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We use redshift-space galaxy clustering data from the BOSS survey to constrain local primordial
non-Gaussianity (LPNG). This is of particular importance due to the consistency relations, which
imply that a detection of LPNG would rule out all single-field inflationary models. Our constraints are
based on the consistently analyzed redshift-space galaxy power spectra and bispectra, extracted from
the public BOSS data with optimal window-free estimators. We use a complete perturbation theory
model including all one-loop power spectrum corrections generated by LPNG. Our constraint on the
amplitude of the local non-Gaussian shape is flocalNL ¼ −33� 28 at 68% C.L., yielding no evidence for
primordial non-Gaussianity. The addition of the bispectrum tightens the flocalNL constraints from BOSS by
20%, and allows breaking of degeneracies with non-Gaussian galaxy bias. These results set the stage
for the analysis of future surveys, whose larger volumes will yield significantly tighter constraints on
LPNG.
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I. INTRODUCTION

Inflation provides a mechanism to seed density fluctua-
tions that we observe in the late Universe. The physics
responsible for it, which may have operated at energies as
high as 1016 GeV, has left observable imprints in these
density fluctuations. The observations of cosmic micro-
wave background (CMB) anisotropies and the distribution
of galaxies in the large-scale structure (LSS) present
particularly appealing ways to probe the inflationary epoch,
and thus the physics of this high-energy regime.
There is a special class of inflationary models, in which

inflation is driven by a medium whose quantum fluctua-
tions are the only source of the observable overdensities.
Assuming the attractor solution and the Bunch-Davies
vacuum, these single-field (or single-clock) models generi-
cally predict purely adiabatic fluctuations with vanishing
physical coupling of long-wavelength and short-wave-
length modes. This result is formalized in the well-
known consistency relations [1,2]. Given the bispectrum
Bϕðk1; k2; k3Þ of the primordial Bardeen potential ϕ, they
have the following form

Bϕðk1;k2;k3Þjk3≪k1;k2 ¼−
5

3
Pϕðk3Þ

�
3þk1

∂

∂k1

�
Pϕðk1Þ: ð1Þ

This limit, when one of the wave numbers is much smaller
than the other two, is called the squeezed limit. Equation (1)
implies that in single-field models the only effect of the
long-wavelength modes of ϕ on the short-scale modes is a
simple rescaling of coordinates, which is locally unobserv-
able. Therefore, any detection of local primordial non-
Gaussianity (LPNG), i.e., a detection of a nonvanishing
amplitude in the squeezed limit of the initial bispectrum
due to physical interactions of long and short modes, would
rule out single-field inflation [2].
While the simplicity of single-field inflation is very

appealing (and so far supported by observations), having
more than one relevant fluctuating degree of freedom
besides the inflaton is easy to achieve. Some well-known
examples are the curvaton scenario [3–5] and modulated
reheating [6]. In contrast to single-field inflation,
these multifield models can produce large and observable
LPNG.
This important distinction between the two classes of

inflationary models makes the amplitude of the initial
bispectrum containing LPNG, called flocalNL , the key observ-
able thatwe canuse tomakequantitative,model-independent
statements about the primordial Universe. It is defined in the
following way

Bϕðk1; k2; k3Þ ¼ 6flocalNL Δ4
ϕ

Slocalðk1; k2; k3Þ
k21k
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whereΔ2
ϕ is the amplitude of the primordial power spectrum

k3PϕðkÞ ¼ Δ2
ϕðk=k�Þns−1 and ns is the spectral index.1

The local template is given by

Slocalðk1; k2; k3Þ ¼
1

3

k21
k2k3

þ 2 perms: ð3Þ

This template is such that the squeezed limit bispectrum
generated by the LPNG takes the following form

Bϕðk1; k2; k3Þjk3≪k1;k2 ¼ 4flocalNL Pϕðk1ÞPϕðk3Þ; ð4Þ

which is very different from the single-field result given by
Eq. (1). Generic values of flocalNL in multifield models are of
order one or higher (for some counterexamples, see [8,9]),
making flocalNL ≈ 1 an interesting and well-motivated obser-
vational target.
Significant efforts are aimed at measuring flocalNL , with the

tightest current constraints coming fromCMBobservations.
In particular, the Planck 2018 data yields flocalNL ¼ −0.9�
5.1 [10].Measurements from galaxy clustering are currently
somewhat weaker, but are expected to improve significantly
with upcoming galaxy surveys. These surveys will even-
tually reach the target offlocalNL ≈ 1 (see for example [11–13]).
Almost all LSS analyses done so far use the fact that LPNG
produces the so-called scale-dependent galaxy bias [14,15],
and therefore can be constrained by observations of galaxy
power spectra on large scales [16–20]. While measuring the
galaxy power spectrum and looking for scale-dependent
bias has the advantage of being relatively straightforward,
this may not be an optimal way to constrain LPNG from
LSS data. Indeed, as many Fisher forecasts and full like-
lihood analyses indicate, the dominant source of information
on flocalNL for the shot-noise limited samples is the galaxy
bispectrum [11,12,21–24]. Developing consistent and
robust pipelines to harvest this information is one of the
major milestones on the way toward achieving the tightest
possible bounds on LPNG.
Performing an optimal search for LPNG in the observed

galaxy bispectrum is not a trivial task for a number of
reasons. One of the main difficulties is the survey geometry,
which mixes the Fourier modes on large scales. In order to
circumvent this problem, in this paper we use recently
developed optimal window-free power spectrum and bis-
pectrum estimators [25,26]. In principle, such an approach
guarantees that the results are unbiased, close-to-optimal
and that all effects related to the window function are
consistently taken into account. This is particularly impor-
tant for constraints on flocalNL , since most of the signal comes
from the largest scales in the survey, either through the

scale-dependent bias or through the squeezed triangles. An
alternative is to model the effects of window convolution
when calculating the observed bispectrum. Doing this
exactly is very challenging numerically, and novel methods
to tackle this problem were developed only very recently
[27]. On the other hand, if the effects of the window
function are modeled using approximate treatments avail-
able in the literature (e.g., [28,29]), this can lead to biases at
low k, leading to such bins needing to be dropped from the
analysis. This approach was used recently in [30] to
measure LPNG, and it remains unclear to what extent
the results are impacted by the approximate treatment of the
window function.
Another nontrivial task is the modeling of the galaxy

bispectrum signal. This includes all aspects of the nonlinear
evolution such as the backreaction of short-scale physics on
large-scale modes, the nonlinear evolution of the BAO
signature (IR resummation), as well as a robust control over
projection and binning effects. Many years of intense
theoretical efforts [31–47] have recently made the incor-
poration of these effects possible, so that the bispectrum
data can be routinely used in cosmological parameter
analyses [48].
In this work, we present a search of LPNG using galaxy

power spectrum and bispectrum from the publicly available
BOSS data [49]. This is a natural continuation of our
previous analysis of PNG in single-field inflation [50],
based on the same tree-level bispectrum model and the
data cuts that were extensively tested in [47]. Importantly,
the galaxy bispectrum treatment presented in [47] is fully
systematic, i.e., there is a way to control the precision of
various effects so it can be applied to future high-precision
galaxy survey data.
The remainder of this paper is structured as follows. In

Sec. II we present key theoretical ingredients needed to
extract LPNG from the galaxy clustering data. They include
the complete calculation of the one-loop galaxy power
spectrum in the presence of LPNG. Section III describes the
data and analysis details. We validate our pipeline on the
mock galaxy clustering data in Sec. IV, and then apply it to
the BOSS data in Section V. We present limits on non-
Gaussian bias parameters from the BOSS data in Sec. VI.
Section VII draws conclusions. Additional details of the
theory model are given in the Appendix A.

II. STRUCTURE FORMATION IN THE
PRESENCE OF LPNG

In this section we present our theoretical model, which
includes all necessary terms generated by LPNG. We work
in the framework of the effective field theory of large scale
structure (hereafter EFT of LSS), as described in [51–56]
and references therein. Since the perturbative model for
structure formation has been discussed in detail in the
works cited above, we will provide only a brief overview in
what follows, focusing on the ingredients that will be

1Planck 2018 [7] gives precise measurements for both of these
quantities: Δ2

ϕ ≈ 1.5 × 10−8 and ns ≈ 0.96, for the pivot scale
k� ¼ 0.05 Mpc−1.
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necessary to carry out the calculation of the one-loop
LPNG contributions. For dark matter and biased tracers in
real space, these contributions have already been studied in
the literature, [23,57–59]. Here, we extend these results to
the case of galaxies in redshift-space needed for compari-
son to observations.
To simplify the text and formulas, we omit the super-

script “local” in our notation of the fNL parameter in this
section. We stress, however, that all results obtained here,
strictly speaking, apply only to the case of LPNG. The
analogous theory model for nonlocal primordial non-
Gaussianity is presented in Ref. [50].

A. Gaussian part

For Gaussian initial conditions, the statistical properties
of the first-order density field, δð1Þ, are completely deter-
mined by its power spectrum P11:

hδð1ÞðkÞδð1Þðk0Þi ¼ ð2πÞ3δð3ÞD ðk0 þ kÞP11ðkÞ; ð5Þ

where we have suppressed the explicit time dependence for
brevity. In this work, we restrict our analysis of the galaxy
power spectrum to one-loop order in the EFTof LSS, where
the usual Gaussian part reads

PGauss ¼ Ptree þ P1−loop þ Pctr þ Pstoch; ð6Þ

where Ptree is the linear term, P1−loop is the one-loop
correction (with Gaussian initial conditions), Pctr is the
higher derivative term (counterterm), and Pstoch is the term
that captures galaxy stochasticity.
We now present our model for the galaxy bias, referring

the interested reader to [42] for an extensive review. For the
statistics considered herein, it is sufficient to consider the
galaxy density field at cubic order. We use the following set
of bias operators

δðrÞg ¼ b1δþ
b2
2
δ2 þ bG2

G2 þ
b3
6
δ3 þ bδG2

δG2 þ bG3
G3

þ bΓ3
Γ3 þ R2�∂2δ: ð7Þ

The Galileon operator G2 is defined as ð∂i∂jΦgÞ2 −
ð∂2ΦgÞ2, where Φg is the gravitational potential. The Γ3

operator instead is defined as G2½Φg� − G2½Φv�, whereΦv is
the velocity potential. The cubic operators δ3, δG2, G3 do
not contribute to the one-loop power spectrum after
renormalization.
The redshift-space mapping for fixed line of sight ẑ at

order ðδð1ÞÞ3 is given by

δðsÞg ¼ δðrÞg −∂zðuzð1þδðrÞg ÞÞþ1

2
∂
2
zðu2zð1þδðrÞg ÞÞ−1

6
∂
3
zðu3zÞ;

ð8Þ

(from expanding the usual real-space to redshift-space
relation), where uz ≡ ẑ · v=H, v is the peculiar velocity
field and H is the conformal Hubble parameter. These can
be written in terms of the Fourier-space kernels

Z1ðkÞ¼b1þfμ2;

Z2ðk1;k2Þ¼
b2
2
þbG2

�ðk1 ·k2Þ2
k21k

2
2

−1

�
þb1F2ðk1;k2Þþfμ2G2ðk1;k2Þ

þfμk12
2

�
μ1
k1
ðb1þfμ22Þþ

μ2
k2
ðb1þfμ21Þ

�
; ð9Þ

and Z3, whose expression can be found in Sec. 2 of [60],
where f is the logarithmic growth rate and μ ¼ k̂ · ẑ. In this
notation, the deterministic part of the redshift-space galaxy
density field can be written as

δgðkÞ ¼ Z1ðkÞδð1ÞðkÞ þ
Z
p12¼k

Z2ðp1;p2Þδð1Þðp1Þδð1Þðp2Þ

þ
Z
p123¼k

Z3ðp1;p2;p3Þδð1Þðp1Þδð1Þðp2Þδð1Þðp3Þ;

ð10Þ

where we have introduced the following notation
R
p1…n¼k ≡R d3p1

ð2πÞ3 � � � d
3pn

ð2πÞ3 ð2πÞ3δDðk − p1…nÞ and p1…n≡p1þ���þpn.

We also supplement these kernels with the appropriate
redshift-space counterterms that are omitted in (8) for
clarity; these are discussed in Ref. [47].

B. LPNG-related nonlinearity

LPNG affects the statistics of the galaxy overdensity in
two ways. First, we have a nonzero bispectrum for the
linear matter overdensity δð1Þ. This generates a connected
bispectrum contribution B111,

hδð1Þðk1Þδð1Þðk2Þδð1Þðk3Þi
≡ ð2πÞ3δð3ÞD ðk123ÞB111ðk1; k2; k3Þ

¼ ð2πÞ3δð3ÞD ðk123Þ
Y3
a¼1

MðkaÞBϕðk1; k2; k3Þ; ð11Þ

where we have introduced the transfer functions

δð1ÞðkÞ ¼ MðkÞϕðkÞ ⇒ MðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
P11ðkÞ
PϕðkÞ

s
: ð12Þ

The initial bispectrum (11) also generates an additional
loop correction to the matter power spectrum dubbed P12.
We will discuss this term shortly.
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Second, LPNG modulates the correlation between the
long and short modes, which ultimately alters the proba-
bility of galaxy formation (inducing scale-dependent bias
[14,15]). In order to reproduce this effect in the perturbative
galaxy bias expansion, one needs to include new operators
with the appropriate bias coefficients analogous to the
Gaussian case (7). At linear order in fNLΔϕ and cubic order
in δð1Þ these operators are given by

δLPNGg ðxÞ¼bϕfNLϕðqÞþbϕδfNLϕðqÞδðxÞ
þbϕδ2fNLϕðqÞδ2ðxÞþbϕG2

fNLϕðqÞG2ðxÞ: ð13Þ

Note that this expansion is valid only for LPNG. For
nonlocal primordial non-Gaussianity the squeezed bispec-
trum is typically proportional to derivatives of ϕ, and hence
ϕ in the above expansion must be replaced by appropriate
higher derivative operators like ∂

2ϕ [61]. These operators
appear to be higher order and hence their effect can be
neglected at the one-loop order in the EFT of LSS [50].
In contrast to Eq. (7), here we have made the argument of

all relevant fields explicit. More precisely, the Bardeen
potential appearing on the right-hand side is evaluated at
the Lagrangian position q corresponding to the Eulerian
position x [23,58,59]. In order to evaluate all fields at the
Eulerian coordinates we need to Taylor expand the pri-
mordial gravitational potential. If we want to keep all terms
up to cubic order we can write

ϕðqÞ ¼ ϕðx −ψðqÞÞ ¼ ϕðx −ψðx −ψðxÞÞÞ: ð14Þ

Expanding perturbatively in the displacement fieldψwe get

ϕðqÞ ¼ ϕ − ψ i
∂iϕþ ψkð∂kψ iÞ∂iϕþ 1

2
ψ iψ j

∂i∂jϕ; ð15Þ

where the fields on the right-hand side are all evaluated at
the Eulerian position x, and we emphasize that the
displacement ψ contains both the linear and the second-
order contribution. We keep terms up to cubic order in the
expansion (15) since they are needed for the consistent

calculation of the one-loop power spectrum. Before we
move on, let us comment on the omission of higher
derivative terms of the form ∂

2
qϕðqÞ in (13). These

corrections can be straightforwardly included, see e.g.,
[58], but for realistic values of fNL they are always
suppressed compared to the two-loop Gaussian contribu-
tions that we neglect here. Therefore, we neglect the higher
derivative LPNG terms in what follows.
Let us now shift our attention to redshift-space. In this

case LPNG generates additional counterterms in δg involv-
ing the matter velocity field v. However, as we have just
discussed, these terms can be neglected in our analysis
because they have the same order of magnitude as the
higher derivative LPNG operators. Hence, it is enough to
use (8) to map the rest-frame galaxy overdensity in
presence of LPNG to redshift-space.
All in all, the Taylor expansion of δNL though δð1Þ in the

presence of LPNGwill take a form identical to Eq. (10), but
with the new kernels Ztot

n ¼ Zn þ ZNG
n (n ¼ 1, 2, 3), where

ZNG
n are the additional PNG kernel contributions. The linear

kernel is given by

ZNG
1 ðkÞ ¼ bϕfNL; ð16Þ

with the second kernel taking the form

ZNG
2 ðp1;p2Þ ¼ bϕfNL

p1 · p2

2p1p2

�
p2

p1

1

Mðp2Þ
þ p1

p2

1

Mðp1Þ
�

þ bϕfNL
fμk
2

�
μ1
p1

1

Mðp2Þ
þ μ2
p2

1

Mðp1Þ
�

þ bϕδfNL
1

2

�
1

Mðp1Þ
þ 1

Mðp2Þ
�
; ð17Þ

where we have introduced

μi ¼ ẑ · p̂i; μij ¼ ẑ · ðpi þ pjÞ=jpi þ pjj: ð18Þ

For the cubic fields we find

ZNG
3 ðp1;p2;p3Þ ¼ bϕfNL

�
−

1

14
G2ðp1;p2Þ

ðp1 þ p2Þ · p3

jp1 þ p2j2
1

Mðp3Þ
þ 2 perms

�
þ bϕfNL

�
1

6

p1 · p2

p2
1p

2
2

p2 · p3

Mðp3Þ
þ 5 perms

�

þ bϕfNL

�
1

6

p1 · p3

p2
1p

2
2

p2 · p3

Mðp3Þ
þ 2 perms

�
þ bϕfNLfμp123

�
1

3
G2ðp1;p2Þ

μ12
jp1 þ p2j

1

Mðp3Þ
þ 2 perms

�

þ bϕfNLðfμp123Þ2
�
1

6

μ1μ2
p1p2

1

Mðp3Þ
þ 2 perms

�
: ð19Þ

Note that bϕδ2 and bϕG2
do not appear in ZNG

3 : the reason for
this is that they are removed after renormalization of b1 and
bϕ. Moreover, the contributions from bϕδ where either ϕ or
δ are expanded at second order in perturbations are also

absorbed by renormalization of these two parameters, was
first proved in Ref. [23] in the context of the real space
perturbation theory. Finally, let us note that compared to the
analysis of [30], we include the cubic non-Gaussian kernel
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in the model, which is needed to calculate corrections to the
one-loop galaxy power spectrum induced by LPNG.

C. Stochasticity

So far we have focused on the deterministic part of the
galaxy overdensity. PNG leads to additional contributions
to the stochastic part of δg as we discuss below.
References [42,47,52] contain a detailed description of

stochastic terms in the case of Gaussian initial conditions.
As far as the tree-level bispectrum and one-loop power
spectrum in the presence of LPNG are concerned, the full
stochastic contribution is given by [47,51]

δstochg ðkÞ ¼ ϵþ d2
2
b1½δϵ�k − f½∂zðϵuzÞ�k þ fNL

bϵϕ
2

½ϵϕ�k
þ a0R2�k2ϵþ a2kzẑiðϵi þ kiϵÞ þ a4k2z ẑiẑjϵij;

ð20Þ

where ϵ; ϵi; ϵij are the stochastic density, velocity and tidal
fields. The final three terms in (20) are higher derivative
stochastic contributions that are important only for the
Gaussian part. The only new LPNG contribution here is ϵϕ,
where we emphasize again that ϕ is evaluated at the
Lagrangian position q.

D. Summary of the power spectrum
and bispectrum models

Once the new kernels in the presence of LPNG are
obtained, it is straightforward to compute the one-loop
power spectrum and the tree-level bispectrum. Modulo the
counterterms, the deterministic part is given by

Ptot
1-loop ¼ 2

Z
p
½Ztot

2 ðp;k − pÞ�2P11ðpÞP11ðjk − pjÞ

þ 6Ztot
1 ðkÞP11ðkÞ

Z
p
Ztot
3 ðk;−p;pÞP11ðpÞ

þ 2Ztot
1 ðkÞ

Z
p
Ztot
2 ðp;k − pÞB111ðk; p; jk − pjÞ;

Btot
tree ¼ Ztot

1 ðk1ÞZtot
1 ðk2ÞZtot

1 ðk3ÞB111ðk1; k2; k3Þ
þ 2Ztot

2 ðk1;k2ÞZtot
1 ðk1ÞZtot

2 ðk2ÞP11ðk1ÞP11ðk2Þ
þ perms: ð21Þ

It is instructive to simplify this expression and break it
down into separate pieces. In this section we give explicit
expressions for different terms in Eq. (21). We focus on
contributions that are linear in flocalNL Δϕ. The contributions
OððflocalNL ΔϕÞ2Þ can be straightforwardly computed, but turn
out to be irrelevant for our analysis (as shown in Sec. II E)
except for the linear f2NL scale-dependent bias term.
We briefly discuss other OððflocalNL ΔϕÞ2Þ corrections in
Appendix A.

1. Power spectrum

The power spectrum has three kinds of additional
contributions proportional to fNL. At tree level we have

PLPNG
tree-level ¼ PfNL

11 þ P
f2NL
11 ; ð22Þ

while at one-loop order the total contribution linear in flocalNL
is given by

PLPNG
1-loop ¼ PfNL

22 þ PfNL
13 þ P12: ð23Þ

The first contributions are the scale-dependent bias

PfNL
11 ðk; μÞ ¼ 2ðb1 þ fμ2ÞbϕfNL

P11ðkÞ
MðkÞ ;

P
f2NL
11 ðk; μÞ ¼ b2ϕf

2
NL

P11ðkÞ
M2ðkÞ : ð24Þ

Defining P1ϕðkÞ≡ P11ðkÞ=MðkÞ, the PfNL
22 contribution

can be written as

PfNL
22 ðkÞ ¼ 4fNL

Z
p
Z̃NG
2 ðp;k − pÞZ2ðp;k − pÞP11ðpÞ

× P1ϕðjk − pjÞ; ð25Þ

where we have introduced the new kernel

Z̃NG
2 ðp1;p2Þ ¼ bϕ

p1 · p2

p2
1

þ bϕfμk
μ1
p1

þ bϕδ; ð26Þ

which is just a simplified version of ZNG
2 . The use of P1ϕ

and Z̃NG
2 is particularly convenient for the FFTLog evalu-

ation of PfNL
22 , which we perform in this work following the

approach of [62]. PfNL
13 is given by the sum of three

contributions:

PfNL
13 ¼ PfNL

13
ð1Þ þ PfNL

13
ð2Þ þ PfNL

13
ð3Þ: ð27Þ

The first is simply

PfNL
13

ð1Þ ¼ bϕfNL
MðkÞ

Z
p
6Z3ðk;p;−pÞP11ðpÞ; ð28Þ

with the second being

PfNL
13

ð2Þ ¼ −Z1ðkÞbϕfNLk2ð1þ f2μ2Þσ2vP1ϕðkÞ; ð29Þ

where σ2v ≡ R∞
0 dqP11ðqÞ=6π2. This comes from the terms

ψ iψ j
∂i∂jϕ=2 in (15) and ∂

2
zðu2zϕÞ=2 in the redshift-space

mapping of bϕfNLϕ, i.e., the third and fifth terms in (19).

The contribution PfNL
13

ð2Þ exactly cancels with the IR limit of

the PfNL
22 integral just like the IR limits of the P13 and P22
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contributions in the Gaussian case. Finally, there is a term
of the form

PfNL
13

ð3Þ ¼ Z1ðkÞP11ðkÞ
Z
p
6Z̃NG

3 ðk;p;−pÞP11ðpÞ; ð30Þ

where

Z̃NG
3 ðp1;p2;p3Þ

¼bϕfNL

�
−
1

14
G2ðp1;p2Þ

ðp1þp2Þ ·p3

jp1þp2j2
1

Mðp3Þ
þ2perms

�

þbϕfNL

�
1

6

p1 ·p2

p2
1p

2
2

p2 ·p3

Mðp3Þ
þ5perms

�

þbϕfNLfμp123

�
1

3
G2ðp1;p2Þ

μ12
jp1þp2j

1

Mðp3Þ
þ2perms

�
:

ð31Þ

Notice that the only permutations surviving are those for
which the transfer function remains inside the loop integral,
i.e., it is P1ϕ that is integrated in P

fNL
13

ð3Þ. The last term P12 is
given by

P12ðkÞ ¼ 12fNLZ1ðkÞΔϕT ðkÞ

×
Z
p
½Sðk; p; jk − pjÞZ2ðp;k − pÞ�

× T ðpÞT ðjk − pjÞ; ð32Þ

where we have defined T ðkÞ≡ ΔϕMðkÞ=k2.

Finally, we note that the contribution from the stochastic
term ϵϕ to the one-loop power spectrum is degenerate
with the stochastic shot noise contributions we have in the
zero-fNL case. For this reason we do not include it in the
model.
The Gaussian and non-Gaussian one-loop corrections

to the galaxy power spectrum monopole are shown in
the left and right panels of Fig. 1, respectively, for
fNL ¼ 100. We show all separate shapes without multi-
plying them by the nuisance parameters to clearly illus-
trate the size of these terms regardless of particular
galaxy samples. The terms labeled “no biases” correspond
to pure matter contributions (i.e., they have b1 ¼ 1 and all
other biases set to zero, which corresponds a contribution
from pure matter). We see that some of the LPNG
loops are actually as large as the matter loops for
k≲ 0.1 hMpc−1. Thus, these terms must be included for
consistency.

2. Bispectrum

Working at tree level in perturbations and at the linear
order in fNLΔϕ, the PNG contributions to the redshift-space
bispectrum are

BNG
tree-level ¼ fNLB

fNL
211 þ BðsÞ

111: ð33Þ

BfNL
211 arises from scale-dependent bias and is given by

BfNL
211ðk1;k2;k3Þ ¼ Z1ðk1ÞZ1ðk2Þbδϕ½P11ðk1ÞP1ϕðk2Þ þ P11ðk2ÞP1ϕðk1Þ�

þ Z1ðk1ÞZ1ðk2Þbϕ
k1 · k2

k1k2

�
k2
k1

1

Mðk2Þ
þ k1
k2

1

Mðk1Þ
�
P11ðk1ÞP11ðk2Þ

þ Z1ðk1ÞZ1ðk2Þbϕfμ12k12
�
μ1
k1

1

Mðk2Þ
þ μ2

k2

1

Mðk1Þ
�
P11ðk1ÞP11ðk2Þ

þ 2bϕZ2ðk1;k2Þ½Z1ðk1ÞP11ðk1ÞP1ϕðk2Þ þ Z1ðk2ÞP11ðk2ÞP1ϕðk1Þ� þ 2 permutations: ð34Þ

BðsÞ
111 is the standard tree-level redshift-space PNG con-

tribution,

BðsÞ
111ðk1;k2;k3Þ ¼

Y3
a¼1

Z1ðkaÞMðkaÞBϕðk1; k2; k3Þ

¼ Z1ðk1ÞZ1ðk2ÞZ1ðk3Þ
× fNLΔϕ6Sðk1; k2; k3Þ
× T ðk1ÞT ðk1ÞT ðk1Þ: ð35Þ

So far we have discussed the deterministic contributions. In
contrast to the power spectrum case, there is an additional

stochastic contribution that is not degenerate with the ones
present also in the zero-fNL case. This contribution comes
from (20), and takes the form

BfNL
stoch ¼ fNLbϕM−1ðk1ÞZ1ðk1ÞP11ðk1ÞPϵðk2Þ

þ fNLbϵϕM−1ðk1ÞZ1ðk1ÞP11ðk1ÞPϵðk2Þ
þ 5 perms; ð36Þ

where PϵðkÞ is the power spectrum of ϵ. At leading order it
is proportional to the constant shot noise value n̄−1. As we
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will argue shortly, these terms turn out to be irrelevant for
our analysis.
Before closing this section, we also note that we

have implemented IR resummation for all the LPNG
terms entering the power spectra and bispectra models,
following the formalism of time-sliced perturbation theory
[38,44,63,64]. After implementing both IR resummation
and the Alcock-Pazcynski projection effects [65] in our
models for the tree-level bispectrum and the one-loop
power spectra, we numerically compute the Legendre
multipoles of the power spectrum and the bispectrum
monopole, allowing for robust comparison to data.

E. Behavior in a scaling universe

Let us estimate the relative importance of the different
fNL contributions. This can be done using the scaling
universe approach [58,66]. It is based on the fact that the
linear power spectrum in our Universe can be well
approximated by a power law: P11 ∝ ðk=kNLÞnk−3NL with
n ≈ −1.5 for quasilinear wave numbers k ≃ 0.1 hMpc−1.
We also introduced the nonlinear scale kNL ¼ 0.5 hMpc−1

at z ¼ 0.5.
We choose to focus on this particular range for the

following reason. Given that the leading LPNG contribu-
tion is a linear scale-dependent bias enhanced on large
scales, and the LPNG loop corrections dominate the usual
Gaussian loops at low-k, large scales should be crucial for
our analysis. The relative contributions of these terms
diminish compared to the Gaussian loops at small scales,
but the error bars also get smaller. This suggests that the
relative importance of the LPNG corrections should be
maximal at some intermediate wave number scale, which
we choose we to be kref ¼ 0.1 hMpc−1, roughly in the
center of the wave number range that we use in the data
analysis. In what follows, all estimates will be presented
for k ¼ kref.

Assuming that there is a single nonlinear scale in the
problem, the estimates for the total dimensionless galaxy
power spectrumΔ2ðkÞ≡ k3PðkÞ for purely Gaussian initial
conditions give

Δ2ðkÞ¼
�

k
kNL

�
1.5

|fflfflfflfflffl{zfflfflfflfflffl}
Ptree

þ
�

k
kNL

�
3

|fflfflfflffl{zfflfflfflffl}
P1-loop

þ
�

k
kNL

�
3.5

|fflfflfflfflffl{zfflfflfflfflffl}
ctr

þ
�

k
kNL

�
3

|fflfflfflffl{zfflfflfflffl}
stoch

: ð37Þ

Recalling that the Bardeen potential has a nearly scale-
invariant spectrum, we get the following expressions for the
LPNG terms:

Δ2
NGðkÞ ¼ fNLΔϕ

�
k
kNL

�
0.75

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
P
NG;fNL
tree-level

þ ðfNLΔϕÞ2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
P
NG;f2

NL
tree-level

þ fNLΔϕ

�
k
kNL

�
2.25

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
PNG
1-loop

: ð38Þ

Evaluating these corrections at the reference scale
kref ¼ 0.1 hMpc−1, we get

Δ2
Ptree

≃0.089; Δ2
P1-loop

¼Δ2
Pstoch

≃8×10−3;

Δ2
Pctr

≃3.6×10−3; Δ2

P
NG;fNL
tree-level

≃1.1×10−2×
fNL
300

;

Δ2

P
NG;f2

NL
tree-level

≃1.3×10−3×

�
fNL
300

�
2

; Δ2
PNG
1-loop

≃9.6×10−4×
fNL
300

:

ð39Þ

As expected, we see that the scale-dependent bias con-
tribution PLPNG

tree-level always dominates over PLPNG
1-loop, and it is

FIG. 1. Left panel: “Gaussian” one-loop contributions to the power spectrum monopole at z ¼ 0.61 compared with linear theory. We
take b1 ¼ 1, and the different curves have the corresponding bias parameters set to unity. Right panel: PNG contributions to the power
spectrum monopole at z ¼ 0.61 compared with linear theory. We take fNL ¼ 100 and b1 ¼ 1. The gray curve shows the scale-dependent
bias contribution for bϕ ¼ 1. The remaining curves show the different contributions (P12 and PfNL

22 þ PfNL
13 ) to PNG

1-loop for unit values of
the corresponding bias parameters.
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the main source of constraining power in the power
spectrum data. For fNL ≲ 300 typical for our analyses
we also see that the one-loop PNG contributions are a small
fraction of the “Gaussian” P1-loop.
The leading correction to the above result is given by the

Gaussian two-loop contribution, which can be estimates as

Δ2
2-loop ¼

�
kref
kNL

�
4.5

≃ 7.2 × 10−4: ð40Þ

This can be contrasted with the terms that we have dropped.
Higher derivative fNL contributions stemming down from
terms like ∂

2ϕ would be suppressed compared to other
1-loop LPNG terms that we retain in the theory model,

Δ2
h∂2ϕδi ¼ fNLΔϕ

�
kref
kNL

�
2.75

≃ 4.3 × 10−4 ×

�
fNL
300

�
: ð41Þ

This justifies our choice of dropping these terms in
Sec. II B.
We can make a similar argument for the loop terms

Oðf2NLÞ, which are also suppressed,

Δ2
hϕδ2i ¼ ðfNLΔϕÞ2

�
kref
kNL

�
1.5

≃1.1×10−4×

�
fNL
300

�
2

: ð42Þ

All in all, our scaling universe estimates confirm that the
one-loop LPNG corrections can be important in the data
analysis [23]. In addition, we also need to retain the leading
f2NL tree-level power spectrum contribution.
For the squeezed-limit tree-level bispectrum, where the

shape of LPNG plays the most important role, it is
straightforward to see that BfNL

211 and B111 scale in the same
way. Their relative importance with respect to the

“Gaussian” BðsÞ
211 is the same as that of the scale-dependent

bias piece versus P11 in the power spectrum. The con-
tribution from BfNL

stoch is suppressed in the squeezed limit,
and thus we do not include it in the analysis.

F. LPNG bias parameters

In the context of the EFT of LSS, bϕ and bϕδ (as well as
usual bias parameters like b1, b2, etc.) should be treated as
free nuisance parameters and marginalized over in data
analysis. However, there are certain phenomenological
models of dark matter halo formation, which predict bϕ
and bϕδ parameters as a function of the linear bias b1. These
are known as “universality relations” [42]. For the relevant
LPNG bias coefficients they predict

bϕ ¼ 2δcðb1 − 1Þ;

bϕδ ¼ bϕ − ðb1 − 1Þ þ δc

�
b2 −

8

21
ðb1 − 1Þ

�
; ð43Þ

where δc ¼ 1.686. A typical approach then is to assume
that the same relationship holds true even for galaxies. The
universality relation is routinely used in most of fNL
constraints from galaxy surveys. However, the relationships
(43) fail for galaxies [67] from realistic hydrodynamical
simulations. The most accurate analysis to date gives the
following fits based on the state-of-the art galaxy formation
simulations [24,68]:

bϕ ¼ 2δcðb1 − 0.55Þ;
bδϕ ¼ 3.85 − 9.49b1 þ 3.44b21: ð44Þ

We adopt relationship (44) in our baseline analysis. As a
cross check, we also repeat our analysis for the vanilla
universality relations (43). In Section VI we go beyond any
assumptions on the LPNG parameters and fit bδϕflocalNL and
bϕflocalNL directly from the data for the first time.

III. DATA AND ANALYSIS DETAILS

Our analysis is based on the twelfth data release (DR12)
[49] of the Baryon Oscillation Spectroscopic Survey
(BOSS). The galaxy clustering data covers two redshift
bins with effective centers z ¼ 0.38, 0.61, for the Northern
and Southern galactic caps, resulting in four independent
slices. The BOSS DR12 release contains a total of
∼1.2 × 106 galaxies in a total volume of 6 ðh−1GpcÞ3.
From each data chunk, we extract the redshift-space power
spectrum multipole moments Pl (l ¼ 0, 2, 4), the real
space power spectrum proxy Q0 [69], the redshift-space
bispectrum monopoles for triangle configurations within
the range of ki ∈ ½0.01; 0.08Þ hMpc−1 (a total of 62
bispectrum data points per data chunk), and the BAO
parameters αk;α⊥ measured from the post-reconstructed
power spectrum data using the method of [70]. Both power
spectra and bispectra are measured using window-free
estimators [25,26], thus we do not need to include the
survey window function in our theoretical model.
We use the data cuts2 kmax ¼ 0.25 hMpc−1, kmin ¼

0.01 hMpc−1 for Pl and kmin ¼ 0.25 hMpc−1, kmax ¼
0.27 hMpc−1 for Q0, so that the two statistics are largely
independent. We use lower kmax for Q0 because the two-
loop corrections can be non-negligible compared to the
PNG contributions for kmax > 0.3 hMpc−1. Note that our
choice kmin ¼ 0.01 hMpc−1 for both the power spectra and

2Note that we use kmax for Pl that is slightly larger than that
adopted in Ref. [71]. This is because the particular choice of the
data cut in that paper kmax ¼ 0.2 hMpc−1 was based on detecting
biases in the cosmological parameter posteriors. However, in
contrast to [71], here we fix all cosmological parameters, in which
case the fit to flocalNL is unbiased up to somewhat larger kmax. We
stress that this choice is not essential for the purposes of our work,
as the flocalNL constraints are dominated by the linear LPNG bias
and hence are saturated at large scales.
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bispectra is conservative. We remove the first bin in order to
limit systematic effects related to stellar contamination and
residual radial and atmospheric systematics, as well as
integral constraints.3

The power spectra and bispectra used in this work are
extracted using the window-free estimators [25,26]. The
covariances for our total data vector fP0; P2; P4; Q0; B0;
αk; α⊥g for each data chunk are extracted from a suite of
2048 MultiDark-Patchy mocks [74], using the standard
empirical covariance matrix estimator.4

Our full-shape analysis matches the ones of
[48,50,52,70]. Unlike these works, we explicitly fix all
cosmological parameters to the Planck 2018 baseline best-
fit values [7]. This is done because in this work we are
interested only in the constraints on flocalNL from the
BOSS survey. Formally, this corresponds to a combination
of the CMB power spectra and BOSS power þ bispectrum
data. Thus, in our MCMC analysis we only fit flocalNL with
an infinitely large flat prior, plus the Gaussian EFT
nuisance parameters (encompassing biases, stochasticity,
and counterterms).
As discussed in Sec. II F, our fiducial analysis fixes the

PNG bias coefficients to values predicted by the dark matter
halo relations as functions of the corresponding linear bias
b1 for each data chunk. This choice is optional. In principle,
we can fit both bϕ and bϕδ directly from the data, but the
current limits on these parameters are not very constraining,
as shown in Sec. VI. Therefore, they are fully consistent
with the fits from simulations (44), making it reasonable to
fix them for the primary purposes of this paper.
Our analysis is based on the publicly available CLASS-PT

code [60]. Since we do not vary cosmology in this study, we
compute the full one-loop power spectrum corrections
including the LPNG terms only once, utilizing the Planck
cosmology, and only vary the bias parameters and flocalNL in the
likelihood. For the Nseries mocks we recompute the relevant
templates to match the Nseries fiducial cosmology. We plan to
implement the full cosmology-dependent LPNG calculation
in a future update of CLASS-PT, using which we will
systematically study the sensitivity of the flocalNL constraints
to uncertainties in cosmological parameters. Our Markov
Chain Monte Carlo (MCMC) analysis is run with the
MONTEPYTHON code [80] and is based on the previously-
used public likelihoods.5

IV. VALIDATION ON MOCKS

As a validation test, we apply our pipeline to Nseries mock
catalogs. These catalogs were used by the BOSS collabo-
ration for internal validation tests [49]. The suite consists of
84 semi-independent simulation boxes. The Nseries mocks
are designed to reproduce the clustering signal of the high-z
NGC BOSS sample. Each box has a similar effective
volume and mean effective redshift z ¼ 0.56. We fit the
mean of 84 Nseries boxes with the covariance of one box,
divided by 84. Effectively, this is equivalent to fitting a
dataset which is ≈40 times larger than the BOSS survey.
Just like in the actual BOSS data analysis, we fix all the
cosmological parameters (to the true values used in the
simulations), and vary only flocalNL and nuisance parameters
in the fit.
The Nseries mocks were produced for Gaussian initial

conditions, which we can recover with our pipeline. Indeed,
we find flocalNL consistent with zero,

flocalNL ¼ −4.9� 5.0 at 68%C:L:; ð45Þ

with the 1d marginalized posterior shown in Fig. 2. Note
that the mean is expected to differ from zero to be different
from zero by ð1 − 2Þσ due to random fluctuations. This
also gives us an estimate of the theory systematic error,
ΔflocalNL jsyst ≲ 5, which is less than 0.2σ of the actual BOSS
1d marginalized statistical error (rescaling by the square-
root of the volume ratio).
We show the best fit model curves against the Nseries data

in Fig. 3. The model with flocalNL ¼ 0 is visually indistin-
guishable from the actual best-fit model with flocalNL ≈ −5.
Note that in Fig. 3 we plot the mean data vector and divide

FIG. 2. Marginalized constraint on flocalNL from the mean of 84
Nseries simulations, with a total volume approximately 40× larger
than that of BOSS. Note that we do not rescale the covariance to
the BOSS volume, but use that appropriate for the entire Nseries
volume, allowing a robust probe of theoretical systematics. Here,
we find flocalNL ¼ −4.9� 5.0 at 68% C.L.

3As shown in Fig. 19 of [72], weight-based approaches to
removing large-scale systematics (such as those applied in [73]
and herein) produce comparable results to more sophisticated
methods on comparatively large scales. For k ≲ 0.01 hMpc−1, the
differences between different approaches become significant (and
the systematics become larger than the statistical errors, if
uncorrected), thus these modes are excised from our analysis.

4See [75–79] for alternative covariance matrix estimation
techniques.

5Available at github.com/oliverphilcox/full_shape_likelihoods.

CONSTRAINTS ON MULTIFIELD INFLATION FROM THE BOSS … PHYS. REV. D 106, 043506 (2022)

043506-9

github.com/oliverphilcox/full_shape_likelihoods
github.com/oliverphilcox/full_shape_likelihoods


all error bars by
ffiffiffiffiffi
84

p
as in the actual analysis. At face value,

we do not see any strong anomaly in the data. One can
notice, however, several data points that deviate from the
best-fit curve by more than ð1 − 2Þσ. Especially, this is
visible in the lower left panel displaying squeezed con-
figurations. We stress, however, that this should not be
overinterpreted because of two reasons. First, the 84 Nseries

realizations are not completely independent, which may
enhance statistical fluctuations in the mean. Second, the
data point are significantly correlated. This effect is
particularly important for squeezed bispectrum configura-
tions [48,79], which accounts for the apparent disagree-
ment between the theory and the data in the lower left
panel. In the end, we see that flocalNL is recovered without any
bias, which proves that our pipeline is adequate for the
precision of the BOSS survey.
We stress that the main goal of our validation test is to

estimate the bias due to the theory systematic error.

An alternative approach for validation is to fit the mean
of the mocks with the covariance that matches the overall
volume of the BOSS survey. This test, however, does not
allow one to assess the theory bias because the posterior
distribution in that case is affected by prior volume effects
(arising from the priors necessarily imposed on nuisance
parameters), which can be as large as the actual theory bias.
This obscures the estimation of theory bias and can lead to
wrong conclusions on the validity of the fitting pipeline.
For example, the prior volume effects exactly cancel
the theory bias on σ8 for BOSS-like mocks [48,52,81].
Thus, if one fits the mean of the mocks with the covariance
matching the BOSS survey volume, one can erroneously
conclude that the theory model is valid even for
kmax ¼ 0.3 hMpc−1, whereas fitting the same data with
the actual covariance of the simulation suggests that the
theory systematic bias on σ8 becomes sizable in the
analysis of multipoles Pl for kmax > 0.20 hMpc−1.
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FIG. 3. Mean of Nseries mock power spectra and bispectra from 84 pseudo-independent realizations. Best-fit theoretical models are
shown by solid curves. The error bars shown are extracted from the diagonal elements of a covariance matrix corresponding to one mock
and divided by

ffiffiffiffiffi
84

p
. The nominal size of the errorbars should not be overinterpreted, as the covariance between data points is not

negligible. Upper left: power spectra multipoles Pl and Q0. Note that the jagged behavior of P2 and P4 at low wavenumbers are caused
by discreteness effects, which we also include in our theory model. Upper right: the bispectrum monopole as a function of the triangle
index. Lower left: squeezed configurations of the bispectrum monopole B0ðkL; k; kÞ as a function of the bin center k. kL < k is center of
the long modes’ bin fixed to kL ¼ 0.015 hMpc−1. Lower right: equilateral configurations B0ðk; k; kÞ.
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V. RESULTS FOR BOSS

Here, we present the main results from the combined
analysis of four BOSS data chunks. We start with the power
spectraþ BAO data alone, i.e., without the bispectrum.
In this case we obtain

PlþQ0þBAO∶ flocalNL ¼ 9þ33
−35 ; ð68%C:L:Þ;

−57<flocalNL < 78; ð95%C:L:Þ:
ð46Þ

The marginalized posterior distribution is shown in Fig. 4.
These results are similar, but somewhat stronger than those
obtained previously from BOSS DR9, −45 < flocalNL < 195

(95% C.L.) [18]. This suggests that the constraints in
the power spectrum are dominated by the linear scale-
dependent bias from large scales. Indeed, repeating our
analysis for kmin ¼ 0.05 hMpc−1 we find constraints that
are worse by a factor of four,

kmin¼0.05hMpc−1∶flocalNL ¼−120þ100
−140 ; ð68%C:L:Þ;

−353<flocalNL <140; ð95%C:L:Þ: ð47Þ

These results are consistent with the expectation that LPNG
constraints are dominated by the scale-dependent bias,
which is sensitive to the lowest available bin in the survey
(see also [23]).
Note that there are important differences between our

analysis and that of [18]. That work was based on the
monopole power spectrum moment of the BOSS DR9
CMASS sample and had a lower scale cut. In contrast to that,
we use all three power spectrummultipole moments plus the

real space proxy of the complete BOSS DR12 data sample,
but impose a conservative scale cut kmin ¼ 0.01 hMpc−1,
significantly reducing any systematics caused by observa-
tional effects, such as galactic foregrounds. Nevertheless, the
results of the two analyses are pleasingly consistent.
The addition of the bispectrum monopole shrinks the

error bar on flocalNL by ≃20%,

Pl þQ0 þBAOþB0∶ flocalNL ¼ −33� 28; ð68%C:L:Þ;
− 88< flocalNL < 23;

ð95%C:L:Þ; ð48Þ

We do not find any evidence for LPNG: the 95%C.L. limits
are consistent with zero. The final posterior distribution is
presented in Fig. 4. Note that the addition of the bispectrum
shifts the mean of the flocalNL posterior by ≈1σ with respect to
the power spectra-only result. This effect in more sizable
than the reduction of the marginalized error. Similar trends
have been observed in the previous bispectrum analyses
[47]. In Appendix C we show that this behavior is quite
general for multidimensional likelihoods.
To estimate the dependence of our results on the LPNG

priors, we have repeated our analysis assuming the uni-
versality relations (43) instead of the more accurate
simulation-calibrated fits (44). We found somewhat weaker
bounds,

Prior ð43Þ∶ flocalNL ¼−50� 40; ð68%C:L:Þ;
− 130<flocalNL < 30 ð95%C:L:Þ: ð49Þ

This weakening of the constraints is expected, since the
universality relations underpredict the actual values of bϕ
by ∼30% compared to (44) for b1 ≈ 2. Note that when the
universality bias relations (43) are used, the relative impact
of the bispectrum is somewhat stronger: it tightens the
constraints by ≃30%. The result without the bispectrum in
this case is flocalNL ¼ 64.7þ52

−60 .
It is instructive to study where our constraints originate

from. To this end we illustrate the effect of the variation of
flocalNL on the galaxy power spectrum and bispectrum
monopole, showing the corresponding residuals in
Fig. 5. We focus on the NGC z3 data chunk. We first
compute the fiducial best-fit theory model with flocalNL ¼ 0.
As a second step, the compute models with flocalNL ¼ þ100

and flocalNL ¼ −100 while keeping all other parameters fixed.
Then in Fig. 5 we plot the difference between the models
with flocalNL ¼ þ100 and flocalNL ¼ −100, normalized to the
fiducial spectra. For the bispectrum monopole, we compute
models with flocalNL ¼ �300 in order to make the effect more
visible. The shaded gray region corresponds to the BOSS
NGCz3 chunk errorbars. The bispectrum residuals are
shown as a function of the triangle index which is defined
by the bin center ðk1; k2; k3Þ. The bin centers here satisfy

FIG. 4. Marginalized constraints on local-type primordial
non-Gaussianity from the BOSS power spectrum (blue) and
power spectrum plus bispectrum (red). We find flocalNL ¼ 9þ33

−35 and
−33� 28 in the two cases respectively at 68% C.L., with the
bispectrum tightening the constraints by ≈20%. These are the
main results of this work.
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ki ∈ ½0.015; 0.075� hMpc−1, encompassing all wave num-
bers with k ∈ ð0.01; 0.08Þ hMpc−1. We additionally mark
the squeezed, equilateral, and flattened triangles with black,
orange, and green dots on the x-axis (note that our notation
differs somewhat from [50]). The shaded region corre-
sponds to data errors.
Let us first focus on the power spectrum. We observe that

the largest deviations take place both on large scales (due to
the linear scale-dependent bias), and on short scales due to
the one-loop LPNG corrections. This is another indication
that the one-loop LPNG corrections should be included in
data analysis. Of course, their effect is washed out, to
some extent, by marginalization over the standard EFT
nuisance parameters, which are important at short scales.
Nevertheless, the LPNG nonlinear corrections must to be
included for the sake of consistency, and additionally,
the degeneracies are greatly reduced in practice by the
inclusion of higher-order statistics.
Let us now move on to the bispectrum. We see that the

PNG contribution has a very significant configuration-
dependence. The LPNG terms peak at the squeezed
triangles. This behavior is very different from the typical
effect of the standard nonlinear galaxy bias [50], which
illustrates that this particular type of non-Gaussianity does
not strongly suffer from degeneracy with the unknown
galaxy formation details.
Let us compare our results with the flocalNL measurements

available in the literature. Our limit is a factor of ten worse
than the Planck 2018 constraint, flocalNL ¼ −0.9� 5.1
(68% C.L.) [10]. As we stressed before, our limit is better
than the one obtained from BOSS DR9 [18], which is
equivalent to σflocalNL

≈ 60. The main reasons for this
improvement are new data, the complete theory model
for the power spectrum, more accurate priors for LPNG
bias parameters, and the large-scale galaxy bispectrum,
which is quite sensitive to the scale-dependent bias signal.

Note that our measurement has a precision somewhat worse
but comparable with the eBOSS quasars flocalNL ¼ −12� 21

(68% C.L.) [19,20] (which boast a much longer redshift
baseline, and thus a substantially lower kmin), and with
WMAP, flocalNL ¼ 37� 20 (68% C.L.) [82]. We find com-
parable results to those from an independent analysis of
the BOSS power spectrum and bispectrum (using a partial
one-loop theory model for the latter statistic) [30]:
flocalNL ¼ −30� 29, though, as noted above, our analysis
differs due to the use of a fully consistent theory model and
complete treatment of the survey window, allowing larger-
scale information to be robustly included. Finally, our mea-
surements are somewhat better than the ones coming from
the UV luminosity function flocalNL ¼ 71þ426

−237 (95% C.L.)
[83–85], although they include information from scales
with k > 0.3h Mpc−1, which we do not consider in our
study.

VI. LPNG BIAS PARAMETERS

The galaxy bispectrum allows us to measure flocalNL
separately from bϕflocalNL . At the power spectrum level this
is, essentially impossible, because the constraints are
dominated by scale-dependent bias controlled by combi-
nation bϕflocalNL [23]. However, the bispectrum allows us to

extract flocalNL directly from the BðsÞ
111 shape that is generated

by the matter clustering and not the LPNG bias. In this
section we present the constraints on bϕflocalNL and flocalNL
independently. Moreover, we also present constraints on
the quadratic scale-dependent bias term bϕδflocalNL , which
shows up in the tree-level galaxy bispectrum with LPNG.
We found that flocalNL can be quite large in our chains if bϕ
and bϕδ are not fixed, and therefore we have included the
ðflocalNL Þ2 corrections to the tree-level galaxy bispectrum. For
these pieces, we keep the additional bϕ2 bias fixed to the

FIG. 5. Left: residual variations of the galaxy power spectrum monopole model P0 w.r.t. variations of flocalNL . These variations have
distinctive shape dependence and therefore can be constrained by the data. Right: residual variations of the galaxy bispectrum monopole
with respect to variations of flocalNL . Black, orange and green dots denote the squeezed (k3 ¼ 0.015 hMpc−1, k1; k2 > k3), equilateral
(k1 ¼ k2 ¼ k3), and flattened (k2 ¼ k3, 2k2 ¼ k1 þ 0.015 hMpc−1) triangle configurations, respectively.
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prediction of the universality relation, as discussed in
Appendix A.
We fit flocalNL plus parameters bϕflocalNL , bϕδflocalNL for each

independent data chunk. Our results are displayed in
Fig. 6 and Table I. We observe that the BOSS data can
constrain the LPNG bias parameter only at the level
σbϕflocalNL

∼ 3 × 102 and σbϕδflocalNL
∼ 3 × 103. We see that most

of the posteriors are compatible with zero values of

corresponding parameters within 95% C.L. However, the

parameters flocalNL ; bð1Þϕ flocalNL ; bð3Þϕδ f
local
NL , overlap with zero

only within 99% C.L. of the marginalized posterior.
Inspecting the 2d marginalized contours (shown in
Fig. 6) suggests that this is a result of degeneracies between
flocalNL and the LPNG bias parameter combinations. Note that
the resulting posteriors are also significantly non-Gaussian,
which implies that having nonzero flocalNL at 95% C.L. does

FIG. 6. 1d and 2d marginalized posteriors for flocalNL and the normalized LPNG bias parameters bðiÞϕ flocalNL , bðiÞϕδf
local
NL , extracted from the

BOSS galaxy power spectra and bispectra data. i ¼ 1, 2, 3, 4 corresponds to the NGCz3, SGCz3, NGCz1, and SGCz1 BOSS data slices,
respectively.
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not actually imply a detection at a significance level
equivalent to that of a Gaussian-distributed parameter at
2σ, as evidenced by the lack of detection of LPNG in the
fiducial analysis.
Finally, we notice that the posteriors of bias parameters

from different data chunks, i.e., bð1Þϕ ; bð2Þϕ etc., are randomly
scattered by ≲ð1 − 2Þσ around the origin. This behavior is
consistent with an expectation of typical shifts due to
random statistical fluctuations. This is an additional evi-
dence that our pipeline is not affected by any significant
systematic bias.

VII. CONCLUSIONS

We have presented constraints on local primordial non-
Gaussianity from the BOSS full-shape galaxy clustering
data. The two main novelties of our analysis are (a) we use
the full one-loop power spectrum model that includes all
necessary nonlinear one-loop corrections generated by
LPNG, and (b) we include the consistently analyzed galaxy
bispectrum, incorporating a full treatment of all relevant
theoretical and observational effects. We have found that
the latter improves flocalNL constraints by 20% compared to
the power spectrum analysis. Thus, our paper extends and
complements previous works on LPNG from the galaxy
clustering data.
There are many ways in which our analysis can be

improved. First, the k-range can be expanded, including
additional information from both small and large scales. The
maximum wave number used in the analysis kmax can be
significantly enhanced by the addition of the redshift-space
galaxy two-loop power spectrum, one-loop bispectrum, as
well as the tree-level trispectrum. Partial calculations of
these observables already exist in the literature, e.g.,
[40,86,87], and we plan to incorporate them in our future

analyses. Going beyond perturbative analysis, additional
constraints on flocalNL can be obtained from the nonlinear
regime using consistency relations for LSS [88]. They
guarantee that the local shape of the bispectrum in the
squeezed limit is protected by the equivalence principle and
it can be though of as a feature which is very distinct from
anything that can be produced by the astrophysical proc-
esses. Such feature can be extracted even when the short
modes are in the nonlinear regime, marginalizing over the
standard nonlinear physics using theoretical error [89,90],
similarly to what was done in extracting the BAO feature
from the broadband in [70]. In addition, we plan to increase
the k-range also on the lower end, by including modes with
k < 0.01h Mpc−1 that are omitted in the present analysis.
This is particularly important in order to enhance constraints
from the scale-dependent bias. A simple Fisher forecast
indicates that the errors on flocalNL fromBOSS can improve by
a factor of two by including all low-k modes. While
straightforward from a theoretical point of view, this will
require a detailed study of large-scale systematics, such as
the integral constraint (both global and radial), foreground
stars, atmospheric effects, seeing, and galactic extinction,
which can produce large-scale radial and angular distortions,
e.g., [72,73]. Such work will be of particular importance as
the survey volume increases, and the range of fNL param-
eters allowed by data tightens. Another important point to
keep in mind is that the Gaussian power spectra and
bispectra likelihood, which is used in our analysis, is not
valid for the lowest k bins and it can skew the constraints on
flocalNL . For some recent reflections on how to deal with this
problem, see [91].
Second, it would be interesting to study the dependence

of the result on the priors on EFT nuisance parameters.
Previous works [50,76] have found that marginalization
over Gaussian nuisance parameters leads to a very signifi-
cant degradation of parameter error bars. It is important to
understand to what extent this can be avoided with priors on
nuisance parameters extracted from high fidelity simula-
tions. We have also shown that our current constraints
significantly rely on using universality-like relationships
for the LPNG bias parameters bϕ; bϕδ. We will study if
using relationships is accurate enough for simulated data
with injected LPNG. A similar analysis was done in
Ref. [23] for the case of real space halo clustering.
Third, one may include redshift-space multipoles of the

galaxy bispectrum beyond the monopole moment, which
we considered in this work [31]. Fourth, one should
perform a systematic sensitivity forecast for future surveys
like DESI [92], Euclid [93], and MegaMapper [94]. In
particular, just based on the ratio of BOSS and DESI
volumes, one may expect improvements by a factor of
three, i.e., reaching σflocalNL

≈ 10. Some forecasts have already
been performed e.g., [95,96], but most of them have been
based on simplistic assumptions about the theoretical
modeling of the power spectrum and the bispectrum,

TABLE I. 1d marginalized limits for flocalNL and the normalized

LPNG bias parameters bðiÞϕ flocalNL , bðiÞϕδf
local
NL , extracted from the

BOSS galaxy power spectra and bispectra data. i ¼ 1, 2, 3, 4
corresponds to the NGCz3, SGCz3, NGCz1, and SGCz1 BOSS
data slices, respectively.

Param Best-fit Mean� σ 95% lower 95% upper

flocalNL −720 −676þ150
−250 −1080 −210

bð1Þϕ flocalNL
−878 −740þ280

−250 −1280 −210

bð1Þϕδ f
local
NL

1900 4300þ2700
−2700 −950 9500

bð2Þϕ flocalNL
170 160þ390

−360 −600 900

bð2Þϕδ f
local
NL

5400 5400þ3200
−3400 −1100 12000

bð3Þϕ flocalNL
180 350þ270

−250 −170 860

bð3Þϕδ f
local
NL

4400 5000þ2100
−2200 800 9300

bð4Þϕ flocalNL
26 120þ420

−390 −700 900

bð4Þϕδ f
local
NL

−22 290þ2600
−2700 −5000 5700
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and it is rare for forecasts to include both the power
spectrum and bispectrum in combination. It will be
interesting to see if the inclusion of all necessary nonlinear
corrections can impact the conclusions of these works, i.e.,
to perform a fully consistent forecast similar to [96,97].
Fifth, another important ingredient is a systematic study of
the properties of galaxy samples that will be targeted by
future surveys, e.g., emission line galaxies admit higher
kmax and therefore better LPNG measurements can be
obtained from this sample [98]. Finally, it would be
interesting to extend our analysis to the case of projected
statistics, which is motivated by photometric surveys
like SPHEREx [11] and the Vera Rubin observatory
[99]. This analysis will naturally require including relativ-
istic and full-sky corrections, which can impact constraints
on LPNG [100–103], and exploring to what extent the
analysis based on correlation functions is optimal and how
does it compare to recent results obtained using forward
modeling [104].
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APPENDIX A: HIGHER ORDER
PNG CORRECTIONS TO THE

GALAXY BISPECTRUM

In this section we present, for completeness, the bispec-
trum corrections at Oðf2NLÞ. To obtain them, we need first
include a new bias operator

δreal spaceg ⊃
1

2
f2NLbϕ2ϕ2: ðA1Þ

The full Oðf2NLÞ kernel is then given by

B
f2NL
NG ¼Z1ðk1ÞZ1ðk2ÞZ1ðk3Þbϕ

�
1

Z1ðk1ÞMðk1Þ
þ 1

Z1ðk2ÞMðk2Þ
þ 1

Z1ðk3ÞMðk3Þ
�
B111ðk1;k2;k3Þ

þ
�
b2ϕ

�
Z1ðk1Þ
Mðk2Þ

þZ1ðk2Þ
Mðk1Þ

�ðk1 ·k2Þ
k1k2

�
k1

k2Mðk1Þ
þ k2
k1Mðk2Þ

�
þfb2ϕμk

�
μ1

k1Mðk2Þ
þ μ2
k2Mðk1Þ

��
Z1ðk1Þ
Mðk2Þ

þZ1ðk2Þ
Mðk1Þ

�

þ2b2ϕ
Z2ðk1;k2Þ

Mðk1ÞMðk2Þ
þbϕδbϕ

�
Z1ðk1Þ
Mðk2Þ

þZ1ðk2Þ
Mðk1Þ

��
1

Mðk1Þ
þ 1

Mðk2Þ
�
þbϕ2

Z1ðk1ÞZ1ðk2Þ
2Mðk1ÞMðk2Þ

�
P11ðk1ÞP11ðk2Þ: ðA2Þ

Finally, the universality relations for the quadratic
operators dictate

bϕ2 ¼ 4δcðbL2 δc − 2bL1 Þ;
bϕδ ¼ bϕ þ ð−bL1 þ δcbL2 Þ

¼ bϕ − ðb1 − 1Þ þ δc

�
b2 −

8

21
ðb1 − 1Þ

�
; ðA3Þ

where bL1 ≡ b1 − 1 and bL2 are Lagrangian bias coefficients.

APPENDIX B: ADDITIONAL PLOTS

In this Appendix we present full data vectors and best-fit
models from our analysis of the BOSS data. We present a
separate plot for each data chunks: NGCz3 in Fig. 7,
SGCz3 in Fig. 8, NGCz1 in Fig. 9, SGCz1 in Fig. 10. For
all plots we also show best-fit models evaluated with

flocalNL ¼ 0 (dashed curves). This is noticeable by eye only
for the power spectrum monopole, which is consistent with
the expectation that most of the constraining power comes
from the scale-dependent bias.

APPENDIX C: COMMENT ON THE MEAN
VALUE SHIFT IN MULTIDIMENSIONAL

LIKELIHOODS

In this section we show that, in the case of multi-
parameter likelihoods, the size of the shift of a mean value
of a certain parameter due to an addition of a new dataset
does not have to correlate with the amount of the reduction
of the standard deviation. Let us first consider a toy model
where we combine two Gaussian likelihoods for a single
parameter p. The corresponding individual χ2 statistics are
given by

CONSTRAINTS ON MULTIFIELD INFLATION FROM THE BOSS … PHYS. REV. D 106, 043506 (2022)

043506-15



P0 P2

P4 Q0

0.00 0.05 0.10 0.15 0.20 0.25
–500

0

500

1000

1500

2000

k, h Mpc–1

k
P

(k
),

[h
–

1
M

pc
]2

data best–fit model

fNL=0 model

10 20 30 40 50 60
–50

0

50

100

triangle index

10
–

4
k 1

k 2
k 3

B
0
(k

1
,k

2
,k

3
),

[h
–

1
M

pc
]3

data best–fit model

fNL=0 model

0.02 0.03 0.04 0.05 0.06 0.07 0.08
–10

0

10

20

30

40

k, h Mpc–1

10
–

4
k L

k2
B

0
(k

,k
,k

L
),

[h
–

1
M

pc
]3

Squeezed triangles, kL=0.015 h Mpc–1

data best–fit model

fNL=0 model

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

–50

0

50

100

k, h Mpc–1

10
–

4
k3

B
0
(k

,k
,k

),
[h

–
1
M

pc
]3

Equilateral triangles

FIG. 7. Same as Fig. 3, but for the actual BOSS NGC high-z data. Dashed lines show the same best-fit theory model but with fixed
flocalNL ¼ 0.
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FIG. 8. Same as Fig. 7, but for the actual BOSS SGC high-z data.
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FIG. 9. Same as Fig. 7, but for the actual BOSS NGC low-z data.
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FIG. 10. Same as Fig. 7, but for the actual BOSS SGC low-z data.
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χ2ðaÞ ¼ ΨðaÞðp − p̄ðiÞÞ2; a ¼ 1; 2: ðC1Þ

where Ψ is the 1d precision matrix, ΨðaÞ ¼ σ−2ðaÞ, where σðaÞ
are individual standard deviations and p̄ðiÞ are individual
means. The combined likelihood then depends on new χ2

statistics

χ2new ¼ χ2ð1Þ þ χ2ð2Þ ¼ Ψnewðp − p̄newÞ2: ðC2Þ

It is easy to derive the new mean and the new precision
matrix (i.e., the standard deviation):

Ψnew ¼Ψð1Þ þΨð2Þ; p̄new¼
p̄ð1ÞΨð1Þ þ p̄ð2ÞΨð2Þ

Ψð1Þ þΨð2Þ
: ðC3Þ

Imagine now that the first dataset is more constraining than
the second,Ψð1Þ ≫ Ψð2Þ, while p̄ð1Þ ∼ p̄ð2Þ. Then we obtain,

Ψnew ¼Ψð1Þ

�
1þΨð2Þ

Ψð1Þ

�
; p̄new≈ p̄ð1Þ þ

Ψð2Þ
Ψð1Þ

ðp̄ð2Þ− p̄ð1ÞÞ:

ðC4Þ

This means that the size of mean shift is correlated with the
error bar reduction amount.
Now we generalize our likelihood to the case of N

parameters,

χ2ðaÞ ¼ΨðaÞ
ij ðp− p̄ðaÞÞiðp− p̄ðaÞÞj; a¼ 1;2; j¼ 1;…;N;

ðC5Þ

where we used the Einstein summation notation for dummy
indices. Then the χ2 statistics of the combined likelihood
looks like

χ2new ¼ Ψnew
ij ðp − p̄newÞiðp − p̄newÞj; ðC6Þ

where Ψnew
ij ¼ Ψð1Þ

ij þ Ψð2Þ
ij and

p̄new
i ¼ ½Ψnew�−1il ðΨð1Þ

lj p̄
ð1Þ
j þΨð2Þ

lj p̄
ð2Þ
j Þ: ðC7Þ

Imagine that the error bar for a single parameter p1 reduces
only by a small amount after combining datasets 1 and 2.
Expanding Ψnew−1 ≈Ψð1Þ−1 −Ψð1Þ−1Ψð2ÞΨð1Þ−1, we get

σ21 ¼ ½½Ψð1Þ�−1 − ½Ψð1Þ�−1Ψð2Þ½Ψð1Þ�−1�11 ≃Ψð1Þ
11 ;

⇒
½½Ψð1Þ�−1Ψð2Þ½Ψð1Þ�−1�11

½Ψð1Þ�−111
≪ 1: ðC8Þ

This condition, however, does not imply that the shift of the
mean is small. Indeed, at linear order in Ψð2Þ we have:

p̄new
1 ≈ p̄ð1Þ

1 þ ½½Ψð1Þ�−1Ψð2Þ�1jðp̄ð2Þ
j − p̄ð1Þ

j Þ: ðC9Þ

Depending on the structure of the matrix ½Ψð1Þ�−1Ψð2Þ�1j,
and the vector ðp̄ð2Þ

j − p̄ð1Þ
j Þ, one can get a large shift in p̄new

1

even when the standard deviation σ21 is not significantly
affected.
Let us give an explicit example of a two dimensional

likelihood that reproduces this situation. Consider two
Gaussian likelihoods with precision matrices

Ψð1Þ ¼
�

1 3.6

3.6 30

�
; Ψð2Þ ¼

�
0.2 0.24

0.24 0.3

�
; ðC10Þ

and means

p̄ð1Þ ¼ ð0; 0Þ; p̄ð2Þ ¼ ð2; 2Þ; ðC11Þ

so that ðp̄ð2Þ
j − p̄ð1Þ

j Þ ¼ ð2; 2Þ. The marginalized errors
ðσ1; σ2Þ on p1 and p2 from these two datasets are
(1.3,0.24) and (11.2,9.12), respectively. Clearly, the data-
set 2 is inferior with respect to the dataset 1. Using our
perturbative expression (C8), one can easily obtain that the
error bar on p1 reduces only by ≈26%,

Δσ21
σ21

≈ −
½½Ψð1Þ�−1Ψð2Þ½Ψð1Þ�−1�11

½Ψð1Þ�−111
¼ −0.26: ðC12Þ

The shift of the mean is, however, quite large,

Δp̄new
1 ≈ ½½Ψð1Þ�−1Ψð2Þ�1jðp̄ð2Þ

j − p̄ð1Þ
j Þ ¼ 1.32; ðC13Þ

which is around 1σ in terms of the marginalized error on
p1. In fact, our toy model can be solved exactly,

Δσ21
σ21

¼ −0.15; Δp̄new
1 ¼ 1.04; ðC14Þ

which agree with the perturbative estimates (C12)
and (C13).
In Fig. 11, we present the individual posteriors for

datasets 1,2, and the posterior from their combination.
Quantitatively and qualitatively, out toy model reproduces
the effect of the bispectrum addition, see Fig. 4.
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