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We study dark matter-helium scattering in the early Universe and its impact on constraints from cosmic
microwave background (CMB) anisotropy measurements. We describe possible theoretical frameworks for
dark matter-nucleon interactions via a scalar, pseudoscalar, or vector mediator; such interactions give rise to
hydrogen and helium scattering, with cross sections that have a power-law dependence on relative velocity.
Within these frameworks, we consider three scenarios: dark matter coupling to only neutrons, to only
protons, and to neutrons and protons with equal strength. For these various cases, we use Planck 2018
temperature, polarization, and lensing anisotropy data to place constraints on dark matter scattering
with hydrogen and/or helium for dark matter masses between 10 keVand 1 TeV. For any model that permits
both helium and hydrogen scattering with a non-negative power-law velocity dependence, we find that
helium scattering dominates the constraint for dark matter masses well above the proton mass.
Furthermore, we place the first CMB constraints on dark matter that scatters dominantly/exclusively
with helium in the early Universe.

DOI: 10.1103/PhysRevD.106.043510

I. INTRODUCTION

Cosmic microwave background (CMB) data provide
some of the best evidence for the existence of dark matter
(DM) [1]. The anisotropy of the CMB is well described by
the standard ΛCDM cosmology, in which DM is a cold and
collisionless matter component of the Universe. However,
many efforts to incorporate DM into the Standard Model
(SM) of particle physics introduce interactions between
DM and SM particles. The early Universe offers a pristine
environment to probe potential nongravitational scattering
between dark and visible matter, without the astrophysical
uncertainties that affect the interpretation of direct and
indirect detection searches.
Elastic scattering between DM and visible matter indu-

ces a drag force between the DM and the baryon-photon
fluids in the early Universe [2]. Such interactions damp
perturbations on small scales, which can produce observ-
able modifications to the CMB anisotropy power spectra.
The scattering cross section typically needs to be large—
depending on the model—to have a measurable impact on
the CMB, but a broad range of DM masses can be probed.
Previous studies have constrained scattering processes

between DM and baryons under a variety of different
assumptions, but they all incorporate scattering with at least
hydrogen nuclei (i.e., protons) [2–9], aside from recent
work that also has separate analyses for DM-electron
scattering [10,11]. DM scattering with protons immediately
implies scattering with helium, unless the interaction is

spin-dependent. Incorporating helium scattering into CMB
analyses generically improves constraining power, particu-
larly for DM mass above 1 GeV [5–7]. However, the
relationship between the scattering cross sections for
helium and for hydrogen is model-dependent. In the case
of velocity-independent scattering, scattering may occur
coherently on all nucleons in helium [2] or on only the
protons in helium [2,5–7]. References [3,6] also explored
scattering on the protons in helium for velocity-dependent
interactions.
Despite this rich variety of analyses, there has never been

a dedicated CMB study of DM-neutron scattering; indeed,
the neutron is the only known particle present during
recombination whose DM interactions have not been
studied comprehensively, as DM-photon [12–14] and
DM-neutrino [15,16] scattering scenarios have been pre-
viously explored. While Ref. [2] did include the effects of
DM-neutron interactions through scattering on helium, the
analysis assumed coherent scattering on all nucleons in
helium and did not account for the mass difference between
hydrogen and helium in writing the DM-helium cross
section; furthermore, the analysis was limited to veloc-
ity-independent scattering for DM mass ≳1 GeV. More
generally, DM may scatter with both protons and neutrons
with an arbitrary ratio of couplings.
In this paper, we use Planck 2018 temperature, polari-

zation, and lensing anisotropy measurements [17] to obtain
CMB constraints for various combinations of DM-neutron
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and DM-proton interactions. We assume all neutrons are
contained within 4He nuclei after big bang nucleosynthesis,
neglecting the small abundances of other elements and
isotopes. Thus, our analysis involves DM scattering with
hydrogen and helium only in the early Universe. The
scenarios of interest are as follows:
(A) DM-neutron only: DM scatters on neutrons bound in

helium, and the interaction must be spin-independent.
(B) DM-proton only: DM may interact with both hydro-

gen and helium. For spin-dependent (SD) interactions,
DMscatters onlywithhydrogen, since heliumhas spin
zero. Spin-independent (SI) interactions permit scat-
tering with both hydrogen and helium.

(C) Equal proton/neutron couplings: DM may interact
with both hydrogen and helium (for SI interactions)
or only hydrogen (for SD interactions). For SD
interactions, this scenario is the same as Scenario B,
and we refer to this case as Scenario B/C-SD.

We discuss the motivation for models of DM-nucleon
scattering and show how generic considerations give rise to
cross sections that have power-law scalings of the relative
particle velocity v. Thus, our analyses parametrize the cross
section as a power-law in v, and we use the generic models
to set the relationship between the DM-helium and DM-
hydrogen cross sections. For our benchmark scenarios, we
obtain constraints on the momentum-transfer cross section
for DM masses ranging from 10 keV to 1 TeV and for
velocity power-law indices n ∈ f−4;−2; 0; 2; 4g.
Our CMB analysis for Scenario A, in which DM scatters

with neutrons and not protons, is the first to consider
scattering with only helium. Such DM-neutron interactions
have been motivated by new-physics models attempting to
explain the neutron lifetime anomaly [18] and the Atomki
beryllium decay anomaly [19]. Additionally, various iso-
spin-violating DM models have been motivated by direct
detection anomalies in previous years [20–23]. While our
analysis does not assume any specific scenario, the limits
we derive are sufficiently general to constrain any of these
scenarios for appropriately sized interactions strengths.
Throughout this paper, we use “hydrogen” and “helium”

to reference the DM scattering target, while “proton”
and “neutron” refer to the fundamental particle interaction
(i.e., proton scattering can result in both hydrogen and
helium scattering). Additionally, when referring to the cross
section, we always mean the momentum-transfer cross
section,1 which is relevant for cosmology. We often omit
“momentum-transfer” for brevity.
In Sec. II, we discuss possible theoretical frameworks in

which DM interacts with neutrons and protons. In Sec. III,
we treat DM interactions with baryons in a cosmological

setting and present the corresponding modified Boltzmann
equations. We describe our analysis in Sec. IV and present
our results in Sec. V. We conclude in Sec. VI.

II. THEORY

There are many viable ways to generate scattering
interactions between dark and visible matter, and each
scenario requires the addition of at least one new “media-
tor” particle that connects the DM to quarks. In this section,
we survey some representative models that realize inter-
actions with varying degrees of neutron-philic couplings
and velocity/spin dependence. These interactions induce
DM-neutron scattering during the early Universe and
therefore affect CMB anisotropies.
In Table I, we present general results for the non-

relativistic DM-nucleus momentum-transfer cross section
[using the notation of Eq. (15) in Sec. III] for a generic set
of Lorentz structures. These formulas can be directly
compared with the mediator and model choices in the
following subsections. In our notation convention, cð0Þi is a
(pseudo) scalar coupling and gi is a vector coupling to
particle species i.

A. Scalar and pseudoscalar mediators

If the mediating particle is a spin-0 scalar or pseudo-
scalar with renormalizable interactions, the most general
Lagrangian contains the following terms:

Lint ¼ ϕχ̄ðcχ þ ic0χγ5Þχ þ ϕ
X
q

q̄ðcq þ ic0qγ5Þq; ð1Þ

where cð0Þχ is a (pseudo)scalar coupling to DM, and cð0Þq is a
(pseudo)scalar coupling to SM quarks q. We take the DM χ
to be a Dirac fermion for simplicity. In principle, these
couplings in Eq. (1) are free parameters. Following the
conventions in Ref. [24], the induced ϕ-nucleon N cou-
pling from this interaction can be written using the nuclear
matrix elementX

q

hNjcqq̄qjNi≡ cNN̄N ðscalarÞ ð2Þ

where the relationship between the quark couplings (cq)
and nucleon couplings (cN) is presented in the Appendix.
This discussion gives the most general parametrization

of scalar-nucleon interactions, assuming either scalar or
pseudoscalar couplings to quarks in the UV theory. Here,
we have exploited the freedom to choose arbitrary flavor
structure without worrying about experimental constraints,
which can be quite severe depending on the scenario.

B. Vector mediators

For spin-1 vector mediators, the coupling patterns to
different quark flavors is constrained by the requirement

1The momentum-transfer cross section is obtained by
weighting the differential cross section by the fractional longi-
tudinal momentum transfer and integrating over all angles:
σT ¼ R

dΩð1 − cos θÞ dσ
dΩ.
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that triangle Feynman diagrams cancel when the new gauge
boson is an external leg of a 3-point diagram with virtual
SM quarks (or other specified fields) flowing through the
internal loop (see Ref. [25] for a discussion). Models in
which this cancellation occurs are anomaly-free and pre-
serve unitarity; triangle diagram interactions grow with
energy and eventually violate unitarity and, therefore, also
spoil renormalizability.
DM candidates with masses well above the electroweak

scale (≫ 100 GeV), can be charged under the weak force
and interact with visible particles through the virtual
exchange of known heavy particles (e.g., W�, Z0, or h).
By contrast, light (≪ 100 GeV) DM with SM gauge
charges would have been produced directly at collider
experiments, which observed no new particles [26,27].
Since we cannot charge light DM under the SM gauge
group, any model whose SM couplings do not automati-
cally cancel triangle diagrams must feature additional
(typically heavy) field content with appropriate SM charge
assignments to restore this cancellation, which occurs
automatically in the minimal SM with known field content.

1. Minimal anomaly-free models

There is a finite list of new abelian vectors that can be
added without introducing anomalies. Each such mediator
V corresponds to a SM interaction of the form

Lint ¼ VμJ
μ
SM; JμSM ≡ g

X
f

Qff̄γμf; ð3Þ

where g is an overall gauge coupling and the values of the
Qf charges are given by anomaly cancellation requirements
—for a review, see Ref. [25]. For convenience, we define
the overall coupling for species f as gf ≡ gQf.
The only anomaly free options without additional SM-

charged fermionic field content are

Uð1ÞB−L; Uð1ÞB−3Li
; Uð1ÞLi−Lj

; ð4Þ

where B=L are baryon/lepton number and Li is a lepton
family number. The gauged Li − Lj scenario does not
feature any couplings to quarks at tree level, so we ignore
this possibility. Note that in each of these cases, there is also
an irreducible contribution to the V − γ kinetic mixing
parameter ϵ, induced by loops of SM fermions with V and γ
external legs. This mixing in turn induces a ϵVμJ

μ
EM

coupling to the SM electromagnetic current, but here ϵ ∼
10−2g is generically suppressed.
For the B − L and B − 3Li, the dependence on baryon

number implies that Qf ¼ 1=3 for all quarks, which
generates equal couplings at energies below the QCD
confinement scale. Thus,

L ⊃
g
3
Vμðūγμuþ d̄γμdÞ → gVμðp̄γμpþ n̄γμnÞ; ð5Þ

and these scenarios can be constrained by both proton and
neutron scattering in the early Universe.
Since SM anomaly cancellation need not affect the

charge assignments for DM particles, we are free to choose
the DM coupling gχ ¼ gQχ with an arbitrary value ofQχ as
long as the full particle content in the dark sector does not
introduce additional, noncanceling triangle diagrams.

2. Minimal “anomalous” models

Since no model is allowed to be anomalous without
violating unitary/renormalizability, it is possible to patch
anomalies by adding additional SM charged fields to cancel
off the new triangle diagrams induced by an anomalous
pattern ofUð1Þ charge assignments. This enables vectors to
couple to arbitrary currents of SM fields as long as viable
“anomalons” can be added to cancel the corresponding
triangle diagrams.
A popular example of this scenario is gauged Uð1ÞB

[28], which is phenomenologically similar to the B − L
example above, except there are no couplings to leptons;
additional states are added instead to cancel anomalies, but
these states can be sufficiently heavy that we can integrate
them out well above our energy scales of interest. For our
purposes, the Uð1ÞB model predicts equal proton/neutron
couplings. However, in principle, models in this category
can be engineered to have arbitrary proton/neutron vector
currents. This class of scenarios is classified as “minimal”
only to the extent that there is a single Abelian gauge group,
even though other new fields are necessary to cancel
anomalies; similar considerations apply to any arbitrary
pattern of quark/lepton couplings.

3. Beryllium-motivated nonminimal models

The longstanding ∼7σ Atomki beryllium anomaly
concerns a reported excess of events observed in the
8Beð18.15Þ → 8Be eþe− de-excitation, which may consti-
tute evidence of a new ≈17 MeV particle [29] coupled to
baryons and electrons.2 Such light new particles must evade
numerous experimental bounds. It has been shown that
viable models must violate isospin and couple preferen-
tially to neutrons over protons [31].
A leading candidate model to resolve the Atomki

anomaly features the Lagrangian [31,32]

L ¼ 1

4
XμνXμν þm2

X

2
XμXμ − XμJ

μ
SM; ð6Þ

where X is a new vector boson and the SM current can be
written as

2However, see Ref. [30] for a recent interpretation involving
only SM hadronic physics.
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JμSM ≡X
f

gff̄γμf; ð7Þ

where f is a SM fermion. Writing the SM-mediator
coupling in units of the electric charge, gf ≡ eϵf, the
proton and neutron couplings are

ϵp ¼ 2ϵu þ ϵd; ϵn ¼ ϵu þ 2ϵd; ð8Þ

and to resolve the Atomki anomaly, the X boson couplings
must satisfy

jϵp þ ϵnj ≈ 0.011 ⇒ jϵu þ ϵdj ≈ 3.7 × 10−3; ð9Þ

and evading constraints from rare pion decay searches
requires [32,33]

j2ϵu þ ϵdj < 8 × 10−4: ð10Þ

Thus, satisfying all of these requirements implies the
relationship

−0.067 <
ϵp
ϵn

< 0.078; ð11Þ

so the proton coupling is sharply suppressed relative to the
neutron coupling.
In addition to addressing the Atomki anomaly, the X

mediator can also consistently couple to DM if additional
interactions are included. For example, a Dirac DM particle
χ can interact with X if Eq. (6) is extended to include the
operator

ΔL ¼ gχXμχ̄γ
μχ; ð12Þ

which induces DM-nucleon scattering during the CMB era.

C. Higher dimension operators

Beyond the simple renormalizable interactions enumer-
ated above, it is possible to engineer a tower of operators
with non-negative powers of momentum dependence of the
form

Lint ¼
1

Λ2
ðχ̄ΓχÞðf̄Γ0fÞ; ð13Þ

where f is any SM fermion and Λ is a new physics scale
associated with the mass of a heavy particle, integrated out
to yield this interaction. The quantities Γ and Γ0 are each a
linear combination of the following Lorentz structures:

γμ; γ5; γμγ5; qμσμν: ð14Þ

For most choices of Γ and Γ0, the corresponding cross
section scales as ∝ vn, where n can be realized using the
renormalizable interactions from Secs. II A and II B.

However, for n > 2, the interaction must arise from a
higher-dimension operator and goes beyond the above
discussion. For the remainder of this paper, we consider
n ∈ f−4;−2; 0; 2; 4g, and the n ¼ 4 case can only arise
from a higher-dimension operator.

III. COSMOLOGY

Within the theoretical framework of Sec. II, we can
calculate the scattering quantity relevant for cosmology: the
momentum-transfer cross section. Relevant expressions are
given in Table I for the particular couplings to neutrons and
protons in our Scenarios A, B, and C. The cross sections all
scale as power laws of the relative particle velocity v with
power-law index n. Therefore, we parametrize the momen-
tum-transfer cross section as

σBðvÞ≡ σ0;Bvn ð15Þ

where B ∈ fH;Heg denotes the particular particle species
(i.e., hydrogen or helium) that DM scatters within the
baryon fluid and σ0;B is a constant prefactor that our CMB
analysis constrains. In Scenarios B-SI and C-SI, in which
there is scattering with hydrogen and helium, both cross
sections scale with the same velocity dependence n.
Incorporating DM-baryon scattering in the early

Universe requires modifying the standard Boltzmann equa-
tions [34] that describe the evolution of perturbations. We
label quantities related to the DM and baryon fluids by χ
and b, respectively. In synchronous gauge, the time
evolution of the density fluctuations δχ , δb and velocity
divergences θχ , θb become [2,4–6,34]

_δχ ¼−θχ −
_h
2
; _δb ¼−θb−

_h
2
;

_θχ ¼−
_a
a
θχ þc2χk2δχ þRχðθb−θχÞ;

_θb ¼−
_a
a
θbþc2bk

2δbþRγðθγ −θbÞþ
ρχ
ρb

Rχðθχ −θbÞ; ð16Þ

where h is the trace of the scalar metric perturbation,
a is the scale factor, k is the wave number, cχ and cb are
the sound speeds in each fluid, ρχ and ρb are the energy
densities, and overdots denote conformal time derivatives.
Rγ and Rχ are the Compton scattering rate coefficient
and the DM-baryon momentum-transfer rate coefficient,
respectively.
The total momentum-transfer rate coefficient Rχ for DM

scattering with hydrogen and helium is given by

Rχ ¼ RχH þ RχHe; ð17Þ

where
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RχB ¼ aρb
YBσ0;BN n

mχ þmB

�
Tb

mB
þ Tχ

mχ

�ð1þnÞ=2
ð18Þ

for each scattering species B [6]. In this expression, YB is
the mass fraction of species B, N n ≡ 2ð5þnÞ=2Γð3þ n=2Þ=
ð3 ffiffiffi

π
p Þ, mχ and mB are the DM and B particle masses, and

Tχ and Tb are the DM and baryon fluid temperatures,
respectively.
The coupled temperature evolution of the DM and

baryon fluids is given by

_Tχ ¼ −2
_a
a
Tχ þ 2R0

χðTb − TχÞ;

_Tb ¼ −2
_a
a
Tb þ

2μb
mχ

ρχ
ρb

R0
χðTχ − TbÞ þ

2μb
me

RγðTγ − TbÞ;

ð19Þ

where μb ≈mpðnp þ 4nHeÞ=ðnp þ nHe þ neÞ; me is the
mass of the electron; mp is the mass of the proton; and
ne, np, and nHe are the number densities of electrons,
protons, and helium, respectively. The heat-exchange rate
coefficient is given by

R0
χ ¼

mχ

mχ þmH
RχH þ mχ

mχ þmHe
RχHe: ð20Þ

In this work, we solve for the DM temperature, ignoring the
backreaction on the baryon temperature evolution. This
approximate treatment is valid while the baryon and photon
temperatures are tightly coupled, down to redshift z ∼ 300.
Incorporating backreaction is expected to have little effect
on our CMB analysis [9].
The velocities of the DM and baryon fluids are strongly

coupled at early times for n ≥ 0, rendering the relative bulk
velocity of the fluids small, compared to the relative
thermal velocities vth ¼ ðTb=mB þ Tχ=mχÞ1=2. Negligible
bulk velocities allows the velocity dependence of the cross
section in Eq. (15) to be governed by vth, as seen in
Eq. (18). For n ¼ −4 and n ¼ −2, however, interactions are
suppressed at early times and the relative bulk velocity is
significant around the time of recombination. This com-
plication introduces nonlinearities into the Boltzmann
equations [4,9], and approximate methods can be employed
to maintain linearity when numerically solving. We follow
Refs. [4,7,8] by modifying the momentum-transfer rate
coefficient in Eq. (18) to be

RχB ¼ aρb
YBσ0;BN n

mχ þmB

�
Tb

mB
þ Tχ

mχ
þ V2

RMS

3

�ð1þnÞ=2
; ð21Þ

where VRMS is the root mean square (RMS) relative bulk
velocity between the DM and baryon fluids. Under ΛCDM,

TABLE I. Momentum-transfer cross section coefficients σ0;B for models with vector (V), scalar (S), and pseudoscalar (P) mediators.
The first three columns list the power-law index n for the velocity dependence of the cross section, the structure of the DM-nucleon
interaction, and the dependence of the cross section on the nucleus spin (SI interactions permit DM-hydrogen and DM-helium
scattering, while SD interactions permit DM-hydrogen scattering only). The remaining columns show expressions for σ0;B for helium
scattering in Scenario A, hydrogen scattering in Scenarios B and C (relevant for both SI and SD interactions), and helium scattering in
Scenarios B-SI and C-SI. For n ¼ −4, σ0;B has a logarithmic divergence that we regulate with small cutoff angle θc, determined by the
details of a particular model.

Scenario A Scenarios B, C Scenarios B-SI (C ¼ 1), C-SI (C ¼ 4)

n Interaction (χ − N) SI/SD He scattering H scattering He scattering

−4 V-V, light SI 2π
g2χg2N
4π2

2 ln ð2=θcÞ
μ2χHe

2π
g2χg2N
4π2

2 ln ð2=θcÞ
μ2χH

4Cð μχHμχHe
Þ2σ0;H

S-S, light SI 2π
c2χc2N
16π2

2 ln ð2=θcÞ
μ2χHe

2π
c2χc2N
16π2

2 ln ð2=θcÞ
μ2χH

4Cð μχHμχHe
Þ2σ0;H

−2 S-P, light SD 0 4π
c2χc02N
8π2

1
m2

H

0

P-S, light SI 4π
c02χ c2N
32π2

1
m2

χ
4π

c02χ c2N
32π2

1
m2

χ

4Cσ0;H

0 V-V, heavy SI 4π
g2χg2N
4π2m4

V
μ2χHe 4π

g2χg2N
4π2m4

V
μ2χH

4CðμχHeμχH
Þ2σ0;H

S-S, heavy SI 4π
c2χc2N
4π2m4

ϕ
μ2χHe 4π

c2χc2N
4π2m4

ϕ
μ2χH

4CðμχHeμχH
Þ2σ0;H

P-P, light SD 0
4π

c02χ c02N
64π2

μ2χH
m2

χm2
H

0

2 S-P, heavy SD 0 16π
3

c2χc02N
8π2m4

ϕ

μ4χH
m2

H

0

P-S, heavy SI 16π
3

c02χ c2N
32π2m4

ϕ

μ4χHe
m2

χ

16π
3

c02χ c2N
32π2m4

ϕ

μ4χH
m2

χ

4CðμχHeμχH
Þ4σ0;H

4 P-P, heavy SD 0
8π

c02χ c02N
64π2m4

ϕ

μ6χH
m2

χm2
H

0
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the RMS velocity is given by cVRMS ∼ 30 km=s prior to
recombination (z≳ 1000) and scales as ð1þ zÞ2 at smaller
redshifts. The ΛCDM evolution for VRMS is applicable for
our CMB analysis with 100% of DM interacting; more
advanced techniques must be used to analyze scenarios in
which only a fraction DM interacts [9].

IV. ANALYSIS

We use Planck 2018 data to constrain DM interactions,
under our three scenarios of interest: Scenario A in
which DM interacts only with neutrons, Scenario B in
which DM interacts only with protons, and Scenario C
in which DM interacts with both neutrons and protons with
equal coupling strength. Since 4He is a spin-0 nucleus,
Scenario A only gives rise to SI scattering during the
CMB era; Scenarios B and C may have either SI or SD
interactions, corresponding to scattering with hydrogen and
helium or with hydrogen only. Our analysis uses a modified
version3 of the Cosmic Linear Anisotropy Solving System
(CLASS) [35] to solve the Boltzmann equations with the
modifications described in Sec. III that incorporate DM
scattering.
We sample our parameter space using the cobaya

Bayesian analysis framework [36,37] with the Markov
chain Monte Carlo (MCMC) sampler [38,39] and fast-
dragging [40]. We use the Planck 2018 likelihood code and
employ the commander and simall likelihoods for low
multipoles, the Plik lite nuisance-marginalized joint
likelihood for high multipoles, and the SMICA lensing
reconstruction likelihood [17].
For each velocity power law n and each neutron/proton

coupling scenario, we sample the DM-baryon cross section
σ0;B as a free parameter with a flat prior for seven fixed DM
masses. We also sample the following five standard ΛCDM
cosmological parameters with broad flat priors: the Hubble
parameter H0, baryon density Ωbh2, scalar amplitude As,
scalar spectral index ns, reionization optical depth τ, and
DM density Ωχh2. We assume all DM is interacting.
For Scenario A, DM scatters only with helium, so the

sampling parameter is σ0;He. For Scenario B/C-SD, DM
scatters only with hydrogen, so the sampling parameter is
σ0;H. Scenarios B-SI and C-SI involve scattering on both
hydrogen and helium; for these cases, we sample the
parameter σ0;H and fix the helium cross section according
to its relation to the hydrogen cross section in Table I.
Our analysis covers DM masses from 10 keV to 1 TeV.

Below 10 keV, the validity of our assumption of thermal-
ized, cold DM breaks down for n ≥ 0.4 For DM masses
much larger than the masses of hydrogen and helium, the
DM parameters σ0 and mχ are degenerate, appearing

together as σ0;B=mχ in the expression for Rχ. Our exclusion
limits in Sec. V, including scenarios that involve both
hydrogen and helium scattering, scale as σ0;B ∝ mχ at large
DM masses. Thus, our limits at mχ ¼ 1 TeV can be
extrapolated to larger DM masses.

V. RESULTS

We present the 95% confidence level (CL) upper limits
on the momentum-transfer cross section between DM
and hydrogen/helium as a function of DM mass for various
velocity dependencies in Fig. 1. These results are also
provided in Table II and as supplementary text files for
convenience.
Scenario B/C-SD, corresponding to DM scattering with

only hydrogen, has been studied previously, and we have
verified consistency with recent work [10]. For purposes of
comparison, we include results for hydrogen-only scatter-
ing for n ¼ −4, even though there is not an associated
model in Table I. We label this case as “generic” in Fig. 1.
We also include “generic” results for n ¼ 4 for Scenario A,
corresponding to helium-only scattering. Since this work
places the first bounds on DM that preferentially scatters
with helium rather than hydrogen, we include the result for
n ¼ 4 so that there are limits on helium-only scattering for
all values of n in this study.
The impact of helium scattering depends on its

contribution to the total momentum-transfer rate coeffi-
cient. For Scenarios B-SI and C-SI, we can write
Rχ¼RχHð1þRχHe=RχHÞ, where ratio RχHe=RχH dictates
the relative importance of helium scattering. This ratio
incorporates the model-dependent ratio of the cross sec-
tions. From Table I, we have

σ0;He
σ0;H

¼ 4C
�
μχHe
μχH

�
nþ2

; ð22Þ

where C ¼ 1 for Scenario B-SI and C ¼ 4 for Scenario
C-SI. For each of these scenarios, we determine RχHe=RχH

analytically in the limits of large (mχ ≫ mH; mHe) and
small (mχ ≪ mH; mHe) DMmasses. In our estimates below,
we use a helium mass fraction YHe ≃ 0.24 and a ratio of
masses mHe=mH ≃ 4.
In the limit of large DM mass, the ratio of the

momentum-transfer rates for Scenario B-SI or C-SI is

RχHe

RχH
≈ 4C

YHe

YH

�
mHe

mH

�
nþ2

×

(�
mH
mHe

�ð1þnÞ=2
n ≥ 0

1 n < 0:
ð23Þ

For n < 0 the RMS relative bulk velocity is larger than the
thermal relative velocity at the redshift of interest [9], so
here we have assumed the VRMS term dominates and
thus cancels upon taking the ratio of the rates.
Numerically, we have RχHe=RχH ≃ 10.1C × 2n for n ≥ 0

3https://github.com/kboddy/class_public/tree/dmeff.
4The DM temperature is below the baryon-photon temperature

at early times for n < 0 [9], potentially allowing our analysis to
be extended to lower DM masses.
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and RχHe=RχH ≃ 20.2C × 4n for n < 0. Therefore, we
expect the inclusion of helium scattering to be negligible
for n ¼ −4, comparable to hydrogen scattering for n ¼ −2,
and dominant for n ≥ 0. This behavior is evident in our
numerical results for the extreme cases ofn ¼ −4 and n ¼ 2.
For n ¼ −4, we find that Scenarios B-SI and C-SI have very
similar bounds on σ0;H as Scenario B/C-SD, indicating that
the incorporation of helium scattering in Scenarios B-SI and
C-SI has little impact on the resulting bound and thus
hydrogen scattering drives the constraint. In contrast, for
n ¼ 2, the limits for Scenarios B-SI and C-SI have similar
bounds on σ0;He as Scenario A (helium-only scattering),
indicating helium scattering drives the constraint.
In the limit of small DM mass, the ratio of the

momentum-transfer rate coefficients is

RχHe

RχH
≈ 4C

YHe

YH

mH

mHe
≃ 0.32C; ð24Þ

so the contribution to the rate from helium scattering is
subdominant to that from hydrogen scattering for Scenario
B-SI and comparable for Scenario C-SI. We, therefore,
expect limits on σ0;H for Scenarios B-SI and B/C-SD to
coincide, as demonstrated by our results in Fig. 1 for n ¼ 2
in particular. We also note that our limits on σ0;He for
Scenarios A and C-SI are close at low DM mass for the
various n, but the limit for Scenario C-SI is slightly
stronger, as both hydrogen and helium scattering contribute
to the constraint. Moreover, the limit on σ0;He for Scenario
B-SI is noticeably different, since hydrogen scattering is
expected to drive the constraint.

FIG. 1. The 95% CL upper limits on the momentum-transfer cross section coefficient σ0;B, defined in Eq. (15), for DM-hydrogen
(solid) and DM-helium (dashed) scattering. We show results for cross sections with a power-law velocity dependence of n ¼ −4 (upper
left), n ¼ −2 (upper right), n ¼ 0 (center left), n ¼ 2 (center right), and n ¼ 4 (bottom). For each value of n, we analyze Scenario Awith
only a DM-neutron coupling (red), Scenario B-SI with only a DM-proton coupling (light blue), Scenario C-SI with equal DM couplings
to protons and neutrons (orange), and Scenario B/C-SD (dark blue) for SD scattering. For Scenarios B-SI and C-SI, the hydrogen and
helium cross sections are related by the expressions given in Table I. The cases labeled as “generic” do not arise in the models presented
in Sec. II, but we include them for completeness.

INVESTIGATION OF CMB CONSTRAINTS FOR DARK MATTER- … PHYS. REV. D 106, 043510 (2022)

043510-7



We emphasize the relation between the helium and
hydrogen cross sections within Scenario B-SI or C-SI is
determined by the model, as given in Table I. For n ¼ −4
with large DM masses, the helium cross section is smaller
than (for Scenario B-SI) or equal to (for Scenario C-SI) the
hydrogen cross section; otherwise, σ0;He > σ0;H. Our results
in Fig. 1 reflect these relations by construction. In particular,
a limit on σ0;H that is lower than the corresponding σ0;He of a
given scenario does not indicate the data are more sensitive

to hydrogen scattering. On the contrary, we have found that
helium scattering is the dominant effect in constraining DM
interactions for large DM masses for n ≥ 0.

VI. CONCLUSIONS

In this paper, we conduct the first in-depth investigation
of DM-helium scattering in the early Universe. We account
for the appropriate form and velocity dependence of the

TABLE II. The 95% CL upper limits on the momentum-transfer cross section coefficient σ0;B, corresponding to the limits shown in
Fig. 1. The cross sections have a power-law dependence on relative velocity, with a power-law index n. Scenario A corresponds to DM
coupled only to neutrons, Scenario B to DM coupled only to protons, and Scenario C to DM with equal coupling to neutrons and
protons. For Scenarios B and C, the interaction may be SI or SD; note the scenarios are equivalent for the SD interaction. Blank entries
do not have a corresponding model from Section II.

Scenario A Scenario B-SI Scenario B/C-SD Scenario C-SI

n DM mass He scattering H scattering He scattering H scattering H scattering He scattering

−4 10 keV 4.0 × 10−41 2.0 × 10−42 8.1 × 10−42 3.6 × 10−42a 1.9 × 10−42 3.1 × 10−41
1 MeV 3.4 × 10−41 3.3 × 10−42 1.3 × 10−41 4.0 × 10−42a 2.1 × 10−42 3.4 × 10−41

100 MeV 4.8 × 10−41 3.6 × 10−42 1.2 × 10−41 6.7 × 10−42a 3.3 × 10−42 4.6 × 10−41
1 GeV 5.5 × 10−41 1.0 × 10−41 1.5 × 10−41 9.0 × 10−42a 6.0 × 10−42 3.6 × 10−41

10 GeV 1.5 × 10−40 4.2 × 10−41 1.7 × 10−41 5.8 × 10−41a 3.9 × 10−41 6.3 × 10−41
100 GeV 1.2 × 10−39 3.4 × 10−40 9.1 × 10−41 5.4 × 10−40a 3.8 × 10−40 4.0 × 10−40

1 TeV 1.1 × 10−38 4.0 × 10−39 1.0 × 10−39 4.5 × 10−39a 5.4 × 10−39 5.5 × 10−39

−2 10 keV 6.8 × 10−33 5.4 × 10−34 2.1 × 10−33 8.1 × 10−34 3.6 × 10−34 5.8 × 10−33
1 MeV 6.0 × 10−33 4.4 × 10−34 1.8 × 10−33 8.0 × 10−34 3.3 × 10−34 5.3 × 10−33

100 MeV 6.7 × 10−33 6.0 × 10−34 2.4 × 10−33 9.4 × 10−34 4.2 × 10−34 6.7 × 10−33
1 GeV 7.4 × 10−33 9.0 × 10−34 3.6 × 10−33 1.5 × 10−33 4.8 × 10−34 7.7 × 10−33

10 GeV 2.6 × 10−32 4.7 × 10−33 1.9 × 10−32 6.7 × 10−33 1.6 × 10−33 2.6 × 10−32
100 GeV 2.1 × 10−31 3.4 × 10−32 1.4 × 10−31 7.0 × 10−32 1.5 × 10−32 2.4 × 10−31

1 TeV 2.1 × 10−30 4.0 × 10−31 1.6 × 10−30 9.0 × 10−31 1.8 × 10−31 2.9 × 10−30

0 10 keV 6.4 × 10−26 3.5 × 10−27 1.4 × 10−26 5.7 × 10−27 2.6 × 10−27 4.2 × 10−26
1 MeV 2.3 × 10−25 1.2 × 10−26 4.8 × 10−26 1.9 × 10−26 1.3 × 10−26 2.0 × 10−25

100 MeV 9.0 × 10−25 3.7 × 10−26 1.7 × 10−25 7.9 × 10−26 3.2 × 10−26 6.0 × 10−25
1 GeV 1.4 × 10−24 9.4 × 10−26 9.9 × 10−25 1.3 × 10−25 4.6 × 10−26 2.0 × 10−24

10 GeV 5.4 × 10−24 1.9 × 10−25 7.7 × 10−24 7.9 × 10−25 8.0 × 10−26 1.3 × 10−23
100 GeV 4.1 × 10−23 1.4 × 10−24 8.3 × 10−23 1.1 × 10−23 5.2 × 10−25 1.2 × 10−22

1 TeV 4.5 × 10−22 1.1 × 10−23 6.9 × 10−22 1.0 × 10−22 4.2 × 10−24 1.1 × 10−21

2 10 keV 9.4 × 10−23 5.4 × 10−24 2.1 × 10−23 6.6 × 10−24 4.2 × 10−24 6.8 × 10−23
1 MeV 2.1 × 10−20 1.3 × 10−21 5.3 × 10−21 1.5 × 10−21 8.0 × 10−22 1.3 × 10−20

100 MeV 3.5 × 10−18 2.0 × 10−19 1.1 × 10−18 2.5 × 10−19 1.2 × 10−19 2.5 × 10−18
1 GeV 3.8 × 10−17 9.1 × 10−19 2.6 × 10−17 2.4 × 10−18 5.7 × 10−19 6.5 × 10−17

10 GeV 3.0 × 10−16 2.2 × 10−18 8.9 × 10−16 2.0 × 10−17 7.0 × 10−19 1.1 × 10−15
100 GeV 3.3 × 10−15 7.5 × 10−18 6.7 × 10−15 1.2 × 10−16 2.2 × 10−18 7.7 × 10−15

1 TeV 2.5 × 10−14 7.9 × 10−17 7.8 × 10−14 1.8 × 10−15 1.9 × 10−17 7.3 × 10−14

4 10 keV 2.7 × 10−20a 2.4 × 10−21
1 MeV 5.7 × 10−16a 3.7 × 10−17

100 MeV 7.2 × 10−12a 3.5 × 10−13
1 GeV 4.5 × 10−10a 1.7 × 10−11

10 GeV 9.3 × 10−09a 2.4 × 10−10
100 GeV 1.1 × 10−07a 2.0 × 10−09

1 TeV 1.4 × 10−06a 3.1 × 10−08
aWe include n ¼ −4 results for Scenario B-SD and n ¼ 4 results for Scenario A, even though they are not represented by one of the
models.
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hydrogen and helium momentum-transfer cross sections
that arise from heavy and light scalar, pseudoscalar, and
vector mediators. The cross sections exhibit a power-law
dependence on relative velocity, with a power-law index
n ∈ f−4;−2; 0; 2; 4g. We also consider three scenarios for
DM-nucleon couplings: DM-neutron only coupling, DM-
proton only coupling, and equal coupling to protons and
neutrons. Using Planck 2018 anisotropy data, we obtain the
95% CL upper limits on the hydrogen and helium
momentum-transfer cross sections for these different sce-
narios with different velocity dependencies.
Our results can be interpreted in the context of particular

DM models, including those presented in Sec. II, to obtain
limits on associated coupling constants and mediator
masses. However, since these limits constrain such large
(∼barn sized) cross sections for models with n ≥ 0 in
Fig. 1, the mediator-SM coupling must be fairly large
and the mediator masses must be fairly light. Thus, each
model is also subject to additional laboratory constraints in
the parameter space that realizes such cross sections (for
examples, see Refs. [41,42], which show strong constraints
on the quark-mediator coupling at low mediator mass).
Although the constrained value of the mediator-SM cou-
pling in a given model depends on the ratio of dark and
visible couplings for a given cross section limit, perturba-
tive unitarity for the DM coupling requires ci ≲ 4π for all
species [43]; thus, for each choice of the dark/visible
coupling ratio, there is a corresponding limit on cN that
can realize the σ0;B we constrain in our analysis (see
Table I).
Given the model dependence of such coupling limits in

each scenario, it is beyond the scope of our analysis to
provide a direct comparison with the experimental limits in
specific cases, but it is expected that for each of the
constraint curves shown in Fig. 1 with n ≠ 0, there are
stronger laboratory bounds once the mediator mass and its
SM couplings are specified within a given model (subject to
unitarity bounds on the DM-mediator coupling).
Nonetheless, our results directly constrain the scattering
properties of DM itself during the CMB era, without
reference to any other hypotheses and, therefore, offer a
new probe of protophobic interactions, particularly in the
low (< GeV) DM mass range where direct detection
sensitivity thresholds are too high to probe the typical
momentum transfers that DM in the halo imparts to nuclear
targets.
We note that some of our constrained parameter space in

Fig. 1 involves σ0 ≳ 10−25 cm2, where theoretical consid-
erations invalidate the point-particle approximation for DM
scattering with nucleons under the Born approximation
[44,45]. Larger cross sections can be achieved through
enhancements via the exchange of multiple mediators or by
considering composite DM states (e.g., dark nuclei [46]).
For the latter case, there are additional (model- and
momentum-dependent) form factors that rescale the cross

section with nucleons, which we do not include in our
analysis here; thus, our results in which σ0 ≳ 10−25 cm2 are
valid in the limit where these form factors are negligible for
typical CMB era momentum transfers (e.g., when the
momentum transfer is small compared to a given compos-
iteness scale). Since momentum transfers are set by the sub-
eV photon temperature during the CMB era, we expect
that any potential form factor suppression should be
negligible throughout our parameter space of interest.
However, such form factors might be relevant for direct
detection in the halo where momentum transfers can be
larger; thus, comparing our limits to those of terrestrial
scattering experiments (e.g., from Ref. [47], which con-
strains neutron-philic composite DM with direct detection)
might require a nontrivial mapping, depending on the
nature of the form factor suppression.
In comparing limits for point particle interactions, our

results are complementary in mass range to existing bounds
on neutron-philic DM from direct detection experiments.
For comparison, Ref. [48] finds that GeV-scale DM with
spin dependent DM-neutron cross section σχn ≈ 10−33 cm2

can explain the XENON1T excess [49] through the Migdal
effect while evading other direct detection bounds. This
model is constrained by our limits on Scenario B/C-SD in
the n ¼ 0 panel of Fig. 1. Near the ∼GeV mass range, our
limits (σχn ≲ 10−24 cm2) are not sufficient to exclude the
XENON1T preferred region in Ref. [48], but they extend
the generic direct-detection limits on neutron-philic DM by
many orders of magnitude toward lower mass where such
limits were previously unavailable.
Despite strong laboratory constraints on particular mod-

els, our CMB bounds provide valuable and complementary
information on the interaction properties of cosmologically
abundant particle DM. Upcoming ground-based CMB
experiments, such as the Simons Observatory [50] and
CMB-S4 [51], will achieve significant improvements in
angular resolution, compared to existing data. Therefore,
advancements in CMB experiments will lead to better
sensitivity to DM scattering physics, which suppresses
structure more at smaller scales.
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APPENDIX: SCALAR FORMALISM

In this section, we review the formalism for defining the
mediator-nucleon coupling at low energy in terms of
mediator-quark interactions in the high energy theory
(above the scale of QCD confinement). Here we follow
the conventions of Ref. [24].
The induced mediator-nucleon coupling in Eq. (2) is

cN ¼
X

q¼u;d;s

cq
mN

mq
fðNÞ
Tq þ 2

27
fðNÞ
TG

X
q¼c;b;t

cq
mN

mq
; ðA1Þ

and we have defined the parameters

fðNÞ
Tq ≡ hNjmqq̄q

mN
jNi; fðNÞ

TG ¼ 1 −
X

q¼u;d;s

fðNÞ
Tq ; ðA2Þ

where fðNÞ
Tq represents light quark contributions to the

nucleon mass and can be found in the appendix of

Ref. [24]. Similarly, the pseudoscalar nucleon matrix
element can be written

hNj
X
q

c0qq̄γ5qjNi≡ ic0NN̄γ5N ðpseudoÞ ðA3Þ

where the effective nuclear coupling can be written

c0N ¼
X

q¼u;d;s

mN

mq
ðcq − CÞΔðNÞ

q ; C≡ m̄
X
q

c0q
mq

; ðA4Þ

and we have defined m̄≡ ð1=mu þ 1=md þ 1=msÞ−1. The
parameters ΔðNÞ

q satisfy the relation

ΔðNÞ
q sμ ≡ hNjq̄γμγ5qjNi; ðA5Þ

where the new parameters here can be found in the
appendix of Ref. [24].
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