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We study the redshift-space fluctuations induced by a stochastic gravitational wave background (SGWB)
via the Sachs-Wolfe effect. The redshift-space fluctuations can be encapsulated in a line-of-sight integral that
is useful for studying the imprint of short-wavelength gravitational waves on the cosmic microwave
background (CMB) anisotropy. We thus derive constraints on the SGWB from small-scale CMB anisotropy
measurements. Our results reproduce the constraint on the short-wavelength SGWB, previously derived from
the Planck and BICEP/Keck array CMB data with a CMB Boltzmann numerical code. Furthermore, we
improve the constraint and extend it to shorter wavelengths by using the CMB measurements made by the
Atacama Cosmology Telescope and the South Pole Telescope. Also, the integral provides us with a precise
redshift fluctuation correlation between a pair of pulsars in pulsar timing measurements, which conveniently
incorporates the effect of the pulsar term into a small-angle correlation. We further discuss the observation of
pulsar pairs in globular clusters to look for this small-angle correlation.
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I. INTRODUCTION

The search for stochastic gravitational wave background
(SGWB) is one of the main goals in observational cosmol-
ogy. After the discovery of gravitational waves (GWs)
emitted by a binary black hole merger made by the LIGO-
Virgo Collaboration [1] and the observation of a handful
of GW events from compact binary coalescences [2], the
detection of the SGWB becomes the next milestone in a
new era of GWastronomy and cosmology. There have been
many studies on possible astrophysical and cosmological
sources for the SGWB such as distant compact binary
coalescences, early-time phase transitions, cosmic string or
defect networks, second-order primordial scalar perturba-
tions, and inflationary GWs [3]. GWs have very weak
gravitational interaction, so they decouple from matter at
the time of production and travel to us almost without being
disturbed. At present, they remain as a GW background that
encodes the information of the production processes in the
early Universe.
The spectrum of the SGWB is expected to span a wide

range of frequencies. The method adopted in the GW
interferometry such as the LIGO-Virgo experiment for
detecting the SGWB is to correlate the responses of a pair
of detectors to the GW strain amplitude. The correlation
allows us to filter out detector noises and obtain a large
signal-to-noise ratio for the detection of GWs of frequen-
cies at several tens of hertz [3]. An indirect method to
search for the SGWB is through its gravitational effects on
physical observables such as the cosmic microwave back-
ground (CMB) [4] and the arrival times of radio pulses

from millisecond pulsars [3]. Horizon-sized GWs can leave
an imprint on the anisotropy and polarization of the CMB
that has been long sought after in CMB experiments,
whereas the pulsar timing is sensitive to short-wavelength
GWs at nanohertz frequencies. Future GW experimental
plans such as the Einstein Telescope, Cosmic Explorer,
LISA, DECIGO, Taiji, TianQin, international pulsar-timing
arrays, and SKA [5], hand in hand with CMB Stage-4
experiments [6], will certainly bring us a precision science
in SGWB observation.
In this paper, we will give a systematic study of the

gravitational effects induced by the SGWB on astrophysical
and cosmological observables. The study will be directly
applied to the indirect measurements of the SWGB in CMB
small-scale anisotropy experiments and in pulsar-timing-
array observation. Constraints on the SWGB fromCMB data
have been extensively studied mostly using CMB numerical
Boltzmann codes [7–9]; however, difficulties arise in short-
wavelength regimes due to heavy cancellations in mode
projection [9]. Therefore, we give up on this, rather relying
on a single line-of-sight integral to compute CMB anisotropy
power spectra induced by short-wavelength SGWB. We will
see that this analytic approach reproduces the results of
Ref. [9] and enables us to extend the CMB constraints to a
very short-wavelength SGWB. Furthermore, the line-of-
sight integral is in fact the integrated form of the Shapiro
time delay of the arrival times of radio pulses from pulsars.
It is known that the Earth term in the Shapiro time delay
leads to the Hellings and Downs curve for the interpulsar
correlation [10], while the pulsar term adds power to the
correlation at small separation angles [11,12]. However, the
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effect of the pulsar term in terms of the power spectrum has
been scarcely studied. We will find that the line-of-sight
integral can conveniently incorporate the effect of the pulsar
term into the interpulsar correlation. It can reproduce the
power spectrum of the Hellings and Downs curve on large
angular scales found in Ref. [13] and add power to the power
spectrum at small scales induced by the pulsar term.
In the next section, we first review the propagation of

free GWs in the expanding Universe. In Sec. III, the effect
on the redshift space due to the presence of a SGWB is
discussed. Then, this is applied to the induced CMB
anisotropy in Sec. IV and pulsar timing in Sec. V.
Section VI is our Conclusion.

II. STOCHASTIC GRAVITATIONAL WAVE
BACKGROUND

Consider a perturbed metric,

ds2 ¼ −a2dη2 þ a2ðδij þ hijÞdxidxj; ð1Þ

where aðηÞ is the cosmic scale factor and η is the conformal
time defined by dη ¼ dt=a. The transverse-traceless tensor
perturbation hij can be decomposed into two independent
polarization tensors as

hijðη; x⃗Þ ¼
X
λ

Z
d3k⃗

ð2πÞ32 ½aλðk⃗Þhλðη; k⃗Þϵ
λ
ijðk̂Þeik⃗·x⃗ þ H:c:�;

ð2Þ

where ϵλijðk̂Þϵλ0ijðk̂Þ ¼ 2δλλ0 . The annihilation and creation

operators, aλðk⃗Þ and a†λðk⃗Þ, respectively, satisfy the com-
mutation relation,

½aλðk⃗Þ; a†λ0 ðk⃗0Þ� ¼ δðk⃗ − k⃗0Þδλλ0 : ð3Þ

The GW amplitude, hλðη; k⃗Þ, is governed by the equation
of motion,

d2hλ
dη2

þ 2

a
da
dη

dhλ
dη

þ k2hλ ¼ 0: ð4Þ

The spectral energy density of the SGWB relative to the
critical density is then given by

ΩGWðη;k;k̂Þ≡ k
ρc

dρGW
dkd2k̂

¼
X
λ

1

12a2H2

�
k
2π

�
3
�
k2jhλj2þ

����dhλdη

����
2
�
; ð5Þ

where ρc ¼ 3M2
pH2, with Mp being the reduced Planck

mass. Writing hλ ¼ k−3=2h, we have

ΩGWðη; k; k̂Þ ¼
1

48π3

�
k
aH

�
2
�
jhj2 þ

���� 1k
dh
dη

����
2
�
; ð6Þ

and the tensor power spectrum is defined as Pðη; kÞ≡
jhðη; k⃗Þj2=ð2π2Þ. The hðη; k⃗Þ is dispersive, and it can be
cast into hðη; k⃗Þ ¼ hðkηÞ. For a superhorizon mode with
kη ≪ 1, hðkηÞ has a constant amplitude; hðkηÞ then
oscillates with a decaying envelope once the mode enters
the horizon. For example, in slow-roll inflation models,
metric quantum fluctuations during inflation give rise to an
initial condition of the GW amplitude for superhorizon
modes,

jhðkηÞj ¼ HI

Mp
for kη ≪ 1; ð7Þ

where HI is the Hubble scale in inflation. This implies a
scale-invariant power spectrum,

PðkÞ≡ Pðη; kÞjkη≪1 ¼
1

2π2
H2

I

M2
p
: ð8Þ

Another kind of the SGWB may be generated in a physical
process taking place within the horizon with a characteristic
frequency k� at time η�,

jhðk�η�Þj ¼
M�
Mp

with k�η� > 1; ð9Þ

where M� represents some mass scale. This results in a
narrow initial power spectrum with a peak height:

Pðη�; k�Þ ¼
1

2π2
M2�
M2

p
: ð10Þ

The subsequent time evolution of hðk�ηÞ is then determined
by Eq. (4) for η > η�. The solution for this subhorizon
mode can be approximated as

hðk�ηÞ ≃
M�
Mp

aðη�Þ
aðηÞ e−ik�η: ð11Þ

From Eq. (6), the present spectral energy density for an
isotropic SGWB is

ΩGW ≃
1

6π2
M2�
M2

p

�
k�aðη�Þ
k0aðη0Þ

�
2

; ð12Þ

where k0 ¼ aðη0ÞH0 is the wave number of the mode that
just crosses the present horizon.

III. REDSHIFT-SPACE FLUCTUATIONS

The gravitational effects due to the presence of a SGWB
can be encoded in a fluctuation in the redshift of an
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observed photon source. Suppose the photon source is
located at redshift z. Then, the fluctuation in the redshift of
the photon source is given by the Sachs-Wolfe effect [14],

zþ 1 ¼ aðηrÞ
aðηeÞ

�
1 −

1

2

Z
ηr

ηe

dηeiej
∂

∂η
hijðη; x⃗Þ

�
; ð13Þ

where e is the propagation direction of the photon. The
lower (upper) limit of integration in the line-of-sight
integral represents the point of emission (reception) of
the photon. Let z̄ be the mean redshift and δz ¼ z − z̄ be the
fluctuation. Then, we have 1þ z̄ ¼ aðηrÞ=aðηeÞ and

ΔzðeÞ≡ δz
1þ z̄

ðeÞ ¼ −
1

2

Z
ηr

ηe

dηeiej
∂

∂η
hijðη; x⃗Þ: ð14Þ

This redshift-space fluctuation can be expanded in terms of
spherical harmonics,

ΔzðeÞ ¼
X
l;m

almYlmðeÞ: ð15Þ

For an isotropic unpolarized SGWB, the isotropy in the
mean guarantees that

ha†lmal0m0 i ¼ Clδll0δmm0 ; ð16Þ

where Cl is the redshift-space anisotropy power spectrum,
from which we can construct the two-point correlation
function,

hΔzðe1ÞΔzðe2Þi ¼
X
l

2lþ 1

4π
ClPlðe1 · e2Þ; ð17Þ

where Pl is the Legendre polynomial. Using Eq. (2) and
doing the tensor contraction, we obtain the formula for the
power spectrum as [15]

Cl ¼
1

2π
ðlþ 2Þðlþ 1Þlðl − 1Þ

×
Z

∞

0

dk
k

����
Z

ηr

ηe

dη
dhðkηÞ
dη

jl½kðηr − ηÞ�
k2ðηr − ηÞ2

����
2

; ð18Þ

where jl is a spherical Bessel function.

IV. CMB TEMPERATURE ANISOTROPY

The redshift-space fluctuations can induce a temperature
anisotropy of the CMB, given by Eq. (14)

δT
T

ðeÞ ¼ ΔzðeÞ; ð19Þ

where ηe ¼ ηdec denoting the CMB decoupling time
and ηr ¼ η0 the present time. This is the well-known
Sachs-Wolfe tensor contribution to the CMB temperature

anisotropy, whose power spectrum is then given by
Eq. (18).

A. Scale-invariant power spectrum

The CMB temperature anisotropy due to the primordial
tensor power spectrum (8) has been well studied (see, for
example, Ref. [15]). Here, we recapitulate the main results
for completeness. Also, they serve the purpose of defining
the time and length scales used below and are useful for us
to understand the discussions later on. For a fixed l, the
main contribution to the integral (18) for Cl comes from the
mode of wave number k ≃ l=η0 at the horizon crossing time
ηc ≃ π=k [16]. Since a mode is dispersive after entering the
horizon, the modes that can imprint a large anisotropy on
the CMB should have ηc > ηdec. In the standard ΛCDM
model [17], ηdec ≃ 300 Mpc, and the comoving distance to
the CMB decoupling surface is η0−ηdec≃η0≃14000Mpc,
where we have chosen aðη0Þ ¼ 1. This explains why
superhorizon modes with k < π=ηdec ≃ 0.01 Mpc−1 domi-
nate the contribution to the CMB temperature anisotropy
on large angular scales at l < πη0=ηdec ≃ 150.

B. Narrow power spectrum

For the narrow power spectrum (10), we adopt the
subhorizon-mode solution (11). The induced CMB
anisotropy power spectrum is then given by

Cl ≃
1

2π
ðlþ 2Þðlþ 1Þlðl − 1Þ

× Δ ln k�

����
Z

η0

η1

dη
dhðk�ηÞ

dη
jl½k�ðη0 − ηÞ�
k2�ðη0 − ηÞ2

����
2

; ð20Þ

where η1 ¼ maxðηdec; η�Þ. Assuming that the spectrum
spans a range of Δ ln k� ≃ 1 and that the Universe was in
a matter-dominated epoch with aðηÞ ¼ ðη=η0Þ2, we obtain

Cl ≃
M2�

2πM2
p

�
η�
η0

�
4

ðlþ 2Þðlþ 1Þlðl − 1Þ

×

����
Z

x1

0

dx
1 − x=x0 − i2=x0

ð1 − x=x0Þ3
eix

jlðxÞ
x2

����
2

; ð21Þ

where x ¼ k�ðη0 − ηÞ, x0 ¼ k�η0, and x1 ¼ k�ðη0 − η1Þ.
We compute the power spectrum in two limiting cases as
follows.

1. Prerecombination with η� < ηdec
In this case, we have x1=x0¼ðη0−ηdecÞ=η0¼137=140.

The integrand in Eq. (21) is highly oscillating functions
which render heavy cancellation to the integration. Indeed,
this makes a brute-force numerical integration very difficult
especially for a large k�. However, for a fixed l, the integral
receives contributions only when x ∼ l and x ∼ x1. Thus,
we have evaluated the integration over small ranges of x
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covering the contributing regions and then increased the
ranges to obtain values within the required accuracy. Using
this strategy, we have computed the Cl for k� ¼ 0.014,
0.14, 1.4, 14, and 140 Mpc−1, as shown in Fig. 1. To assure
the results for high-l multipoles, we let x ¼ ðlþ 1=2Þy and
approximate Eq. (21) as

Cl≃
M2�
4M2

p

�
η�
η0

�
4

ðlþ2Þðlþ1Þlðl−1Þðlþ1=2Þ2

×

����
Z

y1

0

dy
1−x=x0− i2=x0
ð1−x=x0Þ3

eix
Jlþ1

2
½ðlþ 1

2
Þy�

x5=2

����
2

; ð22Þ

where JνðνyÞ takes the asymptotic form for a large order
as [18]

JνðνyÞ ∼
eνð1−y2Þ

1
2−νtanh−1ð1−y2Þ12ffiffiffiffiffiffiffiffi

2πν
p ð1 − y2Þ14

for 0 < y < 1; ð23Þ

JνðνyÞ ∼
cos½νðy2 − 1Þ12 − νtan−1ðy2 − 1Þ12 − π=4�ffiffiffiffiffiffiffiffiffiffi

πν=2
p ðy2 − 1Þ14

for y > 1: ð24Þ

We have used this approximation to compute Cl’s, which are
denoted by the plot markers near or at each solid curve in
Fig. 1. For k� ¼ 0.014 and 0.14 Mpc−1, the approximation
works very well. For k� ¼ 1.4 Mpc−1, it works well,
too, except when l≲200. For k� ¼ 14 and 140 Mpc−1,

it reproduces fairly well the Cl’s for l ¼ 104, while over-
estimating the relatively low-l multipoles.
In Ref. [9], the authors use the CAMB numerical code

to compute the CMB anisotropy and polarization power
spectra induced by a monochromatic SGWB produced
before the time of decoupling. They produce the Cl for
l < 2000 at k� ¼ 0.014, 0.14, 1.4, and 7.81 Mpc−1. The
power spectra in Fig. 1 match fairly well with their results
whenever the input parameters overlap. Here, we have
extended the range of the power spectra to l ≤ 104 and
k� ≤ 140 Mpc−1. For example, for k� ¼ 0.14 Mpc−1, the
power spectrum lðlþ 1ÞCl peaks around l ∼ x0 ¼ 1960, as
expected for the short-wavelength modes that mainly
contribute to the small-scale anisotropy. These short-wave-
length modes can also contribute to the large-scale CMB
anisotropy, resulting in a local maximum at l ¼ 2 and a
local minimum at l ¼ 21, when the CMB photons arrive at
the observer at the present epoch. This can be seen by
taking the limit, jlðxÞ=x2 → xl−2 as x → 0, in Eq. (21).
We will further study this large-scale contribution in the
next case.

2. Postrecombination with ηdec < η� ≲ η0
In this case, x1 ≪ x0, and the power spectrum can be

approximated as

Cl ≃
M2�

2πM2
p

�
η�
η0

�
4

ðlþ 2Þðlþ 1Þlðl − 1Þ

×

����
Z

x1

0

dx

�
1þ 2x

x0
þ 3x2

x20
þ…

�
eix

jlðxÞ
x2

����
2

; ð25Þ

When x1 ≪ 1, we have

Cl ≃
M2�

2πM2
p

�
η�
η0

�
4 ðlþ 2Þðlþ 1Þlðl − 1Þ
ð2lþ 1Þ!!ð2lþ 1Þ!! x2l−21 : ð26Þ

When x1 ≫ 1, using the integral result,

Z
∞

0

dx e−αxJνðβxÞxμ−1

¼ ðβ=2Þν
ανþμ

Γðνþ μÞ
Γðνþ 1ÞF

�
νþ μ

2
;
νþ μþ 1

2
; νþ 1;−

β2

α2

�
;

ð27Þ

where Fða; b; c; dÞ is a hypergeometric function which has
a particular value,

Fða; b; c; 1Þ ¼ ΓðcÞΓðc − a − bÞ
Γðc − aÞΓðc − bÞ ; ð28Þ

and the doubling formula for gamma functions,

10 100 1000 10410 4

0.01

1

100

104

106

108

l

Dl

FIG. 1. CMB temperature anisotropy power spectra induced by
narrow spectra of gravitational waves centered at wavelengths of
k� ¼ 0.014, 0.14, 1.4, 14, and 140 Mpc−1, denoted by five solid
curves from left to right, respectively. We have defined
Dl ≡ lðlþ 1ÞClð2πM2

pη
4
0Þ=ðM2�η4�Þ, where Cl is given by

Eq. (21). The plot markers near or at each solid curve are
computed using the large-order approximation in Eqs. (22)–(24).
The dashed line shows the l−2 scaling on large angular scales.
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Γð2zÞ ¼ 22z−1ffiffiffi
π

p ΓðzÞΓðzþ 1=2Þ; ð29Þ

we obtain

Z
x1

0

dx eixjlðxÞxμ−1
2 ≃

ffiffiffi
π

2

r Z
∞

0

dx eixJlþ1
2
ðxÞxμ−1

¼ ilþμþ1
2

2μþ1
2

Γð1=2 − μÞΓðlþ μþ 1=2Þ
Γðl − μþ 3=2Þ ;

ð30Þ

where α ¼ −i, β ¼ 1, ν ¼ lþ 1=2, and we have approxi-
mated x1 by an infinity. Under this approximation, we
keep only the first and the second terms in Eq. (25) that
correspond to μ ¼ −3=2 and −1=2, respectively. Hence, we
have

Cl≃
2M2�
πM2

p

�
η�
η0

�
4
�

1

ðlþ2Þðlþ1Þlðl−1Þþ
1

x20

ðlþ2Þðl−1Þ
ðlþ1Þl

�
:

ð31Þ

For k� > 0.014 Mpc−1 that we consider here, x0 ¼ k�η0 >
196. Thus, the first term dominates, and lðlþ 1ÞCl scales
as l−2 for l ≲ ffiffiffiffiffi

x0
p

. This explains the large-scale power and
scaling of the power spectra as shown by the dashed line
in Fig. 1.

C. CMB constraints on SGWB

In Ref. [9], the authors perform a likelihood analysis
using the CMB anisotropy and polarization data from
Planck and BICEP/Keck array to derive upper bounds
on the SGWB for 0.1 Mpc−1 ≲ k ≲ 10 Mpc−1. In their
results, they place an upper limit on the contribution of
tensor modes to the primary CMB temperature anisotropy
for l ≤ 2500, denoted by the dashed line in Fig. 2. In the
present work, we will simply use the CMB anisotropy
power spectra induced by SGWB in Fig. 1 to set bounds on
the SGWB.
Combining Eqs. (12) and (21), we obtain

Dl ≡ T2
0lðlþ 1ÞCl=ð2πÞ ¼

3H2
0

2k2�
ΩGWT2

0Dl; ð32Þ

where T0 ¼ 2.725 K is the present CMB temperature
and Dl is defined in Fig. 1. The measured primary CMB
anisotropy power spectrum at l ¼ 1900 is given by
200 μK2 [19–21]. The statistical detection of the secondary
CMB anisotropies at l ¼ 3000 − 104 made by both the
Atacama Cosmology Telescope (ACT) and the South Pole
Telescope (SPT) is at a level of 3 μK2 [20,21], which is an
inferred value of the secondary CMB temperature
anisotropy based on the model involving various contrib-
utors and the foreground removal scheme.

In Fig. 1, we have D1900 ≃ 107 for k ¼ 0.14 Mpc−1.
Requiring that this anisotropy power is less than the
measured value, i.e., D1900 ≲ 200 μK2, we obtain ΩGWh2≲
3 × 10−13. For 1.4 Mpc−1 ≤ k ≤ 140 Mpc−1, we read the
three power spectra D104’s for k ¼ 1.4, 14, and 140 Mpc−1

from Fig. 1. Assuming that each D104 cannot exceed the
inferred value of the secondary CMB contribution, i.e.,
D104 ≲ 3 μK2, we set upper limits onΩGWh2 at k ¼ 1.4, 14,
and 140 Mpc−1. Then, we interpolate linearly between
these four single-point upper limits. The resultant upper
bound is given by the solid line in Fig. 2, where h ¼ 0.67 is
assumed.
In Fig. 2, the value of the upper bound (solid line) in this

work at k ¼ 0.1 Mpc−1 is about equal to that (dashed line)
obtained in Ref. [9]. This would be the case because both
values are derived by using the Planck measured primary
CMB anisotropy power spectrum. For 1 Mpc−1 ≲ k≲
10 Mpc−1, using the inferred value of the secondary
CMB anisotropy at l ¼ 104 by ACT and SPT, we have
obtained more stringent limits than those obtained from the
Planck data in Ref. [9]. Furthermore, we have extended the
range for the upper bound to k ≤ 140 Mpc−1.

V. PULSAR TIMING

In the current pulsar-timing observation, radio pulses
from an array of roughly 100 Galactic millisecond pulsars
are being monitored with ground-based radio telescopes
[3]. The redshift fluctuation of a pulsar in the pointing
direction e on the sky is given by

zðeÞ ¼ −
1

2

Z
ηr

ηe

dη eiej
∂

∂η
hijðη; x⃗Þ; ð33Þ

0.1 1 10 100
10 12

10 10

10 8

10 6

10 4

0.01

1

k (Mpc-1)

GW

FIG. 2. Solid line is the upper bound on the spectral energy
density of the SGWB derived from Planck, ACT, and SPT small-
scale CMB temperature anisotropy measurements in this work.
The dashed line, drawn from the blue solid curve in Fig. 4 of
Ref. [9], is the upper bound derived from a likelihood analysis
using the CMB temperature anisotropy data made by Planck.
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where we have used z̄ ¼ 0 in Eq. (14) since the pulsar is in
our Galaxy. The physical distance of the pulsar from us is
D ¼ ηr − ηe, which is of order 1 kpc. The quantity that is
actually observed in the pulsar-timing observation is the
time residual counted as

rðtÞ ¼
Z

t

0

dt0zðt0Þ; ð34Þ

where t0 denotes the laboratory time and t is the duration of
the observation. Using the laboratory time t0, we rewrite
Eq. (33) as

zðt0; eÞ ¼ −
1

2

Z
t0þηr

t0þηe

dη eiej
∂

∂η
hijðη; x⃗Þ: ð35Þ

Let us consider a SGWB with the narrow power
spectrum (10), whereM�=Mp is the present GWamplitude.
The wave number is assumed to be k� ∼ 106 Mpc−1, lying
within the pulsar-timing-array sensitivities to GWs at
nanohertz frequencies. At the present time, the GWs are
traveling plane waves:

hðk�ηÞ ≃
M�
Mp

e−ik�η: ð36Þ

Then, we can construct the time-residual correlation
between a pair of pulsars:

hrðt1Þrðt2Þi¼
Z

t1

0

dt0
Z

t2

0

dt00hzðt0Þzðt00Þi

¼
Z

t1

0

dt0
Z

t2

0

dt00e−ik�ðt0−t00Þhzðe1Þzðe2Þi: ð37Þ

In Eq. (37), the integrand is simply the redshift fluctuation
correlation,

hzðe1Þzðe2Þi ¼
X
l

2lþ 1

4π
ClPlðe1 · e2Þ; ð38Þ

whose power spectrum is given by

Cl≃
M2�

2πM2
p
ðlþ2Þðlþ1Þlðl−1Þ

����
Z

x1

0

dxeix
jlðxÞ
x2

����
2

; ð39Þ

where x ¼ k�ðηr − ηÞ and x1 ¼ k�D ∼ 103. Using the
approximation in Eq. (30), we obtain an exact form for
the power spectrum as

Cl ≃
2M2�
πM2

p
½ðlþ 2Þðlþ 1Þlðl − 1Þ�−1: ð40Þ

In fact, this l−4 scaling has been derived using other
methods [13]. In Ref. [13], the authors have also shown

that substituting the power spectrum (40) into the two-point
correlation function (38) would give us the Hellings and
Downs curve for the quadrupolar interpulsar correlations
[10], which is given by the Earth term in the Shapiro time
delay of the arrival times of radio pulses from pulsars.
Recently, the NANOGrav Collaboration [22] has found

strong evidence of a stochastic common-spectrum process
across 45 ms pulsars, alluding to a SGWB with a character-
istic strain of hc ¼ 1.92 × 10−15 at a reference frequency of
fyr ¼ 1 yr−1 ≃ 31.8 nHz. However, they have not found
statistically significant evidence that this process has
Hellings and Downs spatial correlations. If the SGWB is
confirmed, its spectral energy density at fyr can be read
from Eq. (12) as

ΩGWh2 ≃
1

6π2
M2�
M2

p

�
k�

100 km s−1Mpc−1

�
2

¼ 2π2

3
h2c

�
fyr

100 km s−1Mpc−1

�
2

≃ 2.3 × 10−9; ð41Þ

where jhðk�ηÞj ¼ M�=Mp ¼ πhc and k� ¼ 2πfyr ≃
2.06 × 107 Mpc−1.
However, the exact form (40) underestimates the values

of Cl at large l’s. In Fig. 3, we have plotted the power
lðlþ 1ÞCl against l, using the true value x1 ¼ 103 to
numerically evaluate the integral in Eq. (39). The resulting
power spectrum is close to the Hellings and Downs
spectrum (40) on large angular scales when l < 20, with
Cl increased by 0.002%, 0.3%, 4.4%, 21.6%, 67.2% at
l ¼ 2, 10, 20, 30, 40, respectively. There exists a significant
power at small scales when l ≲ 103. When we observe the
pulsars at distance D, the angular separation between them
for us to see the spatial fluctuation of GWs with wavelength
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FIG. 3. Power spectra of the redshift fluctuation correlation.
The dashed line is the Hellings and Downs power spectrum.
The solid line is drawn from computing Eq. (39) numerically
for x1 ¼ k�D ¼ 103.
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λ is λ=D. This explains why Cl increases at small scales and
peaks at l ∼ 103. This small-scale power does not change
the Hellings and Downs curve on large angular scales,
while giving a sharp peak to the curve at small separation
angles [12]. In Fig. 3, the power spectrum is roughly a
v-shape line standing at log l ∼ 1.5 (or l ∼ 40), which
separates between the large-scale power and the small-
scale power. This is anticipated from the fact that the
autocorrection has a power twice larger than the Hellings
and Downs curve at zero lag (see, for example, Ref. [13])
induced by the pulsar term of the Shapiro time delay. As
such, it would be interesting to search for this small-scale
power by measuring correlation between adjacent pulsars
separated by about 180°=l ∼ 0.2° (l ∼ 103) on the sky. For
nearby pulsars withD ∼ 0.1 kpc, the exact form in Eq. (40)
is no longer a good approximation, so one should use the
full Eq. (39) to compute the power spectrum.
The integral in Eq. (39) is evaluated assuming that all the

pulsars are at the same distance. However, in realistic
observation, they are spread out in distance. As such, the
coherence will be lost, resulting in a suppression of the
small-scale power. To assess the loss of coherence, let us
consider a pair of pulsars with a subdegree angular
separation in a globular star cluster at distance of 1 kpc,
noting that the size of a globular cluster ranges from a few
pc to less than 0.1 kpc. Suppose one of the pulsar pair is
nearer to us than the other one by Δx1; then, from Eq. (39),
the fractional change in Cl will be given by

ΔCl

Cl
¼ −

�Z
x1

x1−Δx1
dx eix

jlðxÞ
x2

��Z
x1

0

dx eix
jlðxÞ
x2

�
−1
: ð42Þ

When x1 ¼ 103 and Δx1 ¼ 1 (giving ΔD ¼ 1 pc),
jΔCl=Clj < 1 for l < 103, so the small-scale power still
remains. When ΔD increases to 10 pc, jΔCl=Clj < 1 as
long as l < 400. A search for this small-scale power in the
current pulsar-timing observation is difficult due to poor
statistics from a limited number of monitored pulsars on
the sky. The future SKA project will observe about 6000
Galactic millisecond pulsars to reach a sensitivity 3 to 4
orders of magnitude better than the current pulsar-timing-
array experiments [23]. It would be interesting to hunt for
pulsar pairs in globular clusters to measure the correlation
at small angular scales.
Furthermore, it would be interesting to consider extra-

galactic millisecond pulsars or other presumable cosmo-
logical precision clocks to measure the SGWB. In this case,
ηr ¼ η0, and ηe is the time of emission of light from the

extragalactic sources at redshift z̄. Assume ηe > η�. Then,
the redshift-fluctuation correlation function is enhanced by
the redshift factor and reads

hδzðe1Þδzðe2Þi ¼ ð1þ z̄Þ2
X
l

2lþ 1

4π
ClPlðe1 · e2Þ: ð43Þ

Here, Cl is given by Eq. (31) with x1 ¼ k�D ≫ 103, where
D ¼ η0 − ηe is the comoving distance to the extragalactic
sources.

VI. CONCLUSION

We have revisited the Sachs-Wolfe gravitational effect of
the stochastic gravitational wave background. Considering
the effect as redshift-space fluctuations integrated along the
line of sight from the observer to the observable, we have
found that the line-of-sight integral is particularly useful for
studying the imprint of short-wavelength gravitational
waves on the CMB anisotropy, without having recourse
to intensive numerical computations. The integral in
Eq. (21) is the main result for us to compute the CMB
anisotropy power spectra induced by short-wavelength
SGWB. Thus, we have found that the contribution of
short-wavelength gravitational waves to the large-scale
CMB anisotropy Cl scales as l−4. Furthermore, we have
derived the new constraints on the SGWB using Planck,
ACT, and SPT small-scale CMB anisotropy data.
The Sachs-Wolfe gravitational effect can well be used to

study the redshift fluctuations of millisecond pulsars. The
time-residual correlation between a pair of pulsars can then
be expressed in terms of a power spectrum given by the
exact line-of-sight integral in Eq. (40). This reproduces the
Hellings and Downs curve for the redshift correlation
between a pair of distant and separated pulsars. For nearby
pulsars or close pulsar pairs, we have calculated the
deviations from the Hellings and Downs curve that should
be taken into account in pulsar timing measurements, in
particular when the correlation on small angular scales
comes into an important role. Our results will be useful for
future pulsar-timing arrays that observe thousands of
millisecond pulsars.
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