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We study a Friedmann-Lemaître-Robertson-Walker spacetime in the theory of fðQÞ gravity, where
Q denotes the nonmetricity scalar. It has been previously shown in the literature, that there exist four
distinct families of connections, which are compatible with the isometries of the FLRW metric; three for
the spatially-flat case and one when the spatial curvature is present. In the spatially-flat case, one
connection is dynamically irrelevant and yields the dynamics of the coincident gauge in the Cartesian
coordinates. For this, we obtain the general solution of an arbitrary fðQÞ theory with a perfect
fluid-matter content, and present various examples for specific choices of the fðQÞ function. We
proceed by studying the effect of the rest of the connections, which are dynamical and affect the
equations of the motion. We concentrate in scenarios that depart from the Q ¼ const case, which just
reproduces General Relativity with a cosmological constant, and derive novel vacuum solutions for a
power-law fðQÞ function.
DOI: 10.1103/PhysRevD.106.043509

I. INTRODUCTION

Modified and extended theories of gravity [1] play an
important role in the description of the cosmological
observations [2–5]. In particular, the gravitational action
integral is modified by introducing geometric invariants.
The result of this modification is that new degrees of
freedom are entering the gravitational field equations so as
to drive the dynamics away from that of General Relativity
(GR) and thus provide a better theoretical prediction for the
observations [6]. The Lagrangian density of Einstein’s
General Relativity is based on the Ricci scalar, R, which
is defined by the symmetric Levi-Civita connection. The
simplest modification of the Einstein-Hilbert action is
the introduction of a function f, of this scalar. This leads
to the so-called fðRÞ theory of gravity [7].
The Levi-Civita connection is not the unique choice

which can be applied in a gravitational theory. From a more
general connection someone can define the fundamental
scalar invariants of the curvature, R, the torsion, T, and the
nonmetricity, Q. The nature of the physical space depends
on the invariant which is used to define the gravitational

action integral [8]. Indeed, for the Levi-Civita connection,
where only the curvature invariant survives, the resulting
theory is the General Relativity. On the other hand, for the
curvatureless Weitzenböck connection [9], we end up with
the teleparallel equivalent of General Relativity [10,11]. In
addition, for a gravitational theory defined by a torsion-
free, flat connection we obtain the symmetric teleparallel
equivalent of General Relativity [12]. While these three
theories admit the same field equations, this is not true for
their modifications. Indeed, the modified f theories, for
instance the fðTÞ-teleparallel theory [13] and the fðQÞ-
symmetric teleparallel theory [14] are quite distinct from
the fðRÞ theory.
In this piece of study we are interested in the existence of

cosmological solutions for the fðQÞ-symmetric teleparallel
theory. There is a plethora of studies in the literature on
fðQÞ theory. Some exact analytic solutions are presented
in [15,16]. Power-law functions of fðQÞ and the values of
the parameters that they admit have been studied in [17].
The fðQÞ theory as a dark energy model is investigated in
[18–21]. A recent work on the properties of the effective
fluid, owed to the nonmetricity, can be found in [22]. Some
anisotropic spacetimes were studied in [23–28]. The
Hamiltonian analysis for the theory was performed in
[29], while the quantization process in the case of cosmol-
ogy was presented in [30]. Wormhole solutions in the
context of fðQÞ gravity are given in [31]. Nonminimal
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couplings to matter have been considered in [32], gener-
alizations including the trace of the energy momentum
tensor are found in [33,34], and studies on observational
constraints are given in [35,36].
An important characteristic of fðQÞ theory is the use

of a flat connection pertaining the existence of affine
coordinates in which all its components vanish, turning
covariant derivatives into partial (coincident gauge). Thus,
in fðQÞ-theory it is possible to separate gravity from the
inertial effects. Hence, the construction of the fðQÞ-theory
forms a novel starting point for various modified gravity
theories. It also presents a simple formulation in which self-
accelerating solutions arise naturally in both the early and
late Universe.
Although the coincident gauge is always achievable

through an appropriate coordinate transformation, extra
care is needed when we a priori adopt a specific coordinate
system through an ansatz for the spacetime metric [37].
This is because, when starting from a particular line
element, e.g., a Friedmann-Lemaître-Robertson-Walker
(FLRW) metric expressed in spherical coordinates, we
already have partially fixed the gauge. Thus, the connection
may not become zero at the coordinate system which we
have already assumed for the metric. In particular for the
FLRW case, it has been shown [26,38], that there exist four
distinct possible connections that are compatible with its
isometries; three for the spatially-flat case and onewhen the
spatial curvature is not zero. One of the three connections of
the spatially-flat case, becomes zero, when we transform
the metric to Cartesian coordinates; the rest assume their
coincident gauge form in totally different coordinate
systems, which lead to metrics having nondiagonal terms.
In this work we derive the field equations in FLRW
geometry, with or without spatial curvature, for all four
existing forms of the symmetric, flat connection. We prove
the existence of interesting analytic solutions in all of the
cases involving the different connections and study specific
examples.
The plan of the paper is as follows: In Sec. IIwepresent the

basic properties and definitions of fðQÞ theory. In Sec. III we
present the symmetric connection which are compatiblewith
the FLRW geometry in spherical coordinates. For the
spatially-flat FLRWgeometry, the field equations are derived
in Sec. IV. Exact solutions are determined for the latter and
we show that inflationary solutions exist. The case of a
nonzero spatial curvature is assumed in Sec. V. Finally, in
Sec. VI we draw our conclusions.

II. PRELIMINARIES

In metric-affine gravitational theories, the basic dynami-
cal objects are the metric gμν and the connection Γκ

μν.
The fundamental tensors that can be constructed with the
help of these objects are the curvature Rκ

λμν, the torsion Tλ
μν

and the nonmetricity Qλμν, whose components are given
respectively by

Rκ
λμν ¼

∂Γκ
λν

∂xμ
−
∂Γκ

λμ

∂xν
þ Γσ

λνΓκ
μσ − Γσ

λμΓκ
μσ; ð1Þ

Tλ
μν ¼ Γλ

μν − Γλ
νμ; ð2Þ

Qλμν ¼ ∇λgμν ¼
∂gμν
∂xλ

− Γσ
λμgσν − Γσ

λνgμσ: ð3Þ

In the above relations ∇μ is used to denote the covariant
derivative with respect to the affine connection Γκ

μν and xμ

are the coordinate components upon the manifold. In the
case of a symmetric connection the torsion is zero, Tλ

μν ¼ 0.
This, together with the condition Qλμν ¼ 0, results in the
well-known metric theories of gravity.
In an attempt to consider theories outside the scope of

(pseudo-)Riemannian geometry, more general connections
are taken into account, which lead to the torsion and/or the
nonmetricity being nonzero. In the theory of symmetric
teleparallelism and its modifications, in which we are
interested in this work, the flatness, Rκ

λμν ¼ 0 and the
torsionless, Tλ

μν ¼ 0, conditions are imposed, leaving only
Qλμν ≠ 0. The basic geometric scalar of the theory is
defined as

Q ¼ QλμνPλμν; ð4Þ

where Pλ
μν is used for the components of the nonmetricity

conjugate tensor

Pλ
μν¼−

1

4
Qλ

μνþ
1

2
QðμλνÞ þ

1

4
ðQλ−Q̄λÞgμν−

1

4
δλðμQνÞ; ð5Þ

which is written with the help of the traces Qμ ¼ Qμν
ν and

Q̄μ ¼ Qν
μν. The δμν in (5) is the Kroncker delta and the

parentheses in the indices denote the usual symmetrization,
i.e., AðμνÞ ¼ 1

2
ðAμν þ AνμÞ.

The nonmetricity scalarQ of (4) is defined in such a way
so that, when taken as a Lagrangian density, the theory
which it produces, is dynamically equivalent to Einstein’s
general relativity. Nonlinear generalizations of symmetric
teleparallelism, involve a gravitational Lagrangian den-
sity which is characterized by a generally nonlinear
function fðQÞ

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
fðQÞ þ

Z
d4x

ffiffiffiffiffiffi
−g

p
LM þ λκ

λμνRκ
λμν

þ τλ
μνTλ

μν: ð6Þ

In the above action, g ¼ detðgμνÞ, is the determinant of the
spacetime metric, the LM is the matter fields’ Lagrangian
density, while λκλμν and τ

μν
λ are Lagrange multipliers, whose

variation enforces the flatness and torsionless conditions
Rκ

λμν ¼ 0 ¼ Tλ
μν. The above action, and the subsequent

results in this work, are expressed in units 8πG ¼ c ¼ 1.
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Variation of (6) with respect to the metric results in [33]

2ffiffiffiffiffiffi−gp ∇λð
ffiffiffiffiffiffi
−g

p
f0ðQÞPλ

μνÞ −
1

2
fðQÞgμν

þ f0ðQÞðPμρσQν
ρσ − 2QρσμPρσ

νÞ ¼ Tμν; ð7Þ
where the primes are used to express derivation with
respect to the argument, e.g., f0ðQÞ ¼ df

dQ. The Tμν ¼
− 2ffiffiffiffi−gp ∂ð ffiffiffiffi−gp

LMÞ
∂gμν is the energy-momentum tensor emerging

from the matter contribution in the action (6). Variation
with respect to the connection leads to the additional
equations of motion

∇μ∇νð
ffiffiffiffiffiffi
−g

p
f0ðQÞPμν

σÞ ¼ 0: ð8Þ
The set of equations (7) can assume the more convenient
expression [37]

f0ðQÞGμν þ
1

2
gμνðf0ðQÞQ − fðQÞÞ

þ 2f00ðQÞð∇λQÞPλ
μν ¼ Tμν; ð9Þ

where Gμν ¼ R̃μν − 1
2
gμνR̃ is the usual Einstein tensor, with

R̃μν and R̃ being the Riemannian Ricci tensor and scalar,
respectively (constructed with the Levi-Civita connection).
In this form the equations for the metric allow a direct
comparison with General Relativity since the (dynamical)
deviation from the latter can be perceived as the effect of an
effective energy momentum tensor

T μν ¼ −
1

f0ðQÞ
�
1

2
gμνðf0ðQÞQ − fðQÞÞ

þ 2f00ðQÞð∇λQÞPλ
μν

�
: ð10Þ

With the help of (10), Eq. (9) becomesGμν¼T μνþ 1
f0ðQÞTμν,

which reveals the role of T μν as that of an energy-
momentum tensor of geometric origin. From (10) it can
be directly seen that fðQÞ ∝ Q results in the same
equations as GR, since the assumption leads to T μν ¼ 0.
It is also obvious, that the caseQ ¼ const leads to solutions
of GR plus a cosmological constant Λ whose value is

Λ ¼ 1
2
ðQ − fðQÞ

f0ðQÞÞ.
As is well known [39], the flatness condition, Rκ

λμν ¼ 0,
implies that there exists a coordinate system in which the
connection becomes zero, Γλ

μν ¼ 0. This is usually referred
to as the coincident gauge. However, special care is needed
when the equations of motion are considered after a partial
gauge fixing at the level of the metric. For example, when
we take a FLRW spacetime or a static and spherically-
symmetric manifold, there is the possibility that the gauge
in which Γλ

μν ¼ 0 is realized is incompatible with the
coordinate system in which the metric is expressed and this

may lead to unnecessary restrictions in the equations of
motion [26,37].
Another interesting point, mentioned in [39], is that all

flat spaces are necessarily Riemannian; this however, in the
sense that, if a connection Γλ

μν is flat, leading to Rκ
λμν ¼ 0,

then there must exist some metric ḡμν for which the Γλ
μν are

its Christoffel symbols. Of course, in our case, the gμν we
consider is a completely disassociated object from this ḡμν
and independent from the connection, thus allowing us to
have Qλμν ≠ 0.
In symmetric-teleparallel gravity and its modifications,

for a matter content which is minimally coupled to the
metric, the conservation law Tμ

ν;μ ¼ 0 holds for the matter
energy-momentum tensor. The semicolon “;” here is used
to denote the covariant derivative with respect to the
Christoffel symbols. The Tμ

ν;μ ¼ 0 relation holds by virtue
of Eq. (8) for the connection, which in itself it can also be
perceived as a conservation law for the theory [40].

III. FLRW SPACETIME

We start by writing the FLRW line element, which in
spherical coordinates reads

ds2 ¼ −NðtÞ2dt2 þ aðtÞ2
�

dr2

1 − kr2
þ r2ðdθ2 þ sin2θdϕ2Þ

�
:

ð11Þ

In [38,41] the general form of all compatible connections
with (11), that lead to a zero curvature tensor, has been
derived. This has been done by enforcing on a generic
connection the six Killing symmetries of (11), plus the
demand to satisfy Rκ

λμν ¼ 0.
The six isometries of (11), associated with the isotropy

and the homogeneity of space, are given in the above
coordinates by

ζ1 ¼ sinϕ∂θ þ
cosϕ
tan θ

∂ϕ; ζ2 ¼ − cosϕ∂θ þ
sinϕ
tan θ

∂ϕ;

ζ3 ¼ −∂ϕ; ð12Þ
and

ξ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p
sin θ cosϕ∂r þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p

r
cos θ cosϕ∂θ

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p

r
sinϕ
sin θ

∂ϕ;

ξ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p
sin θ sinϕ∂r þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p

r
cos θ sinϕ∂θ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p

r
cosϕ
sin θ

∂ϕ;

ξ3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p
cos θ∂r −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p

r
sin θ∂ϕ: ð13Þ
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The Lie derivative of an affine connection with respect to a
vector X is calculated to be [42]

LXΓμ
κλ ¼ Xσ ∂Γ

μ
κλ

∂xσ
þ Γμ

σλ
∂Xσ

∂xκ
þ Γμ

κσ
∂Xσ

∂xλ

− Γσ
κλ
∂Xμ

∂xσ
þ ∂

2Xμ

∂xκ∂xλ
: ð14Þ

The requirement Rκ
λμν¼0, in conjunction with LXΓμ

κλ¼0,
where X is any of the ζi or ξi (i ¼ 1, 2, 3), lead to the
following possibilities:
(a) Spatially-flat case k ¼ 0. There are three admissible

connections. The common nonzero components that
all three have are the following:

Γr
θθ ¼ −r; Γr

ϕϕ ¼ −rsin2θ;

Γθ
rθ ¼ Γθ

θr ¼ Γϕ
rϕ ¼ Γϕ

ϕr ¼
1

r
;

Γθ
ϕϕ ¼ − sin θ cos θ; Γϕ

θϕ ¼ Γϕ
ϕθ ¼ cot θ: ð15Þ

However, they do differ in the way a free function of
time enters in some of their other components. The
first connection has only one additional nonzero
component

Γt
tt ¼ γðtÞ; ð16Þ

where γðtÞ is a function of the time variable t. The
second connection has the following extra nonzero
components

Γt
tt ¼

_γðtÞ
γðtÞþ γðtÞ;

Γr
tr ¼Γr

rt ¼Γθ
tθ ¼Γθ

θt ¼Γϕ
tϕ ¼Γϕ

ϕt ¼ γðtÞ; ð17Þ

where the dot denotes differentiation with respect to t.
Finally, the third connection has the additional com-
ponents

Γt
tt ¼ −

_γðtÞ
γðtÞ ; Γt

rr ¼ γðtÞ;

Γt
θθ ¼ γðtÞr2; Γt

ϕϕ ¼ γðtÞr2sin2θ: ð18Þ

The first connection, consisting of (15) and (16), when
γðtÞ ¼ 0, becomes itself zero when transforming it
from spherical to Cartesian coordinates. In other
words, it corresponds to the coincident gauge in the
latter coordinate system [37].

(ii) Case of nonzero spatial curvature k ≠ 0. Here, the
following connection is obtained (listing again only
the nonzero components):

Γt
tt¼−

kþ _γðtÞ
γðtÞ ; Γt

rr¼
γðtÞ

1−kr2
Γt

θθ ¼ γðtÞr2;

Γt
ϕϕ¼ γðtÞr2sin2ðθÞ;

Γr
tr¼Γr

rt¼Γθ
tθ ¼Γθ

θt¼Γϕ
tϕ¼Γϕ

ϕt¼−
k

γðtÞ ;

Γr
rr¼

kr
1−kr2

; Γr
θθ¼−rð1−kr2Þ;

Γr
ϕϕ¼−rsin2ðθÞð1−kr2Þ;

Γθ
rθ ¼Γθ

θr¼Γϕ
rϕ¼Γϕ

ϕr¼
1

r
; Γθ

ϕϕ¼−sinθcosθ;

Γϕ
θϕ¼Γϕ

ϕθ¼ cotθ: ð19Þ

As it is obvious, when k ¼ 0, the above connection
yields the third one from the previous set consisting of
(15) and (18). This connection has also been presented
previously in various works [37,38,41].1

IV. SPATIALLY-FLAT CASE

It is usual in the literature of fðQÞ theory to study the
cosmological aspects of a spatially-flat FLRW line element
in Cartesian coordinates ds2 ¼ −N2dt2 þ aðtÞ2ðdx2 þ
dy2 þ dz2Þ and in the coincident gauge Γμ

κλ ¼ 0. In the
spherical coordinates, where the line element is given
by (11), this corresponds to taking the first connection
with γ ¼ 0. Here, we are interested to see how all possible
connections may affect the dynamics and compare the
obtained solutions to what happens in General Relativity.

A. First connection

We start by considering the connection Γμ
κλ whose

nonzero components are given by (15) and (16). The
emerging dynamics is equivalent to that of the coincident
gauge, since the function γ does not appear in the resulting
expression for Q. The latter is obtained, from the definition
(4), to be

Q ¼ −
6_a2

N2a2
¼ −6H2: ð20Þ

In the above relation we have used H ¼ _a
Na for the Hubble

function as expressed in the time gauge where the lapse is
NðtÞ. When we are at the cosmic time gauge, N ¼ 1, of
course we obtain the well-known H ¼ _a

a. At this point
however, we shall avoid fixing the gauge, since we are
going to utilize this freedom later on, in order to simplify
the process of obtaining solutions from the field equations.

1For the convenience of the reader, and to avoid possible
confusion, we just mention that there is a minor typo in the
expression of the connection (19) as is given in [41]. The authors
there use χ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p
inside the connection, when actually, as

we see from (19), it should be χ2 ¼ 1 − kr2.
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Another point that needs to be made is, that in our
conventions, the nonmetricity scalar Q, as can be seen
by (20), is negative (or possibly zero). This is because we
defined it as Q ¼ QλμνPλμν. There are works in the
literature where Q is taken as Q ¼ −QλμνPλμν, which
yields a positive Q. This is similar to what happens in
General Relativity where there exist two equivalent defi-
nitions for the Riemann curvature differing only in an
overall sign. We mention this point so that it can be taken
into account when comparing with other works in the
literature using a different convention and thus avoid any
confusion.
The equations of motion for the connection, (8), are

identically satisfied, while those for the metric, Eqs. (9), are
independent of γðtÞ and they are equivalent to

3_a2

N2a2
f0ðQÞ þ 1

2
ðfðQÞ −Qf0ðQÞÞ ¼ ρ; ð21aÞ

−
2

N
d
dt

�
f0ðQÞ _a
Na

�
−

3_a2

N2a2
f0ðQÞ− 1

2
ðfðQÞ−Qf0ðQÞÞ ¼ p;

ð21bÞ

where we have used Tμ
ν ¼ diagð−ρ; p; p; pÞ for the

energy-momentum tensor. Note that in the above equation,
we have not substitutedQ from its expression given in (20).
For consistency, it is easy to see that upon setting
fðQÞ ¼ Q − 2Λ, and considering the cosmic time gauge
N ¼ 1, the above equations reduce to the well known
Friedmann equations (remember we work in units
8πG ¼ c ¼ 1)

_a2

a2
¼ 1

3
ðρþ ΛÞ ð22Þ

̈a
a
¼ Λ

3
−
1

2

�
pþ ρ

3

�
: ð23Þ

Thus, General Relativity is recovered for a linear fðQÞ
function, as it is expected. But, let us return to the generic
problem described by (21). As a first observation it is easy
to see that in the case of vacuum, p ¼ ρ ¼ 0, the two
equations combined result in the constraint

ðfðQÞ − 2Qf0ðQÞÞ _Qf00ðQÞ ¼ 0: ð24Þ

This is obtained if you solve (21a) algebraically with
respect to the lapse and substitute the latter in (21b).
From the above relation we distinguish three possibilities:
(i) First, we get a theory with fðQÞ ∝ ffiffiffiffiffiffiffi

−Q
p

, for which all
equations are identically satisfied. If we would write the
minisuperspace Lagrangian which produces (21) as Euler-
Lagrange equations, we would see that fðQÞ ∝ ffiffiffiffiffiffiffi

−Q
p

turns
the Lagrangian into a total derivative, i.e., the action is a

pure surface term and as a result the equations are trivially
satisfied; (ii) The nonmetricity scalar is constant,
Q ¼ const, which, as previously mentioned, is equivalent
to having General Relativity with a cosmological constant.
This leads to the known de Sitter solution, N ¼ 1,

a ¼ e�
ffiffi
Λ
3

p
t, with Λ acquiring the value Λ ¼ 1

2
ðQ − fðQÞ

f0ðQÞÞ;
(iii) Finally, there is the possibility that fðQÞ is a linear inQ
function which again yields the relativistic solutions (either
de Sitter or the flat space). So, we see that in the context of
the first connection there are no vacuum solutions outside
General Relativity, not unless we consider fðQÞ ∝ ffiffiffiffiffiffiffi

−Q
p

,
which however gives rises to infinitely many solutions thus
stripping the theory of any predictability.
The situation changes with the consideration of matter.

Let us consider a perfect fluid of the typical linear
barotropic equation p ¼ wρ. It has been shown that the
equations give rise to the same continuity equation as the
one emerging in metric theories of gravity [33]

_ρþ 3_a
a
ðρþ pÞ ¼ 0: ð25Þ

The above leads the well-known solution ρ ¼ ρ0a−3ð1þwÞ,
with ρ0 being the integration constant. By solving Eq. (21a)
with respect to the lapse, we obtain

NðtÞ ¼ � _a
a

�
6f0ðQÞ

2ρþQf0ðQÞ − fðQÞ
�1

2

: ð26Þ

With its substitution in the second equation, (21b), the latter
becomes

ð2ρ0 − a3ð1þwÞðfðQÞ − 2Qf0ðQÞÞÞ _Qf00ðQÞ ¼ 0: ð27Þ

Assuming that we want to encounter solutions that are
distinguishable from General Relativity, we need to con-
sider _Q ≠ 0 and f00ðQÞ ≠ 0 [later we are going to see what
happens if a posteriori we set fðQÞ ¼ Q in our result]. The
above relation can be simply solved algebraically with
respect to the scale factor (as long as w ≠ −1) leading to

aðtÞ ¼
�

2ρ0
fðQÞ − 2Qf0ðQÞ

� 1
3ð1þwÞ

: ð28Þ

Of course we consider that fðQÞ is not proportional toffiffiffiffiffiffiffi
−Q

p
, so the denominator cannot be zero. Up to now we

have not made use of the freedom of fixing the time gauge.
We may choose to set Q ¼ −t which will give us
straightforwardly NðtÞ and aðtÞ from (26) and (28) for
any given fðQÞ theory. We insert the minus sign for
simplicity, because, as we already mentioned, in our
definition Q is negative; thus, by setting Q ¼ −t the
solution will be valid in the positive half line t ∈ Rþ (if
we had set Q ¼ t we would need to consider t ∈ R−).

FLRW SOLUTIONS IN fðQÞ THEORY: THE EFFECT OF … PHYS. REV. D 106, 043509 (2022)

043509-5



We thus see that, in the chosen time gauge, we are able to
express the solution in terms of elementary functions,
assuming of course that fðQÞ is also such a function.
In order to check the validity of the result, by testing if it

can be connected to a relativistic solution, let us consider
setting fðQÞ ¼ Q into (26) and (28). At the same time let
us make the gauge fixing choice Q ¼ −t. With these
substitutions, Eqs. (26) and (28) result in

NðtÞ ¼ �
ffiffiffi
2

3

r
1

ð1þ wÞt32 ; ð29Þ

aðtÞ ¼
�
2ρ0
t

� 1
3ð1þwÞ

: ð30Þ

We may recognize this solution if we transform it into the
cosmic time gauge, whereNðτÞ ¼ 1. From now on we shall
use τ to denote the time in that gauge. We thus want to
make a mapping t → τ that yields NðτÞ ¼ 1. From the
transformation law of the lapse function, we have

NðtÞdt ¼ NðτÞdτ ⇒
Z

NðtÞdt ¼ τ þ C: ð31Þ

For the NðtÞ given by (29), we get

ffiffiffi
2

3

r
1

ð1þ wÞt32 dt ¼ dτ ⇒

ffiffiffi
2

3

r
1

ð1þ wÞ
Z

1

t
3
2

dt ¼ τ; ð32Þ

where, in order to simplify our considerations, we just
chose to use the positive branch of (29) and set the
integration constant, C, on the right hand side of the
expression (31) equal to zero. If we solve to find t as a
function of τ we obtain

t ¼ 8

3ρ0ð1þ wÞ2τ2 : ð33Þ

With the use of this mapping from t to τ we are led to
NðτÞ ¼ 1, while the scale factor becomes

aðτÞ ¼
�
3ρ0ð1þ wÞ2

4

� 1
3ð1þwÞ

τ
2

3ð1þwÞ: ð34Þ

This is none other than the well-known perfect fluid
solution of Einstein’s equations Gμν ¼ Tμν. Hence, we
see that (26) and (28) truly retrieve the General Relativistic
solution when fðQÞ ¼ Q.
We now gather the pair that forms the solution

NðtÞ ¼ �
�
−

2

3Q

�1
2 ð2Qf00ðQÞ þ f0ðQÞÞ _Q
ðwþ 1ÞðfðQÞ − 2Qf0ðQÞÞ ; ð35aÞ

aðtÞ ¼
�

2ρ0
fðQÞ − 2Qf0ðQÞ

� 1
3ð1þwÞ

; ð35bÞ

which we can use to write the general line element that
solves the equations, with a perfect fluid satisfying a linear
barotropic equation, for any fðQÞ theory with a non-
constant Q,

ds2¼ 2ð2Qf00ðQÞþf0ðQÞÞ2
3ðwþ1Þ2QðfðQÞ−2Qf0ðQÞÞ2dQ

2

þ
�

2ρ0
fðQÞ−2Qf0ðQÞ

� 2
3ð1þwÞðdr2þr2ðdθ2þsin2θdϕ2ÞÞ:

ð36Þ

The −Q assumes effectively the role of the time variable.
Note that the solution is of Lorentzian signature for Q < 0,
which is consistent with the convention we use.
Of course we need to note that although we arrive at a

specific metric that forms a solution, there exists a
degeneracy due to the fact that the function entering the
connection remains arbitrary. Thus, we are dealing in
reality with infinitely many solutions, one for each distinct
γðtÞ function.
We also need to mention that the above solution can also

be obtained through studying the inverse problem, i.e., the
derivation of the matter content with respect to the
gravitational functions. Equations (21) can obviously be
perceived as definitions for ρ and p. Then, we need only
observe that we can integrate (20) with respect to aðtÞ. This
supplements as with a as an integral N and Q,

aðtÞ ¼ a0 exp

�Z
N

ffiffiffiffiffiffiffi
−Q

p
dt

�
: ð37Þ

At this point, Eqs. (21) can be considered solved (having
given the necessary ρ and p) and the corresponding scale
factor is given just by (37). The −Q plays again the role of
the time variable, while N is arbitrary. The latter will obtain
a particular dependence if we decide to adopt some specific
equation of state. For example, if we set p ¼ wρ with ρ and
p given by (21) with the substitution of (37), then the
p ¼ wρ is algebraically solvable with respect toN, yielding
again solution (35). One needs not be restricted to setting
p ¼ wρ, different equations of state can also be assumed,
leading to distinct results. However, in this work, we just
restrict our attention to the linear equation of state.
At this point it is useful to consider some examples and

see how (36) can be used to derive conclusions about the
evolution implied by some specific fðQÞ functions.

1. The f ðQÞ=Q+αQμ example

From relations (35), or equivalently from (36), we may
write the lapse and the scale factor, for a function
fðQÞ ¼ Qþ αQμ, in the time gauge Q ¼ −t, as
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N ¼ �
ffiffiffi
2

3

r
t − αμð2μ − 1Þð−tÞμ

t3=2ðwþ 1Þðt − αð2μ − 1Þð−tÞμÞ ; ð38aÞ

a ¼
�

2ρ0
t − αð2μ − 1Þð−tÞμ

� 1
3ðwþ1Þ

: ð38bÞ

The corresponding energy density for the perfect fluid is
given by

ρ ¼ ρ0a−3ð1þwÞ ¼ 1

2
ðt − αð2μ − 1Þð−tÞμÞ: ð39Þ

For simplicity, we shall consider integer values for μ, so that
α is restricted to be real in order to have a real-valued
fðQÞ ¼ Qþ αQμ function when Q < 0. With this consid-
eration, we may observe from (38), that, if we want a
solution of Lorentzian signature, we need to set the
restriction t > 0. The expression t − αð2μ − 1Þð−tÞμ that
we see in the scale factor can be either positive or negative
with the additional condition that the constant ρ0 must
also be of the same sign. By (39) however, we see that
considering t − αð2μ − 1Þð−tÞμ < 0 leads to a negative
energy density ρ. Although there exist matter contents that
give rise to such a negative energy density [43], for our
example, let us consider the more usual case where ρ > 0.
Thus, in the end, we require

t > 0 and t − αð2μ − 1Þð−tÞμ > 0: ð40Þ

For some particular values of μ the behavior of the Hubble
function,H with respect to the scale factor can be extracted
directly by solving algebraically the temporal field equation
with respect to H. For example, for μ ¼ 2 the Eq. (21a)
leads to

54αH4 − 3H2 þ ρ0a−3ðwþ1Þ ¼ 0: ð41Þ
The latter is of course algebraically solvable with respect
to H.
In order to make use of (38) we shall consider cases where

such an easy algebraic derivation is not possible. To this end,
let us first consider theμ ¼ 5 case. For this choice, conditions
(40) become t > 0 and 9αt5 þ t > 0, respectively. As a first
step, let us take α > 0 to simply trivialize the second
inequality and have t running in the infinite half line. In
the time gauge that we are, where Q ¼ −t, and since (20)
holds, the Hubble function is just given byH ¼ ffiffi

t
6

p
. In order

to obtain its functional behavior in the cosmic time gauge,
where N ¼ 1, we need to first calculate τ as a function of t
from (31). If we choose theminus sign expression from (38a)
(this is done, as we are going to see immediately afterwards,
so as to map the function τ to the positive half line) and
consider that α is positive, then we obtain

τðtÞ ¼ 2

wþ 1

ffiffiffiffi
2

3t

r
þ 2

3
4α

1
8

3
1
4ðwþ 1Þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
þ 1

q �
arctan

�ð3 − 2
ffiffiffi
2

p Þ14ð1 − ffiffiffi
3

p
α

1
4tÞ

6
1
4α

1
8

ffiffi
t

p
�

þ arctanh

�
6
1
4ð3þ 2

ffiffiffi
2

p Þ14α1
8

ffiffi
t

pffiffiffi
3

p
α

1
4tþ 1

��
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
− 1

q �
arctan

�ð3þ 2
ffiffiffi
2

p Þ14ð1 − ffiffiffi
3

p
α

1
4tÞ

6
1
4α

1
8

ffiffi
t

p
�

þ arctanh

�
6
1
4ð3 − 2

ffiffiffi
2

p Þ14α1
8

ffiffi
t

pffiffiffi
3

p
α

1
4tþ 1

���
− C: ð42Þ

We already discussed that t ∈ ð0;þ∞Þ, we observe that at
the one border value we have limt→0þτðtÞ ¼ þ∞, while at
the other t → þ∞ the limit of τ equals some finite value.
The latter can be set to zero by choosing appropriately the
integration constant C. In this case, this particular choice is

C ¼ −ð4
ffiffi
2

p
3

þ 2Þ1=4πα1=8ð1þ wÞ−1. So now, the above
function, maps the t ∈ ð0;þ∞Þ range of the solution
(38) to the τ ∈ ð0;þ∞Þ in the cosmic time gauge. We
can now use the function (42) of the cosmic time, to make
parametric plots of HðtÞ ¼ ffiffi

t
6

p
as HðτÞ for various values

of the parameters. The process can be repeated for other
values of μ as well. In Fig. 1 we show the parametric
plot of HðtÞ with respect to τðtÞ for two different fðQÞ
theories with μ ¼ 5 and μ ¼ 6, for a radiation matter
content, w ¼ 1

3
, and in each graph we also provide the

corresponding Hubble function of General Relativity

(α ¼ 0) for comparison. Due to the complexity of the
expression, we refrain of giving the τðtÞ for μ ¼ 6 here
and we just restrict ourselves to presenting the resulting
parametric plot. We prefer to present the parametric plots
HðτÞ here instead of HðaÞ since τ can serve as an
“absolute” variable for comparison, in contrast to aðτÞ
whose evolution with respect to the time τ changes for
different values of the parameters. Note also, that in the
graph for μ ¼ 6we have used a negative α parameter, this is
so that the corresponding inequalities (40) are satisfied for
t ∈ ð0;þ∞Þ, as for our example of the μ ¼ 5 case. We will
return to this point a little later in our analysis.
A first observation with respect to Fig. 1 is that at early

times the evolution for different values of α is hardly
distinguishable, but as the universe expands a closer to zero
value of α tends to the General Relativity solution faster. As
far as the μ value is concerned, we may conclude that as it
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assumes highest values, it makes the departure from GR
more prominent; since, for the same time values, it tends to
give higher expansion rates.
In Fig. 2 we explore further the μ ¼ 5 case for different

values of w (radiation, dust and stiff matter) comparing
always next to the relevant results from GR. It seems that
the general functional behavior of the Hubble function is
similar in the two theories. However, the μ ¼ 5 case gives
higher expansions rates for the same values of the cosmic
time, τ, variable.
Another interesting observation that we can make is the

possibility of obtaining bouncing solutions for appropriate
values of the involved parameters. As we previously
mentioned, in Fig. 1, we used positive values of α for
μ ¼ 5, while negative for μ ¼ 6. The reason behind this
choice is the following: Let us turn to inequalities (40) and
consider that 2μ − 1 > 0. Then for all odd integers μ the
second inequality is satisfied for t ∈ ð0;þ∞Þ if α > 0 and
for all even integers μ if α < 0. What happens however if

we choose α in the opposite manner? The answer is that we
get a bounded t in a region 0 < t < 1

ð2μ−1Þα for μ even and

α > 0 and in 0 < t < −1
ð2μ−1Þα for μ odd and α < 0. It is for

these values of the parameters that a bouncing takes place;
albeit a singular one. To facilitate the construction of how
this happens, let us consider a simpler model, like
fðQÞ ¼ Qþ αQ2. The μ ¼ 2 for this theory is an odd
number, so we consider α > 0. The solution (38) becomes

N� ¼ �
ffiffiffi
2

3

r ffiffi
2
3

q
ð1 − 6αtÞð1 − 2αtÞ3=2

ðwþ 1Þðtð1 − 2αtÞÞ3=2ð3αt − 1Þ ð43aÞ

a ¼
�

2ρ0
t − 3αt2

� 1
3ðwþ1Þ

: ð43bÞ

As explained before, due to α being positive, and in order for
the solution to be Lorentzian, the time variable in this gauge

FIG. 2. The behavior of the Hubble function in fðQÞ ¼ Qþ αQ5 theory and in General Relativity for various values of the perfect
fluid equation of state constant w, with respect to the cosmic time τ. The plots are given for α ¼ 1.

FIG. 1. Plots of the Hubble function in fðQÞ ¼ Qþ αQμ theory for μ ¼ 5 and μ ¼ 6 and for different orders of magnitude of the
coupling constant α in the cosmic time, τ, gauge. In both graphs the corresponding GR solution is displayed with the dotted α ¼ 0 line.
For the equation of state parameter we have considered w ¼ 1

3
.
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is bound in the region 0 < t < 1
3α. Notice however that there

is a value in this region for which the lapse function, denoted
here by N�, becomes zero, i.e., t ¼ 1

6α. This is a possibly
problematic point of which we need to take care in the
construction of τðtÞ. What we will do, is, split the range of

the time variable in two parts, one considering t < 1
6α and

another t ≥ 1
6α, the t ¼ 1

6α, aswe are going to see is a point of a
(Riemannian) curvature singularity.
According to the previous consideration we define the

cosmic time as the following function

τðtÞ ¼
Z

N�dt ¼
8<
:

1
3ðwþ1Þ

	
2
ffiffi
6

pffiffi
t

p þ 6
ffiffiffi
2

p ffiffiffi
α

p
arctanhð ffiffiffiffiffiffiffi

3αt
p Þ



þ Cþ; if 0 < t < 1

6α

−1
3ðwþ1Þ

	
2
ffiffi
6

pffiffi
t

p þ 6
ffiffiffi
2

p ffiffiffi
α

p
arctanhð ffiffiffiffiffiffiffi

3αt
p Þ



þ C−; if 1

6α ≤ t < 1
3α ;

ð44Þ

where for the constants of integration we have C� ¼
∓ 2

ffiffi
α

p
wþ1

ð2þ ffiffiffi
2

p
arctanhð 1ffiffi

2
p ÞÞ. This last choice has been

made so that limt→ 1
6α

−τðtÞ ¼ limt→ 1
6α

þτðtÞ ¼ 0. So, we see

that the point t ¼ 1
6α corresponds to the origin of the cosmic

time τ ¼ 0. The limits at t → 0 and t → 1
3α respectively

yield τ → þ∞ and τ → −∞. Hence, relation (44) defines a
continuous one-to-one function that takes values in the
whole real line. We notice that in the origin of the cosmic
time τ ¼ 0 (or equivalently at t ¼ 1

6α) the scale factor given
by (43b), assumes a nonzero minimum value. However,
this is a (Riemannian) curvature singularity point as it can
be easily seen from the Riemannian Ricci scalar, R̃ ¼
tð3αtð3w−5Þ−3wþ1Þ

2ð1−6αtÞ corresponding to this solution. We need to

also mention that, the scale factor is a continuous function,
but its first derivative, i.e., dadτ ¼ 1

N�
da
dτ has a discontinuity at

t ¼ 1
6α. This can be also seen by the graph that we present in

Fig. 3. The same can also be checked to be true for the
second derivative as well.
Thus, for the range of parameters, where t is bounded,

we obtain bouncing, but singular solutions; at least from the
perspective of the Riemannian scalars, the nonmetricity
scalar Q ¼ −t is finite since t is bounded. The scale factor
is continuous with a minimum nonzero value, but a
discontinuity in its derivatives takes place at the origin.
This same behavior can be also derived for the cases μ ¼ 5

and μ ¼ 6 for the appropriate choices for the range of the
parameter α (negative and positive respectively). Thus, we
see a pattern forming in fðQÞ ¼ Qþ αQμ theory with a
perfect fluid, where for each value of μ there exist two types
of solutions depending on the sign of α: one with a scale
factor starting from zero and another where a nonzero value
and a bounce can be obtained, which however hides a
discontinuity in the derivatives of the metric. We need to
mention here that the possibility of bouncing solutions in
fðQÞ theory has also been investigated in [44].

2. The f ðQÞ=Qeq
Q example

Another interesting choice of fðQÞ function has been
proposed in [45] and is of the form fðQÞ ¼ Qe

q
Q, where of

course, for q ¼ 0, General Relativity is recovered. We work
in a similar fashion to the previous example. The sub-
stitution of the fðQÞ function under investigation in (35),
together with the adoption of the time gauge Q ¼ −t leads
to the expressions

N ¼ �
ffiffiffi
2

3

r
t2 þ qtþ 2q2

t
5
2ðwþ 1Þðtþ 2qÞ ð45aÞ

a ¼
�
2ρ0e

q
t

tþ 2q

� 1
3ð1þwÞ

: ð45bÞ

The corresponding energy density of the fluid in this case is
ρ ¼ 1

2
e−

q
tð2qþ tÞ. Following the same reasoning as before,

by requiring a positive energy density and a Lorentzian
solution, we are led to the restrictions ρ0 > 0,

t > 0 and tþ 2q > 0: ð46Þ

The latter, lead to two possibilities: one requires just q > 0
and t > 0, while the other is q < 0 and t > −2q. The lapse
does not become zero at any point in these ranges of values
and the procedure followed for both cases is the same.
For the cosmic time we use again definition (31), which

gives

FIG. 3. Parametric plot that depicts the bouncing solution of the
scale factor as a function of the cosmic time τ, as defined by (44).
The graph shows the existing discontinuity in the first derivative.
The values that have been used for the involved parameters are
ρ0 ¼ α ¼ 1, w ¼ 1

3
.
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τðtÞ ¼ 2

3ðwþ 1Þ

ffiffiffi
2

3

r �
q

t3=2
−
3 arctanð

ffiffiffiffi
t
2q

q
Þffiffiffiffiffiffi

2q
p

�
− C: ð47Þ

For the above expression we used the minus sign of (45a),
because, once more, it is this what leads to a τ ranging from
zero to plus infinity. The value of C is set so that the limit of
τðtÞ at t → þ∞, which is finite, becomes zero; thus, we

obtain C ¼ π
wþ1

ffiffiffiffi
1
3q

q
. For any of the two cases we may

consider (46), the other limit leads to τ → þ∞. For
example, in the first case, where q > 0 and t > 0, the
limit of t going to zero yields τ → þ∞, while in the second,
where q < 0 and t > −2q, the limit t → −2q yields again
τ → þ∞. As a result, in both cases, the function (47) takes
values in the positive half line. The Hubble function in this
gauge is of course the same as before, H ¼ ffiffi

t
6

p
. In Fig. 4

we give the parametric plot of the latter with respect to τðtÞ
for various positive and negative values of q.
We notice that the deviation from the GR solution, which

is depicted with the dotted line, becomes more important
for later times. We additionally observe some differences
between the q > 0 and q < 0 cases. For the negative values
of q we see in general higher expansion rates for the same
order of magnitude of the parameter. For example, if we
compare the graph for q ¼ 10 with that of q ¼ −10, the
latter leads to higher expansion rates for the same τ.
Another difference is that for q > 0, there appears to be
a crossing from expansion rates lower of those of GR, for
early times, to those higher of GR at later instants of τ, e.g.,
see how the line for q ¼ 1 crosses the q ¼ 0 line of General
Relativity at a specific instant of time. The latter does not
seem to happen for q < 0, at least not for the values that are
depicted in the graph. At this point we need to mention a
limitation regarding these graphs. Due to the fact that the
τ → 0 corresponds to t → þ∞, we cannot present plots that
go arbitrary close to τ ¼ 0, because that would require

giving values to t that go to infinity, which is practically
impossible.

B. Second connection

Here, we assume that the nonzero components of the
connection Γμ

κλ are given by (15) and (17). From the latter
set we see that γðtÞ cannot be zero. Unlike the previous
case, this function plays now a dynamical role. The
nonmetricity scalar reads

Q ¼ −
6_a2

N2a2
þ 3γ

N2

�
3_a
a

−
_N
N

�
þ 3_γ

N2
ð48Þ

and it clearly involves γ in its expression. The field
equations for the metric result in

3_a2f0ðQÞ
a2N2

þ 1

2
ðfðQÞ −Qf0ðQÞÞ þ 3γ _Qf00ðQÞ

2N2
¼ ρ; ð49aÞ

−
2

N
d
dt

�
f0ðQÞ _a
Na

�
−

3_a2

N2a2
f0ðQÞ − 1

2
ðfðQÞ −Qf0ðQÞÞ

þ 3γ _Qf00ðQÞ
2N2

¼ p; ð49bÞ

while the one for the connection yields

_Q2f000ðQÞ þ
�̈
Qþ _Q

�
3_a
a

−
_N
N

��
f00ðQÞ ¼ 0: ð50Þ

In the previous case, we saw that the vacuum solutions
become those of General Relativity with a cosmological
constant and that the type of fðQÞ theory only affected the
value of the effective cosmological constant. However,
here, due to the dynamical involvement of the connection,
we will see that different solutions than the de Sitter space

FIG. 4. Parametric plot of the Hubble function with respect to the cosmic time for an equation of state parameter w ¼ 1
3
. The first graph

includes positive values of q and the second negative. For comparison, the corresponding GR solution (q ¼ 0) is given by the
dotted line.

N. DIMAKIS et al. PHYS. REV. D 106, 043509 (2022)

043509-10



can emerge in vacuum and that the choice of fðQÞ theory
makes a difference in the resulting solution space.
So, lets consider the vacuum case p ¼ ρ ¼ 0 and as a

base theory let us choose the function fðQÞ ¼ Qμ, where in
the limit μ → 1 becomes General relativity. Before pro-
ceeding, let us note that for a theory of the form
fðQÞ ¼ Qμ, and as long as μ > 2, then, any combination
of functions a, N and γ that results in Q ¼ 0 in (48), is
trivially a solution of the equations. Due to the infinity of
metrics that satisfy such a relation, we may again consider
that this realization does not allow for making specific
predictions about the results of the theory, thus, we shall
refrain from considering this type of solutions. In fact, the
process that we later follow removes completely the
possibility of arriving at solutions where Q is a constant
altogether.
The constraint equation (49a) can be solved algebraically

with respect to N. Once more we keep Q as it is and we do
not substitute it through expression (48). This is because we
are again going to utilize the gauge-fixing choice to makeQ
a particular function of time, which significantly simplifies
the resulting equations. Note that, from (48), Q now is not
necessarily negative. So, we will just set it this time to be
QðtÞ ¼ t and upon the end result we will later see for what
domain of definition and for which range of the parameters
we may have a solution of Lorentzian signature.
By solving (49a) with respect to N and substituting it

inside the equation Q ¼ t, where Q is given by (48), we
obtain a differential equation that involves the second
derivative of the scale factor

̈a ¼ 1

4

�ðμ− 1Þa2ðt_γ − 2ðμ − 1ÞγÞ
t2 _a

þ 2_að2t_γ þ 3ð1− 2μÞγÞ
tγ

þ 8ð1− 2μÞ _a3
ðμ − 1Þa2γ þ 16_a2

a
þ 6ðμ− 1Þaγ

t

�
: ð51Þ

We use this equation to eliminate ̈a from (49b), in which we
also have substituted the expression for N and set the
gauge-fixing choiceQ ¼ t. The result is a simple first-order
differential equation for γ

2ð2μ − 1Þt _a2 þ ðμ − 1Þa2ð2ðμ − 1Þγ − t_γÞ ¼ 0: ð52Þ

This can be directly integrated to yield

γðtÞ ¼ 2ð2μ − 1Þt2ðμ−1Þ
ðμ − 1Þ

Z
t−2ðμ−1Þ

_a2

a2
dt: ð53Þ

Substitution of the above expression for γ into (51) yields
an integrodifferential equation for the scale factor aðtÞ.
However, if we isolate the integral term on one side and
take the derivative of that expression, we obtain the
following third-order equation

a
…¼−

8_a3

a2
þ2ððμ−2Þtäþðμ−1Þ _aÞ

t2
þ _að9tä−2ðμ−5Þ _aÞ

ta
:

ð54Þ

The problem of solving the previous equation can be
addressed with the help of the theory of symmetries of
differential equations. We avoid the technical details here
and we refer to well-known textbooks [46,47] for more
information. We just mention that (54) admits a three-
dimensional algebra of Lie-point symmetry generators, two
of which form an Abelian subalgebra. This implies that
these can be used to generate a transformation which will
both reduce the order of the equation and also make it
autonomous. In our case this transformation is

a ¼ e
1
6
ð1−2μÞωðsÞþs; t ¼ eωðsÞ; ð55Þ

where ωðsÞ and s are the new dependent and independent
variables that are going to substitute aðtÞ and t. Under the
change of variables implied by (55), Eq. (54) becomes

3

�
d2ω
ds2

�
2

þ dω
ds

�
6
d2ω
ds2

−
d3ω
ds3

�
¼ 0: ð56Þ

As we see, the new equation truly is autonomous, since
now there is no explicit dependence in s, and it is also
effectively a second order differential equation because no
ωðsÞ term appears. The general solution of (56) is

ωðsÞ ¼ λ3 þ λ2 ln

�
1 −

ffiffiffiffiffiffiffiffiffi
AðsÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

AðsÞ2 − 3AðsÞ þ 3
p

1þ ffiffiffiffiffiffiffiffiffi
AðsÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

AðsÞ2 − 3AðsÞ þ 3
p �

;

where AðsÞ ¼ 1 − λ1es ð57Þ
and λi, i ¼ 1, 2, 3, are constants of integration.
Of course, at this point, we need use expression (57) in

(55) to obtain the resulting aðtÞ, which, together with the
γðtÞ of (53), are to be substituted in the original equations to
see under which conditions they form a solution. This is
necessary since we did not solve the actual equations, but
another of higher order, so we expect to have in our
expressions at least one redundant constant of integration.
Through this process, we conclude that the constant of
integration that results from the calculation of the integral
in (53) needs to be set equal to zero. The desired triplet that
we finally obtain is

NðtÞ ¼ �
ffiffi
2
3

q ffiffiffi
κ

p
λt

λ−3
2ffiffiffiffiffiffi

μ−1
μ

q
ðκ − tλÞ

; ð58aÞ

aðtÞ ¼ a0t
1
6
ðλ−2μþ1Þ

ðκ − tλÞ13 ; ð58bÞ

γðtÞ ¼ κðλ − 2μþ 1Þ2 − ðλþ 2μ − 1Þ2tλ
18ðμ − 1Þtðtλ − κÞ ; ð58cÞ
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where, in order to simplify the expressions,wehavemade the
reparametrizations of the original constants of integration as

λ2 ¼ 1
λ and λ3 ¼ lnð−κÞ

λ . The constant λ1, together with the rest
of the constants that appearmultiplicatively in the expression
for aðtÞ can be normalized to any value through a constant
scaling of the radial variable r in the line element.We choose
to depict this arbitrariness with the constant a0 appearing in
(58b). As it is evident from (58), the case μ ¼ 1 is excluded
from this solution. This has to do with our gauge-fixing
choice of Q ¼ t, which straightforwardly excludes the GR
vacuum solution, where Q ¼ constant.
It can be directly checked, that relations (58), not only

solve the set of equations (49) and (50) for fðQÞ ¼ Qμ, but
also, upon substitution in (48), yield Q ¼ t, which verifies
the consistency of the result. Thus, we obtain the general
solution for fðQÞ ¼ Qμ theory in the time gauge where
Q ¼ t is the time parameter. Of course, going to the cosmic
time gauge, where NðτÞ ¼ 1 will not be possible for every
value of the parameters, since the inverse of the trans-
formation in general will not be expressed in terms of
elementary functions. For example, by using (58a) we see
that, for λ ≠ 1 and 3λ−1

2λ ∉ Z− ∪ f0g,
Z

NðtÞdt ¼ τ þ C

⇒ �
2

ffiffi
2
3

q
λt

λ−1
2ffiffiffi

κ
p ðλ − 1Þ

ffiffiffiffiffiffi
μ−1
μ

q 2F1

�
1;
λ − 1

2λ
;
3λ − 1

2λ
;
tλ

κ

�
¼ τ þ C;

ð59Þ

where 2F1 is the Gauss hypergeometric function. The
values for which the integral of (58a) can be calculated
in terms of elementary functions are specified by
Chebyshev’s theorem [48], which is used in cosmology
to distinguish analytic solutions of the Friedmann equations
[49,50]. In order to comply with the requirements of the

theorem, λ needs to be just any rational number, i.e., λ ∈ Q.
Of course this still does not guarantee that the expression
will be easily inverted to obtain tðτÞ. Acquiring the inverse,
tðτÞ, is achievable for very specific values of the parameter
λ. We can use however the τðtÞ, as previously, to make
parametric plots of the Hubble function HðtÞ and get a
glimpse of the time evolution in the cosmic time gauge for
any λ.
For the derived solution (58), the Hubble function is (in

the t time variable)

HðtÞ¼ 1

Na
da
dt

¼ 1

2λ

ffiffiffiffiffiffiffiffiffiffi
μ−1

6κμ

s
½κð2μ−λ−1Þþð1−λ−2μÞtλ�t1−λ2 : ð60Þ

In Fig. 5 we present two plots of HðtÞ with respect to τðtÞ
for two different sets of values of κ, λ and for various values
of μ. Interestingly enough, the functional behavior for the
integration constants, beside μ, can be quite different.
The first graph depicts the case κ ¼ 1, λ ¼ 2, where for
the calculation of τ we used the positive sign branch of
(58a). The latter is a real function that takes values in the
range τ ∈ ð0;þ∞Þ as long as t ∈ ð0; 1Þ (the constant C is
set to zero). Note, that having 0 < t < 1, with κ ¼ 1 and
λ ¼ 2, does not really cause a problem in (58b), in the sense
of the latter taking imaginary values, because there is the
arbitrary constant a0 in the solution, inside which, we can
“absorb” any complex constant number. As we see in the
first plot of Fig. 5 this solution yields a universe which
initially expands, with a continuously diminishing expan-
sion rate. Then, after a finite time, a contraction phase takes
place. On the other hand, we obtain a completely different
behavior by setting λ ¼ −1. In fact, for this value we can
invert the expression for the cosmic time. For κ ¼ 1,
λ ¼ −1, the integral yielding the cosmic time is simply

, ,

66

FIG. 5. Graphs of the Hubble function with respect to the cosmic time for two different pairs of κ, λ and for various different values of
the power μ of fðQÞ ¼ Qμ.
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τðtÞ ¼
Z

NðtÞdt ¼ �
ffiffi
2
3

q
logðt−1t Þffiffiffiffiffiffi
μ−1
μ

q − C: ð61Þ

We can eliminate the constant of integration C and invert
the above relation to get directly the function HðτÞ, which
is [considering the positive branch of (61)]

HðτÞ ¼
�
μ − 1

6μ

�1
2 ðμ − 1Þe

ffiffi
3
2

p ffiffiffiffiffi
μ−1
μ

p
τ þ 1

e
ffiffi
3
2

p ffiffiffiffiffi
μ−1
μ

p
τ − 1

: ð62Þ

The plot of this function is seen in the second part of Fig. 5
and depicts an expanding universe with an ever slower
expansion rate as time progresses. Unlike the previous case
however, it never results in a contracting phase.

C. Third connection

Here, we make use of the connection with nonzero
components given by (15) together with (18). This con-
nection is also involved in the dynamics of the system. The
nonmetricity scalar assumes the form

Q ¼ −
6_a2

N2a2
þ 3γ

a2

�
_a
a
þ

_N
N

�
þ 3_γ

a2
: ð63Þ

The equations of motion for the metric are

3_a2f0ðQÞ
a2N2

þ 1

2
ðfðQÞ −Qf0ðQÞÞ − 3γ _Qf00ðQÞ

2a2
¼ ρ; ð64aÞ

−
2

N
d
dt

�
f0ðQÞ _a
Na

�
−

3_a2

N2a2
f0ðQÞ − 1

2
ðfðQÞ −Qf0ðQÞÞ

þ γ _Qf00ðQÞ
2a2

¼ p; ð64bÞ

and for the connection

_Q2f000ðQÞ þ
�̈
Qþ _Q

�
_a
a
þ

_N
N
þ 2_γ

γ

��
f00ðQÞ ¼ 0: ð65Þ

Once more, we shall consider the vacuum case p ¼ ρ ¼ 0
in the context of a fðQÞ ¼ Qμ theory. We employ a similar
strategy as before, but with a few modifications. First, we
solve the constraint equation (64a) for the lapse NðtÞ. We
substitute this result into Eq. (64b) and make the gauge-
fixing choiceQ ¼ t, the result being the following equation
which is algebraic in aðtÞ,

ð2μ − 1Þt2a2 þ 3μðt_γ þ ð2μ − 3ÞγÞ ¼ 0: ð66Þ

Assuming that μ ≠ 1
2
we may solve for a and substitute this

result, together with all the previous assertions, in the

only remaining Eq. (65). Subsequently, we arrive at the
following third-order equation for γ

2t3γðt_γ−2γÞ γ…−t4γγ̈2þ4t2ðt2 _γ2þðμ−4Þtγ _γ
þð5−2μÞγ2Þγ̈þ8ðμ−2Þt3 _γ3þ4ððμ−15Þμþ23Þt2γ _γ2
−8ðμð2μ−17Þþ22Þtγ2 _γþ4ð2μ−9Þð2μ−3Þγ3¼0: ð67Þ

The above equation is rather tedious, however there do
exists some symmetries that allow for its simplification. If
we perform the transformation

γ ¼ exp

�Z
ð1þ 2sÞωðsÞds

�
; t ¼ exp

�Z
sωðsÞds

�
;

ð68Þ

with s, ωðsÞ the new independent and dependent variables
respectively, then the equation is reduced to the first-order
Abel equation

2s
dω
ds

þ s2ðð4μ2 − 1Þs2 þ 4ð3μ − 1Þsþ 5Þω3

− 4sðμsþ 2Þω2 þ 5ω ¼ 0: ð69Þ

Unfortunately, we did not manage to associate the later to
some known integrable class. However, we do have to
report an exact particular solution of the original equa-
tion (67), which is in the form of a power law with respect
to t. The solving triplet is

NðtÞ ¼ �
�

3μð4μ − 3Þ
ð2μþ 1Þð1 − μÞ

�1
2 2μþ 1

5t3=2
; ð70aÞ

aðtÞ ¼ σ

�
6μð3 − 4μÞ
5ð2μ − 1Þ

�1
2

t−
1
10
ð2μþ1Þ; ð70bÞ

γðtÞ ¼ σ2t
9−2μ
5 ; ð70cÞ

from which it is easily seen that it is compatible with our
gauge-fixing choice Q ¼ t. However, there are certain
limits constraining the parameters in order to have a
Lorentzian signature of the metric. One choice is that both
the expressions inside the square roots appearing inN and a
have to be positive; this leads to − 1

2
< μ < 0. The other

possibility is to have only the expression appearing inside
the square root in N positive and the one in a being
negative, then the imaginary unit appearing in aðtÞ can be
absorbed inside σ, by considering the latter to be a purely
imaginary number, this leads to the restriction 3

4
< μ < 1

with σ ∈ iR − f0g. These restrictions are however with the
condition that t is positive in (70). Since, it is quite
convenient with working with a positive t, the easiest
way to take a Lorentzian solution for the other values of the
parameter μ is to go back and instead of fixing the gauge to
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Q ¼ t, fix it as Q ¼ −t (or equivalently making a change
t → −t in (70), with an appropriate reparametrization of σ).
The end result can be written as

NðtÞ ¼ �
�

3μð3 − 4μÞ
ð2μþ 1Þð1 − μÞ

�1
2 2μþ 1

5t3=2
; ð71aÞ

aðtÞ ¼ σ

�
6μð4μ − 3Þ
5ð2μ − 1Þ

�1
2

t−
1
10
ð2μþ1Þ; ð71bÞ

γðtÞ ¼ σ2t
9−2μ
5 ; ð71cÞ

and it now yields Q ¼ −t. For a positive t, there are again
two possibilities for a Lorentzian metric. The first is, like
before, to have both expressions under the square roots
being positive. This leads to 0<μ< 1

2
or μ > 1. The second

option yields μ < − 1
2
or 1

2
< μ < 3

4
with the necessary

supplementary condition σ ∈ iR − f0g.
Both of the above solutions can be easily transformed

into the cosmic time gauge. We just need to use (31) to
derive the tðτÞ relation, then the scalars aðtÞ and QðtÞ can
be easily calculated by a straightforward substitution. For
the γðtÞ however, we need to remind ourselves that this is
not a scalar, so we cannot simply substitute in it the tðτÞ. Its
transformation law can be derived from the general trans-
formation law of a connection

Γ̄λ
μν ¼

∂x̃λ

∂xρ
∂xη

∂x̃μ
∂xσ

∂x̃ν
Γρ

ησ −
∂xρ

∂x̃ν
∂xσ

∂x̃μ
∂
2x̃λ

∂xρ∂xσ
; ð72Þ

which in our case results in γðτÞ ¼ γðtðτÞÞðdtðτÞdτ Þ−1. With
this in consideration, after making the appropriate calcu-
lations, both of the previous sets can be mapped to the
following expressions for a and γ in the gauge NðτÞ ¼ 1

aðτÞ ¼ σ̄

�
5ðμ − 1Þð4μ − 3Þ

ð2μ − 1Þð2μþ 1Þð3 − 4μÞ
�1

2

τ
1
5
ð2μþ1Þ; ð73aÞ

γðτÞ ¼ σ̄τ
1
5
ð4μ−3Þ; ð73bÞ

where σ̄ is a new constant that we introduce to simplify the
product of the multiplying constants that appears in the
expression of γðτÞ after the transformation. The σ̄ can be
either real or imaginary, depending on the sign of the
expression inside the square root of (73a), so that the a2

remains positive and the signature in the metric is
Lorentzian. The ensuing nonmetricity scalar, QðτÞ, is
given by

QðτÞ ¼ 12μð2μþ 1Þð3 − 4μÞ
25ðμ − 1Þτ2 : ð74Þ

It is straightforward to verify that (73) and (74) solve the
equations for fðQÞ ¼ Qμ in the cosmic time gauge N ¼ 1.

The fact that we get a power-law solution for the scale
factor in this time gauge is reminiscent of the solution
that one gets in General Relativity in the presence of a
perfect fluid, which is characterized by a linear barotropic
equation. Truly, if we calculate the effective energy-
momentum tensor, as defined by (10), and consider
T μ

ν¼diagð−ρeff ;peff ;peff ;peffÞ, then we see that for (73)
and (74) we get

peff ¼
ð2μþ 1Þð7 − 6μÞ

25τ2
; ρeff ¼

3ð2μþ 1Þ2
25τ2

ð75Þ

with an effective equation of state parameter

weff ¼
peff

ρeff
¼ 7 − 6μ

3ð2μþ 1Þ : ð76Þ

The phantom divide line weff ¼ −1 is set at μ → �∞.
There is also a critical value μ ¼ − 1

2
, which is excluded by

the solution, since it appears also in the denominator of the
scale factor (73a). We notice that theories with μ > − 1

2
have

weff > −1, while those of μ < − 1
2
correspond to weff < −1.

We see how, in this case, the nontrivial connection affects
the dynamics. We obtain a vacuum solution, which has the
same effect as that of a perfect fluid energy momentum
tensor in General Relativity. Only that in this case the
effective fluid contribution is related to the geometry and
the nonzero connection. Of course, since it is a flat
connection, a coordinate system can be found in which
Γλ

μν becomes zero. However, such a transformation would
also change the FLRW metric introducing nondiagonal
terms. Thus, we see in practice that assuming Γλ

μν ¼ 0 in the
same coordinate system where the homogeneity and
isotropy of the FLRW metric is obvious, is not a necessity.
There exist admissible nonzero connections in the coor-
dinate system where the metric is given by (11), which lead
to distinct solutions and they affect the dynamics.

V. SPATIALLY CURVED MODELS

For a nonzero spatial curvature k, the connection (19) is
to be used. Now, the nonmetricity scalar acquires the
form

Q ¼ −
6_a2

N2a2
þ 3γ

a2

�
_a
a
þ

_N
N

�
þ 3_γ

a2

þ k

�
6

a2
þ 3

γN2

�
_N
N
þ _γ

γ
−
3_a
a

��
: ð77Þ

We see that upon setting k ¼ 0, it reduces to that corre-
sponding to the third connection of the k ¼ 0 case, as
obtained in (63). The equations of motion for the metric
yield
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3_a2f0ðQÞ
a2N2

þ 1

2
ðfðQÞ −Qf0ðQÞÞ − 3γ _Qf00ðQÞ

2a2

þ 3k

�
f0ðQÞ
a2

−
_Qf00ðQÞ
2γN2

�
¼ ρ; ð78aÞ

−
2

N
d
dt

�
f0ðQÞ _a
Na

�
−

3_a2

N2a2
f0ðQÞ − 1

2
ðfðQÞ −Qf0ðQÞÞ

þ γ _Qf00ðQÞ
2a2

− k

�
f0ðQÞ
a2

þ 3 _Qf00ðQÞ
2γN2

�
¼ p; ð78bÞ

and the field equation for the connection becomes

_Q2f000ðQÞ
�
1þ ka2

N2γ2

�
þ
�
Q̈

�
1þ ka2

N2γ2

�

þ _Q
��

1þ 3ka2

N2γ2

�
_a
a
þ
�
1−

ka2

N2γ2

�
_N
N
þ2_γ

γ

��
f00ðQÞ¼ 0:

ð79Þ

The situation with these equations is quite more compli-
cated and the same trick we performed previously by
adopting a gauge fixing that utilized Q (or −Q) as the time
parameter is not so helpful. However, we are able to
disclose an exact solution in the case of a vacuum
ρ ¼ p ¼ 0, fðQÞ ¼ Qμ, theory, to which we arrive in
the manner that we subsequently describe. Of course, as
previously stated, one can disclose infinitely many sol-
utions by enforcing Q ¼ 0 and μ > 2, but as we explained,
we are not interested in obtaining this type of solutions.
In order to proceed, it is first useful to remember that

most cosmological solutions that we know from General
Relativity, when k ≠ 0, are expressible in terms of elemen-
tary functions in the conformal time gauge, i.e., when
N ¼ a. So, by making now this gauge fixing choice
and additionally enforcing the restrictive condition,
that the function γ is equal to a particular constant,
namely γ ¼ ∓ ffiffiffiffiffiffi

−k
p

, then we observe that the constraint
equation (78a) with the substitution ofQ from (77) is easily
integrated to give

aðtÞ ¼ a0e
�
ffiffiffi
−k

p
t

2μ−1; ð80Þ

where a0 is a constant which we can normalize to unity
through a combined scaling transformation in t, r and k.
The conditions we have set, together with (80), satisfy all
Eqs. (78) and (79). Of course the solution is real only for a
negative spatial curvature k ¼ −1. In solution (80) we
recognize a Milne-like universe. It can be easily seen that
aðτÞ ∝ τ in the gauge NðτÞ ¼ 1. However, the difference is
in the parameter μ of the theory. The solution corresponds
to a Riemann flat universe, when μ ¼ 1, which is the Milne
case. The nonmetricity scalar of the solution is given by

Q ¼ 24kμ2

ð1 − 2μÞ2a20
e∓

2
ffiffiffi
−k

p
t

2μ−1 ; ð81Þ

and it does not become a constant even at the limit where
the solution of General Relativity is recovered (μ ¼ 1). We
need to note however, that the γ ¼ ∓ ffiffiffiffiffiffi

−k
p

condition for the
function appearing in the connection is not necessary when
μ ¼ 1. In the latter case, any arbitrary function γðtÞ serves,
together with N ¼ a ¼ exp ð� ffiffiffiffiffiffi

−k
p

tÞ. This arbitrariness is
also carried in the value of Q; for, μ ¼ 1, the latter reads

Q¼3e∓2
ffiffiffiffi
−k

p
t

a20γ
½ðkþγ2Þ_γ�2

ffiffiffiffiffiffi
−k

p
γ3þ4kγ2�2ð−kÞ32γ�; ð82Þ

in which γ remains a free function. Substitution of
γ ¼ ∓ ffiffiffiffiffiffi

−k
p

, results of course in the expression (81) with
μ ¼ 1. However, as we stated, these values of γ become
necessary for the satisfaction of the field equations only
when μ ≠ 1.

VI. CONCLUSION

We studied the effect that different connections have in
the dynamics of FLRW cosmology in the context of fðQÞ
theory. The spatially-flat case admits three different fam-
ilies of connections. The first, corresponds to the most
studied case in the literature, of the coincident gauge. We
managed, by usingQ as the time variable of the problem, to
express the general solution of a perfect fluid for an
arbitrary fðQÞ theory. The final solution involves an
arbitrary function in the connection, which does not affect
the gravitational equations. We need to mention however,
that it is not clear if this degeneracy can affect the motion of
a particle in such a spacetime. In Riemannian geometry the
autoparallel and the extremal-length curves coincide, but in
theories with nonmetricity this is not the case [51,52]. If we
are to assume that the geodesic equations are still given
with respect to the metric compatible Levi-Civita connec-
tion (see the Appendix of [53] for the interpretation of
nonmetricity in these equations), then the arbitrariness of
the function γðtÞ should not affect them.
The other two connections of the spatially-flatmodel offer

quite more complicated dynamics. The existence and the
derivation of solutions for these connections is rarely
encountered in the literature. This is because most authors
assume directly the coincident gauge in a FLRWuniverse in
Cartesian coordinates, which is dynamically equivalent to
the first connection we studied. However, we do see how
distinct it is to assume these two connections in place of the
first. Their equation of motion is not satisfied identically and
both of them are also involved in the definition of Q. By
using the same trick as in the first connection, namely
choosing the nonmetricity as the time variable, we managed
to extract new solutions. For the second connection, we
derived the general vacuum solution for a power-law fðQÞ
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theory, while for the thirdwewere restricted to just obtaining
a partial exact solution. However, we did manage to reduce
the problem up to the integration of an Abel equation.
We need to stress that the choice of the nonmetricity

scalar Q as the time variable of the system, apart from
simplifying the equations, served to also guarantee that we
would acquire solutions that go outside the scope of
General Relativity. This, because the condition Q≠const
automatically excludes the possibility of the theory becom-
ing dynamically equivalent to General Relativity with a
cosmological constant. This is what we exactly wanted to
study with this work; investigate the possibilities of going
beyond General Relativistic solutions. From the particular
examples, which we studied in the flat case, it is clear that
the theory has rich dynamics and can give various interest-
ing behaviors; from bouncing solutions to inflationary

expansions, and even reproducing power-law GR-type of
perfect fluid solutions in the absence of matter.
The spatially-nonflat metric, leads to severely more

complicated equations. Surprisingly enough, in the pres-
ence of nonmetricity, and for a power-law fðQÞ function,
we derived a special solution which is reminiscent of the
Milne solution in GR. For the future we plan to expand this
study by including various types of matter for all possible
cases of the admissible connections.

ACKNOWLEDGMENTS

N. D. acknowledges the support of the Fundamental
Research Funds for the Central Universities, Sichuan
University Full-time Postdoctoral Research and
Development Fund No. 2021SCU12117

[1] T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis, Phys.
Rep. 513, 1 (2012).

[2] M. Tegmark et al., Astrophys. J. 606, 702 (2004).
[3] M. Kowalski et al., Astrophys. J. 686, 749 (2008).
[4] E. Komatsu et al., Astrophys. J. Suppl. Ser. 180, 330

(2009).
[5] L. Heisenberg, Phys. Rep. 796, 1 (2019).
[6] S. Capozziello, Int. J. Mod. Phys. D 11, 483 (2002).
[7] H. A. Buchdahl, Mon. Not. R. Astron. Soc. 150, 1 (1970).
[8] J. Beltran Jimenez, L. Heisenberg, and T. S. Koivisto,

Universe 5, 173 (2019).
[9] R. Weitzenböck, Invarianten Theorie (Nordhoff, Groningen,

1923).
[10] K. Hayashi and T. Shirafuji, Phys. Rev. D 19, 3524 (1979);

24, 3312(A) (1982).
[11] J. W. Maluf, J. Math. Phys. (N.Y.) 35, 335 (1994).
[12] J. M. Nester and H.-J. Yo, Chin. J. Phys. 37, 113

(1999).
[13] S. Bahamonde, K. F. Dialektopoulos, C. Escamilla-Rivera,

G. Farrugia, V. Gakis, M. Hendry, M. Hohmann, J. L. Said,
J. Mifsud, and E. Di Valentino, arXiv:2106.13793.

[14] J. B. Jimenez, L. Heisenberg, and T. Koivisto, Phys. Rev. D
98, 044048 (2018).
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