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Using a suite of N-body simulations, we study the angular clustering of galaxies, halos, and dark matter
in Λ cold dark matter and modified gravity (MG) scenarios. We consider two general categories of such
MG models, one is the fðRÞ gravity, and the other is the normal branch of the Dvali-Gabadadze-Porrati
brane world. To measure angular clustering we construct a set of observer-frame light cones and resulting
mock sky catalogs. We focus on the area-averaged angular correlation functions WJ , and the associated

reduced cumulants SJ ≡WJ=W
ðJ−1Þ
2 , and robustly measure them up to the ninth order using counts in cells.

We find that 0.15 < z < 0.3 is the optimal redshift range to maximize the MG signal in our light cones.
Analyzing various scales for the two types of statistics, we identify up to 20% relative departures in MG
measurements from general relativity (GR), with varying signal significance. For the case of halos and
galaxies, we find that third-order statistics offer the most sensitive probe of the different structure formation
scenarios, with bothW3 and the reduced skewness S3 reaching from 2σ to 4σ significance at angular scales
θ ∼ 0.13°. The MG clustering of the smooth dark matter field is characterized by even stronger deviations
(≳5σ) from GR, albeit at a bit smaller scales of θ ∼ 0.08°, where baryonic physics is already important.
Finally, we stress that our mock halo and galaxy catalogs are characterized by rather low surface number
densities when compared to existing and forthcoming state-of-the-art photometric surveys. This opens up
exciting potential for testing GR and MG using angular clustering in future applications, with even higher
precision and significance than reported here.
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I. INTRODUCTION

One of the greatest accomplishments of modern cosmol-
ogy is the formulation of the concordance standard cos-
mological model, the so-called Lambda cold dark matter
(ΛCDM). This is a phenomenological model assuming that
around 30% of the present-day Universe energy density is
in the form of nonrelativistic matter (baryonic and dark)
and the remaining 70% is attributed to the “dark energy,” an
exotic phenomenon propelling the late-time accelerated
expansion of the Universe. ΛCDM is a simple model with
six free parameters that is able to pass successfully many
stringent observational tests, e.g., [1–4].
One of the core predictions of ΛCDM is that the cosmic

large-scale structure (LSS) originated from gravitational
instability acting on early matter distribution [5]. The
widely accepted scenario assumes adiabatic Gaussian
initial conditions (as supported by the cosmic microwave
background measurements [1]), which were then reshaped
due to the nonlinear gravitational evolution. The resulting
LSS is organized into the so-called cosmic web [6], as

traced by its main building blocks—luminous galaxies.
Among the most striking features of this cosmic-web
arrangement are the high anisotropy of the underlying
density distribution (i.e., volume dominance of voids, mass
dominance of filaments) and a scale-dependent clustering
amplitude, observed also in the spatial distribution of
galaxies [7–11].
The scale-dependent hierarchical matter and galaxy

clustering is one of the most striking manifestations of
the gravitational instability paradigm [5].
These unique and characteristic features of the LSS have

been extensively employed as powerful probes of the
standard cosmological model and its core assumptions.
In the past few decades, galaxy photometric and spectro-
scopic catalogs have been growing both in volume as well
as in quality of the data, which allowed for more and more
precise tests of the fundamental components of ΛCDM.
Thanks to these growing observational data, presently

the spatial distribution of galaxies and their time evolution
can be readily used for performing stringent tests of the
gravitational instability scenario. The latter is rooted in two
core assumptions: the adiabatic Gaussian initial conditions
and general relativity (GR) as an adequate and valid
description of gravitational clustering on all scales and at
all times. In this paper we explore the possibility of
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employing the properties of late-time matter and galaxy
angular clustering for testing and differentiating GR and
beyond-GR structure formation scenarios.
One of the simplest characteristics of matter clustering is

the two-point correlation function (2PCF). This statistics is
relatively easy to measure, which makes it a fundamental
object commonly used in cosmology for quantifying matter
and galaxy clustering [8,12–16]. In this context, we can
recall that Wick’s theorem for a Gaussian random field
states that the first two order statistics (i.e., the mean and the
variance) are sufficient to provide a complete statistical
description of the field and clustering. In other words, for
normal distribution all the higher-order odd moments
vanish, and all the higher-order even moments are propor-
tional to the variance.
However, the distribution function of a developed late-

time LSS on scales below a few hundred megaparsecs
deviates from a pure Gaussian distribution. Because of
gravitational evolution, depending on the scale and the
epoch involved, non-Gaussian features emerge, leading to
the highly anisotropic and complex large-scale structure.
Therefore, the variance and related two-point statistics
no longer provide a sufficient description of the late-time
LSS on scales important for galaxy formation and cluster-
ing. To infer additional information, one can resort to
higher-order or beyond-two-point clustering statistics.
Analogically to 2PCF, we can define N-point equivalents.
However, already starting from N ¼ 3, such correlation
functions (CFs) become very expensive computationally
and their use in cosmology has been so far limited to some
special cases [17–21]—but see Refs. [22,23] for some
recent developments.
An approach that is complementary to N-point statistics

involves Nth-order central moments. These are volume-
averaged versions of their full N-point counterparts, but are
significantly easier to compute and model. At the same
time, higher-order central moments, and the associated
cumulants, contain extra information on the shape and
asymmetry of the matter and galaxy distribution. Thus,
these statistics bear information that is complementary to
that carried by two-point statistics, e.g., [24–26].
Both two-point and higher-order clustering statistics

have proven to be insightful and rich cosmological probes.
It is, however, worth mentioning that the higher central
moments are especially well suited for testing departures
from standard structure formation scenarios. This is thanks
to their increased sensitivity to non-Gaussian features of the
distribution functions [5,27,28]. In general, the nonstandard
gravitational instability models would involve some level
of modified gravity (MG). In such scenarios one usually
deals with low-energy effective scalar-tensor modifications
to the Einstein-Hilbert action integral [29]. In that sense,
these models are not new fundamental theories of gravity in
their own right, but rather phenomenological manifesta-
tions (and parametrizations) of deeper underlying theories.

In this work we consider two such MG models, which
constitute a good representative sample of a whole family
of effective phenomenological modifications to gravity.
The first consists of the so-called fðRÞ framework [30,31],
where in the gravity action integral the classical Ricci’s
scalar R is generalized to a functional fðRÞ form [32]. The
second family is the so-called normal branch of the Dvali-
Gabadadze-Porrati (nDGP) brane world model [33,34],
where gravity can propagate in the full five-dimensional
space-time, while the standard elementary particle forces
are confined to a four-dimensional subset space-time of a
brane [35]. Both of these MG scenarios admit the action of
the so-called fifth force on cosmological scales. This extra
force is a manifestation of the additional scalar degrees of
freedom of these models that, when coupled to the usual
matter fields, affect the action of the gravitational instability
and structure formation on galactic and intergalactic scales
[36]. The stringent tests of GR in the strong-field regime
[37–39] and in the weak field for the Solar System and our
own Galaxy [40,41] impose rigorous constraints on the
scales and times on which such a MG-induced fifth force is
allowed to manifest itself. In order to pass these fifth force
tests, viable MG models need to suppress propagation of
the extra degrees of freedom in environments such as the
Solar System or the Milky Way. The physical phenomena
that lead to the fifth force suppression are called the
screening mechanisms. Both the fðRÞ and the nDGP
theories naturally admit for such effects. Tuning the related
theoretical parameters of these theories allows for finding
solutions that simultaneously pass the local gravity tests
and match the global ΛCDM expansion histories.
We focus on angular correlations, i.e., those projected

along the line of sight. While the full 3D CFs give direct
access to such cosmologically important effects as redshift-
space distortions, they can only be observationally studied
with sufficient accuracy using spectroscopic redshift cata-
logs. These often suffer from small-area coverage and/or
sparse sampling and, even in the era of the forthcoming
Dark Energy Spectroscopic Instrument data, will include
only a small fraction of all observable galaxies. Another
problem connected to spectroscopic surveys is that their
analysis requires theoretical input on redshift- to real-space
mapping, which is a strongly model-dependent procedure
[42–44]. On the other hand, photometric (imaging) surveys
typically offer a much better combination of depth, sky
coverage, and completeness than the spectroscopic ones
and, if accompanied by photometric redshifts, give the
possibility to perform tomographic analyses of the density
field. In view of future multibillion galaxy catalogs from
such campaigns as the Vera Rubin Observatory Legacy
Survey of Space and Time [45] or the Euclid space mission
[46], it is timely to investigate possible MG signals from
higher-order angular clustering.
This paper is structured as follows: In Sec. II, we

describe gravity models and simulations used. The broader
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picture of clustering statistics is contained within Sec. III.
Afterward, in Sec. IV, we show the method of clustering
calculations and introduce corresponding analytical pre-
dictions. Later, in Sec. V, we motivate our choice of red-
shift ranges that we use in the search for modified gravity
signals. Then we present all our results, which are
summarized and concluded upon in Sec. VI.

II. MODIFIED GRAVITY
MODELS AND SIMULATIONS

In our study we will examine and compare higher-order
angular clustering in different growth-of-structure scenarios.
For this purposewe invoke the extended lensing physicswith
analytical ray tracing (ELEPHANT) numerical N-body
simulations [47] performed using the ECOSMOG code [48].
They assume the evolution ofNpart ¼ 10243 particles within
an Lbox ¼ 1024=h Mpc sized box. Our fiducial, or baseline,
model of choice is the GR-based flat ΛCDM model with
WMAP 9-yr cosmology [49], with matter and dark energy
density parameters Ωm ¼ 0.281 and ΩΛ ¼ 0.719, and the
Hubble constantH0¼100hkms−1Mpc−1 where h ¼ 0.697.
On top of this background ΛCDM model, we consider

two beyond-GR scenarios. The first of them—the Hu-
Sawicki variant of fðRÞ MG—introduces the fifth force,
which is suppressed in dense environments thanks to the
virtue of the chameleon mechanism [50,51]. Adopting a
standard choice of the free parameters for this model, e.g.,
[30,44,52], we are left with only one variable to be set in
order to characterize the late-time modifications to GR: the
amplitude of the background scalar field at the present times,
usually denoted as fR0. Following the previous works that
employ the ELEPHANT simulation suite [47,53], we label
the two fðRÞ variants used as F6 and F5, which corresponds
to fR0 ¼ f−10−6;−10−5g, respectively.
The second MG family—nDGP models—incorporate

the Vainshtein screening mechanism [33,54] to suppress
the fifth force in the vicinity of massive bodies. In the
parametrization adopted here, the nDGPmodels can be also
fully characterized by a single choice of the model physical
parameter. This is the so-called crossing-over scale rc,
which depicts a characteristic scale where the gravity
propagation starts to leak out to the fifth spatial dimension.
Taking c ¼ 1, we can fix our nDGP variants to have
H0rc ¼ f5; 1g Gpc=h, which we label as N5 and N1,
accordingly.
We calculate angular counts for the projected dark matter

(DM) density field from subsampled data, using only 0.1%
from the each initial 10243 particle load. Such subsampling
severely limits the spatial and angular resolution of the
density fields, but this is needed to facilitate numerical
calculations. Dark matter halos were extracted using the
ROCKSTAR halo finder [55] and mock galaxy catalogs
were generated with the halo occupation distribution
(HOD) method in Ref. [47] using parameters from [56].

Unlike the dark matter particles, dark matter halos and
mock galaxies are not subsampled, and their relatively low
number density (see Sec. VA) is related to the very nature
of the ELEPHANT catalogs.
For our analysis we employ five independent random

phase realizations of initial conditions and take snapshots
saved at z ¼ 0.0, 0.3, 0.5, and 1 for further analysis.
In order to work in a sky-projected observer frame, we

need to construct proper observer light cones from our
snapshots. The redshift range we consider, i.e., 0 < z < 0.5
for galaxies and DM particles, and 0 < z < 1 for halos,
corresponds to comoving scales that by far exceed the
ELEPHANT simulation box size. To cope with that we
locate the observer at the r⃗0 ¼ ð0; 0; 0Þ corner of the box
and use the box replications method (see [57–59]) to build
the light cones. For each snapshot, we copy the adequate
box within ranges defined as half the comoving distance
between the redshift of the current and each adjacent
snapshot.
From our light cones we generate two-dimensional sky

catalogs consisting of a series of ∼1567 deg2 chunks,
which would correspond to sky patches of sizes 40° × 40° if
centered on the equator. Each of our 2D sky catalogs is a
sum of several separate sky chunks.1 We found that for 15
chunks we already attain the maximum spatially indepen-
dent catalog information, as measured by the catalog
effective volume Veff .
This effective volume needs to be defined because, due

to box replications, the catalogs contain many copies of
the same structures. Thus, the total amount of independent
cosmological information is always smaller than it nor-
mally would result from the actual light cone comoving
volume. To get a total measure of unique (i.e., not cloned)
volume, we use the catalog effective volume Veff . We
define it as a sum over all the simulation box texels that are
used at least once, divided by their total number inside the
box. For more details on how Veff is measured, see the
Appendix.
Following Ref. [44], for our halo samples we consider

only objects with Mvir ≥ 1012 M⊙=h. In Ref. [44] it was
found that the abundance of less-massive halos is already
affected by the mass resolution limit of the simulations.
After this initial mass cut, with the same universal threshold
for all the simulations runs, we employ secondary indi-
vidual sample mass cuts. These are administered in such a
fashion to obtain the same object number density within a
given initial condition realization suite among all different
physical models (i.e., F5, F6, GR, N1, and N5). Here
randomly selected least-massive halos are trailed off until a
given sample is reduced to the target number density. The
latter is set by the lowest number density sample within a
given ensemble. This is done to mimic a volume-limited

1Note that some of the sky chunks can partially overlap over
the mock sky. For details, see the Appendix.
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sample selection effect. For the mock galaxy sample, we
applied an analogous operation. However, since for gal-
axies we do not have masses nor luminosities, we trail off
all galaxies picked up randomly.

III. HIGHER-ORDER CLUSTERING

Our goal is to study clustering properties of matter, halo,
and galaxy distributions over a large range of scales and
epochs.Here,wewill define the basic objects andmethods of
our clustering analysis.Wewill work either with physical (r⃗)
or comoving (x⃗) distance units, where the usual relation is
r⃗ ¼ x⃗=ð1þ zÞ. Adopting a standard notation, wewill refer to
comoving units as either h−1 Mpc or h−1 Gpc.
We define the standard density contrast that measures a

local (i.e., at point x⃗) fluctuation of the density around a
uniform background as

δ3Dðx⃗Þ ¼
ρðx⃗Þ
ρ

− 1; ð1Þ

where ρ̄ is the background density. Converting the coor-
dinates into sky frame x⃗ → ½r; Ω⃗�, where r is radial distance
and Ω⃗ represents a sky-pointing angular vector, we can
obtain the projected density contrast,

δ2DðΩ⃗Þ ¼
Z

rmax

rmin

drFðrÞr2δ3Dð½r; Ω⃗�Þ: ð2Þ

Here, the rmin =max values stand for the distance ranges
covered by a given survey and FðrÞ is its selection function.
From now on, for simplicity we will drop the “2D”
subindex whenever referring to δ2D.
The global properties of density fluctuations are encap-

sulated in their 1D probability distribution function (PDF),
which can be estimated by averaging the fluctuations over
many sky directions. Gravitational clustering moves the
shape of the density PDF away from its initial Gaussian
form [60]. All the gravity-induced nontrivial PDF shape
deviations at a certain scale can be characterized by a
hierarchy of the central moments. We will use the standard
definition of a central moment of Jth order,

μJ ¼ E½ðδ − EðδÞÞJ�; ð3Þ

where E is the expected value, δ is our random variable, and
all the variables intrinsically depend on the angular scale θ.
In our work, θ is a radius of a circle centered on a particular
sky direction Ω⃗. We average over many such circles to
obtain our PDFs.
The central moments μJ estimated for a given sky area

at some angular scale θ can be considered as area averages
of the full J-point angular clustering functions. They are
related with J-point correlation functions by [7]

WJðθÞ≡ μJ
hδiJ ¼

1

A

Z
Ω
dΩ1…dΩJwJðθ1;…; θJÞ; ð4Þ

where A ¼ 2πð1 − cos θÞ is the sky area enclosed by
angle θ.
The Jth-order moments can be readily estimated using

the counts-in-cells method [25,61]. The moments are the
ensemble average over all the circular cells (of intrinsic
angular scale θ) cast over the whole area of interest on the
sky Ω,

WJðθÞ≡ hδJθi; ð5Þ

where δθ is a projected angular density fluctuation esti-
mated at scale θ from angular counts.

IV. CLUSTERING AND MOMENTS
OF COUNTS IN CELLS

We estimate the moments of the angular clustering using
the commonly adopted method of counts in cells (CIC)
[25]. We randomly place NC circles of angular radius θ
within the investigated sky area, making sure they are fully
within the considered region. Those extending outside the
footprint are ignored and replaced by new randomly drawn
ones. Then, we count the objects found inside each circle.
The Jth central moment of the CIC distribution is

mJðθÞ ¼
1

Ntot

XNtot

i¼0

ðNi − hNiÞJ; ð6Þ

where Ni stands for the object count in the ith cell, hNi is
the mean count over all the circles with a given radius θ,
and Ntot is the total number of circles used. We choose
Ntot ∝ Asky=ð2πð1 − cosðθÞÞÞ to scale as the number of
independent circles that we can place within the analyzed
sky area. Since we are interested in the specific shape
departures from a normal distribution, we will work with
the connected moments μJ. That is, we subtract from the
central moments the parts expected for a Gaussian PDF.
The first few connected moments are

μ2 ¼ m2;

μ3 ¼ m3;

μ4 ¼ m4 − 3m2
2;

μ5 ¼ m5 − 10m3m2: ð7Þ

Since we will work with relatively sparse samples, the
mean counts, especially at small θ, can become small and
the impact of the shot noise will become significant. To
reduce it, we follow the procedure of Ref. [25] and subtract
from the connected moments the contribution expected
from a Poisson distribution for a given mean count hNi [see
Eq. (A6) therein].
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The shot-noise correction is obtained by considering the
contribution to the moments from a Poisson distribution
with the same mean number of counts hNi as the studied
sample. For reference we only recall the first few shot-noise
corrected moments kJ,

k2 ¼ μ2 − hNi;
k3 ¼ μ3 − 3k2 − hNi;
k4 ¼ μ4 − 7k2 − 6k3 − hNi;
k5 ¼ μ5 − 15k2 − 25k3 − 10k4 − hNi: ð8Þ

Finally, the Jth-order corrected and averaged correlation
function can be written as

WJ ¼
kJ

hNiJ ; ð9Þ

and the rescaled cumulants, or more commonly dubbed in
cosmology as “hierarchical amplitudes,” will be

SJ ¼
WJ

WJ−1
2

≡ WJ

σ2J−2
: ð10Þ

A. Signal significance

Following a standard approach, we estimate the error on
the quantities given by Eqs. (9) and (10) as the variance
around the mean, obtained as the ensemble average over all
equivalent realizations of a given dataset (i.e., a light cone).
In practice, we will be more interested in assessing the
differences between each MG model and the fiducial
ΛCDM case. This is measured by the relative difference
of paired observables always taken with respect to the GR
case. Both the fiducial GR and any given MG model
sample will be characterized by their own individual
variance. For that reason, comparing clustering moments
of different models with different individual variances
might be difficult and not intuitive. To foster a more
natural and easy-to-interpret comparison, we will use the
signal significance parameter ψ, defined as

ψJ ¼
X − Yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2X þ σ2Y

p ; ð11Þ

where X and Y are measurements and σX;Y are their
respective uncertainties. Here, J indicates the order of
the X and Y statistics used to calculate the significance. So,
for example, ψ3 can indicate either thatW3 or S3 was used.
In this work, we will always take Y as GR and any given
MG model is taken as X. The significance ψ gives a simple
notion of the direction of the difference with respect to the
fiducial case, preserving the sign of the difference, and
automatically traces the significance of this difference due
to the normalization factor in the denominator.

B. Perturbation theory predictions

Our main results in this work are based on the analysis of
N-body simulations, which by design can probe deeply into
the nonlinear regime of structure formation. However, it is
very informative and beneficial to provide also analytical
predictions with which the numerical results can be gauged.
For that purpose, we use calculations based on the weakly
nonlinear perturbation theory (PT), which yield predictions
for low-order moments. These are obtained by integrating
over the matter power spectrum with appropriate window
and selection functions (see [62,63]).
The second moment is given by

W2ðθÞ¼
1

2π

Z
Rmax

Rmin

r4F2ðrÞdr
Z

∞

0

kPðkÞW2
2DðkθrÞdk; ð12Þ

where PðkÞ is a given model power spectrum, and

W2DðkÞ ¼ 2
J1ðkÞ
k

ð13Þ

is the window function for which we take a circular top hat
in the Fourier space with the first-order spherical Bessel
function J1. The Rmin =max stand for catalog comoving
distance ranges and FðrÞ is the radial selection function
normalized in a such way that

Z
Rmax

Rmin

r2FðrÞdr ¼ 1: ð14Þ

In our catalogs, we do not use specific selections mimick-
ing the observations, hence the selection function becomes

FðrÞ ¼ 3

R3
max − R3

min

¼ const: ð15Þ

For the third order, we have

W3ðθÞ ¼ 6
θ−4

ð2πÞ2
Z

Rmax

Rmin

r2F3ðrÞdr
Z

∞

0

qW2
2DðqÞPðkÞdq

×

�
5

14

Z
∞

0

qW2
2DðqÞPðkÞdq

−
1

4

Z
∞

0

q2W2
2DðqÞ

dPðkÞ
dq

dq

�
; ð16Þ

where q ¼ kθr.
The formulas for higher orders become longer and

recurrently more involved (see, e.g., [7]). Thus, we opt
to stop at the third order only, since detailed tests of PT are
not our aim here, and we will use these predictions for
approximate trend comparisons only. In yielding our PT
predictions, we have used both linear and nonlinear (i.e.,
the Halofit [64]) power spectra models computed with
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CAMB software [65] taken at the effective catalog red-
shift zeff ¼ 0.242.

V. RESULTS

Now we are ready to present and investigate the results
covering the angular clustering, distributions of the counts
in cells, and the associated moments. All the presented
results concern dark matter, halo, and galaxy samples
extracted from the same depth ELEPHANT-based light
cones, as described above.

A. Finding optimal light cone depth

Previous studies of clustering have indicated that, in the
case of MG models considered here, the magnitude of the
deviations from the GR-fiducial case is changing with
the cosmic time, in a nonmonotonic way (see, e.g., [66–68]).
In the case of single redshift snapshots, commonly used
in the distant observer approximation, it is straightforward
to depict a redshift with maximal deviation from GR.
However, in our case, in the light cone projection, cluster-
ing information from the redshift range of the whole light
cone is entangled. We want, therefore, to find an optimal
redshift range for a light cone galaxy catalog that max-
imizes the relative deviation from GR of the MG clustering
signal as far as the moments are concerned.
Considering the redshift ranges we have for our halo

(0 < z < 1) and galaxy samples (0 < z < 0.5), we create a
4 × 4 grid of catalogs with varying minimum redshift zmin
and a defined thickness Δz ¼ zmax − zmin. For the optimi-
zation procedure, we define our merit parameter to be the
ψ3 estimator as defined later in Eq. (11), which measures
the relative amplitude of the deviation between a given MG
model and the GR case.
Optimization performed over all models and scales

would be computationally very expensive. However, since
our goal here is just to find an approximated optimal
redshift light cone range, we opt to focus on only two MG
models, N1 and F5, and only one angular scale of
θopt ¼ 0.08°. These two MG variants are characterized
by the largest difference in the linear growth rate with
respect to GR. The θopt value was selected as a reasonable
compromise between the nonlinear regime, where the
clustering deviations usually are the largest, and at the
same time a scale where the shot noise and simulation
resolution effects are not too severe yet.
We have found that the redshift range2 0.15 < z < 0.3

maximizes the MG signal for halos, while the range 0.15 <
z < 0.25 is optimal for the galaxies. Considering the fact
that halo light cones provide wider redshift ranges in
comparison with galaxies and the halos provide stronger
signals than galaxies, we kept 0.15 < z < 0.3 as the best
redshift ranges for all the catalogs. The final data samples

with the imposed redshift cuts have the following character-
istic projected number densities:

(i) DM particles, ∼51 deg−2;
(ii) halos, ∼40 deg−2;
(iii) galaxies, ∼15 deg−2.
Given the effective depth of our light cones, the spatial

resolution of the ELEPHANT suite, and taking into account
that we consider only resolved halos, we can estimate
that our catalogs will be spatially resolved down to
∼0.5–1 h−1Mpc [53]. Within the redshift range we use,
this sets the minimum angular scales that we can consider
as resolved to be θres ≈ 0.05°.

B. Probability density functions

We begin by showing in Fig. 1 an excerpt of angular
counts-in-cells distributions for dark matter (top panel),
halos (middle panel), and galaxies (bottom panel). These
example PDFs are measured at the angular scale of
θ ¼ 0.3°. Considering the median redshift of our light
cones (i.e., z ∼ 0.242), this scale corresponds to a projected
comoving separation of R ¼ 3.6 h−1 Mpc. We pick this
scale since it constitutes a reasonable compromise between
the scales where the influence of both the cosmic variance
and the sparse sampling remains limited. For clarity we

FIG. 1. Probability density functions of the counts in cells from
circles of 0.3° radius, corresponding to ∼3.6 h−1 Mpc physical
scales at the effective redshift of our light cones (zeff ∼ 0.24).
Shown from top to bottom are the results for dark matter, halos,
and galaxies, derived from the ELEPHANT suite for three gravity
models indicated in the legend. The numbers in the headers
indicate mean counts for each case.2The exact range is 0.1525 < z < 0.3025.
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show only two modified gravity variants, N1 and F5, on top
of the GR case.
This example already brings a few interesting observa-

tions. First, we can infer that dropping angular object
number density drives the resulting PDF away from a
Gaussian and more toward a Poissonian distribution, thus
highlighting the importance of the shot-noise corrections
for samples with small mean number counts hNi. The
second noticeable feature is that for all three samples (i.e.,
galaxies, halos, and dark matter) different models arrive
at very similar mean number counts. Furthermore, the
associated variances, or the distribution widths, are also
comparable. Only, when we move away from the PDF’s
centers, toward the tails, the differences between GR and
MG models become more and more appreciable. This is a
clear illustration of how important it is to go beyond central
and second-order moments, which are much more sensitive
to information contained in the distributions tails (i.e., the
PDF asymmetry and overall shape deviations).

C. Dark Matter

We start our analysis of angular clustering by looking at
the projected dark matter density field. Although this is not
directly observable, there is a strong connection between
the underlying smooth projected dark matter distribution
and quantities accessible via gravitational lensing effects.
These, among others, include convergence and shear power
spectra [62].
There are also tomographic techniques to obtain recon-

structed 3D dark matter distribution on large scales
[69–71]. Here, we will focus on simple sky-projected dark
matter density fields measured from a subsampled dark
matter N-body particle distributions. These distributions
and their moments are not directly connected to observa-
tions, but provide a very good test bed. Moreover, analyz-
ing the dark matter clustering will enable us to compare our
CIC results with PT predictions as given in Sec. IV B and
will provide additional physical insight about the higher-
order angular clustering in MG in linear and nonlinear
regimes.
We begin by comparing the N-body CIC moments with

the PT predictions. This will serve both as a useful test of
our estimators, as well as the indicator of scales where the
transition between the nonlinear and weakly nonlinear
angular clustering regimes occurs. In Fig. 2 we show the
first two moments W2ðθÞ and W3ðθÞ (upper panel) and the
reduced skewness S3ðθÞ (bottom panel). The continuous
lines indicate our N-body results; the dotted and dashed
curves are the PT prediction obtained using the linear
(dotted) and Halofit [64] (dashed) dark matter power
spectra. The shaded regions indicate 1σ scatter from the
simulation ensemble mean.
The PT predictions agree very well with the N-body

results at large scales, θ ≳ 0.2°. For smaller angles, the
simulation results quickly surpass the values based on the

linear theory PðkÞ. Interestingly, using Halofit as the
nonlinear power spectrum model readjusts the PT predic-
tions, making them follow the N-body lines much more
closely, extending good PT accuracy down to scales of
θ ∼ 0.04°. However, even if the PT predictions for W2 and
W3 separately look reasonable, their combination into the
reduced skewness S3 accumulates the deviation of each
individual moment. This is clearly manifested in the bottom
panel of Fig. 2, where both the PT-based forecasts fail and
underpredict the skewness dramatically for θ ≲ 0.3°. To get
a better prediction here, one would need to call for higher-
order PT templates (see, e.g., [72–74]). This test indicates
that our N-body results capture well both the linear and
nonlinear regimes. In addition, all the significant
differences that we might find in GR vs MG clustering
above θ ≃ 0.3° could be highlighted in future analyses
using weakly nonlinear PT predictions as detailed in
Sec. IV B.
Before we move to the main part of the analysis, with the

focus on clustering of halos and galaxies, we take a quick
look at the angular variance and reduced skewness of the
dark matter projected density field in our models, shown,
respectively, in Figs. 3 and 4. To facilitate easier compari-
son, we group the MG models’ families, keeping the fðRÞ
models in the left-hand side panels and nDGP in the right-
hand side. The shaded areas for θ < 0.05° indicate the
angles lower than the angular convergence scale of
ELEPHANT.
Looking first at the angular variance (W2), we can

already make a number of very interesting observations.
First, F6 seems to accommodate only minute differences
from GR and is virtually indistinguishable from it for all

FIG. 2. First two reduced moments (top) and reduced skewness
(bottom) of angular clustering calculated in the ΛCDM model at
an effective redshift of z ¼ 0.242. The solid lines with shaded
error ranges show N-body simulation results, while the dotted
(dashed) lines illustrate the perturbation theory predictions
derived using linear (nonlinear) power spectra as detailed in
Sec. IV B.
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scales. Second, all the remaining variants, i.e., F5, N1, and
N5, exhibit inW2ðθÞ some unique scale-dependent patterns
of their significance signals. The departure of the F5 signal
from GR saturates at around θ ≲ 0.1° and then decreases to
converge to GR at θ ≃ 1°. For both the nDGP variants we
notice a similar decrease in the signal, but now on two sides
from the maximal deviation scale of θ ≃ 0.2°. Thus, the
departure of W2 in nDGP from GR assumes a peaklike
shape in angular scaling. Moreover, here also the N5
model, generally weakly departing from GR, fosters
significant deviations from the GR case, in contrast to
its fðRÞ cousin, F6. This is a new result, as such features
have not been found in the earlier 3D dark matter clustering
studies (see, e.g., [67,68]).
The dark matter results for S3 feature a bit different

picture. Here, the noise and errors on both W2 and W3

moments are amplified, and the resulting signal becomes

generally weaker and more erratic. While for N1 and N5
the significance is severely reduced, F5 interestingly still
reaches jψ3j ≃ 4 at θ ∼ 0.1°. Interestingly enough, for all
the MG models, their skewness takes values lower than in
the fiducial GR, which indicates the known fact that the
relative asymmetry of MG evolved density distributions is
lower than in ΛCDM (see again [67,68]).

D. Halos and galaxies

The angular clustering patterns we observed for the dark
matter, albeit very interesting, cannot be easily nor directly
translated into expectations for any observables that we can
extract from galaxy surveys. Some potential implications
for weak gravitational lensing could be drawn, but we keep
this discussion for later (see Sec. VI). On the other hand, the
angular counts and related statistics of discrete objects,
such as halos and galaxies, have much more direct and
straightforward connection and interpretation in the context
of existing observational catalogs. Thus, we now move to
the main part of our analysis and take a look at the
hierarchical clustering of halos and galaxies.
In Fig. 5 we summarize the third-order statistics (W3,

columns to the left; S3, to the right) for halos (top blocks of
panels) and galaxies (bottom blocks). We focus here on the
third-order statistics, since a detailed analysis for all higher-
order moments would be unfeasible, and additionally the
moments higher than the fourth contain similar information
to orders 3 and 4. We choose not to present here and discuss
separately the case for the angular variance W2, as its
amplitude, in general, is fully degenerate with the first-
order angular bias parameter bθ,

Wh;g
2 ðθÞ ¼ ðbh;gθ Þ2WDM

2 ðθÞ: ð17Þ

Here, ðh; gÞ stands for halos and galaxies, respectively. In
Ref. [44] it has been shown that the second-order clustering
statistics in MG are affected by this bias degeneracy. For
that reason, higher-order moments and their combinations
(like skewness and kurtosis) may contain a more genuine
MG signal. The reason is that, to the first order, the bias
degeneracy is reduced for them (see also [53,75,76]).
Let us first discuss the MG signal for the halo population.
As we have verified for the case of DM density, the

significance of the departure from the GR prediction is
higher forW3 alone, compared to the skewness. Again, this
is expected given the standard error propagation properties.
Focusing on the converged scales, i.e., θ ≳ 0.05°, we can
observe a number of interesting features. First, theweaker F6
variant is characterized by stronger deviations from the GR
case than F5. This might appear as a surprise at first, but can
be explained. Although, in terms of the background field
value, the F6 variant should experience weaker scalar-field
effects than F5, the former model is actually inherently more
nonlinear than the latter, in terms of the chameleon screening
behavior. This propertymanifests itself especially for the less

FIG. 3. Two-point area-averaged angular correlation function
of dark matter particles for ΛCDM (black lines) as compared to
two MG scenarios: fðRÞ in the left-hand column and nDGP in the
right-hand one. The MG models have two variants each, as
indicated in the legends. Top: the correlation function. Bottom:
illustrate the significance of departure in the MG models from the
fiducial GR scenario, as defined in Eq. (11). The shaded regions
cover the θ < 0.05° range, which we do not use for inferring the
signal significance due to the limitations of the ELEPHANT
simulations.

FIG. 4. Similar to Fig. 3, but for the reduced skewness.
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massive, smaller halos (which actually dominate the sample).
This phenomenon was to some extent already encountered
and studied in Ref. [77]. This trend is reversed when we look
at the skewness,where again F6 ismarginally consistentwith
GR for all scales,while F5 also shows small deviations, albeit
larger than F6.
In the case of the nDGP models, we observe behavior

that qualitatively agrees with what we have seen already for
the variance in the dark matter field. The N1 deviation again
assumes a peaklike scale dependence, with the maximum
significance attained at θ ≃ 0.1°, both in W3 and S3. The
departure signal of the N5 variant stays weak and insig-
nificant for all scales. The differences in scale and magni-
tude dependence between the fðRÞ and nDGP models
clearly indicate that the different physics of their screening
mechanisms manifests itself to some degree in different
halo clustering.
For the galaxy population, we encounter an interestingly

different picture. Here we need to recall that the
ELEPHANT mock galaxy catalogs were constructed using
HOD parameters tuned for each MG model separately, so

the resulting distributions have the same (to within 1%–2%)
projected 2PCFs. Since the real-space 3D clustering was
anchored, the higher-order moments will carry here the
genuine residual MG signals. This property of the mocks
resulted in quite interesting trends we can single out in the
galaxy statistics. First, we now see that signals for the F5
and F6 models have opposite signs of the effect on W3ðθÞ,
but now also F5 reaches comparable deviations in the
magnitude as F6. For nDGP, we no longer observe a
peaklike shape of the scale dependence, but instead a
saturation of significance at the level of ∼1 for N1 at
θ ≲ 0.2°. For N1, the effect is also opposite to the one we
have just noted for halos. The disappearance of peaklike
scale dependence in galaxies for the N1 scenario is related
to the fact that our halo catalogs consist of only central
halos, while for galaxies we also consider satellites. A
related issue has been already discussed in Ref. [53].
In the case of the skewness, the effect is also flipped

(when compared to W3) for F5 and N1, with a clear
difference that now for F5 the maximum signal is margin-
ally stronger than for the halo population.

FIG. 5. Three-point-averaged angular correlation function (left columns to the left) and reduced skewness (columns to the right) for
halos (top blocks) and galaxies (bottom blocks) extracted from ELEPHANT simulations for ΛCDM and two MG scenarios. See caption
of Fig. 3 for further details.
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The remaining higher-order moments and reduced
cumulants up to J ¼ 9 reveal a qualitatively similar picture
to what we have just shown and discussed for the third
order. The general trends are continued, but the scatter in
these quantities and associated errors grow quickly with the
order. To obtain a general impression of the trends, we
show all the collected WJ’s and SJ’s (for J ¼ 2;…; 9) for
dark matter, halos, and galaxies in Fig. 6. Here the top row
is for the smooth DM density, the central one for halos, and
the bottom one for galaxies. Columnwise, the plots are
organized as the area-averaged correlation functions WJ’s

(left-hand column) and reduced cumulants SJ’s (right-hand
column). The particular orders are organized as indicated
by the labels, while the lines are colored according to
gravity models in the same way as in Figs. 3–5.
For the cumulants, but also to some extent for the

moments, we can observe that the relative errors explode
at two regimes: for small and large angles. This can be
easily attributed to the shot noise at θ ≲ 0.01° scale and to
finite catalog size (i.e., cosmic variance) influencing the
θ ≳ 2° range. Higher moments are more sensitive to these
effects, due to growing powers in Eq. (6), which multiplies

FIG. 6. Clustering of all orders considered in this work. From top to bottom, we present the results for dark matter, halos, and galaxies.
The left column shows area-averaged correlation functions WJ for 2 ≤ J ≤ 9; right column includes hierarchical amplitudes SJ for
3 ≤ J ≤ 9. The particular orders are indicated with the numbered labels on the left-hand side of each panel. Lines of different colors
correspond to the gravity models as in the legend. Light gray bands illustrate the errors in the GR case; those for MG are comparable.
The dark gray vertical bands cover the angular scales, which we do not use for inferring the MG signal.
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any initial error on the mean counts at a given scale hNiθ.
Such conditions introduce significant heteroscedasticity
into the clustering measurements. The partly missing
measurements in Fig. 6, especially for the eighth- and
ninth-order statistics, are due to negative values that cannot
be represented in the logarithmic scaling.
The precision of our measurements scales roughly as a

square root of object number density (e.g., the relative errors
are ∼1.5–2 times bigger in the case of galaxies than for DM
pseudoparticles catalog; see Sec. VA). This fact makes
searching for MG signals among highest orders inaccessible
using these catalogs, since onewould need to greatly increase
the sampling or to consider much larger sky coverage.
Overall, we have found that only orders of up to J ≤ 5
are useful for MG signal searches in our catalogs. Although
the deviations from the fiducial GR case are growingwith the
order, the associated scatter grows even faster. Thus, for the
light cone samples used here, significant signals can be
extracted only from the statistics up to fifth order.
A noteworthy feature is that galaxies are characterized by

larger values of CIC moments than halos and DM particles.
This is a natural consequence of both biased structure
formation and the HOD catalog construction method used
(i.e., introduction of satellites for the galaxy sample).
One final note about the hierarchical clustering ratios,

shown in the right-hand panels of Fig. 6, is that their
amplitudes generally do not depend strongly on the scale.
This is in agreement with both theoretical predictions, as
well as with the analyses of observational data (e.g.,
[25,27,67,78]).

E. Summary

With nine orders of moments, eight of cumulants, and
with three different samples of five various gravity models,
we have dealt with massive and complex data describing
angular clustering in our light cones. Detailed analysis of
all potential deviations from GR and associated signal
significance would be very industrious and at best cum-
bersome. Therefore, we chose to present only the most
interesting findings from this large body of statistics and we
summarize them here in a survey manner.
The most promising features of the MG angular cluster-

ing we analyzed are given in Table I. There we quote the
absolute values of the deviation from GR significance, jψ j
[Eq. (11)], alongside the characteristic angular scales at
which they are noted, the statistics for which the signal is
found, and the MG model they are reported for.
As we have already indicated, the sampling density of

ELEPHANT allows us to reliably use up to fifth-order
statistics, as far as a ratio of MG to GR is concerned. The
higher orders become too noisy, and the associated ratios
with respect to the GR case become scatter dominated.
When we are concerned with the MG signal significance,
the general trends are that the lower-order statistics (i.e.,
J ¼ 2, 3) are favored over the higher ones. However, in just
one case (F5 for galaxies) the fourth and fifth orders reach

higher significance than the lower moments. Here, the
signal significance is reaching jψ3;4;5j ≃ f1.4; 2.4; 2.5g for
the third, fourth, and fifth order, respectively. Interestingly,
we find cases where even if some WJ’s reach small values
of jψ j, the associated reduced cumulants SJ’s can arrive at
much larger significance. This indicates that the reduced
cumulants, due to their unique intrinsic length (or variance)
scaling, contain extra constraining information about the
underlying structure formation models.
The statistics we measured for the nDGP models reveal

that this MG family is characterized by much less signifi-
cant deviations from the fiducial GR case than fðRÞ.
Especially if we focus on the hierarchical amplitudes
SJ’s. This would suggest that departures from GR at higher
orders do not differ significantly from the departures at
J ¼ 2. Indeed, for instance, considering DM particles
we obtain jψ2;3j ≃ f7.3; 6.4g for N1, while F5 provides
jψ2;3j ≃ f4.8; 1.8g. Generally, we find that the hierarchical
amplitudes of the galaxy samples offer a slightly better
sensitivity to deviations from GR than halos and DM. In
contrast, for the halo sample, we find that the area-averaged
correlation functions WJ’s seem to perform marginally
better in differentiating the models.
Finally, our results facilitate a general trend, where the

MG models with larger theoretical growth-rate departure
from the ΛCDM case are characterized by stronger angular
clustering deviations as well. There is one notable excep-
tion to that trend: the F6 model, whose halo sample offers
larger jψ j than that of the F5 variant, while the latter has
theoretically larger growth rate. This is not a complete
surprise, however, as previous studies already found
evidence that the F6 model can exhibit more nonlinear
behavior than its F5 cousin, owing to the intrinsic nonlinear
nature of the chameleon screening [53,77].

VI. CONCLUDING REMARKS

In this work we have studied angular clustering by
analyzing the moments of the counts in cells for two

TABLE I. The most significant MG deviations from GR in
angular clustering in the light cones studied in this work. For a
given tracer, we provide the model-statistics pair (columns 2 and
3) that give the largest signal significance as listed in the fourth
column. The fifth column indicates the angular scales at which
this maximal signal appears.

Tracer Model Statistics jψmaxj θð°Þ
Dark matter F5 W2 4.8 0.05

F5 S3 4.5 0.08
N1 W2 7.3 0.13

Halos F6 W3 4.0 0.13
F5 S3 2.1 0.16
N1 W3 3.0 0.13

Galaxies F5 W5 2.5 0.16
F5 S3 3.1 0.16
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modified gravity scenarios. The literature offers many
studies of three-dimensional clustering, including red-
shift-space distortion analyses for such beyond-GR scenar-
ios [44,52,79–81]. So far, however, very little (to our best
knowledge) was known about the properties of angular
clustering in the light cone sky-projected density in such
scenarios. Our work here is the first approach to remedy
this lack. To this end, based on the ELEPHANT suite, we
have designed a number of light cones containing dark
matter, halo, and galaxy samples. We then proceeded to
build an ensemble of effective sky catalogs that we have
used as the main object for our analysis.
Below, we summarize and recapture the most important

results:
(i) The PT predictions for the GRW2 andW3 moments

offer a reasonable agreement with the N-body dark
matter results for θ ≥ 0.2°, if only the linear-theory
power spectrum was used. A much better agreement
is obtained, down to smaller scales, when using a
nonlinear Halofit model for the power spectrum. For
that case, the PT and simulations agree down to
θ ∼ 0.05°. We note, however, that the PT prediction
for the reduced skewness S3 is grossly underestimated
when compared with N-body data for θ ≤ 0.5°.

(ii) Our light cone analysis yielded an optimal catalog
depth for maximizing the departures from GR in the
angular clustering. For the case of our simulations
and models, this turned out to be 0.15 ≤ z ≤ 0.3.

(iii) On various scales and for various statistics, we found
up to 20% relative departures from GR. Our data do
not allow for probing robustly the scales both
smaller than θ < 0.05° and larger than θ > 1°, where
the effects of the shot noise and a limited catalog
size, respectively, dominate.

(iv) The reduced skewness S3 of the galaxy sample has
proven to be especially sensitive statistics for the
fðRÞ family models.

(v) We found significant signals even in the catalogs
with as low object number density as 15 deg−2 (for
galaxies); this indicates an optimistic outlook for
measuring MG signals in real angular galaxy data.

(vi) Hierarchy between the second and higher moments is
preserved in all the structure formation scenarios,with
no clear or dramatic changes in weak scale depend-
ence of the reduced cumulants for all scenarios.

(vii) In our data, the modified gravity signals can be
extracted from higher-order statistics up to order
J ¼ 5. In practice, we can expect that catalogs with
better sampling, in terms of both sky coverage and
surface number density, should allow measurements
that cover even higher orders and larger scales.

Our main findings agree with the picture where the
angular correlations, due to their intrinsic spatial-scale
mixing, offer a unique specific window for clustering
analysis, especially in the context of scale-dependent GR

modifications. In general, the deviations from GR might
not get as large for angular correlations as in the case of
redshift-space distortions and 3D clustering. However, the
projected counts could gain much in signal significance, if
one could tap the rich potential of much denser sampling
stemming from usually many times bigger volumes of
photometric galaxy catalogs than for often sparsely
sampled redshift surveys.
Taking into account that, due to the limitations of the

simulation suite used, our galaxy and halo catalogs are
characterized by much smaller object number densities
when compared to existing and forthcoming imaging sky
surveys [45,82–85], one can expect that all the relevant
shot-noise and even cosmic-variance effects should be
strongly suppressed in future analysis of observational
data. Our mock galaxy catalogs contain only ∼15 objects
per square degree. For comparison, depending on the
chosen galaxy sample, the Dark Energy Survey provides
∼3.42 × 105 galaxies at ∼4200 deg2 for the redshift range
similar to ours, 0.15 < z < 0.35 [86], or even ∼1.7 × 106

galaxies at 0.2 < z < 0.35. This gives from 5 up to 27
times higher galaxy surface density when confronted with
our galaxy catalogs.
The fact that we have found significant, and therefore

hopefully detectable, deviations from GR in our rather
sparse mock galaxy catalogs, which have many times
smaller object number density when compared to real
galaxy samples, offers very promising prospects for testing
GR and beyond-GR structure formation scenarios in the
imaging data—an avenue that has not been exploited so far.
However, to fully undertake such endeavor, one will need
to account more robustly for the involved angular and
redshift selection effects along with better galaxy popula-
tion modeling in beyond GR. We leave this exciting
undertaking for future work.

ACKNOWLEDGMENTS

The authors would like to acknowledge the fruitful
discussions with Enrique Gaztañaga at early stages of this
project. This work is supported by National Science Center,
Poland under Agreements No. 2018/30/E/ST9/00698,
No. 2018/31/G/ST9/03388, No. 2020/38/E/ST9/00395,
and No. 2020/39/B/ST9/03494 and by the Polish
Ministry of Science and Higher Education through Grant
No. DIR/WK/2018/12. The research presented here also
benefited from supercomputer calculations performed at
the Interdisciplinary Center for Mathematical and
Computational Modeling (University of Warsaw) under
Projects No. GA67-17, No. GA67-16, and No. GB79-7.

APPENDIX: EFFECTIVE VOLUME

The so-called effective volume measures the amount of
independent information in the catalog. As mentioned in
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Sec. II, calculating and maximizing the effective volume is
critical for dealing with the issue of finite simulation
box size.
We pixelize each replicated box (by dividing it into 303

cubic pixels) and then for each pixel we check whether its
center belongs to the catalog. If this condition is fulfilled,
the pixel contributes to Veff .
The partial effective volume Veff;sh½i� (i.e., corresponding

to the ith shell) is then calculated from

Veff;sh½i� ¼
nðgoodÞpix

npix
; ðA1Þ

where npix is the number of pixels that the simulation box

was divided into, and nðgoodÞpix counts the pixels that fulfill the
aforementioned condition. Next, we obtain complete effec-
tive volume by summing up the values from all the shells,

Veff ¼
Xnshells
i¼0

Veff;sh½i�: ðA2Þ

Figure 7 illustrates briefly our method of calculating Veff
for just one light cone shell considered (½z1; z2� in the plot).
For simplicity, the figure shows the two-dimensional case,
but of course we perform the procedure in 3D space.
The left part of the figure symbolizes the light cone with

the redshift cut (light blue) and also angular cut (dark blue).
We marked the observer’s position with the red dot in the

center of the light cone. The right part visualizes the counts
which would result from the situation presented in this
figure. As an example, we distinguished two pixels. Note
that we do not include two different pixels twice if they
occupy the same position within the output box.
Focusing on the redshift range that we identified as

optimal for our study (0.15≲ z≲ 0.30), we maximize Veff
by drawing nrun ¼ 3000 times a set of 15 randomly
oriented sky chunks covering ∼1567 deg2 each, as
described in Sec. II. Such numerous collection of sky
fragments enabled us to obtain a satisfying level of Veff
even from such thin redshift range in the catalog. From
these we chose one set that provides the highest Veff value.
We noticed that nrun ¼ 3000 is sufficient due to the
saturation of the largest Veff found.
Figure 8 shows the positions of sky chunks used in our

catalogs within this work, in Hammer equal-area projec-
tion. Our procedure allowed us to obtain Veff ¼ 0.75.
Theoretically, it is possible to obtain Veff as high as 0.94
with our redshift ranges. However, it requires a drastic
increase in the number of sky chunks and becomes
computationally ineffective, providing simultaneously a
weak increase of independent information in the catalog.
Note that the value of effective volume is not limited to 1 by
definition. The value Veff ¼ 1 would indicate that poten-
tially constructed catalog contains all the information from
one simulation box, i.e., one light cone shell. Getting
Veff > 1 could be easily achieved, e.g., by selecting an
entire sky and full redshift range of ELEPHANT light cone
z ∈ ½0; 0.5�—for that case, we would get Veff ∼ 2.23.

FIG. 7. Illustration of our method to calculate the effective
volume. For clarity, we visualize only one light cone shell ½z1; z2�,
included within the catalog ranges ½zmin; zmax�.

FIG. 8. Locations of sky fragments jointly maximizing the Veff .
The Nfrag value refers to the number of sky chunks overlapping at
certain sky position.
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