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In this work we explore the effects that a possible primordial magnetic field can have on the inflaton
effective potential, taking as the underlying model a warm inflation scenario, based on global supersymmetry
with a new-inflation-type potential. The decay scheme for the inflaton field is a two-step process of radiation
production, where the inflaton couples to heavy intermediate superfields, which in turn interact with light
particles. In this context, we consider that both sectors, heavy and light, are charged and work in the strong
magnetic field approximation for the light fields. We find an analytical expression for the one-loop effective
potential, for an arbitrary magnetic field strength, and show that the trend of the magnetic contribution is to
make the potential flatter in the origin’s vicinity, preserving the conditions for a successful inflationary
process. This result is backed up by the behavior of slow-roll parameter e¢. The viability of this magnetic
warm inflation scenario is also supported by the estimation of the effect of the magnetic field on the heavy

particles decay width.
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I. INTRODUCTION

The presently observed cosmic magnetic fields have an
uncertain origin that could be either astrophysical or
primordial. The growing observational evidence of their
existence in a wide range of spatial scales (see, e.g., [1]
and references therein) seems to indicate that they were
probably present, at all times, during the universe evolution.
In this sense, it is important to take into account the
magnetic field effect when addressing some early universe
events. For example, at the electroweak phase transition, the
presence of an external hypermagnetic field modifies
the phase transition making it stronger first order, lowering
the critical temperature with respect to the nonmagnetic case
[2,3]. In the case of the inflationary process, built on the
grounds of an effective potential that describes a slow-roll
transition, it has been shown that the effect of a magnetic
field delays the transition [4]: in the sense that the universe
stays in the inflationary stage for longer time. In both cases,
the magnetic field modifies the phase transition as in

superconductors: as the magnetic field strength increases,
the symmetry tends to be restored." On another hand, the
magnetic field also affects the particles decay process (see,
e.g., [6] and references therein).

In an inflationary scenario, if the magnetic field has to
play any role, dissipative processes have to be considered.
This could happen in models where the inflaton is coupled to
gauge fields [7]; to supersymmetric light fields, as in models
of trapped inflation [8]; or to heavy ones, as in warm
inflation [9]. We are interested here in the warm inflation
scenario, where the inflaton is assumed to interact with other
fields during the whole inflationary process. Early models of
inflation—dubbed supercooled models (see, e.g., [10] for a
review)—assumed very little interaction of the inflaton with
all other fields until the reheating process, at the end of
inflation. With the proposal of warm inflation [9], this
picture changed: the inflaton is now assumed to interact with
other fields, both during the inflationary expansion as well as
at reheating, in a continuous and more natural way. It is a
model where (near) thermal equilibrium conditions are

'There is a subtle question regarding the dynamics of a slow-roll inflationary phase transition: The effective potential in particle
physics is a quantity defined to describe static, equilibrium situations, that determines the ground state of the system, and hence the
phase where it is located at. Nonetheless, it is used, in the standard picture of new inflation, as a description of an evolution: the slow-roll
regime. Guth and Pi [5] analyzed this interpretation, tackling the problem with a different approach. They concluded that the naive
classical approach was essentially correct, within the parameters’ domain of physical interest. Following this analysis, if the inflationary
potential can be related with a system in equilibrium situation, the effect of the magnetic field on the system is to try to restore the
symmetry, rising the secondary minimum as the magnetic field strength grows. In this sense, the situation is comparable to the
superconductor phase, where the growth of the magnetic field intensity leads to the destruction of the superconducting phase.
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maintained during the inflationary expansion, with no need
for very flat potentials, nor for a tiny coupling constant. The
model does require a dissipative component of sizable
strength as compared to the expansion rate of the universe.
This is opposed to the standard inflationary scenario where
the damping term comes only from the universe’s expansion.
A successful implementation of this model is embedded in
the framework of supersymmetry, in order to ensure the
cancellation of quantum fluctuations from fermions and
bosons, protecting the flatness of the potential. Besides, it
rests on a two-step process of radiation production,
¢ — y — ¥y, where ¢ represents the inflaton, y an inter-
mediary heavy field and ¥ the light sector, composed of
fermions y, and scalars y. In this way, the contribution from
thermal corrections to the inflaton mass coming from heavy
sector loops is Boltzmann suppressed. These X fields are too
heavy to be produced on shell and only appear as virtual y
(bosons) and y,, (fermions) pairs, that decay into the light
fields, that may or may not thermalize [11,12]. At the end, it
is assumed that there is a soft SUSY breaking in the heavy
sector. In this context, it has been shown that the quantum
and radiative corrections do not spoil the slow-roll con-
ditions required for inflation [11,13]

On the observational side, Planck’s results establish a
series of constraints on the abundant family of inflationary
potentials proposed up to now [14,15]. It is interesting to
note that some potentials that are essentially ruled out by
Planck in the context of cold inflation, are completely in
agreement with observations when inflation evolves in a
thermal bath [16,17]. Among single-field slow-roll infla-
tionary models, warm inflation, although constrained [18],
remains viable, the key feature being that the additional
damping term introduced in this model can lower the
tensor-to-scalar ratio r for a given potential [15]. However,
this model faces with the requirement that a large number
of degrees of freedom is needed to bring the system into a
strong dissipative regime and still keep the amplitude of
the primordial spectrum consistent with the observational
value [19].

In a previous work [4], we explored the effect of a weak
magnetic field on the warm inflation effective potential, up
to one loop, for neutral heavy bosons interacting with the
charged light sector, showing that the magnetic field makes
the potential flatter, retarding the transition: in the sense
that the universe stays in the inflationary stage for longer
time, and works as an additional SUSY breaking scale.
Here, we broaden the scenario, allowing for magnetic fields
of arbitrary strength and charged heavy fields. Additionally,
by estimating the magnetic field impact on the slow-roll
parameters and the heavy particles decay width, we study
the viability of this magnetic warm inflation scenario. We
locate our study in the context of warm inflation, in the
sense that there is a light and a heavy sector from which
energy is transferred. The thermalization of the light sector
is not essential, as was pointed out in Ref. [12], but if it

takes place, the temperature is in our case a lower scale as
compared to the magnetic field, allowing to deal with a
system at zero temperature.

The paper is organized as follows: In Sec. II we present a
supersymmetric model we work with, in which all par-
ticles, except the inflaton field, are charged. In Sec. III, we
calculate the analytical expression for the inflaton one-
loop effective potential for an arbitrary magnetic field
strength within the model described in the previous
section. In order to account for the magnetic field effect
on the heavy particle masses, in Sec. IV, we compute the
one-loop heavy field self-energy, coming from the light
fields, in the strong field limit, and estimate its decay
width. In Sec. V, we show our results through plots of the
effective potential and the slow-roll parameters, for differ-
ent values of the magnetic field. Finally, in Sec. VI, we
present our conclusions.

II. MODEL

Let us start by considering the equation of motion of the
inflaton field that accounts a dissipation term (I'y) that
comes from the interaction with a thermal bath and the
universe expansion

¢+ BH+Ty)d+ Vs =0, (1)

where H is the Hubble parameter, and V7 is the derivative
with respect to ¢ of the inflaton effective potential (usually
taken as the finite temperature one-loop Coleman-Weinberg
potential). Warm inflation requires I'j, > 3H.

Since in warm inflation radiation is produced during the
whole epoch of inflation, light fields, associated to this
radiation, must be present in the Lagrangian. In these
models, the inflaton interacts all the time with other fields,
but its direct interaction with the light fields brings up some
inconsistencies. Since the inflaton has a large expectation
value, fields that interact directly with it acquire large
masses. This fact is inconsistent with the radiationlike
nature of such fields. Alternatively, one could limit the
value of the coupling between the inflation and the light
fields. However this would require an extremely low upper
bound for the coupling, which in practice would make the
interaction negligible. In view of these observations, a heavy
field is introduced. This field acts as a mediator for the
inflaton decay into light fields. This mechanisms results in a
two step process of radiation production, ¢ — y — 77,
where ¢ represents the inflaton, y the intermediary field and
y the light sector, composed of fermions @, and scalars y.
Also, in order to keep the flatness of the potential, one can
resort to work within the framework of supersymmetry,
since with such scenario, quantum fluctuations from fer-
mions and bosons cancel out, which is a welcome feature to
avoid spoiling the slow-roll conditions that are necessary for
the flatness of the potential.
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We start by extending the supersymmetric model used in
Ref. [11] to a model where all particles are charged, except
the inflaton field. With this in mind, the superpotential is

W = —g®X> — hXY,Y,, (2)

where @, X, and Y , are chiral superfields, and the second
and the latter represent the heavy and light sector, respec-
tively. The last term in the superpotential accounts for the
interaction between light and heavy sectors.

The scalar interaction terms are derived from the super-
potential in Eq. (2) as

Ls = —0oW[* = |oxW[* = [y W = |0y, W] (3)

Defining ¢ = v/2Re(¢), the inflaton potential, up to one
loop correction is

2

vp) =y len(E) s i-w] @

where ¢, is the vacuum expectation value (vev) of the
inflaton field.

L =g lx|* + 4% o [x|?

The Yukawa sector is added to represent the interaction
between the scalar and the fermionic sector:

1 W 1 W
Lyukawa = —==—————W, P ———y,P , (5
Yukawa 2a¢na¢m Ynl' LY m 20¢:;a¢*m Ynl'RY m ( )
where ¢,, is a superfield and
Prr=(1Frs)/2 (6)

Since fermion-boson cancellation takes place thanks to
SUSY, the quantum corrections to the inflaton potential
are shown to be small. Furthermore, the contribution from
thermal corrections to the inflaton mass coming from heavy
sector loops is Boltzmann suppressed. These X fields are too
heavy to be produced on shell and only appear as virtual y
(bosons) and y,, (fermions) pairs, that decay into the light
fields. We neglect the heavy fields decay subleading process
through y — y;y,¢ compared to y — y,¥,, [16]. It is also
assumed that there is a soft SUSY breaking in the heavy
sector and that light radiation thermalizes.

The set of interactions that involve the inflaton and the y
field can be obtained from the scalar (£) and fermion (L)
sectors of the Lagrangian, given by

+ B2 (1P PP + 2y Plyal? + 200 (1320'% + yiviex)
Ly = g, Py, + o, Pry,) + 29005, Prw, + 1", Pry,)
+ By (g, PLyry, + Wy, Prpy,) + by (i, Prypy, + 0y, Privy, )
+ 2h(y 1y, Py, + yoWy, PLyr,) + 2h(y [y, PRy, + y3iy, Prir,). (7)

where @, y, and y, , are the scalar field component of the
chiral superfields @, X, and Y ,, respectively. y; denotes
the fermion fields coming from the different sectors and
g and h are coupling constants, whose values, limited by
the slow-roll conditions and the constraints from density
perturbations, are O(0.1) [11].

The effect of a magnetic field on the inflationary process
can be accounted for in two ways: through heavy fields
effective potential and their quantum fluctuations due to the
interaction with the light sector. With these ideas in mind,
we shall calculate the magnetic contributions to the heavy
fields one-loop potential in vacuum, since these fields are
so heavy that their contribution from thermal corrections to
the inflaton mass, coming from this sector loops, is
Boltzmann suppressed. By doing this, we are considering
that the magnetic field strength can be of the same order of
magnitude as the heavy masses. On another hand, since the
magnetic field is the highest scale, the thermal contribu-
tions on the heavy sector masses coming from the inter-
action with the light particles are also neglected.

III. EFFECTIVE POTENTIAL

Taking into account that the heavy fields are fermionic
and bosonic, the contribution to the inflaton effective
potential coming from this sector, up to one loop, reads

Vip) =V, +V, . (8)

which, in the absence of an external magnetic field, have
the form

4 d*p
4 d*p
Vo =3 [ Gt (0

with m,, and m,, the boson and fermion masses, respec-
tively; fermions are Weyl spinors with two degrees of
freedom, and the coefficients account for charge and spins.
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The subscript “0” emphasizes the absence of the external
magnetic field.

In the presence of an external and uniform magnetic field
B, which defines the z-direction, the above expressions
become

4
vi=3 [ G0z (o) (1)
1 [ d'p _
Vi, =3 [ Gaenes (2. (12

where D and S are the propagators of boson and fermion,
respectively, and are given by

Dy( )_/00 ds
B\P)= o cosq,Bs

tang,Bs
><exp{is<p|2—p2l qqés —m%—l—ie)}, (13)
v

o s
S pu— _—
5(P) A cos q,Bs
tan q,Bs
; 2 _ 2 X202 ;
><exp{zs<p| Pl 4,B5 ml,,l+le>}
7L }

cos g, Bs

X |:(m,l,z + ﬁH)eiqlBsz3 - (14)

with s the Schwinger’s proper time parameter, (a - b);=
aghg — asbs, (a-b), = a;by + ayby, and Ty = iy'y% ¢,
denotes the charge associated to the heavy superfield
fermion or boson components.

Once the integration over the momentum is carried out,
and all divergent terms are isolated, the effective potential
can be rewritten as

VA B) =Vo+V, p + Vi (15)
with
1 oodS _sz _szl
V=g [T e — ey, (16)
1 [eds ) _o2 - (q,B)?
[ R smy, \ a2
VqXBZ =52 ) s {e + 2e } c (17)

1 o (s ) q,Bs 1
Vl — - —smy X —14+= B 2
Uy A 53 {e Linh(q){Bs) +5(9:B9) ]

2

1
—e My {%BS coth(g,Bs) — 1 _g(qus)z} } (18)

where the masses m,, and my, keep track of the bosonic and
fermionic sectors, respectively. Notice that the effective

potential in Eq. (18) is divergence free (df) [20], mean-
while, the first two contributions to the effective potential
are divergent when SUSY is broken. However, since we are
considering the external magnetic field as a classical field,
then the energy of the quantum fluctuations cannot go
beyond a certain scale A. Thus, in these two integrals we
have to introduce this ultraviolet cutoff. By doing this, it is
not difficult to show that each expression goes like

1 1 4 m; 4 mg,z
VO:—TEZ my In N —mj, In A2 +C, (19)

1 (¢,B)? m2

R

where C is a constant which can be determined from the
renormalization conditions. Note that the main divergences
cancel out and the remaining ones are due to the soft SUSY
breaking term which we have defined as the slight differ-
ence between the fermion and boson masses, that is

m2(B) = 2g°¢* + m3(B) + M?,
my (B) =267 + m(B). (21)

where mj(B) and m7(B) are the magnetic one-loop self-

energy corrections to the fermion and boson masses,
respectively.

The integral over the proper time in Eq. (18) can be
exactly done, obtaining

2 5 ,
Vir = (%Bz) {{44“"’) <—1, " ) —2¢(10) <_1,ﬂ)
8z 2q,B a,B
2m)2(
my(2In(gg) 1) _myIn(4) 1 m\ 1
4(q,B)? 2¢,B 6 \4q,B) 6
mu,/2
_ |:—4C(1’0) (_1 mW12> N mwl4(2 ln(qu'B) - 1)
"2q,B 4(q,B)>

2
m, 2In(32%) 1 /m,, 2 1
—W+ln< Yy >+]} (22)

q,B 3 \2¢,B 3

In order to determine the A and C values, we impose that at
B =0, the effective potential lower value be zero at
¢ = ¢o, with ¢, the inflaton vev, that is

V¢, B)|yg, =0 (23)

and
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0
ﬂvl (. B)I¢:¢O =0, (24)

getting

A? 1 28743, (25°¢p% + M?
2g°¢pg + M 2 M

2¢°}
and
_ SHMS A5G+ MY 20745 + M3
3272 Zgzq’;(z) M?
20§ + M

In the next section we shall calculate the magnetic con-
tribution to the heavy particle masses through the light
quantum fluctuations.

IV. HEAVY PARTICLES SELF-ENERGY

According to Eq. (7), there are four Feynman diagrams in
which the heavy fields interact with light particles. In what
follows we calculate each one of them in the presence of a
uniform magnetic field, bearing in mind that this external
magnetic field is the highest physical scale compared with
the light particle parameters, as temperature and masses.

A. Magnetic masses

1. Scalar self-energy dressed with magnetic field effects

In the case of the heavy scalar field there are two
different vertices that couple them with the light fields. Let
us start with the simplest interaction, displayed in Fig. 1(a),
representing the interaction between two heavy and two

Yi ¢y¢
7S, X X
I
N X = =
(a) (b)
: Yi
Yi /¢ ==
X 7 X X o7 TS Uy
\\ =‘#=‘=
Vs o Dy,
(c) (d)
FIG. 1. Feynman diagrams that account for the interaction

between heavy and light fields at one-loop, where double lines
indicate that the charged particles are dressed with the magnetic
field effects. Continuous lines indicate fermionic fields, , and
vy, and dashed lines indicate bosonic fields, y and y;.

light scalar fields. In the configuration space, it has
associated the following mathematical expression

s (w,w) = (—i4h2)%ZD§[(w, W, (27)

where the sum over i accounts for the two light boson
species and the symmetry factor has been accounted for. In
the momentum space, the above equation reads

A
>(p) :2h22 / (21”1;41)3 (k), (28)

with D2 (k) the scalar propagator given in Eq. (13). This
propagator can be rewritten in terms of the Landau levels
by doing a deformation in the integration contour over the
proper time s, as shown in [21].

Since, we are working with a strong magnetic field, the
light particles can be considered as constrained into the
lowest Landau level (LLL), where the scalar propagator
takes the form

ie~ki/24:B
DB (k) = . 29
(k) kﬁ—q,-B—m%—i—ie (29)

Replacing this propagator in Eq. (28) and once the
integration over the transverse momentum is carried out,
we get

~—PqiB (VB kdk
RDY - A T

l i

where the integral upper limit refers to the highest energy
scale in this approach.

Performing the integration over the parallel momentum
in Eq. (30) by a standard procedure, we obtain

h*q;B. (2q,B+ m?
X(p) = Z ln< 4 >

4n? q,B +m}
h? B
~ Lflz)m)_ (31)
4

Next, the other contribution to the scalar self-energy,
depicted in Fig. 1(b), comes from the interaction between
one heavy scalar and two light fermion fields. In configu-
ration space, it has the form

—ixB(w, v) = K2Tr[SB(w, v)SE (v, w)
—rStw.)rSE(v.w)l. (32)

where

SB(x,z) = Q(x,2)S8(x - 2) (33)
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with  Q(x,z) = exp [—ig [*dé-A(E)], the Schwinger Note that, as the heavy field is charged, the following
phase, and relation holds
) /(2 erUISHp)  (34) 4 =41~ 0. (35)
the fermion propagator symmetric part in the momentum  with g; > O the charge of each light particle.
space given in Eq. (14). Using the above relations in Eq. (32), we get
|
B (w, v) = ih2Q; (w, v)Q, (v, w)Tr[SE(w — v)SE (v — w) — P SE(w — v)y°SE (v — w)], (36)

which, in momentum space, becomes

2Bk, 1) = ih2/d4wd4veik'we_il'”§21(w, ) (v, W)

d4pd4j —ip-(w=v) ,—ij-(v—w) B B/ : 5¢B 5¢B(;
“| np € ril e mITe (ST (p) S5 () — ST (p)rS3 ()] (37)

Once we perform the integration over w and v [22], we get

h24 2 d*pd*j 2 e (ke it i) (=Lt p i
SR iy L P T v SR

(%(B) (2x)8 "
x Tr[S%(p)SE(j) — r*S¥(p)r’ S5 (j)]. (38)

where ¢;; is the Levi-Civita tensor in a 2-dimensional space associated with the transverse components.
With the delta functions, the integral over one parallel momentum can straightforwardly be done

(k1) = h24<27[) ( )(k 0) / d'pdj. [((;)ig][eij(ki_pi+ji>(_lj+pj_jj)]
(%(B)2 H (2r)8

< Tr[ST(p)SF((p = Dy i) = VST ()’ S5 ((p = D)y, j)]- (39)

Following the same procedure as for the scalar propagator, the fermion propagator in the LLL, has the form [23]

. e B
SB<p> =1l—

m(’"ﬂﬂf”)(l — ir172)- (40)

Using this propagator in Eq. (39), and once the integration over transverse momentum and the trace over the Dirac gamma
matrices are performed, we get

SNt iy

h2
(k1) = i16=1%2 202 220267 (k= 1)e etk
X
d’p) p(p=1)

(41)

(27)* [pf — mi + ie][(p — 1)f — m3 + ie]

The remaining integral over the parallel momenta can be easily done resorting to the standard procedure in QFT, obtaining
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h2 _la1+92) k1
(kD) = 16" 0% (220 p6P (k — e #
qy

e‘flﬁeljkl

i mn, I3 ms
*ax (=7 )+ 2 2\(12 2
d K 2\/(1\\ = (my —my)*)(f = (my + my)?)

B = md = m3 (0 = my = mo ) (1} = (my + mo)?)
lﬁ —mi—mj - \/(lﬁ = (m; — mz)z)(lu = (my +my)?)

x In

(42)

In order to match with the standard dimensions for the self-energy, which in this case are [Ez] we need to invoke momentum
conservation (see Appendix) as follows

T8k, 1) = (226 (k- I (q%)i(z, kL), 43)

where the factor that involves the magnetic field emphasises the momentum conservation in the transverse direction. In such
a way, from Eq. (42), we get

h* CIICIZ%(B o i gk

S(k,1) =4

(44)

In the above equation, strictly speaking, we do not have a Dirac delta function that accounts for the transverse momentum
conservation of the heavy field, nevertheless, as both /| and k| are weighted by the magnetic field, they are of the same
order of magnitude, which is negligible within this approximation. With this in mind, we hereafter take equal / and k, and
Eq. (44) reduces to

s - 3P0t
B —m?—m3
% d 1 Mm Il 1 2
(u ) 2\/(1 my)?)(IF = (my + my)?)
x In £ = mi — m2+\/ = ma))(fj = (my 4 ma)?) (45)

=t —m} = (1~ (ml—m2>2><zﬁ—<ml+m2>2>

where  is an ultraviolet cutoff, that can be related with the magnetic field (4> « ¢, B). As the main contribution to the mass
comes from the region lH < q1B, Eq. (45) becomes

2
S() = — 2N Chq2B1n< NnB > (46)
T qy mym;
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The interaction between one heavy and two light scalar fields, Feynman diagram in Fig. 1(c), does not contribute to the
scalar self-energy as shown in [11], in this way we ignore it.

Taking into account both contributions, Eq. (46) and Eq. (31), the total magnetic effect to the heavy boson mass
reduces to

3 myni,

4 h’q,q,B B
mz(B)NMz——h 91492 ln( q1 >’ (47)
7 q,

with M? = 2¢%°¢>.

2. Fermion self-energy dressed with magnetic field effects

In configuration space the self-energy of the fermionic heavy field, interacting with one fermion and one scalar light
fields, shown in Fig. 1(d), has the form

—i2P(w,v) = =21*D} (w, v)S}, (v, w)
= =2n%Q,(w, v)Q, (v, w)DB (w — v)S',,B;)_(v —w), (48)

where we have decomposed the boson propagator in the same way as the fermion propagator in Eq. (33).
In momentum space, the above equation becomes

d4pd4j omip
(27)®

2Bk, 1) = —2ih2/d“wd“veik‘we_”‘”gl(w, U)QZ(U,W)/ ‘(W_”>e"'j‘(”_w)Df(p)Sgy(j). (49)

Once we perform the integration over w and v [22], we get

2427 ‘pdt i) (~L4-p =i
SB(k, 1) = Z}E;(Bi) /d(;:;J B( )SB (j)o f‘z)(k—p-f—j) H ( I+ p—jle aogl€ij(ki=pitii) (=Li+p; ;)]' (50)

With the delta functions, the integral over one parallel momentum can straightforwardly be done

12871'4h2 d*pd?j . 21 e (ki pi)i) (=L Ap i
Z(k l) W H (k— l)/ (271:) J_ ( )SB ((P_ l)H’JL) [lqy)B ][ i(ki=pitji)(=Li+p; ]/)]. (51)
X

Using the LLL boson and fermion propagators, Egs. (29) and (40), in Eq. (51), and once the integration over transverse
momentum is carried out, we arrive at

6471' h’q,q, 5C )(k— l)e ;ZZZ)(k I)Le_e”kl
2 I
ay

" / dp (7 =1 +ma)(1 = iyi72)
(27)* [pf — q,B — mi + i€][(p — 1) — m3 + ie]

(k1) =

(52)

The remaining integral over the parallel momenta can be easily done resorting to the standard procedure on QFT, obtaining

_(g1+40) k=1l
S k= e

167h*q1q,
2 I

S(k1) = —

qy

R m( m3 >+ <m i+ %)) i
2 2 2 2
2 \mi+q,B 21 \/4lﬁm% = (=If +mi —m5 + q,B)?

lﬁ —mi —mj — 41B+l\/4l|\m2 (- lﬁ +mi —mj +q,B)’

x In (1= iy172). (53)

- m? - \/4l”m2 B+ m} = m}+ q,B)
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Once we employ Eq. (43), and bearing in mind the argument above Eq. (45), we get

2 2 2 2
=-= z .
7 2q,l mi +q,B \/(lﬁ — (my + \/m} + B)?)(13 = (my = \/m} + q,B)?)

I} =mi—m;—qB~ \/(lﬁ — (my +/m} + q,B)*) (I} = (my = \/m + q,B)?)
lﬁ —m}—m3—qB+ \/(lﬁ — (my + \/m} +Q1B)2)(lﬁ — (my — \/m?} + q,B)?)

In order to calculate the magnetic mass contribution, following the procedure sketched in the Appendix B in Ref. [4], let us
write the propagator dressed with the magnetic field through the quantum correction as follows

X In

(1—irir2). (54)

Szl =]-M-%5
=(/-M-Z°)A(+) + (- M - EP)A(-), (55)

with A(+) = % (1 £ X3), the spin projectors along the magnetic field direction. Once we replace Eq. (54) in Eq. (55), the
above equation can be rewritten as

Szl =(I=M")A(+) + (A-M7)A(-) (56)

where the asymmetry in the two terms rises as consequence of the interaction between the strong magnetic field and the spin
particle. The A# components and the M* are defined as

2 2 2
w0 pPnB n( m3 )+ (1 +m2 = m)

nq,l m? +q,B 2 2
ol L \/<12|— (m2+\/m%+(113) )(lﬁ— (mz—\/m%‘f"hB) )

2 2
P —m} —m}— q,B ~ \/(lf = (mo+ Vi + qiB)") (1 = (m2 = /m?+ a:B)”)
x In
2 2
llz—m%—m%—qlB—i—\/(llz—<m2+\/m%+q13> )(lﬁ—(mz— m%—l—qlB) )
Al —ll,
A2 =P
2 2 _ 2
AB—pap h*q,9.B 1 m3 (l\|+m2 m')
- ”3qxlﬁ ! mi +q,B i 2 Vo) N2\ (2 7 2
(lH — (m2 + my + qlB) )(ZH - (mz — my + q1B> )
2 2
B —m}—m3 —q,B~ \/(lf - (m2+ \/“munB) )(zﬁ - (mz— \/—m%JquB) )
x In
2 2
lf—m%—m%—qlB—f—\/(lf—(mz—i— m%—i—qlB) )(lﬁ—(mz— m%—l—qlB) )
M =M,

2_
_ 2myh*q14,B !

P J(@ = (et vt aB)) (5 - (ma - vt aB)

(57)
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Now, replacing Eq. (56) in the effective potential given in
Eq. (12), the magnetic correction to the heavy fermion mass
can be identified, in the strong field limit, as

h? B
=M —l——3q2 {qlBln<ql—2> + m}
Ty m;

B
_ (12 -m3+ ZmV, m, + m3) ln<cf;12 ) }, (58)

2

where we have kept terms up to O(h?), consistent with the
perturbative expansion done in this work. Since the main
contribution to the mass comes from the lH < ¢q B region,
then the above equation reduces to

WqqB. (@B
R LELa (6“—) (59)

2
77.'(])(

m2 (B) = M? +
nm;

V/Z

With the above result we conclude the magnetic contribution
to the heavy particle masses. By comparing Eqgs. (47) and
(59), we note that the soft-SUSY breaking term, introduced
by M? in the boson mass, has an additional source for
symmetry breaking coming from the magnetic field.

B. Heavy charged scalar decay width into two light
charged fermions

Since the main ingredient in the warm inflation scenario
is a dissipation term coming from the inflaton decay that
dominates over the one generated by the universe expan-
sion, in this subsection we compute the effect of the
magnetic field on the decay process of a scalar boson to
charged fermions, in order to show the trend of the
magnetic contribution. The decay width of a scalar particle
to two bosons [Fig. 1(c)] can easily be estimated following
the same calculation scheme, although this diagram is

|

subdominant with respect to the one in Fig. 1(b). On
another hand, the study of the decay, in the presence of a
magnetic field, of a fermion into a fermion and a scalar
[Fig. 1(d)], where all of them are charged, is more involved
and will be worked out elsewhere.

In order to calculate the charged scalar particle decay
width we shall make use of the optical theorem, which
relates the self-energy imaginary part with the decay width,
as follows

r(l) = — = (60)

Since the main contribution to scalar self-energy comes
from Fig. 1(b), let us start by rewriting Eq. (41), as

- 16
Z(l) o _h2 QI(’IQ
ay

X/d2P| p(p=1),
(27)* [pf — mi + ie][(p — )} — m3 + ie]

(61)

where we have used the ansatz in Eq. (43) and kept the
integration over the internal momentum. Note that, in the
low transverse momentum approximation, we can safely
ignore the exponential factors due to they are suppressed by
the magnetic field.

Next, with the help of the identity

1 0 .
1= —iA ds e4, (62)

where Im(A) > 0 is assumed, we rewrite the denominators
in Eq. (61), getting

S 16 d2 is|[p?—m?+tie] is,[(p—1)?—m3+ie
() :i—h2—q1"23/ DU dsydsyp.(p — 1) e Il ol (o0t (63)

71'2

(27)?

a4y

Now, by using the change of variables

si==(1+0v)

N\VJ

s2=5(1-v), (64)

NM

and performing the Gaussian integrals over the p momentum, we get

— 22 . (140)  2(1=v) | :
q1q2 / / ds< 4U 12>e [14 ’ﬁ mAs —sz+te]’ (65)

where the ie was omitted for the sake of simplicity. Note that the first term, in Eq. (65), becomes divergent in the region
s = 0. In order to isolate the main divergence in the above equation, we integrate by parts over v, and we obtain
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< 16  id . ) ) .
Z(l) — 149192 B{/O % (e—zs(mf—ze) + e—lX(m%—lS))

v (I4+v) (1-v) | .
/ dv/ ds 1)2)lﬁ +2v(m? —m%))e”[14 fi %T_’"%T“L'e]}. (66)

It is not difficult to see that the first term in the above equation is a real quantity that does not contribute to the self-energy
imaginary part and thus we shall ignore it. For the second term, once the integration over s is carried out, we arrive at

m2
5(1) = 2)

16 1 1+ )2+ 20

mi —
fl;( 3271'1 b lﬁ (1;”)_ %(1 1))+ €

Now, with the help of the identity

i (im( 7)) = e )

the self-energy imaginary part of Eq. (67), reads

m(5(1)) = —h—ZMB/_i dvA((1+ )1 + 20(m% = m3))3((1 = v?)12 = 203 (1 + v) = 2m3(1 = v)).

- q,
h*q.q 2(IF = mi —m3)
= -8 “ O(2 — (my +m,)2), (69)

T = (g o) (1~ (my = ma)?)

where the 0 function emerges as a consequence that v € [—1, 1].
With the above at hand, then the decay width for this charged particle reads

Z_fzququ lz\ mi —m3
™ 4, 10\/(lﬁ = (my +my)? )(Zﬁ = (my = my)?)

rH(1) = 02 — (my + my)?), (70)

showing that the decay process grows linearly with the magnetic field.
In order to extract the magnetic field effect on the decay width, we repeat the above procedure in the case without any
external magnetic field, getting

2 (2 _ 2 — m2
r(0) = g P = a2 = o = s DO = o ), )

In Fig. 2, we plot the ratio I'3(1)/T'([), as a function of the magnetic field strength, with M /¢, = 0.05, m, /¢y = 107,
my /¢y =5 x 1073, g = 0.1, for a range allowed by the energy hierarchy scale.

In this figure, it is clear that the presence of a strong magnetic field enhances the heavy scalar decay width into a pair of
charged fermions. This result seems to reinforce one required condition within a warm inflationary scenario, which is that
the inflaton interaction with other fields becomes important during the inflationary stage. This statement is done by
assuming that the relation between the heavy particle decay y and the inflaton field ¢ in the absence of an external magnetic
field, given by [11]

4¢4F

F =
P 2a(m2 + T2)2m, (m2 + 1212 4 2m2] 12

(72)

holds in our case. Of course, Eq. (72) must be modified taking into account that the external heavy particles are affected by
the external magnetic field. This is an involved calculation, that needs a careful analysis. In the literature different results have
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FIG. 2. Decay width ratio I'®/T", Egs. (70)—=(71), of a heavy
charged scalar into two light charged fermions, for different
magnetic field strengths, for M,/¢y = 0.05, m,/¢y = 1073,
my/py =5 x 1073, g = 0.1. The magnetic field enhances this
process.

been reported for the decay process in the presence of an
external magnetic field: some authors have obtained that the
magnetic field enhances the decay process, however other
authors get an opposite effect. All these works seem to
indicate that the behavior of the decay process with the
magnetic field strongly depends on the kinematics and
particles spin involved in the initial and final states, as well
as the external magnetic field strength (see, e.g., [6] and
references therein). The specific magnetic field effect on the
inflaton dissipation coefficient will be reported elsewhere.

V. RESULTS
A. Effective potential

In this section, we put together all the magnetic con-
tributions to the inflaton one-loop effective potential,
including thermal and magnetic effects, getting

T

V(p,T,B) = 90

gT +V'(4.B). (73)

where V!(¢, B) is the potential in Eq. (15) including the
magnetic masses.

In order to quantify the magnetic field effect on the
effective potential, let us define

vW(g,T,B) - V1(0,T,B)
v1)(0,0,0)
= AV(¢, B), (74)

AV(¢.T,B) = +1

where we compare the effective potential depth in the
presence of the magnetic field with the case without
magnetic field. Note that, in the physical scenario consid-
ered in this work, Eq. (74) does not depend on temperature.

———————
10F 1
0.8} ]

m 06 ]

s [

> L

IS 041 B

L | — qBig3=1x10"*
021 [_. gBIgg=7x10" 1
- qiB/¢2=12x107*
0.0} 1
| USSR (SN S ST S NS S SR SN SR ST S N SR S S ST S ST S N S SR S ST
0.0 0.2 0.4 0.6 0.8 1.0 12 14
o
FIG. 3. Effective potential normalized by V(0,0), Eq. (74),

for different magnetic field strengths for M,/¢, = 0.05,
my /¢y = 1073, my /¢y = 5x 1073, g=0.1 and 7 = 0.1.

In Fig. 3, we plot Eq. (74) as a function of ¢/¢, for
different magnetic field strengths. Taking into account the
limits imposed on the coupling constants by the slow-roll
conditions and the constraints from density perturbations
[11], the values we have chosen in the effective potential are
in concordance with the hierarchy scale used in the
calculations: M, /¢y = 0.05, m,/¢y = 1073, m,/dy =
5%x1073, g=0.1 and h = 0.1, resulting in M,/po =
0.15, M,,,l/(bo =0.14 and A/¢py = 0.3.

As can be seen, the effect of the magnetic field on the
effective potential is to make it less steep, preserving the
slow-roll conditions.

B. Slow-roll parameters

The slow-roll conditions can be verified through the
parameters

2 N 2 2 "

mp [V mp (V
= — _ d = — — |, 75
¢ 167[(V> me 8;:(\/) (75)

which, in the case of warm inflation, are bounded by
[19,24]

s (76)

Iy
e<1+— 3

37 and 1l<np<l1+

For our model, in Fig. 4(a), we plot € as a function of
¢/ ¢y, for different magnetic field strengths, showing that
the magnetic field effect keeps this slow-roll parameter
below the unit for a wider range of ¢/¢y. As shown in
Fig. 4(b), the ¢/¢y-values where ¢ = 1 depend on the
magnetic field strength, supporting the idea that the
magnetic field effect preserves the potential flatness.
Taking as a reference point the value e = 1, which sets
the end of inflation in supercooled inflationary models,
the standard relation between the e-folds number and

043511-12



TOWARDS A MAGNETIC WARM INFLATION SCENARIO

PHYS. REV. D 106, 043511 (2022)

T 7 T
I 4
1.0+ . 4
F ’ 4
0.8 4
@ o6 ]
§ [ ]
7 [ ]
o4r 91B/¢2=0.0x10 | ]
L q1B/¢3=0.1x10"°
02k ’ - q:Bl¢3=0.7x10" | ]
r k2 - qBlg2=1.2x10" | 1
.
- HAREN P P P P
0.00 0.02 0.04 0.06 0.08 0.10 0.12
oo
(a)

FIG. 4.

0.110: 4
§o 0'105f E|
T
~e. L

0.100 |- 4

0.095 |- B

0.0 0.2 0.4 0.6 0.8 1.0 1.2
qB/@? (x107)
(b)

(a) Slow-roll parameter ¢ for different magnetic field strengths and (b) ¢.—; /¢, as a function of the magnetic field, both with

Ms/¢0 =0.05, ml/¢0 = ]0_3, m2/¢0 =5x ]0_3, g= 0.1, and & = 0.1.
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n as a function of ¢/ ¢, for three values of the magnetic field strength, (a) in the neighborhood of ¢ /¢ for which ¢ = 1 and

(b) for an earlier inflationary stage. In both cases, M, /¢y = 0.05, m, /¢y = 1073, m, /¢y =5 x 1073, g = 0.1, and h = 0.1.

e-parameter, suggests that within this model 60e-folds
inflationary expansion can be achieved. An accurate
estimation for the e-fold number must be done with the
help of Eq. (2.35) in Ref. [19], in which the I'y plays an
important role.

In the n-case, its value strongly depends on the stage in
the inflationary process. In order to get an idea about the
effect of the magnetic field on this parameter, let us consider
two different stages (a) at € = 1, keeping in mind that for
warm inflation this value does not represent the end of
inflationary expansion [25], and (b) an earlier inflationary
stage where € < 1. In these neighborhoods, the n-parameter
is plotted as a function of ¢/ ¢ in Fig. 5, for different values
of the magnetic field strength, showing that its effect is to
enhance the #-value. This seems to favor the warm inflation
scenario (n > 1), nonetheless, the upper bound in Eq. (76)
needs to be checked. As we have mentioned by the end of
Sec. IV B, the calculation for I'y, is a work in progress and is
needed to verify that the upper limit in the #-parameter be
fulfilled.

VI. CONCLUSIONS

In this paper we have studied the effects that a possible
primordial magnetic field can have on the inflation’s
potential, taking as the underlying model a warm inflation
scenario and considering that all fields interacting with the
inflaton field are charged. The model is based on global
supersymmetry and a coupling between the inflaton and
heavy intermediate superfields which are in turn coupled to
light particles. In this context, since we have considered a
possible effect on the heavy field sector, then we worked in
the strong magnetic field approximation for the light fields.
This limit was taken when computing the light particles
contribution to the heavy sector self-energy, but the
expression for the effective potential, up to one-loop, is
exact. We studied its behavior, choosing coupling constants
and masses in concordance with the hierarchy scale used in
the calculations.

This work is an extension of a previous one in which the
weak magnetic field limit was considered and only the
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light sector was charged. As in our previous study, here we
found that the magnetic field effect on the effective
potential is to make it less steep as compared with the
vacuum case, showing that magnetic fields do not spoil
the inflationary process. This statement is supported by the
behavior shown by the slow-roll e-parameter as a function
of the magnetic field. In the case of the n-parameter, we
have incorporated the magnetic field effect on it and we
have checked that the lower limit for this parameter (1 < 7)
is fulfilled, however, we could not reach a firm conclusion
about the upper limit (7 < 1+41T,/3H), since the latter
depends directly on the inflaton decay rate that needs to be
analyzed carefully. In this work, we further explore the
viability of this scenario by estimating the magnetic field
effect on the heavy charged scalar decay width, finding an
enhancement on this process. A complete study of the
decay process of the particles involved in this model under
the influence of the external magnetic field is in progress
and will be presented elsewhere.

Our findings could be relevant in the scrutiny of the role
played by magnetic fields on cosmological events, since
there are good chances that they were present during the
early stages of the universe, where phase transitions
provided suitable conditions for their generation.

(k1) = /d“wd“ve"k'we‘”'”ﬁ(wb v )Z((w=v), (w=0),),

in a similar fashion as for the propagator.
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APPENDIX: ON THE SELF-ENERGY
PHYSICAL DIMENSIONS

In this Appendix, we carry out a Fourier transform on the
configuration space self-energy, in order to isolate the
momentum conservation and, thus, identify the expression
for the self-energy in momentum space. With this in mind,
let us start by performing a Fourier transform on a generic
self-energy, X(w, v), getting

(k1) :/d‘*wd“veik'we‘”‘”ﬁ(w, v). (A1)

Since the magnetic field only affects the transverse com-
ponents and it is expected that the transverse part of the
self-energy can be written as the product of the Schwinger
phase and a symmetric part (see, e.g., [26]), we can perform
the following decomposition

(A2)

Performing the change of variables, R = w + v and » = w — v, and working in the symmetric gauge, where the phase

takes the form

.Y .qB
Q(wy,v,) =exp <—lCI/ df‘/“é)) = exp [—l%(—rle + 1Ry, (A3)
the parallel part can easily be integrated, getting
(k. 1) = (22)%67 (k= 1) / dr  d*R | e RN el it TSk r ), (A4)
where the indexes i, j = 1, 2.
The integral over R; is now straightforward and we get
Sk 1) = a6 (k= ne (L) [ d@ris Y k=1),)s T k=1), ) el g(k
(k. 1) = (2m)*" (k= 1)(27) 4B rL r1+q—B(_)2 rz—q—B(—)1 e (kyj. 1)
2 4 2 — 2.1k szJ_ i N _ ~
= (2n)*s7 (k= 1) (q—B) etk / Wﬂgmk Dr-@:(-Dil/aBS (K 0)), (A5)

where, in the last line, we made a Fourier transformation of the self-energy over the transverse coordinates and evaluated the
Dirac delta functions.
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Reorganizing the above equation in a convenient way, we rewrite it as

1 .
Z(k.1) = (2”)45‘(3)(]( =) 3 {e—’%seijlikf /

q
= 2n16 D (k= )=k 1,)
[ qB ’

2
4‘12& €i4[Q1(k—l)z—Qz(k—l)l]/qB}i(k”’ 0,)
n°qB

(A6)

in such a way, the factor within curly brackets is dimensionless, i(kH, Q) has the expected dimensions for the self-energy
and the remaining factor accounts for the energy-momentum conservation, which in the absence of a magnetic field

becomes (27)*6™) (k — I).

[1] R. Beck, AIP Conf. Proc. 1381, 117 (2011).

[2] M. Giovannini and M. E. Shaposhnikov, Phys. Rev. D 57,
2186 (1998); P. Elmfors, K. Enqvist, and K. Kainulainen,
Phys. Lett. B 440, 269 (1998); K. Kajantie, M. Laine, J.
Peisa, K. Rummukainen, and M. Shaposhnikov, Nucl. Phys.
B544, 357 (1999).

[3] A. Sanchez, A. Ayala, and G. Piccinelli, Phys. Rev. D 75,
043004 (2007); J. Navarro, A. Sinchez, M. E. Tejeda-
Yeomans, A. Ayala, and G. Piccinelli, Phys. Rev. D 82,
123007 (2010); G. Piccinelli and A. Ayala, Lect. Notes
Phys. 646, 293 (2004).

[4] G. Piccinelli, A. Sénchez, A. Ayala, and A. J. Mizher, Phys.
Rev. D 90, 083504 (2014).

[51 A.H. Guth and S.-Y. Pi, Phys. Rev. D 32, 1899 (1985).

[6] J. Jaber-Urquiza, G. Piccinelli, and A. Sanchez, Phys. Rev.
D 99, 056011 (2019); G. Piccinelli and A. Sanchez, Phys.
Rev. D 96, 076014 (2017).

[7] S. Kanno, J. Soda, and M.-aki Watanabe, J. Cosmol.
Astropart. Phys. 12 (2009) 009.

[8] D. Green, B. Horn, L. Senatore, and E. Silverstein, Phys.
Rev. D 80, 063533 (2009).

[9] A. Berera and L. Z. Fang, Phys. Rev. Lett. 74, 1912 (1995);
A. Berera, Phys. Rev. Lett. 75, 3218 (1995); A. Berera and
R. O. Ramos, Phys. Lett. B 567, 294 (2003); 1. G. Moss,
Phys. Lett. 154B, 120 (1985).

[10] K. A. Olive, Phys. Rep. 190, 307 (1990); D. H. Lyth and A.
Riotto, Phys. Rep. 314, 1 (1999).

[11] L. M. H. Hall and I. G. Moss, Phys. Rev. D 71, 023514
(2005).

[12] A. Berera and R.O. Ramos, Phys. Rev. D 71, 023513
(2005).

[13] M. Bastero-Gil, A. Berera, T.P. Metcalf, and J. G. Rosa,
J. Cosmol. Astropart. Phys. 03 (2014) 023.

[14] P. A.R. Ade et al., Astron. Astrophys. 571, A22 (2014).

[15] Y. Akrami et al., Astron. Astrophys. 641, A10 (2020).

[16] S. Bartrum, M. Bastero-Gil, A. Berera, R. Cerezo, R. O.
Ramos, and J. G. Rosa, Phys. Lett. B 732, 116 (2014).

[17] K. Engvist and M. Karciauskas, J. Cosmol. Astropart. Phys.
02 (2014) 034.

[18] P. A.R. Ade et al., Astron. Astrophys. 594, A17 (2016).

[19] A. Berera, 1. G. Moss, and R. O. Ramos, Rep. Prog. Phys.
72, 026901 (2009).

[20] V.B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quan-
tum Electrodynamics (Pergamon Press, New York, 1982).

[21] A. Ayala, A. Sanchez, G. Piccinelli, and S. Sahu, Phys. Rev.
D 71, 023004 (2005).

[22] L. H. Ryder, Quantum Field Theory (Cambridge University
Press, Cambridge, England, 1996).

[23] V.P. Gusynin, V. A. Miransky, and 1. A. Shovkovy, Phys.
Lett. B 349, 477 (1995).

[24] A. Berera, Proc. Sci., AHEP2003 (2003) 069.

[25] L. M. H. Hall, I. G. Moss, and A. Berera, Phys. Lett. B 589,
1 (2004).

[26] B. Machet, Int. J. Mod. Phys. A 31, 1650071 (2016).

043511-15


https://doi.org/10.1063/1.3635828
https://doi.org/10.1103/PhysRevD.57.2186
https://doi.org/10.1103/PhysRevD.57.2186
https://doi.org/10.1016/S0370-2693(98)01117-4
https://doi.org/10.1016/S0550-3213(98)00854-2
https://doi.org/10.1016/S0550-3213(98)00854-2
https://doi.org/10.1103/PhysRevD.75.043004
https://doi.org/10.1103/PhysRevD.75.043004
https://doi.org/10.1103/PhysRevD.82.123007
https://doi.org/10.1103/PhysRevD.82.123007
https://doi.org/10.1007/978-3-540-40918-2_11
https://doi.org/10.1007/978-3-540-40918-2_11
https://doi.org/10.1103/PhysRevD.90.083504
https://doi.org/10.1103/PhysRevD.90.083504
https://doi.org/10.1103/PhysRevD.32.1899
https://doi.org/10.1103/PhysRevD.99.056011
https://doi.org/10.1103/PhysRevD.99.056011
https://doi.org/10.1103/PhysRevD.96.076014
https://doi.org/10.1103/PhysRevD.96.076014
https://doi.org/10.1088/1475-7516/2009/12/009
https://doi.org/10.1088/1475-7516/2009/12/009
https://doi.org/10.1103/PhysRevD.80.063533
https://doi.org/10.1103/PhysRevD.80.063533
https://doi.org/10.1103/PhysRevLett.74.1912
https://doi.org/10.1103/PhysRevLett.75.3218
https://doi.org/10.1016/j.physletb.2003.06.028
https://doi.org/10.1016/0370-2693(85)90570-2
https://doi.org/10.1016/0370-1573(90)90144-Q
https://doi.org/10.1016/S0370-1573(98)00128-8
https://doi.org/10.1103/PhysRevD.71.023514
https://doi.org/10.1103/PhysRevD.71.023514
https://doi.org/10.1103/PhysRevD.71.023513
https://doi.org/10.1103/PhysRevD.71.023513
https://doi.org/10.1088/1475-7516/2014/03/023
https://doi.org/10.1051/0004-6361/201321569
https://doi.org/10.1051/0004-6361/201833887
https://doi.org/10.1016/j.physletb.2014.03.029
https://doi.org/10.1088/1475-7516/2014/02/034
https://doi.org/10.1088/1475-7516/2014/02/034
https://doi.org/10.1051/0004-6361/201525836
https://doi.org/10.1088/0034-4885/72/2/026901
https://doi.org/10.1088/0034-4885/72/2/026901
https://doi.org/10.1103/PhysRevD.71.023004
https://doi.org/10.1103/PhysRevD.71.023004
https://doi.org/10.1016/0370-2693(95)00232-A
https://doi.org/10.1016/0370-2693(95)00232-A
https://doi.org/10.22323/1.010.0069
https://doi.org/10.1016/j.physletb.2004.03.044
https://doi.org/10.1016/j.physletb.2004.03.044
https://doi.org/10.1142/S0217751X16500718

