < 0. (a) In the region ½χM; χm�; the circles
are in the limit B3 → −∞. The dashed and solid lines are corresponding to N ¼ 50 and N ¼ 60. (b) In the region ½χm;∞�.

(a) (b)

FIG. 25. Inflaton potential in Eq. (47) with A > 0 (a) and A < 0 (b).

(a) (b)

FIG. 27. The r versus ns predictions for the inflaton potential in Eq. (47) with A3 > 2, B3 > 0, and A3 > 2B3. (a) In the region
½−∞; χM�. (b) In the region ½χM;∞�.
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When the parameters are in the region A3 > 2, B3 > 0,
and A3 > 2B3, the potential has a maximum at χM ¼ χ1.
Inflation can occur on both sides of the maximum where
the predicted ns and r are shown in Fig. 27. In order to get
predictions which are consistent with the experimental
data, the parameters should be A3 ≃ B3 or A3 ≃ 2, B3 ∼ 0.
While for 0 ≤ A3 < 2, and A3 < 2B3, inflation can occur
on the right side of the minimum χm ¼ χ1 for which the
predicted ns and r are shown in Fig. 28.

There are two minima at χm1 ¼ χ2 and χm2 ¼ χ3 and one
maximum at χM ¼ χ1 for the potential with A3 < 0,
B3 > 0, and A2

3 > 4B3. Inflation occurs in the regions
½−∞; χm1� and ½χm2;∞�, except the regions ½χm1; χM� and
½χM; χm2�, where slow-roll inflation cannot be realized due
to η > 1 at χM. The predicted ns and r are shown in Fig. 29.
Moreover, inflation can happen on both the left and right
sides of the minimum χm ¼ χ1 for the potential with
A3 < 0, B3 > 0, A2

3 < 4B3, where the predicted ns and r
are shown in Fig. 30, while for A3 < 0, B3 < 0, and
A3 < 2B3, the potential is a maximum at χM ¼ χ1 and a
minimum at χm ¼ χ3. Similarly, the possible inflationary
trajectories are in the regions ½−∞; χm� and ½χm; χM�, and
the predicted ns and r are shown in Fig. 31. Especially, the
relationship for parameters is A ∼ 2B in the region ½χm; χM�.
At last, for A3 < 0, B3 < 0, and A3 > 2B3, the potential
only has one minimum at χm ¼ χ3, and the predicted ns and
r are shown in Fig. 32. On the right side of the minimum,
the predictions of T and E models can also be covered. For
the rest of the parameter spaces, there is no extreme point
for the potential, and the slow-roll inflation is not possible
on any trajectories.

FIG. 28. CMB observations for the model in Eq. (47) with
0 ≤ A3 < 2, A3 < 2B3. Inflation occurs on the right side of χm.

(a) (b)

FIG. 29. The r versus ns predictions for the inflaton potential in Eq. (47) with A3 < 0, B3 > 0, and A2
3 > 4B3. Inflation occurs in the

regions (a) ½−∞; χm1� and (b) ½χm2;∞�.

(a) (b)

FIG. 30. The r versus ns predictions for the inflaton potential in Eq. (47) with A3 < 0, B3 > 0, and A2
3 < 4B3. Inflation occurs in the

regions (a) ½−∞; χm� and (b) ½χm;∞�.
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VII. CONCLUSION

We have studied three classes of no-scale inflation
models with one, two, and three moduli which can be
realized naturally via string compactifications. Also, we
considered the general renormalizable superpotential as
three-order polynomials of the inflaton field. The E model
and T model for a fixed α are realized in the one modulus
model and the three moduli model, respectively. They are
connected by the three moduli model in the limits
2a2

ffiffiffiffiffi
c1

p
=a1 → 1 and 2a2

ffiffiffiffiffi
c1

p
=a1 → ∞. The detailed analy-

ses of the spectral indices and the tensor-to-scalar ratio have
been preformed, and they are consistent with the Planck
and BICEP/Keck experimental data on the cosmic
microwave background. The spectral index is ns ≃ 1−2=
N ∼ 0.965 for all models. Similar to the Starobinsky model,
the tensor-to-scalar ratio r in the one and threemodulimodels
are r ≃ 2=ðb2N2Þ, whereas r predicted in the two moduli
models are r ≃ 83=N4 due to the non-negligible contribution
from the higher order term in potential. The parameter b is
defined in terms of N1 as d ¼ 1=

ffiffiffiffiffiffiffiffi
2N1

p
. Thus, we have

b ¼ 1=
ffiffiffi
6

p
for one modulus models and b ¼ 1=

ffiffiffi
2

p
for three

moduli models. The tensor-to-scalar ratio in models with
quartic and quadratic potential is significantly suppressed in
no-scale supergravity, and then they can satisfy the strong
bound from the current observations r0.05 < 0.036. In other
words, no-scale supergravity is a viable framework which
makes the excluded models valid again. In the three moduli
model, the scalar potential is similar to that in global
supersymmetry, but the Kähler potential is different. Thus,
such no-scale supergravity becomes a bridge between super-
gravity and global supersymmetry.
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(a) (b)

FIG. 31. The r versus ns predictions for the inflaton potential in Eq. (47) with A3 < 0, B3 < 0, and A3 < 2B3. Inflation occurs in the
regions (a) ½−∞; χm� and (b) ½χm; χM�.

(a) (b)

FIG. 32. The r versus ns predictions for the inflaton potential in Eq. (47) with A3 < 0, B3 < 0, and A3 > 2B3. Inflation occurs in the
regions (a) ½−∞; χm� and (b) ½χm;∞�. The circles and triangles correspond to T and E models, respectively.
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