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We investigate the flow around a black hole moving through a cloud of self-interacting scalar dark
matter. We focus on the large scalar mass limit, with quartic self-interactions, and on the subsonic regime.
We show how the scalar field behaves as a perfect gas of adiabatic index γad ¼ 2 at large radii while the
accretion rate is governed by the relativistic regime close to the Schwarzschild radius. We obtain analytical
results thanks to large-radius expansions, which are also related to the small-scale relativistic accretion rate.
We find that the accretion rate is greater than for collisionless particles, by a factor c=cs ≫ 1, but smaller
than for a perfect gas, by a factor cs=c ≪ 1, where cs is the speed of sound. The dynamical friction is
smaller than for a perfect gas, by the same factor cs=c ≪ 1, and also smaller than Chandrasekhar’s result for
collisionless particles, by a factor cs=ðcCÞ, where C is the Coulomb logarithm. It is also smaller than for
fuzzy dark matter, by a factor v0=c ≪ 1.
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I. INTRODUCTION

The standard model of cosmology,ΛCDM, has two main
components whose nature is still undetermined today: dark
energy—Λ—and cold dark matter—CDM. Dark matter is
commonly described by a nonrelativistic perfect fluid
present both on galactic and cosmological scales. It is
necessary for the formation and evolution of structures as
observed today, from galactic to cosmological scales. The
most recent observations predict an energy fraction of
≈0.25 for dark matter [1,2], about five times more than for
ordinary matter. Weakly interacting massive particles
(WIMPs), which could originate from the electroweak
sector of physics beyond the standard model, are still
one of the strongest contenders despite the absence of
relevant signal from particle physics and direct/indirect
detection experiments.
Notwithstanding its great success on large astrophysical

and cosmological scales, the nature of dark matter is still
mysterious. Moreover, there are now tensions between the
ΛCDM paradigm and observations, among which the most
celebrated are the core-cusp problem, the missing satellites
and the too-big-to-fail problems [3–6]. Although these
discrepancies can be partially resolved by taking into
account baryonic feedback, as confirmed by numerical
simulations, the jury is still out and this may not be enough
to resolve completely the current tensions [7,8]. Similarly,
the latest tests of the WIMP hypothesis, as provided by
direct detection, are getting closer and closer to the neutrino
floor and the possibility of a direct experimental

confirmation of the existence of WIMPs seems more
and more remote [9,10].
Alternative scenarios have been proposed, e.g., scalar-

field dark matter (SFDM), where dark matter consists of
spin-0 bosons or bound fermions, whose masses m are
within the range 10−22 eV to 1 eV [11–15]. One striking
feature of these models is the existence of static and stable
configurations comprising a large number of scalar degrees
of freedom and amenable to a semi-classical description
[12,15,16]. These solitons lead to dark matter halos with
flat cores that could address the core-cusp problem. On the
other hand, even if these solitons are not relevant for the
galactic-scale tensions, e.g., if m ≫ 10−22 eV and their
radius is smaller than 1 kpc, they could still have an impact
on the dynamics of other orbiting objects in the halo.
For instance, when an astrophysical object interacts with

a large collection of other compacts bodies, its motion is
slowed down by dynamical friction. The collisionless case
was first treated by Chandrasekhar [17]. This phenomenon
also happens when a compact objects such as a black hole
(BH) penetrates inside a dark matter soliton, or more
generally a fluid medium. The case of a fuzzy dark matter
(FDM) halo has been analyzed in [12] and corresponds to
dark matter models with no self-interactions. In this paper,
we will consider the case of a scalar dark matter model
where self-interactions are important. The self-interactions
play two prominent roles. First of all, the solitons are
modified as compared to the FDM case, as equilibrium
configurations correspond to a balance of gravity by the
scalar pressure associated with the self-interactions,
whereas for FDM gravity is balanced by the so-called
quantum pressure at the scale of the de Broglie wavelength.*alexis.boudon@ipht.fr
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Second, the nature of the dynamical friction changes
drastically as we find out in this paper. However, the
dynamical friction experienced by the BH is also different
from the case of a perfect gas, because the scalar field has a
specific behavior in the nonlinear and relativistic regime
close to the BH horizon.
In this paper, we concentrate on the dynamical friction of

a Schwarzschild BHmoving inside a dark matter soliton, as
this could be relevant to current research on gravitational
waves [18,19]. The calculation of the dynamical friction
in FDM systems has already been thoroughly studied
[12,20–22]. In the low-velocity regime that we consider
in this paper, the dynamical friction is greater than the one
for collisionless particles [17] or for a perfect gas [23,24]
(but it is smaller in the more usual high-velocity regime).
We will show in this paper that for self-interacting SFDM
the dynamical friction is greatly reduced. The dynamical
friction induces a dephasing on the emission frequency of
gravitational waves studied for extreme and intermediate
mass ratio inspirals (EMRIs and IMRIs), which may be
detected by future detectors such as eLISA and DECIGO
[25–28]. The difference of dephasing between the FDM
case and SFDM is left for future work and could serve as a
distinguishing feature of the SFDM scenario which may be
detectable experimentally. In another context, the Fornax
globular clusters timing problem, i.e., the observed tension
in the orbital decay of clusters of stars as seen in the Fornax
dwarf spheroidal, could be addressed by SFDM models.
Indeed, CDM numerical simulations lead to a faster orbital
decay, and so a higher dynamical friction, than obtained
in observations (e.g., [29,30] as reviews). For FDM, this
tension disappears for low DM masses m < 10−21 eV
[21,31,32], but this range of scalar masses is in potential
tension with other observables. In the SFDM, dynamical
friction is also expected to be lower than in CDM and this
could help in resolving this tension.
In this study, we focus on the subsonic case where the

velocity of the incoming BH does not exceed the speed of
sound in the scalar halo. Within the bulk of the scalar cloud,
where at equilibrium the gravitational potential ΦN is
balanced by the effective pressure P associated with the
self-interaction, the circular velocity of compact objects
inside the gravitational well is v2c ∼ΦN ∼ P=ρ ∼ c2s .
Therefore, the BH typically moves at a relative velocity
of the order of cs. Thus, the subsonic regime v0 < cs covers
both the low-velocity limit (e.g., when the BH has
dissipated its kinetic energy and fallen into the center of
the gravitational potential) and the lower half of the typical
cases v0 ∼ cs. As we expect no singularity at the threshold
cs, it should also provide the correct order of magnitude for
all cases v0 ∼ cs. In addition to its practical relevance, the
subsonic case also provides a relatively simpler context to
lay out the problem, the main equations of motion and the
method of solution, in comparison with CDM and FDM.
The case of supersonic motion, where shocks appear and

make the analysis much more intricate, will be treated in a
forthcoming paper.
We find that there is a strong connection between the

dynamical friction and the accretion rate of dark matter into
the BH, i.e., the rate of infalling matter into the BH. In fact,
the dynamical friction is both proportional to the accretion
rate and to the relative velocity. Such a linear velocity
dependence is familiar as it also occurs at low velocity for
dynamical friction in a gas cloud with a non-vanishing
speed of sound [24]. In our case too, the SFDM solitons are
characterized by a non-vanishing speed of sound [33]. For
larger velocities in the relativistic regime, several studies
already exist when self-interactions are not present or
subdominant [21,34,35]. When interactions are present,
the case of a gas with a non-vanishing speed sound will
only be the lowest order approximation as the self-inter-
actions make the dynamics nonlinear and new effects could
be expected, especially in the relativistic regime. This is left
for future work.
The outline of this paper is as follows. In Sec. II we

introduce scalar-field dark matter with a quartic self-
interaction. We introduce the action, the equations of
motion in the nonrelativistic limit, and their equilibrium
solutions (that we denote solitons). These will also set the
boundary conditions far from the BH. We briefly discuss
the comparison with FDM and we obtain the parameter
space where our derivations apply. In Sec. III, we present
the fully relativistic equation of motion, which is required
to obtain the boundary condition near the Schwarzschild
radius and to determine the global solution. We explain
how we derive the solution in the large-mass limit, fully
taking into account the nonlinearity due to the self-
interaction. We recall that in the radial case [36] there
are two velocity branches and that, as for the perfect fluid,
the boundary conditions select the unique transonic sol-
ution and its critical flux. We compare our derivation with
those for FDM, which rely on the linearity of the Klein-
Gordon equation when there are no self-interactions.
In Sec. IV, we focus on radii much greater than the
Schwarzschild radius and show how the equations of
motion match those of an isentropic fluid. In Sec. V, we
obtain the flow of SFDM around the BH in the subsonic
regime, using an iterative numerical scheme. We also
introduce large-distance expansions. These allow us to
obtain explicit expressions for the accretion rate onto the
BH in Sec. VI, and for its dynamical friction in Sec. VII.
We conclude in Sec. VIII. Some complementary deriva-
tions are given in the appendixes.

II. DARK MATTER SCALAR FIELD

A. Scalar-field action

In this paper, we study the scalar-field dark matter model
governed by the following action
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Sϕ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
gμν∂μϕ∂νϕ − VðϕÞ

�
; ð1Þ

where we include a quartic self-interaction,

VðϕÞ¼m2

2
ϕ2þVIðϕÞ with VIðϕÞ¼

λ4
4
ϕ4; λ4>0: ð2Þ

The coupling constant λ4 is taken positive to ensure that the
self-interaction is repulsive (a negative sign corresponds to
attractive self-interaction). This leads to an effective pres-
sure that can counterbalance gravity and lead to static and
stable dark matter halos on small scales, called solitons in
the following.
On the cosmological background or on galactic scales,

the oscillations of the scalar field due to the quadratic mass
term are required to be dominant, leading to an upper
bound on λ4. This ensures that, at lowest order, the scalar
field behaves as cold dark matter with a vanishing pressure.
Then, the interaction term is a small perturbation that
slightly modifies the harmonic oscillations of the scalar
field and gives rise to an effective pressure, which leads to
deviations from the CDM scenario on small scales. In
particular, this leads to a characteristic scale [33]

ra ¼
ffiffiffiffiffiffiffi
3λ4
2

r
MPl

m2
; ð3Þ

where MPl is the reduced Planck mass. This sets both the
Jeans length, which is independent of density and redshift
[37,38] and below which density perturbations of the
cosmological background cease to grow and oscillate,
and the size of hydrostatic equilibria (solitons) that can
form after collapse and decoupling from the Hubble
expansion. In the nonrelativistic regime, which applies to
large scales in the late Universe and to astrophysical scales
far from BH horizons, one can decompose the solutions to
the nonlinear Klein-Gordon equation between the fast
oscillations at frequency m and a slowly varying envelope
that evolves on cosmological or astrophysical timescales.
The latter is then governed by the Schrödinger equation.
We refer the reader to [33] for a cosmological study of these
SFDM scenarios. In the following, we focus on subgalactic
scales and discard the expansion of the universe.

B. Nonrelativistic regime

In the nonrelativistic weak-gravity regime, it is conven-
ient to write the real scalar field ϕ in terms of a complex
field ψ as

ϕ ¼ 1ffiffiffiffiffiffiffi
2m

p ðe−imtψ þ eimtψ⋆Þ: ð4Þ

In this regime, where typical frequencies _ψ=ψ and
momenta ∇ψ=ψ are much smaller than m, the complex
scalar field ψ obeys the Schrödinger equation,

i _ψ ¼ −
∇2ψ

2m
þmðΦN þΦIÞψ ; ð5Þ

whereΦN is the Newtonian gravitational potential andΦI is
the nonrelativistic self-interaction potential. For the quartic
self-interaction it reads [33]

ΦI ¼
mjψ j2
ρa

with ρa ¼
4m4

3λ4
: ð6Þ

It is also convenient to express ψ in terms of the amplitude
ρ and the phase s by the Madelung transform [39],

ψ ¼
ffiffiffiffi
ρ

m

r
eis: ð7Þ

Then, the real and imaginary parts of the Schrödinger
equation (5) give

_ρþ∇ ·

�
ρ
∇s
m

�
¼ 0; ð8Þ

_s
m
þ ð∇sÞ2

2m2
¼ −ðΦN þΦIÞ; ð9Þ

while the nonrelativistic self-interaction potential reads

ΦI ¼
ρ

ρa
¼ 3λ4ρ

4m4
: ð10Þ

Defining the curl-free velocity field v⃗ by

v⃗ ¼ ∇s
m

; ð11Þ

Eqs. (8)–(9) give the usual continuity and Euler equations,

_ρþ∇ · ðρv⃗Þ ¼ 0; ð12Þ

_v⃗þ ðv⃗ ·∇Þv⃗ ¼ −∇ðΦN þΦIÞ: ð13Þ

Thus, in the nonrelativistic regime, we can go from the
Klein-Gordon equation to the Schrödinger equation and
next to a hydrodynamical picture. In the Hamilton-Jacobi
and Euler equations (9) and (13) we have neglected the
quantum pressure term

ΦQ ¼ −
∇2 ffiffiffi

ρ
p

2m2 ffiffiffi
ρ

p : ð14Þ

This is because in this paper we focus on the regime
associated with the condition (27) below, where the self-
interaction dominates over the quantum pressure. Then,
wavelike effects, such as interference patterns, are
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negligible. However, the dynamics remain different from
that of CDM particles because of the self-interaction.

C. Static equilibrium: Soliton around a BH

In contrast with CDM, the pressure due to the self-
interaction allows for the formation of static equilibrium
configurations with zero velocities [40–42], which are
sometimes called Bose-Einstein condensates or boson
stars. In the more familiar FDM case, such static solutions
where gravity is balanced by the quantum pressure (14),
rather than by the self-interaction (6), are often called
solitons [12,43,44] and correspond to a bound ground state
of the linear Schrödinger equation in the Newtonian
gravitational potential. In our case, the self-interaction
adds an explicit nonlinearity to the Schrödinger equation,
through the self-interaction potential ΦI in Eq. (5), in
addition to the self-gravity included in the Newtonian
potential ΦN. As we have in mind extended scalar clouds,
which may reach galactic size as for the FDM scenario,
rather than compact objects, we call these hydrostatic
equilibrium solitons as in the FDM case, rather than boson
stars. They are again bound ground states of the
Schrödinger equation (5), where the full potential now
reads Φ ¼ ΦN þΦI. As for FDM, this is actually a non-
linear equation of motion, because of the self-gravity inΦN
and of the dependence of the self-interaction potential ΦI

on ρ ¼ mjψ j2. From Eq. (13), the equation of hydrostatic
equilibrium reads

∇ðΦN þΦIÞ ¼ 0; ð15Þ

which we integrate as

ΦN þΦI ¼ α; with α ¼ ΦNðRsolÞ: ð16Þ

Here we have introduced the radius Rsol of the spherically
symmetric soliton, where the density is zero and hence
ΦI ¼ 0, which determines the value of the integration
constant α. The Newtonian gravitational potential is given
by the sum of the contributions from the central BH and
from the scalar-cloud self-gravity,

ΦN ¼ ΦBH þΦsg; ð17Þ

with

ΦBH ¼ −
GMBH

r
¼ −

rs
2r

; ∇2Φsg ¼ 4πGρ; ð18Þ

where rs ¼ 2GMBH is the Schwarzschild radius of the BH
of mass MBH. Taking the divergence of Eq. (15), using
Eqs. (18) and (10) and looking for a spherically symmetric
solution, we obtain

d2ΦI

dr2
þ 2

r
dΦI

dr
þ 1

r2a
ΦI ¼ 0; with ra ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
4πGρa

p ; ð19Þ

where ra was also defined in Eq. (3). Introducing the
dimensionless radius x ¼ r=ra, we recover the differential
equation satisfied by spherical Bessel functions of order
zero. Thus, ΦI ¼ aj0ðxÞ þ by0ðxÞ. At small radii, the
gravitational potential is dominated by the BH and from
Eq. (16) we obtain ΦI ≃ rs=ð2rÞ. This determines the
integration constant b, and we can write the solution for
the density ρ in the nonrelativistic regime as

r ≫ rs∶ρðrÞ ¼ ρ0
sinðr=raÞ
ðr=raÞ

þ ρa
rs
2ra

cosðr=raÞ
ðr=raÞ

: ð20Þ

The first termdominates at large radii,where thegravitational
potential is mostly given by the soliton self-gravity, while the
second term dominates at small radii, where the gravitational
potential is mostly due to the BH. This transition radius rsg is
typically much smaller than the size of the soliton Rsol, and
much greater than the Schwarzschild radius,

Rsol ≃ πra; rsg ¼ rs
ρa
ρ0

; rs ≪ rsg ≪ Rsol: ð21Þ

Then, far inside the soliton we have

rs ≪ r ≪ r1=3sg r2=3a ∶ ρ ¼ ρ0 þ ρa
rs
2r

: ð22Þ

In terms of the fields ψ and ϕ this static soliton reads

ψ ¼
ffiffiffiffi
ρ

m

r
e−iαmt; ϕ ¼

ffiffiffiffiffi
2ρ

p
m

cos½ð1þ αÞmt�; ð23Þ

as the phase s reads s ¼ −αmt.
In the case of FDM, where the soliton can reach kpc size,

numerical simulations [43,45] show that outside this core
the scalar field is out of equilibrium, with large density
fluctuations and a mean falloff that follows the NFW profile
[46] found for CDM. We expect a similar behavior for
SFDM, in cases where there is a unique soliton of kpc size
inside galaxies. However, in this paper we also consider
scenarios with much smaller values of ra, where there
could be many scalar clouds of smaller size in the galaxy. In
any case, using the hierarchy of scales (21), we do not
specify here the dark matter profile beyond the soliton
radius. As we shall find in Sec. V C, the interaction
between the BH and the scalar cloud is governed by radii
r≲ rsg, that is, radii where the BH gravity is subdominant,
and do not significantly contribute to the accretion and the
dynamical friction of the BH. In contrast with the colli-
sionless case, there is no infrared divergence and our results
do not depend on the dynamics near the scalar cloud border
or beyond.
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Therefore, in our derivation of the scalar flow via the
relativistic generalization (44) below, the boundary con-
dition at “large radius” will actually be the hydrostatic
profile within the bulk of the soliton, at rsg ≪ r ≪ Rsol.
What happens at r≳ Rsol is beyond the scope of this paper
and irrelevant to the BH dynamics that we investigate here.

D. Moving soliton

If there is no BH, Galilean invariance ensures that the
equilibrium solution ρeqðrÞ also maps to a solution that
moves at the uniform velocity v⃗0, ρv0ðr⃗; tÞ ¼ ρeqðr⃗ − v⃗0tÞ.
The phase s now reads s ¼ −ðαþ v20=2Þmtþmv0z, for a
velocity along the z-axis, and the scalar field ϕ becomes

ϕ ¼
ffiffiffiffiffi
2ρ

p
m

cos½ð1þ αþ v20=2Þmt −mv0z�: ð24Þ

We now consider the case of a BH moving with the
velocity −v⃗0 through the soliton, or equivalently of a
soliton moving at the velocity v⃗0 with respect to a
motionless BH. Neglecting the gravitational backreaction
of the scalar cloud, which in the static case amounts to the
dressing of the BH potential by the factor cosðr=raÞ, and
focusing on scales far inside the soliton, we take for the
density ρ, the self-interaction potential and the total
gravitational potential the expression (22),

r≫ rs∶ ρ¼ ρ0þρa
rs
2r

; ΦI¼
ρ

ρa
; ΦN ¼ α−ΦI: ð25Þ

Together with v⃗ ¼ v⃗0, this sets the boundary conditions at
large radii.

E. Parameter space

Before we investigate the details of the scalar flow
around the BH in the following sections, we first review
the constraints on the scalar parameters m and λ4 and the
regime where our computation applies. We actually have a
third parameter, the density ρ0 in the bulk of the soliton. It
gives the transition radius rsg of Eq. (21), the values in the
bulk of the soliton of the self-interaction potentialΦI 0 from
Eq. (10) and of the scalar-field gravitational potential Φsg 0.
It also determines the sound speed c2s , as seen in Eqs. (57)
and (94) below, which is also the typical velocity scale in
the soliton,

ρ0
ρa

∼
rs
rsg

∼ΦI 0 ∼ c2s ∼ v2 ≲ 1: ð26Þ

Throughout this paper, we focus on the regime ra ≫ λdB,
where the de Broglie wavelength λdB ¼ 2π=ðmvÞ sets the
scale where the quantum pressure comes into play, i.e.,
interference effects associated with the wavelike behaviors
that arise from the Klein-Gordon or Schrödinger equations.
At the scale of the scalar cloud, this condition reads

λ4 ≫
m2

M2
Plv

2
; hence λ4 ≫ 10−55v−2

�
m

1 eV

�
2

: ð27Þ

More generally, from Eqs. (10) and (14), the condition for
the self-interaction ΦI to dominate over the quantum
pressure ΦQ reads λ4ρ=m4 ≫ 1=ðm2r2Þ, that is,
λ4 ≫ m2=ðρr2Þ. Within the equilibrium scalar cloud, where
v2 ∼ΦN ∼ ρr2=M2

Pl, we recover Eq. (27). Close to the
Schwarzschild radius rs, the scalar field density is of
the order of ρa ∼m4=λ4 [36] and we obtain instead the
condition

m ≫
M2

Pl

MBH
; hence m ≫ 10−12

�
MBH

1 M⊙

�
−1

eV: ð28Þ

Therefore, our computation applies to stellar-mass BHs for
m ≫ 10−12 eV and to supermassiveBHs form ≫ 10−18 eV.
The regime λ4 ¼ 0, where self-interactions are negli-

gible, is the fuzzy dark matter scenario [12], where gravity
can be balanced by the quantum pressure at scale λdB. For
galactic halos, with v ≃ 10−3, to reach λdB ∼ 1 kpc so that
departures from CDM can be observed on galactic scales
and be relevant for the core-cusp problem gives
m ∼ 10−22 eV. However, this is in tension with Lyman-α
forest constraints [47,48] and the analysis of galactic
rotation curves [49], which require m≳ 10−20 eV.
In the regime (27), where the self-interaction dominates

over the quantum pressure, departures from CDM on
galactic scale, and possible impacts on the core-cusp
problem, can be obtained for a large range of masses,
thanks to the additional parameter λ4, which is related to the
characteristic scale ra of Eqs. (3) and (19) [33]

λ4 ≃
�

ra
20 kpc

�
2
�

m
1 eV

�
4

: ð29Þ

However, in this paper we do not require the formation of
scalar clouds/solitons of galactic size, relevant for the core-
cusp problem. We consider the more general case of
SFDM, independently of its possible impact on ΛCDM
galactic-scale tensions, where the cloud size ra may range
from astrophysical to galactic size. Then, assuming such
scalar clouds form and include stellar or BH systems, in a
fashion similar to molecular clouds, we investigate the
accretion rate and the dynamical friction of a BH inside
such a cloud.
In this paper, to simplify the computation and the

boundary condition at large distance, we assume that
ra ≫ rsg, that is, the cloud extends beyond the transition
radius. This gives

ra ≫ rsg∶λ4 ≫
�
MBHm2

M3
Plv

2

�
2

; ð30Þ
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and hence,

λ4 ≫ 10−20
�

v
10−3

�
−4
�
MBH

1 M⊙

�
2
�

m
1 eV

�
4

; ð31Þ

where v2 ∼ΦI ∼ΦN is the typical orbital velocity in the
gravitational potential well of the scalar cloud, as in (26).
However, this is not a critical constraint and it would be
sufficient to require that the cloud extends much beyond the
BH horizon. In this case, rs ≪ ra ≪ rsg, the self-gravity
regime is never reached and the profile remains dominated
by the second term in Eq. (20). Thus, the scalar cloud radius
is now Rsol ≃ πra=2, again of the order of ra. This gives the
constraint

ra ≫ rs∶λ4 ≫
�
MBHm2

M3
Pl

�
2

; ð32Þ

and hence,

λ4 ≫ 10−32
�
MBH

1 M⊙

�
2
�

m
1 eV

�
4

: ð33Þ

This would slightly change the boundary condition but the
main steps of our derivation, especially the form (45) of
the solution, remain valid. However, the dynamical
friction Fz will be decreased because of the smaller size
of the scalar cloud, which is smaller than the radius rsg
where the contribution to Fz otherwise peaks, as found in
Sec. VII below.
Observations of the merging of clusters provide the

upper bound σ=m≲ 1 cm2=g for the cross-section σ, which
gives [33]

λ4 ≲ 10−12ðm=1 eVÞ3=2: ð34Þ

The requirement that VI ≪ V since matter-radiation equal-
ity (so that the scalar field behaves like DM) gives
λ4 ≲ ðm=1 eVÞ4, which is automatically verified for ra <
20 kpc from Eq. (29). For the classical description of the
scalar field to be valid, the occupation number N ≃
ðρ=mÞλ3dB ∼ ρ=ðm4v3Þ must be much greater than unity.
As we shall see below in Eqs. (10) and (16), at equilibrium
in the scalar cloud the balance between gravity and the self-
interaction pressure yields ΦN ∼ΦI ∼ ρλ4=m4. Together
with v2 ∼ΦN, for the typical orbital velocity in the
gravitational potential well, this gives

N ∼ 1=ðλ4vÞ ≫ 1; hence λ4 ≪ v−1: ð35Þ

With v≲ 1, the classical approximation applies as long
as λ4 ≪ 1.
We will solve the Klein-Gordon equation in curved

spacetime in the large scalar mass limit (45), where m is
much greater than typical spatial gradients and frequencies.

This requires in particular that m ≫ 1=rs, where rs is the
BH horizon,

m ≫
1

rs
; hence m ≫

M2
Pl

MBH
: ð36Þ

We recover the same condition as Eq. (28), which ensured
that wave effects are negligible and that we are far from the
FDM regime.
The domain in the parameter space ðm; λ4Þ where our

derivations apply corresponds to the central white area in
Fig. 1, for the cases of a BH of mass 10 M⊙ (upper panel)
and 107 M⊙ (lower panel). The scalar mass m is bounded
from below by (28), shown by the vertical green solid line
on the left. At low m, the coupling λ4 is bounded from
above by (29), where we take ra ≤ 2 kpc, shown by the
upper red solid line. At high m, λ4 is bounded from above
by (34), shown by the upper red dashed line. At lowm, λ4 is
bounded from below by (27), where we take v ¼ 10−3,
shown by the lower blue solid line. At high m, λ4 is
bounded from below by (33), shown by the lower blue

FIG. 1. Domain in the parameter space ðm; λ4Þ where our
derivations apply, for a BH of mass 10 M⊙ (upper panel) and
107 M⊙ (lower panel). The region in white is the allowed part of
the parameter space.
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dashed line. The condition (31) is shown by the blue dotted
line for v ¼ 10−3. As noticed above, in the following we
assume that we are above this threshold to apply the
boundary condition at large distance, but this is not critical
as the form (45) of the solution still applies provided we are
above the blue dashed line (33). Overall, this mostly gives a
diagonal band λ4 ∼m4 in the space ðm; λ4Þ, with for
MBH ¼ 10 M⊙,

10−12 ≲m≲ 107 eV; 10−75 ≲ λ4 ≲ 10−3; ð37Þ

and for MBH ¼ 107 M⊙,

10−19 ≲m≲ 10 eV; 10−85 ≲ λ4 ≲ 10−10: ð38Þ

III. RELATIVISTIC REGIME

A. Isotropic metric

As we neglect the gravitational backreaction of the scalar
cloud, we consider the spherically symmetric metric
associated with a BH at the center of a large soliton,
matching Eq. (25) at large radii. Moreover we consider a
nonrotating BH and to simplify the matching with the usual
Newtonian gauge on large scales, we work with the
isotropic radial coordinate r and time t, so that the static
spherically symmetric metric can be written in the isotropic
form

ds2 ¼ −fðrÞdt2 þ hðrÞðdr2 þ r2dΩ⃗2Þ: ð39Þ

At large radii in the weak-gravity regime, far beyond the
Schwarzschild radius, we have

f ¼ 1þ 2ΦN; h ¼ 1 − 2ΦN; ð40Þ

with

ΦN ¼ α −ΦI ¼ α −
ρ0
ρa

−
rs
2r

; ð41Þ

in agreement with (25). The first two terms in the last
expression correspond to the scalar-cloud self-gravity while
the last term is the BH gravitational potential. At smaller
scales where the BH gravity dominates, far inside the
transition radius rsg, the isotropic metric functions fðrÞ and
hðrÞ read

rs
4
< r ≪ rsg∶ fðrÞ ¼

�
1 − rs=ð4rÞ
1þ rs=ð4rÞ

�
2

;

hðrÞ ¼ ð1þ rs=ð4rÞÞ4: ð42Þ

In these coordinates, the BH horizon is located at
radius r ¼ rs=4.

B. Equations of motion

1. Klein-Gordon equation

In the metric (39), the Klein-Gordon equation reads

∂
2ϕ

∂t2
−

ffiffiffiffiffi
f
h3

r
∇ · ð

ffiffiffiffiffiffi
fh

p ∇ϕÞ þ f
∂V
∂ϕ

¼ 0: ð43Þ

As the metric is spherically symmetric and the uniform
velocity at large distance is parallel to the z-axis,
v⃗ ¼ v⃗0 ¼ v0e⃗z, the system is axisymmetric around the
z-axis. Therefore, the Klein-Gordon equation (43) reads
in spherical coordinates as

∂
2ϕ

∂t2
−

ffiffiffiffiffi
f
h3

r
1

r2
∂

∂r

�
r2

ffiffiffiffiffiffi
fh

p ∂ϕ

∂r

�
−

f
hr2 sin θ

∂

∂θ

�
sin θ

∂ϕ

∂θ

�

þ fm2ϕþ fλ4ϕ3 ¼ 0: ð44Þ

As in [36], we note that the cubic nonlinearity is of the same
type as for the Duffing equation [50]. This allows us to look
for a solution of the form

ϕ ¼ ϕ0ðr; θÞcn½ωðr; θÞt −Kðr; θÞβðr; θÞ; kðr; θÞ�; ð45Þ

where we denoted cnðu; kÞ the Jacobi elliptic function
[51,52] of argument u, modulus k, and period 4K, where
KðkÞ is the complete elliptic integral of the first kind, defined
by KðkÞ ¼ R π=2

0 dθ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2 sin2 θ

p
for 0 ≤ k < 1 [51,52].

We also defined Kðr; θÞ≡K½kðr; θÞ�. Equation (45) is the
leading-order approximation in the limit m → ∞, where
spatial gradients of the amplitude ϕ0 and the modulus k are
much belowm, while bothω and β are of the order ofm. The
amplitude ϕ0, the angular frequency ω, the phase β and the
modulus k are slow functions of space.
Thus, this is a generalization of nonrelativistic expres-

sions such as (24), where the usual trigonometric functions
are replaced by the Jacobi elliptic function because of the
strong cubic nonlinearity. We recover the nonrelativistic
regime for small modulus k, as cnðu; 0Þ ¼ cosðuÞ.
Therefore, the modulus k measures the deviation from
harmonic oscillations and from the nonrelativistic limit.
In contrast with the study of radial accretion presented in

[36], because of the incoming velocity v⃗0 ¼ v0e⃗z at large
distance, the scalar-field configuration is no longer spheri-
cally symmetric but only axisymmetric. This implies that
the amplitude ϕ0, the angular frequency ω, the phase β and
the modulus k depend on both the radial distance r and the
angle θ with respect to the z-axis.
To ensure that spatial gradients do not increase with time,

the oscillations of the scalar field at different locations must
be synchronized. This means that the function ωðr; θÞ is set
by the modulus kðr; θÞ according to
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ωðr; θÞ ¼ 2Kðr; θÞ
π

ω0; ð46Þ

with a constant fundamental frequency ω0 that will be set
by the boundary conditions.
At leading order in the large-m limit, the spatial

derivatives read

∂
2ϕ

∂r2
¼ ϕ0

�
K

∂β

∂r

�
2

cn00 þ…; ð47Þ

∂
2ϕ

∂θ2
¼ ϕ0

�
K

∂β

∂θ

�
2

cn00 þ…; ð48Þ

where the dots stand for subleading terms and we denoted
cn00 ¼ ∂

2cn
∂u2 . Substituting into the Klein-Gordon equa-

tion (44) and using the differential equations satisfied by
the Jacobi elliptic functions, cn00 ¼ ð2k2 − 1Þcn − 2k2cn3,
we obtain the two conditions

ð∇βÞ2 ¼ h
f

�
2ω0

π

�
2

−
hm2

ð1 − 2k2ÞK2
; ð49Þ

λ4ϕ
2
0

m2
¼ 2k2

1 − 2k2
ð50Þ

which will be interpreted in the following.

2. Conservation equation

The system (49)–(50) was studied in [36] for the case of
radial accretion, where ð∇βÞ2 simplifies as ðdβ=drÞ2. Then,
at each radius Eqs. (49)–(50) provide dβ=dr and ϕ0 in
terms of the modulus k, which remains to be determined.
The profile kðrÞ then followed from the constraint of a
constant flux F, to ensure a steady state solution. Indeed,
the conservation equation ∇μT

μ
0 ¼ 0, where Tμ

ν is the
energy-momentum tensor of the scalar field, is automati-
cally satisfied at leading order because Eq. (45) is a solution
of the Klein-Gordon equation. At this order, each contri-
bution to ∇μT

μ
0 is a fast oscillating function of time with

zero mean. However, to go beyond and ensure there are no
secular terms, i.e., slowly growing terms in time, that would
violate the steady state condition, we also require that
h∇μT

μ
0i ¼ 0, where h…i is the average over the oscillations

of the solution (45). This gives the constraint

∇ · ðρeff∇βÞ ¼ 0; ð51Þ

with the effective density

ρeff ¼
ffiffiffiffiffiffi
fh

p
ϕ2
0ωKhcn02i: ð52Þ

Thus, Eqs. (51) and (49) generalize to the strong-field and
strong-gravity regimes the continuity and Hamilton-Jacobi

equations (8) and (9), with πβ=2 playing the role of the
phase s. In the same fashion, they generalize the hydro-
dynamical continuity and Euler equations (12) and (13),
with π∇β=ð2mÞ playing the role of the curl-free velocity
field v⃗. In addition to these continuity and Euler equations,
we now have the third equation (50). This is because we
nowhave three fields to determine, the amplitudeϕ0 (playing
the role of the density), the phase β (playing the role of the
velocity potential), and the modulus k. The latter is coupled
to the amplitude by Eq. (50). In the nonrelativistic low-
amplitude regime this new degree of freedom disappears as
we have k → 0 and the scalar field ϕ follows harmonic
oscillations, as in (24). In the large-field regime, this new
quantity kðr; θÞ determines the amount of deviation of
the nonlinear oscillator from the harmonic oscillator, as
described by the Jacobi elliptic function cnðu; kÞ.

C. Low and high velocity branches

In the case of radial accretion, the effective continuity
equation (51) can be integrated at once, F ¼ ρeff

dβ
dr, where

F is the constant flux of the scalar field. Then, using
Eqs. (49)–(50), we can express ρeff

dβ
dr in terms of k and r.

This gives a condition of the form F ¼ F ðr; kÞ. As seen in
[36], at each radius r, F ðr; kÞ seen as a function of k first
increases from 0 at k ¼ 0, reaches a maximum FmaxðrÞ at a
modulus kmaxðrÞ, and then decreases to zero at a modulus
kþðrÞ, turning negative at higher k. This implies that at each
radius k must be in the range 0 ≤ k ≤ kþ. Moreover, if
F > Fmax there is no solution, whereas if F < Fmax there
are two solutions, k1 < kmax < k2. The solution k1 corre-
sponds to a high-velocity branch (close to free fall) and the
solution k2 to a low-velocity branch (supported by the
pressure built by the self-interactions). The boundary
condition at the horizon selects the high velocity solution,
because the self-interactions cannot prevent the free fall of
dark matter into the BH, whereas the boundary condition at
large radius selects the low-velocity branch, to match with
the static equilibrium soliton. This selects the critical flux
Fc, given by the minimum over radii of FmaxðrÞ, reached at
a critical radius rc. This enables the smooth connection of
the low-velocity branch k2 at r > rc to the high-velocity
branch k1 at r < rc, the two branches meeting at the radius
rc. This is similar to the hydrodynamical case [53,54],
which selects the only value of the flux that provides a
transonic solution that connects the subsonic (i.e., low-
velocity) branch at large radii with the supersonic (i.e.,
high-velocity) branch at low radii.
At radii where the BH gravity is dominant, this gives the

radial profile [36]

rs ≲ r≲ rsg∶ ρ ∼ ρa
rs
r
; vr ∼ −

rs
r
; ð53Þ

whereas at larger radii we have
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r≳ rsg∶ ρ ≃ ρ0; vr ∼ −
ρar2s
ρ0r2

: ð54Þ

In the axisymmetric case that we consider in this paper, we
cannot integrate at once the conservation equation (51),
which is now a two-dimensional partial differential equation.
However, if the homogeneous velocity v0 at large radii is
much smaller than the speed of light, we can expect the flow
to become almost radial much before the critical radius rc,
which is typically of the order of the Schwarzschild radius.
Then, we simply match the flow to the radial case at a radius
rm > rc, which provides the inner boundary condition to our
system. This means that the selection of the critical flux Fc
and the transition from the low-velocity to the high-velocity
branch can be identified from the radial case computed as in
[36]. Then, one only needs to solve the system (49)–(51) at
large radii along the low-velocity branch to complete the
analysis. This is always valid for the subsonic regime studied
in this paper, where the relative velocity v0 is smaller than the
effective speed of sound of the scalar-field soliton at large
radii. For larger velocities, discontinuities are expected
which are left for future work.

D. Boundary condition at large radii

At very large radii, k ≪ 1 and the solution (45) takes the
form ϕ ¼ ϕ0 cosðω0t − πβ=2Þ, as K ≃ π=2. Comparing
with the nonrelativistic solution (24), we obtain the
boundary conditions

r → ∞∶ ϕ0 ¼
ffiffiffiffiffi
2ρ

p
m

; β ¼ 2

π
mv0z; ð55Þ

and the value of the fundamental frequency ω0,

ω0 ¼ ð1þ αþ v20=2Þm: ð56Þ

Then, Eq. (50) gives the asymptotic behavior of k,

r → ∞∶ k2 ¼ λ4ϕ
2
0

2m2
¼ 4ρ

3ρa
¼ 4

3
ΦI: ð57Þ

The density ρ is given by Eq. (25).

E. Comparison with fuzzy dark matter derivations

The behavior of scalar clouds around BH has already
been studied, especially in the case without self-
interactions. For instance, [55] considered a free scalar
field in the unperturbed Schwarzschild metric around a BH.
This gives rise to a linear Klein-Gordon equation in curved
spacetime, which can be expanded in spherical harmonics.
The radial part obeys a linear second-order differential
equation, with coefficients that depend on the radius.
Focusing on the case 1=m ≫ rs (i.e., the Compton wave-
length is greater than the Schwarzschild radius), this
problem can be solved by splitting the domain into three

regions (close to the BH, intermediate radii, and large
radii). In each region one recovers a standard differential
equation that can be solved in terms of known special
functions, and by matching at the inner boundaries one
obtains the global solution.
This problem was recently revisited by [56]. Looking for

spherically symmetric solutions in the Schwarzschild
metric, the authors could express the general solution in
terms of confluent Heun functions. They could then derive
several approximate solutions depending on the hierarchy
between the Compton wavelength 1=m, the Schwarzschild
radius rs, and the self-gravity radius rsg. Our large-mass
regime (36), m ≫ 1=rs, corresponds to their regime IV
(particle limit), where there is no potential barrier (i.e., no
reflection of incoming waves) and the fluid falls into the
BH. At intermediate radii, they obtain in this regime IV,

FDM; rs ≲ r≲ rsg∶ ϕ ∼ r−3=4e−imt−i2m ffiffiffiffiffi
rrs

p
: ð58Þ

The power-law exponent −3=4 gives rise to a density
profile

FDM; rs ≲ r≲ rsg∶ ρ ∼ r−3=2: ð59Þ

This can be understood as follows [56]. The free-fall
velocity onto the BH behaves as vr ∼ r−1=2. For a steady
state solution, the flux of matter through a shell of radius r,
4πr2ρvr, must be independent of r, which implies
ρ ∼ r−2v−1r ∼ r−3=2, in agreement with (59).
These derivations do not apply to our case because of the

self-interaction, which adds a cubic nonlinearity to the
Klein-Gordon equation (44). (As compared with [55], we
actually consider the opposite limit 1=m ≪ rs where the
scalar field probes subhorizon distances, see Eq. (36), and
we take into account the self-gravity of the scalar field at
large radii, where it dominates over the BH gravity and
converges to the static soliton solution.) To handle the cubic
nonlinearity, from the BH horizon to the soliton radius, we
precisely take advantage of the large scalar mass limit to
write the solution in the form (45). This separation of scale
allows us to consider the scalar field as a cubic oscillator
locally, at each radius, which is exactly solved by the Jacobi
elliptic function. The dependence on radius is then taken
into account by the radial dependence of the amplitude ϕ0,
the angular frequency ω, the phase β and the modulus k,
and by the conservation equation (51). In the radial case,
this set of coupled one-dimensional equations can be
integrated as explained in Sec. III C and in [36]. In the
nonradial case, as explained in Secs. IV and V below, we
will use the mapping to familiar hydrodynamical equations
to follow the behavior of the flow at large nonrelativistic
radii, where the transition from the uniform incoming flow
at velocity v⃗0 to the radial infall takes place.
Far from the BH horizon, the modulus k is small and the

Jacobi elliptic function (45) becomes a cosine at leading
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order, giving ϕ ∼ ϕ0ðrÞeiωðrÞt−KβðrÞ. Although we recover
harmonic oscillations with time, as for the FDM case (58),
the nonlinearity associated with the self-interaction remains
essential. Indeed, at large radii in the bulk of the soliton the
scalar self-gravity remains balanced by the self-interaction
pressure. On intermediate radii, this additional pressure
support slows down the infall and makes the radial velocity
vr follow the low-velocity branch discussed in Sec. III C,
instead of the high-velocity branch associated with the free-
fall velocity vr ∼ r−1=2 as for FDM. This leads to the
different density slope, ρ ∝ r−1 in Eq. (53), as compared
with ρ ∝ r−3=2 in the FDM case (59).
The FDM case has also been considered in a linear

theory treatment [32,57], using the Keplerian gravitational
potential ΦN ¼ −rs=ð2rÞ for the background and looking
for linear perturbations to the gravitational potential and the
scalar field. However, this is not possible in our case.
Indeed, as explained above and in Sec. III C, because of the
pressure induced by the self-interaction, the infall is slowed
down by a bottleneck near the Schwarzschild radius, which
selects the transonic solution so that the density near the
horizon is of the order of ρa and the radial velocity close to
the speed of light, vr ∼ −1, see Eq. (53). This selects the
accretion rate on the BH and the infalling flux at all radii,
by conservation of matter, as also discussed in Sec. VI
below. Therefore, the amplitude in the large-radius
Newtonian regime is actually set by the boundary condition
at the BH horizon. This requires a fully nonlinear and
relativistic treatment and the global solution cannot be
obtained by a perturbative weak-gravity approxima-
tion alone.

IV. DESCRIPTION OF THE NONLINEAR
VELOCITY FLOW

A. Low-k regime

At radii above rc, the modulus k is small, as we already
have k ≃ 0.4 at rc, but nonzero. The gravitational potential
ΦN is also small at radii much beyond the Schwarzschild
radius. In this regime, we can simplify the system
(49)–(51). Equations (50) and (52) give

ϕ2
0 ¼

2m2k2

λ4
; ρeff ¼

πm2k2

2λ4
ω0 ∝ k2; ð60Þ

while Eq. (49) reads

π2ð∇βÞ2
4m2

¼ 2αþ v20 − 2ΦN −
3

2
k2

¼ 2
ρ0
ρa

þ rs
r
þ v20 −

3

2
k2; ð61Þ

where we used Eq. (25). We can check that this is consistent
with the boundary conditions (55) and (57). Defining the
dimensionless radius r̂ and the rescaled phase β̂ by

r̂ ¼ r
rs
; β̂ ¼ π

2mrs
β; ð62Þ

this becomes

ð∇̂ β̂Þ2 ¼ 3

2
k20 þ v20 þ

1

r̂
−
3

2
k2 ¼ 3

2
½kþðr̂Þ2 − k2�; ð63Þ

where we introduced the limiting value

kþðr̂Þ2 ¼ k20 þ
2

3
v20 þ

2

3r̂
: ð64Þ

This provides the upper bound kþðr̂Þ at radius r for the
modulus k, as the left-hand side in Eq. (63) is positive. As
in the radial accretion case presented in [36], the low-
velocity branch corresponds to

low-velocity branch∶ k ≃ kþ; v2 ≪ k2þ; ð65Þ

where we defined the velocity v⃗ ¼ ∇̂ β̂. Thus, the modulus
k is close to the upper bound kþ and the velocity v is much
smaller than the free-fall value of order 1=r̂ (in the weak-
gravity regime dominated by the BH gravity). This is due to
the self-interactions, which act as a pressure force that
slows down the collapse toward the BH. Then, the con-
servation equation (51) gives

∇̂ · ðk2∇̂ β̂Þ ¼ 0: ð66Þ

Using Eq. (63) this becomes

∇̂ ·

��
kþðr̂Þ2 −

2

3
ð∇̂ β̂Þ2

�
∇̂ β̂

�
¼ 0: ð67Þ

At large radii, the constant modulus k2þ ≃ k20 þ 2v20=3 and
the uniform velocity ∇̂ β̂ ¼ v⃗0 are indeed solutions of this
nonlinear equation. At the radius rm this can be matched to
the radial solution, as explained in Sec. III C. Equation (67)
provides a closed partial differential equation for the phase β̂
of the scalar field, which is also the velocity potential. This
gives in turns the scalar field density ρ and the modulus k,
describing the departure from harmonic oscillations.

B. Isentropic potential flow

Equations (66) and (63) coincide with the steady-state
continuity and Bernouilli equations of an isentropic poten-
tial flow,

∇̂ · ðρ̂ v⃗Þ ¼ 0;
v2

2
þ V þH ¼ 0; ð68Þ

where v⃗ ¼ ∇̂ β̂ is the curl-free velocity, with velocity
potential β̂, Vðr̂Þ is the external-force potential, and
Hðρ̂Þ is the enthalpy, with the mapping
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ρ̂ ¼ 3

2
k2; Vðr̂Þ ¼ −

3

4
k2þðr̂Þ; Hðρ̂Þ ¼ ρ̂

2
: ð69Þ

This gives for the effective pressure, defined by
dH ¼ dP̂=ρ̂,

P̂ðρ̂Þ ¼ ρ̂2=4; ð70Þ

with a polytropic exponent γad ¼ 2. From the Bernouilli
equation (68) the density can be expressed in terms of the
velocity by

ρ̂ ¼ γ þ 1

r̂
− v2; ð71Þ

where we introduced the parameter γ,

γ ¼ 3

2
k20 þ v20; hence

3

2
k2þ ¼ γ þ 1

r̂
: ð72Þ

V. SCALAR-FIELD FLOW AROUND THE BH

A. Linear flow (low velocities)

At small radii but far above the Schwarzschild radius,
dark matter is in the low-velocity radial accretion regime as
in (65), so that the term ð∇̂ β̂Þ2 is small as compared with
k2þ in Eq. (67). At large radii where v⃗ ≃ v⃗0, this is only true
if v0 ≲ k0, that is, the BHmoves with a speed that is smaller
than the speed of sound of the soliton cloud. We focus on
this regime in this paper, and we will study the high-
velocity supersonic case in a companion paper. Then, it is
useful to consider the “linear flow” associated with the
linearized version of Eq. (67),

∇̂ · ½kþðr̂Þ2∇̂ β̂� ¼ 0; ð73Þ

as this is a good approximation at all radii. Thanks to the
simple form (64) of the kernel k2þ, this linear equation can
be explicitly solved. The spherical symmetry of k2þ implies
that the angular part of the linear modes can be expanded
in spherical harmonics, which are eigenfunctions of the
angular Laplacian. As we look for axisymmetric solutions,
we only need the modes Y0

lðθ;φÞ, that is, the Legendre
polynomials Plðcos θÞ. Thus, the independent axisymmet-
ric modes Glðx; θÞ are

Glðr̂; θÞ ¼ Glðr̂ÞPlðcos θÞ; ð74Þ

with

d
dr̂

�
r̂2k2þ

dGl

dr̂

�
− lðlþ 1Þk2þGl ¼ 0: ð75Þ

Introducing the characteristic radius r̂γ ,

r̂γ ¼ 1=γ; ð76Þ

where γ was defined in Eq. (72), we obtain for l ¼ 0 the
growing and decaying modes

Gþ
0 ðr̂Þ ¼ 1; G−

0 ðr̂Þ ¼ ln

�
1þ 1

γr̂

�
; ð77Þ

and for l ≠ 0

Gþ
l ðr̂Þ ¼ ðγr̂Þa−ν2F1ða; 1 − b; 1 − bþ a;−γr̂Þ; ð78Þ

G−
l ðr̂Þ ¼ ðγr̂Þ−ν2F1ða; b; c;−1=ðγr̂ÞÞ; ð79Þ

with

ν ¼ 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4lðlþ 1Þp

2
; a ¼ νþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νðν − 1Þ

p
;

b ¼ ν −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νðν − 1Þ

p
; c ¼ 2ν: ð80Þ

These functions have the low-radius behaviors

r̂ ≪ r̂γ∶ Gþ
0 ðr̂Þ ¼ 1; G−

0 ðr̂Þ ∼ lnð1=r̂Þ;
l ≠ 0∶ Gþ

l ðr̂Þ ∼ r̂
ffiffiffiffiffiffiffiffiffiffiffi
lðlþ1Þ

p
; G−

l ðr̂Þ ∼ r̂−
ffiffiffiffiffiffiffiffiffiffiffi
lðlþ1Þ

p
; ð81Þ

and the large-radius behaviors

r̂ ≫ r̂γ∶ Gþ
0 ðr̂Þ ¼ 1; G−

0 ðr̂Þ ∼ r̂−1;

l ≠ 0∶ Gþ
l ðr̂Þ ∼ r̂l; G−

l ðr̂Þ ∼ r̂−l−1: ð82Þ

As expected, at large radii where k2þ goes to a constant, we
recover at leading order the modes of the Laplacian.
The boundary condition at large radius is v⃗ → v0e⃗z,

that is,

r̂ → ∞∶ β̂ ¼ v0r̂ cos θ; ð83Þ

while the inner boundary condition at r̂m sets the radial
component, vr ≃ vrðr̂mÞ, that is,

r̂ ¼ r̂m∶
∂β̂

∂r̂
≃ vmr ;

∂β̂

∂θ
≃ 0: ð84Þ

Thus, at the linear level, which we denote by the superscript
L, the boundary conditions only generate the monopole and
the dipole,

β̂L ¼ β̂L0 ðr̂Þ þ β̂L1 ðr̂Þ cosðθÞ; ð85Þ

with

β̂L0 ðr̂Þ ¼
vmr

G−
0
0ðr̂mÞ

G−
0 ðr̂Þ; ð86Þ
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and

β̂L1 ðr̂Þ ¼
v0
γ
ðγr̂Þ

ffiffi
2

p Γð−1þ ffiffiffi
2

p ÞΓð2þ ffiffiffi
2

p Þffiffiffi
2

p
Γð1þ 2

ffiffiffi
2

p Þ
× 2F1ð2þ

ffiffiffi
2

p
;−1þ

ffiffiffi
2

p
; 1þ 2

ffiffiffi
2

p
;−γr̂Þ: ð87Þ

From Eq. (86) we find that in the range where the flow is
approximately radial the velocity decreases as vr ∼ 1=r.
This agrees with the results obtained in [36] for the purely
radial accretion. The modulus k also decreases as
k2 ≃ k2þ ≃ 2=ð3r̂Þ, and the density as ρ ∝ k2 ∝ 1=r. This
gives indeed a constant radial flux, F ∝ r2ρvr, as required
for a steady state.
As a numerical example, we can take r̂m ∼ 10 and

vrðr̂mÞ ∼ 0.1, somewhat beyond the critical radius r̂c
associated with the transition between the low- and
high-velocity branches. Thus, we obtain at small radii

r̂ ≪ r̂γ∶ β̂L0 ∼ lnð1=r̂Þ; β̂L1 ∼
v0
γ
ðγr̂Þ

ffiffi
2

p
;

β̂L
0

0 ∼ −1=r̂; β̂L
0

1 ∼ v0ðγr̂Þ
ffiffi
2

p
−1; ð88Þ

and at large radii

r̂ ≫ r̂γ∶ β̂L0 ∼ ðγr̂Þ−1; β̂L1 ∼ v0r̂;

β̂L
0

0 ∼ −1=ðγr̂2Þ; β̂L
0

1 ∼ v0: ð89Þ

Thus, we find that the linear flow becomes radial at a
transition radius r̂t greater than r̂γ if v0 ≪ γ, which gives

v0 ≪ k20∶ r̂t ¼
1ffiffiffiffiffiffiffi
γv0

p ≫ r̂γ; ð90Þ

where we used v0 ≪ 1. For larger velocities the transition
occurs below r̂γ,

k20 ≪ v0 ≪ 1∶ r̂t ¼ γ−1ðv0=γÞ−1=
ffiffi
2

p
≪ r̂γ: ð91Þ

In practice, for relaxed systems we expect v20 ∼ k20, that is, a
squared velocity of the order of the gravitational potential
of the scalar soliton, with k20 ≪ 1. This gives v0 ∼ k0 ≫ k20.
Therefore, the linear flow typically becomes radial far
inside the radius r̂γ . There, the amplitude of the dipole β̂L1
has already somewhat decreased below the large-distance
uniform flow v⃗0, as seen from the exponents in (88). Thus,
the pressure associated with the self-interactions slows
down the linear flow before it becomes radial and accel-
erates toward the BH.

B. Large-radius expansions

It is possible to go beyond the linear-flow approximation
(73) by looking instead for a large-radius expansion. As

shown in the following section, this allows us to explicitly
see how the flow goes from a subsonic to a supersonic
regime as the relative velocity v⃗0 becomes greater than the
sound speed. We also obtain the analytical expressions of
the subleading odd corrections, of order r̂0, and even
corrections, of order 1=r̂, to the uniform-flow potential
β̂0 ¼ v0r̂ cos θ. These explicit large-distance results will
also be useful in Secs. VI and VII to obtain the accretion
rate on the BH and its dynamical friction, as wewill see that
they can be read from these large-distance expansions.

1. Condition for the subsonic regime at large radii

It is well known that the hydrodynamical Euler equation
can lead to discontinuous solutions with shocks or contact
discontinuities. As suggested by the hydrodynamical map-
ping (68), this will also happen in our case. As usual, a low
velocity v0 will lead to a subsonic and continuous flow at
large radii, whereas a large velocity v0 will lead to a
supersonic flow with a bow shock. (At small radii, close to
the Schwarzschild radius, there is always a supersonic
high-velocity region as explained in Sec. III C).
At large radii, the velocity is close to v⃗0 and

β̂ ≃ v0r̂ cos θ. Therefore, we write in this section

β̂ ¼ v0r̂ cos θ þ δβ̂ ð92Þ

and we linearize the equation of motion (67) in δβ̂. This
gives

∂
2δβ̂

∂x̂2
þ ∂

2δβ̂

∂ŷ2
þ
�
1 −

4v20
3k20

�
∂
2δβ̂

∂ẑ2
¼ 2v0 cos θ

3k20r̂
2

; ð93Þ

where we work in the cartesian coordinates, fx̂; ŷ; ẑg, with
v⃗0 ¼ v0e⃗z. The source term is due to the BH gravity,
through the 1=r̂ factor in k2þ, which makes the flow depart
from the homogeneous flow v⃗0. Introducing the sound
speed cs,

cs ¼
ffiffiffi
3

p

2
k0; and c2s ¼

dP̂0

dρ̂0
; ð94Þ

where in the second expression we used Eq. (70), the partial
differential equation (93) changes character, from elliptic to
hyperbolic, at v0 ¼ cs:

v0 < cs∶ elliptic subsonic flow; ð95Þ

v0 > cs∶ hyperbolic supersonic flow: ð96Þ

Note that this linear analysis in the perturbation δβ̂ is
different from the “linear flow” studied in Sec. VA. There,
in Eq. (73), we linearized the equation of motion (67) in β̂
itself. Thus, we assumed small velocities everywhere in
space as compared with k2þðr̂Þ, which implies v0 ≪ cs at
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large radii. In contrast, in Eq. (93) we study linear
perturbations with respect to the uniform flow v⃗0, which
is dominant at large distance, and we no longer assume that
v0 is small. Therefore, although the analysis (93) is now
restricted to large radii, it allows us to study all regimes for
v0. In particular, we can see that already at large distance
the cubic nonlinearity in (67) introduces a richer behavior
than the “linear flow” (85), as the structure of the dynamics
can change from elliptic (as in that low-velocity case) to
hyperbolic.

2. Smooth flow at large radii for low relative velocity

In this paper, we focus on the subsonic case (95) and we
leave the supersonic case (96) to a companion paper. For
such a low relative velocity, v0 < cs, the partial differential
equation (93) is elliptic, as in a subsonic regime, and the
flow is smooth. Introducing the quantity μ > 0 with

0 ≤ v0 < cs∶ μ2 ¼ 1 − v20=c
2
s ; 0 < μ ≤ 1; ð97Þ

and rescaling coordinates from fx̂; ŷ; ẑg to fx̃; ỹ; z̃g, with
x̃ ¼ x̂, ỹ ¼ ŷ, z̃ ¼ ẑ=μ, we recover the usual Laplacian in
the left-hand side in Eq. (93). Using the Green function of
the 3D Laplacian, we obtain the inhomogeneous solution

δβ̂oddðˆx⃗Þ ¼ −
v0

6πk20

Z
dˆx⃗0ẑ0

r̂03
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2jˆx⃗0 − ˆx⃗j2 þ ð1 − μ2Þðẑ0 − ẑÞ2

q
ð98Þ

where we moved back to the coordinates fx̂; ŷ; ẑg.
Performing the integration (e.g., by introducing Feynman
parameters as for the computation of usual Feynman
diagrams in particle physics), we obtain

δβ̂oddðˆx⃗Þ ¼
1

2v0
ln

�
μð1þ cos θÞ

cos θ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ ð1 − μ2Þcos2θ

p
�
; ð99Þ

which is odd in cos θ and does not depend on r̂. This gives a
vanishing radial velocity and the angular velocity

δvθðˆx⃗Þ ¼
1

2v0r̂ sin θ

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ2 þ ð1 − μ2Þcos2θ
p − 1

�
; ð100Þ

which is even in cos θ and decays as 1=r̂. This result can
also be obtained in a much simpler fashion by looking for a
solution of Eq. (93) of the form δβ̂ðcos θÞ that only depends
on the variable u ¼ cos θ.
The homogeneous solutions of Eq. (93) are the solutions

of the Laplace equation in the coordinates fx̃; ỹ; z̃g.
Expanding in spherical harmonics, we obtain the usual
growing and decaying modes, which behave as in (82). The
leading-order decaying solution is thus the monopole
δβ̂ ∝ r̃−1. Going back to the coordinates fx̂; ŷ; ẑg this gives

δβ̂even ¼
B
r̂
½μ2 þ ð1 − μ2Þ cos2 θ�−1=2; ð101Þ

with a normalization factor B. It decays as 1=r̂ and is even
in cos θ. Thus, the even components of the velocity
potential decay faster than the odd components and
correspond to a subsubleading correction. It is not neces-
sary to consider the quadratic terms over δβ̂2 to obtain this
even component because of the partial decoupling of
different parities in the nonlinear equation (67): the odd
term (99) only generates an odd term at order 1=r̂3.
Therefore, at order 1=r̂3 the even component is fully
determined by the linear operator in the left-hand side of
Eq. (93), which gives (101).
Expanding δβ̂ in Legendre polynomials, as in

Appendix B, we obtain the large-radius behaviors

r̂ ≫ r̂γ∶ δβ̂2lþ1 ∼ r̂0; δβ̂2l ∼ r̂−1; ð102Þ

while both odd and even multipoles decay for v0 → 0 as

v0 → 0∶ δβ̂n ∼ vn0: ð103Þ

We show the angular velocity δvθ in Fig. 2. For v0 → 0

we have δβ̂odd ∝ − cos θ and δvθ ∝ ðsin θÞ=r and we
recover the linear flow (85) as multipoles beyond the
dipole become negligible, as seen from (103). By sym-
metry, the angular velocity vanishes at θ ¼ 0 and θ ¼ π,
along the z-axis. The height of the central peak grows with
v0 and diverges for v0 → cs as 1=μ. The angular velocity is
positive. This means that for θ ≃ π=2 the first-order
perturbation δv⃗ is opposite to the incoming flow v⃗0, which
is thus slowed down close to the BH, before turning and
falling increasingly fast into the BH close to the
Schwarszchild radius. We can see that the singularity

FIG. 2. Linear perturbation δvθ to the angular velocity, from
Eq. (100), normalized by v0. We show the cases v0 ¼ 0.1cs, 0.9cs
and 0.99cs, at the radius r̂γ .
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associated with the transition to the supersonic regime only
appears very close to cs, for v0 ≳ 0.9cs.
This behavior agrees with that of the linear flow (85),

which behaved at large radii as

r≫ rγ∶ βL0 ∝ 1=r; βL1 ¼ v0r−
v0
2γ

þ v0
2γ2r

þ…; ð104Þ

where the subleading term −v0=ð2γÞ in the dipole generates
the positive angular velocity correction v0 sinðθÞ=ð2γrÞ.
The difference with the linear flow (85) is that the cubic
nonlinearity in (67) generates nonzero contributions to all
higher-order multipoles.

3. Phase, velocity and density expansions

As described in the previous section, at large radii the
phase β̂ can be expanded as

β̂ ¼ v0r cos θ þ δβ̂odd þ δβ̂even; ð105Þ

where we decompose over odd and even components n
u ¼ cos θ, with, for r̂ ≫ r̂γ,

δβ̂odd ¼ δ̂βð0ÞoddðθÞ þ
1

r̂
δ̂βð1ÞoddðθÞ þOð1=r̂2Þ;

δβ̂even ¼
1

r̂
δ̂βð1ÞevenðθÞ þOð1=r̂2Þ; ð106Þ

and δ̂βð0Þodd is given by Eq. (99) whereas δ̂βð1Þeven=r̂ is given
by Eq. (101). As described in Appendix B, these large-
distance tails, generated by nonlinear mode couplings, can
be expanded in Legendre multipoles,

δβ̂ð0ÞoddðθÞ ¼
X∞
l¼0

a2lþ1P2lþ1ðcos θÞ;

δβ̂ð1ÞevenðθÞ ¼
X∞
l¼0

b2lP2lðcos θÞ; ð107Þ

where the coefficients an and bn obey the recursions (B2)
and (B10). The coefficients an and bn remain of the same
order as a1 and b0 if v0 ∼ cs, or decay at high n as ðv0=csÞn
if v0 ≪ cs. Thus, for small velocities v0 ≪ cs, we recover
the linear flow as higher orders become negligible and the
coefficients a1 and b0 take their linear-flow values.
The velocity field is given by v⃗ ¼ ∇̂ β̂, which yields

vr ¼ v0 cos θ −
1

r̂2
ðδβ̂ð1Þodd þ δβ̂ð1ÞevenÞ þ…;

vθ ¼ −v0 sin θ þ
1

r̂
dδβ̂ð0Þodd

dθ
þ 1

r̂2

�
dδβ̂ð1Þodd

dθ
þ dδβ̂ð1Þeven

dθ

�

þ… ð108Þ
Thus, the deviations from the uniform flow v⃗0 decay as
1=r̂2 for the radial velocity and as 1=r̂ for the angular

velocity. Moreover, the angular velocity and the velocity
squared are even up to order 1=r̂. From Eq. (71), we obtain
for the density

ρ̂even ¼ ρ̂0 þ
1

r̂
þ 2v0 sin θ

r̂
dδβ̂ð0Þodd

dθ
þ…;

ρ̂odd ¼
2v0
r̂2

�
cos θδβ̂ð1Þeven þ sin θ

dδβ̂ð1Þeven

dθ

�
þ… ð109Þ

where ρ̂0 ¼ 3k20=2 ¼ γ − v20. Thus, the density field is even
up to order 1=r̂.
Using the explicit expression (99) and Eq. (97) and going

back to physical coordinates, we obtain

ρeven ¼ ρ0 þ
GMBHρ0

cs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2s − v20Þr2 þ v20z

2
p þ…;

ρodd ¼
4Bρ0G2M2

BHv0csz

½ðc2s − v20Þr2 þ v20z
2�3=2 þ… ð110Þ

The even component agrees with the results of [24,58] for
the linear density perturbation in an isothermal gas by a
moving star, without mass accretion. The new odd com-
ponent, proportional to the coefficient B, is related to the
accretion by the BH, as described in Sec. VI and Eq. (127)
below. It is also the source of the dynamical friction, as
shown in Sec. VII.
Expanding ρ̂even in powers of v0, we have

ρ̂even ¼ ρ̂0 þ
1

r̂
þ v20
2c2s r̂

sin2 θ þ… ð111Þ

Thus, at large radii, r̂ ≫ r̂γ, and for v0 ≪ cs, the density
correction due to the motion of the BH remains much
smaller than the static contribution associated with the BH,
ρ̂0 ≫ 1=r̂ ≫ v20=ðc2s r̂Þ. Therefore, it is legitimate to neglect
this correction to the self-gravity of the dark matter
perturbation, as we assume throughout this paper [note
that the 1=r̂ term includes the self-gravity in the response of
the scalar cloud to the BH in the static case, see Eq. (20)].
At smaller radii, the BH gravity dominates over the scalar-
field background self-gravity, and hence over the scalar
perturbation too.

C. Numerical scheme

In the subsonic regime that we study in this paper, the
flow remains close to the linear solution (85). In particular,
there is no shock at large radii. Then, an iterative approach
starting from this linear approximation converges and
provides an efficient numerical scheme. In practice, we
write Eq. (67) as

∇̂ · ðk2þ∇̂ β̂Þ ¼ S; S ¼ 2

3
∇̂ · ½ð∇̂ β̂Þ2∇̂ β̂�; ð112Þ
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and we solve this system (112) with an iterative scheme.
First, starting from the linear flow β̂L, we compute the
source term S from the second equation. Second, we obtain
an improved flow β̂ by solving the first equation. We
expand the fields over Legendre multipoles and use the
Green’s function of the linear operator ∇̂ · ½k2þ∇̂ð·Þ�, as
detailed in Appendix A. We repeat these two steps until the
flow converges.

D. Numerical results

For our numerical computation we take k0 ¼ 10−3,
which is the order of magnitude associated with gravity-
self-interactions equilibrium. Indeed, from Eqs. (16) and
(57), we have in the bulk of the soliton, far from the BH
horizon, k2 ∼ΦI ∼ΦN, and the typical amplitude of the
gravitational potential in astrophysical and galactic systems
is ΦN ∼ 10−6. In virialized systems dominated by gravity,
the typical velocities are also of order v2 ∼ΦN. This is also
the magnitude of the speed of sound, as c2s ∼ k20. Becausewe
focus on the subsonic regime in this paper,we takev0 ¼ cs=2
in the numerical computations below. This is of the expected
order of magnitude while remaining below the sound speed.
For the matching radius we take r̂m ¼ 80, in order to respect
the constraints discussed in Sec. III C. The behavior of the
scalar-field flow does not depend on these precise values but
only on the properties k0 ≪ 1 and v0 < cs.

1. Legendre multipoles of the velocity field

We obtain the Legendre multipoles of the phase β by the
iteration scheme described previously, below Eq. (112).
More details are provided in Appendix A. We find that the
scheme converges after a few iterations and we show our
results obtained after the 9th iteration. This is because the
nonlinear flow remains close to the linear approximation
(85) in the subsonic regime, v0 < cs.
We show in Fig. 3 our results for the Legendre multi-

poles of the radial and angular velocities, defined as

vr ¼
X
l

vrlPlðcos θÞ; vθ ¼ − sin θ
X
l

vθlP0
lðcos θÞ;

ð113Þ

with

vrl ¼ dβ̂l
dr̂

; vθl ¼ β̂l
r̂
: ð114Þ

At small radii, r < rm, we use the radial monopole
obtained from radial accretion in [36] and the dipole
obtained for the linear flow (85). This sets the inner
boundary condition and we only solve the nonlinear system
(112) for r > rm. This is why the higher-order multipoles
are truncated at r̂m. We can check that this procedure is

valid as they are indeed negligible as compared with the
monopole at radius r̂m. The radial velocity vr diverges at
the Schwarzschild radius [36], but this is an artefact due to
the choice of coordinates and to the fact that the quantity
dβ̂=dr̂ can only be interpreted as a velocity in the non-
relativistic regime.
We can see in the figure the partial decoupling of odd and

even components described in Appendix B and Sec. V B.
Odd multipoles of the phase β̂ have a constant tail at large
distance, in addition to the linear dipole associated with the
uniform flow v⃗0, whereas even multipoles decrease as 1=r̂,
see Eqs. (106)–(107). This implies that for the angular
velocity, vθ ¼ ð1=r̂Þ∂β̂=∂θ, the even multipoles decay as
1=r̂whereas the oddmultipoles decay as 1=r̂2, see Eq. (108).
Note that with the notation (113) even components of vθ
correspond to odd l. These two different decay rates are
clearly seen in the lower panel, where solid lines show the
odd components and dashed lines the even components.
On the other hand, the constant odd tail of the phase β̂

does not contribute to the radial velocity, vr ¼ ∂β̂=∂r̂. This
implies that only the leading even tail and the subleading

FIG. 3. First Legendre multipoles of the radial velocity vrl
(upper panel) and of the angular velocity vθl (lower panel), as
defined in Eq. (114). The solid lines show even indices l whereas
the dashed lines show odd l.
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odd tail of order 1=r̂ in β̂ contribute, and all multipoles of
the radial velocity decay at the same rate 1=r̂2, as seen in
the upper panel and in Eq. (108).
We can see that the large-distance asymptotic regime is

only reached beyond r̂γ ∼ 106, and at larger radii for higher-
order multipoles. This radius rγ ∼ rsg corresponds to the
radius where the scalar-field self-gravity and pressure are of
the same order as the BH gravity. At larger radii, the impact
of the BH gravity is screened by the collective response of
the scalar field (its pressure). This leads to the steep falloff
of the velocity corrections to the uniform flow v⃗0. We will
see below that the same physics also damps the perturba-
tions of the density field at large radii and replaces the
divergent Coulomb logarithm of the collisionless dynami-
cal friction by a finite number (while also changing the
scaling in v0 and cs).
We also note that even for the relatively large velocity

v0 ¼ cs=2, the corrections to the linear flow (85) are still
small, as shown by the magnitude of the higher-order
multipoles l ≥ 2. Thus, as will also be apparent in Fig. 5
below, the flow appears as a superposition of a monopole
radial accretion, close to the purely radial result, with a
dipole term associated with the uniform velocity v⃗0 at
infinity. This agrees with the numerical results obtained in
[59,60] for the motion of a BH in a perfect gas, with either
Newtonian or relativistic treatments.

2. Legendre multipoles of the density field

We show in Fig. 4 our results for the Legendre multi-
poles ρ̂l of the density field, multiplied by a factor r̂.
We can see that the monopole dominates at all radii. This
is because the density goes to the constant density ρ̂0
associated with the soliton at large radii, whereas at small
radii the flow becomes radial, as seen in Fig. 3, which also
implies a spherically symmetric configuration.
In agreement with Eq. (109), the product r̂ρ̂rl goes to a

constant at large radii for the even multipoles beyond l ¼ 0,

and decreases as 1=r̂ for the odd multipoles. At small r̂, the
monopole grows as 1=r̂ while higher-order multipoles grow
more slowly or decrease. In particular, for the linear flow
(85), using Eq. (88) we can see that the dipole behaves as
r̂

ffiffi
2

p
−2 at small radii, so that r̂ρ̂l¼1 ∝ r̂

ffiffi
2

p
−1 → 0.

3. Scalar-field flow and density maps

We display in Fig. 5 maps of the scalar velocity and
density fields. The BH is located at the center of the plots
and the scalar-field dark matter comes from the left with the
uniform velocity v⃗0 and density ρ0.
The upper row shows maps of the velocity field,

represented by the arrows with unit length, on different
scales. We zoom in onto the BH from the left to the right
panel. The middle row shows the corresponding maps of
the magnitude jv⃗j of the velocity.
On the largest scale, in the left panels, the flow is almost

unaffected by the gravitational pull from the BH and
roughly keeps its incoming velocity v⃗0, moving from the
left to the right. As seen in the middle-row panel below, the
flow is almost symmetric over ẑ ↔ −ẑ, that is, v2 is an
almost even function of cos θ. This agrees with the large-
radius expansions analyzed in Sec. V B and Appendix B
and shown in Fig. 3. From Eq. (108), at large distance
the first correction δv⃗ to the velocity, with respect to the
incoming velocity v⃗0, is an even angular velocity
δvθeven ∝ 1=r̂. This gives an even correction to the velocity
magnitude, δv2even ∝ 1=r̂. This agrees with the pattern seen
in the left panels. The streamlines slightly focus toward the
BH in a symmetric fashion with respect to ẑ ↔ −ẑ. This is
obviously different from the case of free point particles and
similar to what happens in a gas. This is due to the pressure
generated by the self-interactions, that grows near the BH as
the density increases. At large distance, themain effect is that
particles are first slowed down, as they approach ẑ ¼ 0, and
next accelerated to recover the velocity v⃗0 downstreams.
In the middle-column panels, on intermediate scales, we

can see more clearly the streamlines being deflected toward
the BH. We can also see a turning point on the ẑ-axis
somewhat behind the BH. This separates the region, far
from the BH, where the streamlines escape to infinity to the
right of the figure, and the inner region where the stream-
lines fall into the BH. Obviously, there is no such turning
point to the left of the BH, as the dark matter coming from
the left along the ẑ-axis keeps moving straight toward the
BH until it falls into the latter. This is a clear signature of
the asymmetry of the flow, in contrast with the case of a
potential flow around a compact object without accretion
(e.g., the flow of water around a hard ball). Mathematically,
this is due to the different boundary conditions around the
object, the radial infall at the BH horizon in our case or
the vanishing normal velocity at the surface of the ball in the
usual hydrodynamical case.As seen in previous sections, the
boundary condition at infinity corresponds to the dipole in
Eq. (85), while the boundary condition close to the center

FIG. 4. First Legendre multipoles of the density multiplied by a
factor r̂, r̂ρ̂rl.
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corresponds to the monopole in Eq. (85). Thus, the two
boundary conditions have different parity, which implies the
flow is neither exactly odd or even. The phase is odd at large
distance and becomes even close to the BH, with a complex
pattern in the intermediate region. This also means that
the asymmetry of the flow is related to the accretion by the
BH, which determines the inner boundary condition. The
dynamical friction of the BH, due to this asymmetry, is
therefore directly related to the accretion rate. We will
recover this relationship in Sec. VII, where we obtain the
explicit expression of the dynamical friction.
In the right-column panels, we can see the flow becom-

ing radial as we zoom in closer to the BH. This agrees with
the results of Fig. 3, which show that the monopole
dominates at small radii. The velocity magnitude grows
at smaller radii as the flow is accelerated by the BH gravity

during its infall. As explained in Sec. III C, below a critical
radius rc the flow switches to the high-velocity branch, the
pressure due to the self-interactions is no longer able to
resist gravity and the dark matter reaches the BH horizon as
in free fall.
The lower row in Fig. 5 shows maps of the odd

component of the density field, more precisely the ratio
r̂ρ̂odd=ρ̂0. We single out the odd component to emphasize
the asymmetry in the flow and the appearance of a wake
behind the BH. Indeed, the dynamical friction of the BH
is due to the asymmetry of the flow (by symmetry, a
symmetric flow would not generate any drag force) but it
would be difficult to distinguish it in a map of the total
density, as the even component dominates on all scales as
was found in Fig. 4. Indeed, the total density appears
almost spherically symmetric on all scales in the subsonic

FIG. 5. Flow (top panels), iso-velocities contours (middle panels) and odd-component of the density field r̂ρ̂odd=ρ̂0 (bottom panels) for
the scalar-field at different scales (106, 2.5 × 104 and 104 rs). The velocity and the density are computed from the multipoles of β̂. The
BH is located at the center of the figures, at ẑ ¼ x̂ ¼ 0, where ẑ ¼ z=rs and x̂ ¼ x=rs.
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regime that we consider in this paper. The same pattern is
found for the case of a perfect gas, in both Newtonian and
relativistic numerical simulations [59,60].
We add the factor r̂ to see more clearly the radii that

dominate the gravitational pull on the BH by the overdense
wake of the dark matter, as the gravitational force is of the
form Fgrav ∼

R
dr⃗ρr⃗=r3 ∼

R
d ln rðrρÞ. From Eq. (68) a

decrease of the velocity implies an increase of the density,
as ρ̂ ¼ 3k2þðr̂Þ=2 − v2. Then, the turning point in the
velocity field, somewhat behind the BH, corresponds to
an increase of the density as compared with the radial
reference. This clearly shows the asymmetry and the
existence of a wake behind the BH. As seen in the figure,
and in agreement with Fig. 4, the product r̂ρ̂odd peaks at the
large radius r̂γ ∼ 106. This is also the radius r̂sg where the
soliton self-gravity becomes of the order of the BH gravity.
Thus, in contrast with the case of free particles, beyond r̂γ
the self-interaction pressure dominates over the BH gravity
and screens its impact on the dark matter distribution.
This provides a large-scale cutoff, which will also remove
the Coulomb logarithm of the dynamical friction found
for collisionless particles in Chandrasekhar’s classical
study [17].

VI. MASS ACCRETION BY THE BH

A. Relationship with large-radius expansions

1. Mass flow through a large sphere

In a steady state, the accretion of matter by the BH is
given by the flux of matter through any closed surface that
surrounds the BH,

_̂MBH ¼ −
Z
Ŝ
d⃗Ŝ · ρ⃗̂v; ð115Þ

where the radius of the surface is large enough for the low-k
nonrelativistic regime (68) to apply. We can check that the

accretion rate _̂MBH does not depend on the surface Ŝ, as the
difference between fluxes through Ŝ and any smaller or
greater surface Ŝ0 is given by the integral of ∇̂ · ðρ⃗̂vÞ over
the volume V̂Ŝ;Ŝ0 between these two surfaces, which is zero
from Eq. (68). This means that we can obtain the mass loss
of the scalar field medium from the large-distance expan-
sion (106), by choosing a surface much beyond the radius
r̂γ. Choosing for Ŝ the sphere of radius r̂, the mass flux
reads

_̂MBH ¼ −2πr̂2
Z

1

−1
duρ̂vr; ð116Þ

where u ¼ cos θ. Thus, only the monopole of the radial
momentum ρ̂vr contributes. At leading order 1=r̂2, it is set
by the even b2l series in (107) and we obtain

_̂MBH ¼ 4π

�
b0

�
γ −

5

3
v20

�
þ b2

8v20
15

�
; ð117Þ

which is independent of the radius r̂ as it should.

2. Mass flow following the streamlines

Alternatively, we can compute the accretion of mass by
the BH by following the scalar-field streamlines, in a
manner similar to the computation in the case of free
particles where one follows their trajectories. In contrast
with the free case, the streamlines do not escape to ẑ → ∞
with a nonzero deflection angle θ∞. Thanks to the effective
pressure generated by the self-interactions, the flow is
smooth, without shocks or caustics, as long as we restrict
ourselves to the subsonic regime (95), and the velocity at
large distances downstream is again v⃗0. Thus, the stream-
lines are again parallel to the z–axis far downstream, see
the velocity field shown in the upper row in Fig. 5. Then,
as shown in Fig. 6, we take for the closed surface Ŝ the
cylinder of varying transverse radius b̂ðẑÞ that follows the
streamlines of incoming impact parameter b̂− at ẑ− → −∞
and outgoing transverse radius b̂þ at ẑþ → þ∞. As
discussed in Sec. V D 3, because of the asymmetry gen-
erated by the mass loss into the BH, the streamlines are not
exactly even and b̂þ ≠ b̂−. Then, the mass loss reads

_̂MBH ¼ 2π

Z
b̂−

0

db̂ b̂ ρ̂vzjẑ− − 2π

Z
b̂þ

0

db̂ b̂ ρ̂vzjẑþ : ð118Þ

This is the difference between the upstream and down-
stream mass fluxes, as there is no mass flux through the
transverse surface of the cylinder.
The streamlines r̂ðθÞ can be obtained by integrating

streamlines∶
dr̂
dθ

¼ r̂vr
vθ

; ð119Þ

or from the stream function Ψ defined by

∂Ψ
∂θ

¼ ρr2 sin θvr;
∂Ψ
∂r

¼ −ρr sin θvθ; ð120Þ

FIG. 6. The axisymmetric cylinder following the streamlines
used for the computation of Eq. (118).
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which ensures the continuity equation (68) is satisfied,
∇ · ðρv⃗Þ ¼ 0, as the streamlines correspond to the curves of
constant Ψ. From the expansions (107) we can obtain the
large-distance expansions of the velocity and density fields,
of the streamlines and the stream function. We obtain

r̂ðθÞ¼ b̂
sinθ

−
1

b̂v0 sinθ

X
l

b2lð1þ cosθP2lÞþ… ð121Þ

where we only kept the leading orders in the impact
parameter b̂ of the even and odd components of the
streamlines. The first term gives at leading order
r̂ sin θ ¼ b̂. This is the even straight line of constant
transverse radius b̂, parallel to the z–axis, associated with
the zeroth-order solution when the BH gravity is neglected.
The second term is the first asymmetric contribution, which
is a subleading correction as there is also an even term of
order b̂0 generated by the a2lþ1 series in the expansion
(107) (as noticed in Sec. V B and Eq. (108), the leading
correction to the flow is even in ẑ ↔ −ẑ and the asymmetry
only appears at the next subleading order). The impact
parameter upstream is ðr̂ sin θÞẑ→−∞ ¼ b̂ while the trans-
verse radius downstream is

ðr̂ sin θÞẑ→þ∞ ¼ b̂ −
2

b̂v0

X
l

b2l þOð1=b̂2Þ: ð122Þ

The series in b2l can be expressed in terms of b0 and b2 by
using the explicit expression (101) and noticing that

δβ̂ð1Þevenðθ ¼ 0Þ ¼ B ¼ P
l b2l. This gives

B ¼
X
l

b2l ¼ b0
3

3γ − 5v20
γ − v20

þ 4b2
15

2v20
γ − v20

: ð123Þ

In fact, using the explicit expression (101) we can also
express b0 and b2 in terms of B. This gives in particular

b0 ¼ B
cs
2v0

ln

�
cs þ v0
cs − v0

�
¼ B

�
1þ v20

3c2s
þ…

�
: ð124Þ

Going back to the expression (118) for the accretion rate,
we can choose the large-distance limit of the cylinder such
that jẑ�j ≫ b̂� ≫ r̂γ. Then, the angles θ− and θþ go to π
and 0, the density and velocity go to ρ̂0 ¼ γ − v20 and v⃗0,
and we obtain

_̂MBH ¼ πρ̂0v0ðb̂2− − b̂2þÞ ¼ 4πρ̂0
X
l

b2l ¼ 4πρ̂0B; ð125Þ

where we used Eq. (122) for the relationship between the
upstream and downstream transverse radii b̂� and the first
equality in Eq. (123). Using the second equality in
Eq. (123) we recover Eq. (117), as it should.

The expression (125) fully determines the large-distance
even component of the phase β̂even in terms of the BH

accretion rate, with Eq. (101) and B ¼ _̂MBH=ð4πρ̂0Þ. The
latter is set by the boundary conditions close to the BH, at
the matching radius rm. As explained in Sec. III C, at small
radii the flow is in the relativistic regime with a radial
pattern, as the monopole radial velocity grows like 1=r
whereas higher multipoles decrease. At the critical radius rc
the flow makes a smooth transition from the low-velocity
branch v ≪ kþ to the high-velocity branch v ≃ kþ. This
also sets the critical value Fc of the scalar-field flux, which
is self-regulated by the pressure associated with the scalar
self-interactions. This gives the connection between the
large-distance behavior (106) and the small-scale relativ-
istic physics near the BH horizon. Going back to physical
coordinates, the flux obtained in this fashion for the radial
case reads [36]

_MBH ¼ 4πF⋆
r2sm4

λ4
¼ 3πF⋆ρar2s ; ð126Þ

where the numerical value F⋆ ≃ 0.66 is obtained from the
numerical computation of the unique profile that goes from
the Schwarzschild radius to the outer static soliton.
The comparison of Eqs. (125) and (126) gives

_MBH ¼ 4πρ0r2sB with B ¼ F⋆
3ρa
4ρ0

¼ F⋆
k20

: ð127Þ

From Eq. (107), the monopole of the radial velocity at
large distance reads vr0 ¼ −b0r2s=r2. Using (127) and
(124), this agrees in the limit v0 → 0 with the result vr ¼
−F⋆m4r2s=ðλ4ρ0r2Þ obtained in [36] for the radial case.
In this paper we focus on the subsonic case,

v0 < cs ≪ 1, hence we always have v0 ≪ 1. Then, as
explained above, the flow becomes radial much before
reaching the critical radius rc and the self-regulated critical
flux Fc is identical to the one obtained in the purely radial
case. This sets the accretion rate by the BH to (126), which
does not depend on v0. However, the scalar-field flow at
large radii depends on v0, including its monopole compo-
nent as seen from Eq. (124), with a singularity at v0 → cs.
This singularity is beyond the treatment that we give here as
we only focus on the regime v0 < cs. As seen in Figs. 2 and
3, even at v0 ¼ cs=2 the flow remains close to the linear
flow (85), with only small nonlinear corrections. We
checked that our numerical profile gives at large distance
a coefficient b0 for the monopole of β̂ that agrees with the
prediction (124)–(127).

B. Comparison with previous works and other systems

The result (126) implies

_MBH ∼ ρ0r2s=c2s ∼ ρ0G2M2
BH=c

2
s : ð128Þ
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This is different from the radial accretion of collisionless
particles with an isotropic and monoenergetic distribution
at the characteristic velocity cs [61]

collisionless ∶ _Mfree ¼
16πρ0G2M2

BH

cs
ð129Þ

and the classical radial Bondi accretion rate [53] for an
isothermal gas, _MBondi ∼ ρ0r2s=c3s , which also corresponds
to the subsonic limit of the so-called “Bondi-Hoyle-
Lyttleton accretion rate” [62,63]

Bondi-Hoyle∶ _MBondi−Hoyle ¼
2πρ0G2M2

BH

ðc2s þ v20Þ3=2
ð130Þ

The hydrodynamical accretion rate (130) is much greater
than the collisionless accretion rate (129), by a factor
ðc=csÞ2 ∼ 106, where c ¼ 1 is the speed of light. This is
because the collisions restrict tangential motion and funnel
particles in the radial direction [61]. The scalar-field
accretion rate is in-between these two cases. As could
be expected, for the same hydrodynamical reason it is
higher than the free rate, as the flow is more efficiently
converted into a radial pattern at small radii, but now by a
factor c=cs ≫ 1. However, it is much smaller than the
accretion rate of the perfect gas rate, by a factor cs=c ≪ 1.
Thus, the scalar-field self-interactions are much more
efficient to resist the BH gravity and slow down the infall.
This is because the scalar field has a different equation of
state and deviates from a perfect gas in the relativistic
regime, which sets the critical flux Fc and the normaliza-
tion of the global profile [36]. This agrees with the fact that
for a perfect gas with adiabatic index γad > 5=3, there is no
Newtonian steady transonic solution but one exists in
general relativity [60,61]. This again shows the critical
role of relativistic effects at small radii for steep equations
of state.
The expression (126) can be understood in simple terms.

It simply means that close to the BH horizon rs, where the
infall velocity is close to the speed of light, the scalar
density is of the order of ρa, as can be checked by an
explicit computation of the scalar profile, see [36] and
Eq. (53). From Eq. (6), this is the density where the self-
interaction potential ΦI is of order unity and the self-
interaction term VI ¼ λ4ϕ4=4 is of the order of the mass
term m2ϕ2=2. This characteristic density provides an upper
bound on ρ, and hence on the accretion rate, as the infall
velocity cannot be greater than the speed of light.

VII. DYNAMICAL FRICTION

A. Relationship with large-radius expansions

As the BH moves through the scalar-field cloud it is
slowed down by a drag force, often called dynamical
friction. By symmetry, this force F⃗ ¼ Fze⃗z is directed

along the z-axis. As sketched in Fig. 7, let us consider an
open subsystem formed by the BH and the scalar field
inside a surface Sin that encloses the BH, far enough from
the horizon for Newtonian dynamics to hold but close
enough for its mass M to be dominated by the BH mass
MBH. The surface Sin ¼ ∂V in bounds a volume V in. Outside
this volume the scalar cloud extends up to the soliton radius
Rsol, at a much greater distance. This defines the outer
volume Vout. Going back to physical coordinates, the
change of momentum of this subsystem, of volume Vin,
reads

dpz

dt
¼ GMBH

Z
Vout

dr⃗ρðr⃗Þ r⃗ · e⃗z
r3

−
Z
∂V in

d⃗S · Pe⃗z

−
Z
∂V in

d⃗S · ρv⃗vz: ð131Þ

The first term, integrated over the volume Vout of the scalar
cloud, is the usual dynamical friction term due to the
gravitational wake [64], that is, the gravitational pull from
the scalar-field overdensity generated behind theBH through
the deflection of the streamlines under the BH gravity. The
second term, which is absent in collisionless media such as
the stellar cloud considered by Chandraskhar’s classical
study [17], is the pressure exerted by the outer cloud on
the subsystem. The third term is the contribution of the
momentum flux through the surface Sin. This last term is
clearly related to the local influx of matter and therefore the
infall ofmass into theBH, i.e., accretion, but it vanishes if the
flow is radial close to the BH.
In the limit of an infinite constant-density scalar cloud,

the first gravitational term suffers from the same divergence
as the Newtonian gravitational force in an infinite homo-
geneous universe, associated with the so-called “Jeans
swindle.” As usual, this can be cured by integrating first
over angles or by regularizing Newtonian gravity with a
damping factor e−κjr⃗−r⃗0j, taking the limit κ → 0 at the end of
the computations [65]. This implies that a constant-density
background does not contribute and only the asymmetry of

FIG. 7. Inner and outer surfaces used in Eq. (131).
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the perturbed scalar density field contributes, associated
with the wake behind the BH.
Considering the surface Sin as the inner boundary of the

outer volume Vout, which changes the sign of dS
	!

, and
introducing the external surface Sout of the scalar cloud
itself, we can write the pressure term as

−
Z
∂V in

dS
	!

· Pe⃗z ¼
Z
∂Vout

dS
	!

· Pe⃗z −
Z
Sout

dS
	!

· Pe⃗z

¼
Z
Vout

dr⃗
∂P
∂z

−
Z
Sout

dS
	!

· Pe⃗z; ð132Þ

as ∂Vout ¼ Sin ∪ Sout and we used the divergence theorem
in the second line. If the scalar cloud is isolated in vacuum,
the pressure term vanishes at the cloud boundary. However,
this is not the case if we choose a surface Sout that is inside
the scalar cloud, but large enough for the drag force to have
converged. Then, noticing that the first term in Eq. (131) is
also the opposite of the gravitational attraction by the BH of
the outer scalar cloud, we obtain

dpz

dt
¼

Z
Vout

dr⃗
�
ρ
∂ΦBH

∂z
þ ∂P

∂z

�
−
Z
Sout

dS
	!

· Pe⃗z

−
Z
∂V in

dS
	!

· ρv⃗vz: ð133Þ

Far inside the soliton boundary, the steady-state Euler
equation associated with the continuity and Bernoulli
equations (68) reads

∇ · ðρv⃗vzÞ ¼ ρv⃗ ·∇vz ¼ −ρ
∂ΦBH

∂z
−
∂P
∂z

: ð134Þ

Substituting into Eq. (133) we obtain the drag force on the
BH

Fz ¼
dpz

dt
¼ −

Z
Sout

dS
	!

· ρv⃗vz −
Z
Sout

dS
	!

· Pe⃗z: ð135Þ

This expression no longer depends on the inner surface Sin,
nor on the bulk of the volume Vout. Therefore, we can
shrink the inner surface Sin toward the BH. The first term
expresses the conservation of momentum as for collision-
less systems: in the steady state, the momentum that enters
the external boundary Sout is equal to the gain of momen-
tum of the BH (like in Eq. (115) the accretion of mass by
the BH is equal to the mass inflow through any enclosing
surface S). The second term takes into account the impact
of the pressure, when the surface Sout is taken within the
soliton cloud. The clear interpretation of Eq. (135) means
that it could have been used at once as the definition of the
net drag force, in a steady state, as in [24] for the case of the
isothermal gas. The interest of the derivation above is to
clarify its link with the expression (131), which contains the

more familiar gravitational wake term, associated with the
usual meaning of dynamical friction in the case of free
particles.

B. Relationship with the accretion rate

As for the BH accretion rate, we can check that the
dynamical friction converges to a finite value that does not
depend on the shape of the surface Sout, in the large-
distance limit. Choosing for the surface Sout a distant sphere
centered on the BH, as in the upper panel of Fig. 6, we
obtain in dimensionless variables the monopole contribu-
tion F̂z ¼ −4πr̂2ðρ̂vrvz þ cos θP̂Þl¼0. At large radius r,
using the large-distance expansions derived from (107), we
find that the factors r̂ cancel out as expected and we obtain

F̂z ¼ v0
_̂MBH, where

_̂MBH is the BH accretion rate obtained
in (117). Choosing instead for the surface Sout the elongated
cylinder that follows the streamlines, as for the computation
(118) and as in the lower panel of Fig. 6, we find at once
that the first term in Eq. (135) gives F̂z ¼ πρ̂0v20ðb̂2−−
b̂2þÞ ¼ v0

_̂MBH. An explicit computation from the expan-
sions derived from (107) shows that the pressure integral of
the second term vanishes as 1=b. Therefore, we find that
both computations give the same result,

Fz ¼ _MBHv0: ð136Þ

Thus, the drag force is simply given by the product of the
accretion rate and the relative velocity. Using Eq. (128) we
obtain

Fz ∼ ρ0r2sv0=c2s ∼ G2M2
BHρ0v0=c

2
s : ð137Þ

We checked that our numerical computation of the scalar-
field profile agrees with the prediction (136). As explained in
Sec. III C,wematch the scalar-field cloud to the radial flow at
the matching radius rm, somewhat beyond the critical radius
rc associated with the transition from the low-velocity to the
high-velocity branch. Choosing for the inner surface Sin the
sphere of radius rm, the second and third terms of Eq. (131)
vanish by symmetry. The first gravitational term reads
ð4π=3ÞGMBH

R
∞
rm
drρl¼1. It is given by the dipole of the

scalar-cloud density field (thus the unperturbed background
does not contribute), which decays as 1=r2 at large distance,
as seen in Eq. (110) and Fig. 4, and our numerical
computation agrees with Eq. (136).

C. Comparison with previous works and other systems

1. Accretion, gravitational wake and drag force

There can be some confusion in the literature about the
net drag force. In the collisionless case, following
Chandraskhar’s classical work [17], it is usually called
dynamical friction and it is due to the long-range gravi-
tational interaction between the perturber (here the BH) and
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the distant stars of the stellar cloud. Summing over the
changes of velocity experienced during these distant
encounters gives the well-known result (139) recalled
below. An alternative treatment is to compute the pertur-
bation to the steady-state distribution of the stars by the
perturber [64]. Indeed, by bending the trajectories of the
distant stars the perturber generates a gravitational wake
behind it. The overdensity in this wake is then responsible
for the deceleration of the perturber [66]. Computing the
gravitational pull from this overdense wake gives back
Chandraskhar’s result. This clearly corresponds to the first
term in Eq. (131). In such a system, there is no accretion nor
pressure. However, when there is accretion on the perturber
(whether a BH or a massive star), another source of
momentum exchange is associated with the momentum
deposited by the accreted material, sometimes called a
capture drag or accretion drag force. In some studies, these
two sources of momentum exchange are estimated sepa-
rately, found to be of the same order, typically given by the
Chandraskhar expression (139) below, and one simply uses
the latter formula or adds both contributions. However,
naive estimates can create confusion and lead to double
counting. Indeed, our explicit computation (136) shows
that the net drag force is actually equal to a naive estimate
of the momentum exchange associated with the accretion.
Then, one could wonder where the contribution associated
with the long-range gravitational interaction has disap-
peared. Moreover, we find that the latter, given by the first
term in Eq. (131), is actually almost equal to (136). The
explanation is clearly seen in Eq. (131), where the first term
is obviously the dynamical friction associated with the
long-range gravitational interaction, and the third term the
deposited momentum. However, this latter quantity is much
smaller than the naive estimate _MBHv0 because matter falls
almost radially onto the BH near the horizon, precisely
because of the gravitational interaction that bends the flow
(combined with the fluid pressure). Therefore, one cannot
separate both effects. Fortunately, Eq. (135) provides a
simple expression for the net drag force that does not need
to separate between such a gravitational friction and a
capture drag. Therefore, we prefer to use the term net drag
force to describe the total force felt by the BH, which is the
relevant quantity for practical purposes.
An advantage of the expression (135) is that it allows us

to obtain the analytical result (136), thanks to the relation-
ship with the large-distance expansions. This is quite useful
as the accretion rates and especially drag forces can be
difficult to compute by numerical simulations, which can
vary by factors of a few or more depending on the
numerical scheme [60]. Another key point is that it allows
us to obtain the drag force as could be understood from
an effective theory point of view, thanks to the integral
being performed at large distance, while keeping account
of all the nonlinear and relativistic effects close to the
Schwarzschild radius that actually determine the values of

the accretion rate and of the dynamical friction, as recalled
in Sec. III C and Eqs. (110) and (127).

2. Classical systems

As noticed in previous sections, the relation (136)
explicitly shows that the drag force vanishes with the
accretion rate. Indeed, in this case the potential flow is
symmetric with respect to the ẑ ¼ 0 plane and there can be
no net force along the ẑ axis. Not surprisingly, in view of
the hydrodynamical analogy derived in Sec. IV B in the
nonrelativistic regime, the drag force was also found to
vanish for the subsonic motion of a star in an isothermal
gas, without accretion, from a linear steady-state analysis
[23,58,67]. However, our result (136) does not rely on a
linear treatment. It simply uses Gauss’s theorem to write the
total drag force in terms of the asymptotic behavior of
the fields at large distance (135). This merely expresses the
conservation of mass and momentum in a steady state.
Moreover, the value of the accretion rate itself (126)
involves a fully nonlinear and relativistic treatment that
extends from large radii down to the Schwarzschild
radius [36].
When the accretion rate is nonzero the drag force no

longer vanishes. This is because the accretion onto the BH,
associated with a radial inward velocity flow near the BH
horizon, breaks the symmetry with respect to the ẑ ¼ 0
plane. This is clearly manifested by the turning point rturn
somewhat behind the BH, associated with a local maximum
of the dark matter density field in the wake.
The same relationship (136) between accretion and the

drag force was found in [24] for a BH moving in an
isothermal gas. The proportionality to _MBH is not surpris-
ing, as the dynamical friction in a perfect fluid without
accretion vanishes and the form of the relationship could be
expected from dimensional analysis. However, the fact that
the coefficient is unity is not obvious a priori (in the
extreme case of free particles, recalled in Eq. (140) below,
the drag force is actually nonzero even when there is no
accretion). Despite this formal similarity with the case of
the perfect gas, as noticed in Eq. (128), the accretion rate
for the scalar field is much smaller than for the isothermal
gas. This implies that the drag force is also much smaller.
Indeed, for the isothermal gas Ref. [24] obtains

subsonic perfect gas∶ Fperfect gas∼G2M2
BHρ0v0=c

3
s ; ð138Þ

and we find that both the accretion rate and the drag force
are smaller for the scalar dark matter by a factor cs=c ≪ 1,
see our result (137). (The result (138) was also obtained by
[23] using linear theory, without accretion but taking into
account finite-time effects. It is consistent with hydro-
dynamic simulations [68].)
The result obtained in Eq. (136) is also very different

from the one obtained by Chandrasekhar [17] for free
particles, and confirmed by numerical simulations [66,69],
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collisionless∶ Ffree ≃ 16π2CG2M2
BHρ0=v

2
0

Z
v0

0

dvv2fðvÞ;

ð139Þ

where the particle velocity distribution fðv⃗Þ is normalized
to unity and assumed to be isotropic, C is the Coulomb
logarithm C ≈ lnðbmax=bminÞ, with bmin ∼ GMBH=v20 and
bmax an infrared cutoff on the impact parameter bmax, taken
for instance as the size of the cloud. For a relative velocity
v0 that is smaller than the stellar cloud velocity dispersion
cs, this gives

v0 < cs∶ Ffree ∼ CG2M2
BHρ0v0=c

3
s ð140Þ

which shows the same scaling as the perfect-gas result
(138), with the addition of the Coulomb logarithm, even
though the relation with the collisionless accretion rate
(129) is very different, Ffree ∼ _Mfreev0Cc2=c2s . Thus, even
though the dynamical friction in the subsonic regime is not
zero, it is again much smaller than Chandrasekhar’s result,
by a factor cs=ðcCÞ ≪ 1. Therefore, the scalar-field self-
interactions are very efficient to reduce both the accretion
rate and the dynamical friction.
As explained in Sec. V D 3, another impact of the scalar-

field pressure, which dominates over the BH gravity at
large distance, is to screen the impact of the latter on the
dark matter distribution. As a result, the dark-matter density
perturbation decays faster at large distance, as 1=r2 for the
odd component as seen in Eq. (110), and there is no more
large-radius divergence in a Coulomb logarithm factor.
Thus, the dynamical friction (136) does not depend on the
size of the scalar cloud. There is no need for a small-scale
cutoff either, because the odd components of the product
rρl decrease at small radii, as seen in Fig 4. The fact that
our result (136) is finite and does not involve small-scale
nor large-scale cutoffs legitimates our steady-state compu-
tation. Our predictions for the accretion rate and the
dynamical friction should apply as soon as sound waves
have time to reach rγ, so that transients vanish and the
steady state can be achieved. This gives a time
t ∼ rγ=cs ≪ tdyn, where we define the typical dynamical
timescale of the soliton tdyn ∼ Rsol=cs, as Rsol ≫ rγ . (Here
we assume that the size of the soliton is much greater than
the radius rγ where the BH gravity and the soliton self-
gravity are of the same order.) Therefore, the steady-state
predictions should be achieved on timescales much shorter
than the global dark-matter halo timescale.

3. Fuzzy dark matter

Another popular scalar-field scenario is the FDM model
[11], where the self-interactions are negligible but the de
Broglie wavelength is very large. This corresponds to a
scalar mass m ∼ 10−22 eV in order to have wavelike effects
up to galactic scales and possibly alleviate small-scale

tensions of the CDM scenario. Using the Coulomb scatter-
ing of a plane wave by an 1=r potential [70], associated
with the Schrödinger equation in the external Newtonian
gravity of the BH, Ref. [12] finds that in this case the
dynamical friction reads

FDM∶ FFDM ∼
G2M2

BHρ0
v20

Cðβ; kRÞ; ð141Þ

with

β ¼ GMBHm
v0

; k ¼ mv0; ð142Þ

R is the size of the scalar cloud, and Cðβ; kRÞ is given in
terms of confluent hypergeometric functions. We write the
size of the soliton as R ∼ 1=ðmjΦNj1=2Þ ∼ 1=ðmcsÞ, where
we define the velocity scale cs as c2s ¼ jΦNj (this would be
the virial velocity in a classical system). Then, the radius rsg
where the BH gravity is of the order of the soliton self-
gravity is rsg ∼ GMB=c2s . This gives

β ∼
rsgcs
Rv0

; kR ∼
v0
cs

: ð143Þ

Assuming the size of the soliton is much greater than the
self-gravity radius rsg, we typically have β ≪ 1 and kR≲ 1

in the subsonic regime that we consider in this paper. In this
limit, Ref. [12] gives C ∼ ðkRÞ2 and we obtain

rsg
R

cs ≪ v0 < cs∶ FFDM ∼
G2M2

BHρ0
c2s

; ð144Þ

see also [32,57] for related studies. This is greater than the
classical result (140) by a factor cs=v0 > 1. This is because
there is no integration over a distribution function fðvÞ as in
Eq. (139), with a cutoff at v0 that expresses that higher-
velocity stars do not contribute to the dynamical friction.
Indeed, as the BH moves inside the soliton, which is a
coherent state with a vanishing phase, all scalar-cloud
velocities are zero (as in a Bose-Einstein condensate)
and below the BH velocity v0. However, there is still a
milder cutoff ∝ ðkRÞ2 ∝ ðv0=csÞ2, which gives the result
(144), related to the number of modes available in the
spectrum of vibrations of the scalar field. The expression
(144) agrees with the results of Ref. [20], obtained from a
different approach (their Eq. (4.12) for the case where the
scalar cloud radius is of the order of the Jeans length), and
Ref. [21], who used an hydrodynamical approach, which
also include weak quartic self-interactions. It also roughly
agrees with numerical simulations [22]. Thus, we find that
scalar dark matter with self-interactions gives a dynamical
friction that is smaller than for FDM, by a factor v0=c ≪ 1.
If the size of the FDM cloud is much greater than the de

Broglie wavelength, kR ≫ 1, one recovers the classical
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scaling (140) [71]. Indeed, for small de Broglie wavelength
the scalar field behaves as a collection of particles of
size λdB.
The result (141) was obtained from linear perturbation

theory and for Newtonian gravity [12,32]. It should
nevertheless remain a good approximation for FDM as
long as the Compton wavelength of the scalar cloud is
much greater than the BH horizon, see also [35]. In
contrast, the large-mass limit studied in this paper assumes
that 1=m ≪ rs. Moreover, our result (137), obtained for the
motion of a BH in the scalar cloud, involves fully nonlinear
and relativistic effects close to the Schwarzschild radius,
which actually determine the accretion rate and the drag
force. We are thus investigating both different systems and
different regimes. In our case, the self-interactions domi-
nate over the quantum pressure and the Compton wave-
length 1=m is much smaller than all astrophysical scales,
both the size of the scalar cloud and the BH horizon.

VIII. CONCLUSION

Scalar-field dark matter scenarios where scalar self-
interactions are not negligible differ from the fuzzy dark
matter models as the induced self-interaction pressure can
take over the role played by the quantum pressure for FDM.
This leads to new equilibrium configurations, i.e., solitons,
where the self-interaction pressure balances gravity and
leads to a smooth core for dark matter halos. In addition, the
self-interactions imply the existence of a nonvanishing
speed of sound. This influences the dynamics of compact
objects moving inside dark matter halos. In particular, this
modifies the accretion rate and the dynamical friction of a
moving BH inside a soliton. Focusing on the subsonic
regime, i.e., a relative velocity smaller than the speed of
sound, we have studied the dark matter flow for a system
composed of a Schwarzschild BH and a SFDM soliton, in
the case of a quartic self-interacting potential.
We have shown that in the large scalar mass limit, the

dark matter behaves as an isentropic potential flow, far from
the Schwarzschild radius, with a polytropic index γad ¼ 2.
This is a signature of the important collective effects
associated with the pressure generated by the self-
interactions. As such, the system in the subsonic regime
is closer to the case of a perfect gas than to a collection of
particles.
We find that in this low-velocity regime the flow remains

close to a simple linear approximation, where the velocity
potential is described by a monopole (set by the radial
accretion at the Schwarzschild radius) and a dipole (set by
the uniform flow at large distance). Going beyond this
linear approximation, we solved the nonlinear equations of
motion with an iterative numerical scheme. We also derived
large-distance expansions up to subleading order. This
allows us to obtain explicit results for the accretion by
the BH and its dynamical friction, as we show how they are
encoded in these large-distance expansions. However, our

analysis includes both nonlinear and relativistic effects,
which play a key role close to the BH horizon.
Despite the similarity with the usual perfect fluid on

large scales, the accretion rate is much smaller than Bondi’s
result for a perfect gas, by a factor cs=c ≪ 1. This is
because the scalar field departs from a perfect gas in the
relativistic regime and the accretion rate is set by the large-
field regime, not far from the Schwarzschild radius, where
the self-interactions are able to significantly slow down the
infall. This leads in turns to a dynamical friction that is
much smaller than for the perfect gas, by the same factor
cs=c, as we recover the same relationship between the
accretion rate and the drag force, Fz ¼ _MBHv0.
As compared with the case of free collisionless particles,

we obtain an accretion rate that is much greater, by a
factor c=cs ≫ 1. However, the dynamical friction is still
much smaller than Chandrasekhar’s result, by a factor
cs=ðcCÞ ≪ 1, where C is the Coulomb logarithm.
We also find that the dynamical friction for self-

interacting dark matter, in this large scalar-mass regime,
is smaller than for FDM, by a factor v0=c ≪ 1.
The smaller dynamical friction associated with such self-

interacting scalar darkmattermight result in a decrease of the
dephasing of the emission frequency of gravitational waves
as compared to FDM and CDM. Also, SFDM could play a
role in the Fornax globular cluster timing problem if
dynamical friction is reduced [29]. However, the computa-
tion presented in this paper only applies to the case of a BH,
with its specific boundary condition at the Schwarzschild
radius. For globular clusters and stellar objects, with negli-
gible accretion, we recover zero dynamical friction at leading
order, as found in the subsonic regime for perfect fluids in
[23], because of the hydrodynamic analogy obtained in the
nonrelativistic regime in Sec. IV B. Nevertheless, a more
accurate treatment, taking into account the perturbation to the
fluid self-gravity, is expected to show a small but nonzero
dynamical friction as found by [20]. This is left for future
studies. Other extensions of this work would be to consider
other self-interactions, beyond the quartic case, or scalar field
modelswith nonstandard kinetic potentials, and to generalize
the analysis to the case of a rotating BH.

ACKNOWLEDGMENTS

Ph. B. acknowledges support from the European Union’s
Horizon 2020 research and innovation programme under
the Marie Skłodowska -Curie grant agreement No. 860881-
HIDDeN.

APPENDIX A: GREEN FUNCTIONS

In the appendixes that follow we drop the hats for
simplicity of notation.
To go beyond the linear flow presented in Sec. VA, we

split the nonlinear equation (67) as the system of two
equations (112) and we solve this system with an iterative
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scheme. The source S is readily obtained from the flow β
with the second equation. The flow β is obtained from the
source S by solving the first equation with the help of
the appropriate Green function Gðr⃗; r⃗0Þ, which satisfies
∇ · ðk2þ∇GÞ ¼ δDðr⃗ − r⃗0Þ. Thus, the first equation in (112)
gives β ¼ βL þ R

dr⃗0Gðr⃗; r⃗0ÞSðr⃗0Þ, where βL is the linear
flow (85). Expanding the Green function in spherical
harmonics,

Gðr⃗; r⃗0Þ ¼
X
l;m

Glðr; r0ÞYm
l ðθ0;φ0Þ�Ym

l ðθ;φÞ; ðA1Þ

while we decompose the phase β and the source S in
Legendre polynomials, as in

βðr; θÞ ¼
X
l

βlðrÞPlðcos θÞ; ðA2Þ

we obtain

βl ¼ βLl þ
Z

∞

rm

dr0r02Glðr; r0ÞSlðr0Þ: ðA3Þ

As βL already matches the boundary conditions, the Green
function must become negligible at rm and at large radii.
Thus, we take

r < r0∶ Glðr; r0Þ ¼ wlG
þ
l ðrÞG−

l ðr0Þ;
r > r0∶ Glðr; r0Þ ¼ wlG−

l ðrÞGþ
l ðr0Þ; ðA4Þ

where

wl ¼ 3

2ðrþ γr2Þ½Gþ
l ðrÞG−0

l ðrÞ − Gþ0
l ðrÞG−

l ðrÞ�

is a constant thanks to the Wronskian theorem. At the inner
boundary rm, this gives ∂G0

∂r ðrmÞ ¼ 0 and we recover the
radial velocity. For the modes l ≠ 0, the radial and angular
velocities are not exactly zero at rm > 0. This was also
the case for the linear dipole (87), and we only require
that they are negligible. This is because we cut our
numerical solution at the radius rm, somewhat above the
Schwarzschild radius, where the flow is already dominated
by the radial accretion but angular velocities are not
exactly zero. We can check in Fig. 3 that this is a good
approximation.

APPENDIX B: MODE COUPLING
AT LARGE RADII

Herewe present an alternative approach to that of Sec. V B
to show how the nonlinear mode couplings, associated with
the cubic nonlinearity in Eq. (67), generate the large-distance
odd and even tails (107) for all Legendre multipoles, starting

from the linear seed (85). This follows the spirit of the
iterative numerical scheme applied to the system (112).

1. Odd multipoles

a. Constant velocity-potential tail for odd multipoles

The cubic nonlinearity in β in Eq. (67) generates some
mode coupling between Legendre multipoles. We can
estimate this effect at large radii, where the velocity is
almost equal to v⃗0 and β is dominated by the dipole in
expression (85). First, we note that the linear solution (85)
behaves at large radii as Eq. (104). At leading order for
r → ∞, the source S in (112) is dominated by the
contribution from two powers of the leading term v0r
and one power of the subleading term −v0=2γ from βL1 .
This gives a contribution of order 1=r2 to S. Terms of order
1=r2 are also generated in the left-hand side in the first
Eq. (112) by constant terms in β and by the contribution
from the leading v0r term paired with the contribution
2=ð3rÞ to the kernel k2þ in (72). This means that mode
couplings generate a constant tail for all odd multipoles, as
repeated action of the cubic nonlinearity spreads power
from the dipole to all higher-order odd multipoles. Thus,
we write for the odd part of the phase βodd a large-distance
expansion of the form (106)–(107). For the linear flow, we
have a1 ¼ −v0=ð2γÞ and all other multipoles are zero.
Collecting all the terms of order 1=r2 in Eq. (67), we obtain

−
γ

r2
X
n odd

annðnþ 1ÞPn −
v0 cos θ

r2

¼ 2v20
r2

X
n odd

annðnþ 1Þ

×

� ðnþ 2Þ2
ð2nþ 1Þð2nþ 3ÞPnþ2 þ

ðn − 1Þ2
ð2n − 1Þð2nþ 1ÞPn−2

−
2n2 þ 2n − 1

ð2n − 1Þð2nþ 3ÞPn

�
−
v20
r2

X
n odd

annðnþ 1ÞPn:

ðB1Þ

For the linear flow, which neglects the right-hand side, we
recover a1 ¼ −v0=ð2γÞ. Collecting the coefficient of each
Legendre polynomial Pn, this gives the recursion for odd
integers n ≥ 1,

−3k20an − v0δn;1 ¼ 4v20

�
nðn − 2Þðn − 1Þ

ðnþ 1Þð2n − 3Þð2n − 1Þ an−2

þ ðnþ 1Þðnþ 2Þðnþ 3Þ
nð2nþ 3Þð2nþ 5Þ anþ2

−
2n2 þ 2n − 1

ð2n − 1Þð2nþ 3Þ an
�
: ðB2Þ
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Thus, because of the mode couplings induced by the cubic
nonlinearity, a nonzero a1 generates nonzero values for all
odd multipoles.
Defining the parameter

ξ ¼ 3k20
v20

¼ 4
c2s
v20

; ðB3Þ

where cs was defined in Eq. (94), this recursion becomes at
large n

n ≫ 1∶ − ξan ¼ an−2 þ anþ2 − 2an: ðB4Þ

This has two independent solutions of the form

an ¼ yn=2þ and an ¼ yn=2− ; ðB5Þ

with

0 < ξ < 4∶ y� ¼ −ðξ − 2Þ � i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − ðξ − 2Þ2

p
2

;

hence y� ¼ e�iζ with ζ ¼ arccosð1 − ξ=2Þ; ðB6Þ

and

ξ > 4∶ y� ¼ −ðξ − 2Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðξ − 2Þ2 − 4

p
2

: ðB7Þ

b. Fast decaying multipole amplitudes for v0 < cs
For small velocities, ξ > 4, that is v0 < cs, we have

jy−j > 1 > jyþj and the requirement to have a well-defined
multipole expansion selects the decaying solution yn=2þ . The
recursion (B2), starting from the second equation at n ¼ 3,
defines all an with n ≥ 5, with a1 and a3 being still
undetermined, as this is a linear difference equation of
second order (three-terms recursion), with two independent
solutions. The selection of the decaying solution yn=2þ then
selects the ratio a3=a1. Substituting a3 in terms of a1 in the
first equation (B2), with n ¼ 1, then determines a1. Thus,
all coefficients an are uniquely determined. For v0 → 0, the
amplitude of the coefficients an shows a fast decrease with
n, as janj ∼ jyþjn=2 ∼ vn0, and the right-hand side in the first
equation (B2) becomes negligible. Thus, we recover as
expected the linear flow (104),

v0 ≪ cs∶ a1 ≃ −
v0
3k20

≃ −
v0
2γ

; an ∼ vn0: ðB8Þ

These results agree with the explicit expression (99).
Thus, whereas for the linear flow (85) multipoles beyond

the dipole are exactly zero, the mode couplings lead to a
constant value for these odd multipoles at large r, hence
multipoles of the angular velocity that only decay as 1=r,

and not with a power of 1=r that grows with n. This is quite
different from the large-distance behavior of the linearmodes
G−

n in (82) of the operator ∇½k2þ∇ð·Þ�. This is because the
source S is not strongly peaked at a given scale, such as rγ, so
that the integral over theGreen function in (A3) is not peaked
around a finite range of r0. Instead, significant contributions
arise up to r0 ∼ r. Thismeans that the results (99) and (B2) are
robust and the large-distance behavior of the phase β is not
sensitive to its behavior at small radii.

c. Appearance of a singularity for v0 > cs
In agreement with the change of flow property found in

(95)–(96), from the subsonic to the supersonic regime, we
briefly note that the threshold cs can be recovered from
the result (B2). For v0 > cs, we have at large n the two
independent real solutions Reðyn=2þ Þ ¼ cosðnζ=2Þ and

Imðyn=2þ Þ ¼ sinðnζ=2Þ. At large n the Legendre polyno-
mials take the asymptotic form

n → ∞∶ Pnðcos θÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

πn sin θ

r
cos

��
nþ 1

2

�
θ −

π

4

�

ðB9Þ

for 0 < θ < π, and both solutions cosðnζ=2Þ and sinðnζ=2Þ
lead to divergent series in n when θ ¼ ζ=2. This agrees
with the singularity of Eq. (99) at the threshold cs, that is, at
μ ¼ 0. Thus, we recover that for v0 > cs a shock appears
and the flow is no longer a smooth perturbation around the
linear flow (85). We leave the study of this regime for a
companion paper.

2. Even multipoles

a. 1=r velocity-potential tail for even multipoles

As seen in the previous Appendix B 1, at large radii the
nonlinear mode couplings generate contributions to all odd
multipoles as soon as the dipole is nonzero. This is because
there is a partial decoupling between odd and even multi-
poles in the nonlinear system (112). The linear operator
∇½k2þ∇β� keeps the parity of β whereas the cubic source
term ∇ · ½ð∇βÞ2∇β� requires one or three odd multipoles to
generate an odd multipole, and one or three even multipoles
to generate an even multipole. In other words, thinking in
terms of an iterative scheme, starting with a phase β that
has no even component, the cubic source term will never
generate even multipoles. Then, a fixed point reached by
iterating the system (112) (assuming the iteration con-
verges) will only contain odd multipoles. If there is an
initial seed for even multipoles, then all even order mutli-
poles will be generated by the cubic nonlinearity, and they
will mix with the odd multipoles through products of two
odd terms with one even term. However, because of the
partial decoupling, the final amplitude of the even terms
will be proportional to the initial seed (similarly, we can
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check in Eq. (B2) that all odd coefficients an vanish
if v0 ¼ 0).
Thus, because the linear flow (86) has an even compo-

nent β0 that decays as 1=r at large radii, we write for the
even part of the phase βeven a large-distance expansion of
the form (106)–(107). The even components decay faster

than the odd components, which go to a constant (except
for the leading growing dipole term), because of the partial
decoupling explained above. For the linear flow, we have
b0 ∼ 1=γ and all other multipoles are zero. Collecting all
the terms of order 1=r3 in Eq. (67), we obtain

−
γ

r3
X
n even

bnnðnþ 1ÞPn ¼
2v20
r3

X
n even

bn

�ðnþ 1Þ2ðnþ 2Þðnþ 3Þ
ð2nþ 1Þð2nþ 3Þ Pnþ2 þ

n2ðn − 2Þðn − 1Þ
ð2n − 1Þð2nþ 1ÞPn−2

−
nðnþ 1Þð2n2 þ 2n − 1Þ

ð2n − 1Þð2nþ 3Þ Pn

�
−
v20
r3

X
n even

bnnðnþ 1ÞPn: ðB10Þ

For the linear flow, which neglects the right-hand side, we recover that bn ¼ 0 for n ≥ 2 while b0 can take any value (set by
the small-radius boundary condition). Collecting the coefficient of each Legendre polynomial Pn, this gives the recursion
for even integers n ≥ 2,

−3k20bn ¼ 4v20

� ðn − 1Þ2
ð2n − 3Þð2n − 1Þ bn−2þ

ðnþ 2Þ2
ð2nþ 3Þð2nþ 5Þ bnþ2 −

2n2 þ 2n − 1

ð2n − 1Þð2nþ 3Þ bn
�
: ðB11Þ

The equation obtained from (B10) at n ¼ 0 is automatically
satisfied because all terms include the prefactor nðnþ 1Þ,
which canceled out in (B11) for n ≥ 2. Again, a nonzero b0
generates nonzero values for all even multipoles. At large n
we recover the same recursion as in (B4), with again the
two independent solutions (B5).

b. Fast decaying multipole amplitudes for v0 < cs
At low velocities, v0 < cs, we thus recover the decaying

solution yn=2þ from Eq. (B7). However, because the relation
(B11) at n ¼ 0 was automatically satisfied as 0 ¼ 0, the
series of even multipoles is not uniquely determined and
depends on the unconstrained monopole coefficient b0,

which is set by the matching to the behavior at small radii.
For v0 → 0 we recover the linear flow (86) as

v0 ≪ cs∶ bn ∼ vn0=γ: ðB12Þ

Again, this 1=r tail is not sensitive to the behavior of the
phase β at small radii, except for its overall normalization.
At large velocities, v0 > cs, we recover the oscillating

modes (B6) and the singularity analyzed in Appendix B 1 c.
This agrees with the singularity at μ → 0 of the explicit
expression (101) and signals the appearance of a shock and
the fact that the flow is no longer a smooth perturbation of
the linear flow.
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