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We analyze the properties that any late-time modification of the ΛCDM expansion history must have in
order to consistently solve both the H0 and the σ8 tensions. Taking a model-independent approach, we
obtain a set of necessary conditions that can be applied to any late-time extension whose main effect is a
deviation from the ΛCDM background. Our results are fully analytical and merely based on the
assumptions that the deviations from the ΛCDM background remain small. For the concrete case of a dark
energy fluid with equation of state wðzÞ, we derive the following general requirements: (i) Solving the H0

tension demands wðzÞ < −1 at some z (ii) Solving both the H0 and σ8 tensions requires wðzÞ to cross the
phantom divide. Finally, we also allow for small deviations on the effective gravitational constant. In this
case, our method is still able to constrain the functional form of these deviations.
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I. INTRODUCTION

Historically, the quest for a satisfactory description of
our universe has always been guided by the latest obser-
vational data. It is therefore not surprising that the dramatic
increase of the quantity and quality of cosmological
observations over the last 25 years has allowed for a
revolution on the theoretical side as well. The ΛCDM
model has emerged as the leading theoretical description of
cosmic evolution, explaining key features, such as the
distribution of the cosmic microwave background (CMB)
anisotropies, with only a few free parameters. However,
despite its success, several observations have been, and still
are, hard to account for within this paradigm. In particular,
the well-known H0 tension, that is the discrepancy of the
Hubble constant inferred from the CMB within ΛCDM [1]
compared to the results of local measurements [2–5], has
become increasingly worrying in recent years and it is hard
to disregard it as a simple statistical fluke. At this point,
either there is something wrong with different, independent
observations or we must change the theoretical framework
to interpret them.
Another mayor concern in the community is the σ8

tension which, just as the H0 tension, arises when compar-
ing the CMB-inferred value of the clustering amplitude to
alternative observations, in this case large scale structure
(LSS) surveys [6–9]. Focusing on these two parameters and
disregarding correlations with other parameters, we may
say that CMB data favors a lower value of H0 while at the

same time preferring a higher σ8 value compared to late-
time measurements. See [10] for a compilation of recent
measurements. Finally note that this tension is commonly
referred to as S8 tension as well, where S8 ¼ σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
,

since this combination is better constrained by weak
lensing surveys.
In recent years, great efforts have been made toward

solving the H0 tension, see e.g., [11–24], as well as the σ8
tension, see e.g., [10,25–34] (see also [35–40] for an
overview of observations and models). While dark energy
models have received special attention, the proposals range
over ideas of introducing primordial magnetic fields modi-
fying the recombination history [41], over departures from
isotropy or homogeneity [39], or considering spacial
curvature [42], all the way to introducing new interactions
in the dark sector [27,43]. Yet, typically the main effect on
H0 boil down to modifications of the CMB angular scale
through departures from the ΛCDM predictions for either
the comoving sound horizon or the conformal distance to
decoupling, which in many models are sourced by mod-
ifications of the expansion history. In this work we choose
to focus on the latter and therefore restrict our analysis to
modifications of the late-time Hubble parameter with a
main application to late-time dark energy. Note, however,
that our method is not a priori tied to dark energy models
and in principle applies to any late time modification of the
ΛCDM expansion history, as long as other effects remain
negligible. As a particular but relevant example of an
additional effect we will in a second step also consider
possible changes in the effective gravitational constant at
the level of perturbations.
While there exist an abounding amount of proposed

solutions to the Hubble tension as mentioned above, it is
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known that most of the attempts run into problems when
trying to be consistent with complementary observations.
In particular, typical late-time solutions to the H0 tension,
as for example models based on scalar or vector Galileons
[44–48], usually lead to an even larger value of σ8 than
within ΛCDM and therefore potentially increase the σ8
tension. One should however keep in mind that the σ8
tension is only properly addressed as a tension in the σ8-Ωm
plane, or in the general multidimensional posterior. While
these models predict a slightly larger σ8 they also prefer
smaller values for Ωm, a result in the line of weak-lensing
surveys. However, even if one could argue that strictly
speaking such late-time solutions to the Hubble tension are
still statistically compatible with current σ8 measurements,
they clearly show the wrong trend, such that they will most
likely be difficult to reconcile with a low σ8 value if it is
confirmed by the more precise measurements of the next
generation of LSS surveys.
This generic trend, that late-time dark energy models

easing the Hubble tension predominantly increase σ8 as
well, can be understood as follows. A realistic dark energy
model typically affects σ8 in two ways: (1) Through its
effects on the expansion history, i.e., modifications of the
background equation of state. (2) Through its clustering
properties, i.e., clustering dark energy that can modify the
effective Newton constantGeff which governs the evolution
of the matter growth function. In the models mentioned
above with a phantom equation of state both effects
contribute to an increase in σ8: (1) A phantom-like
evolution of dark energy extends the matter-dominated
phase, boosting the matter growth. (2) Dark energy clusters
at late times, increasing Geff and further boosting the
amplitude of perturbations. The key point is that the same
phantom-like equation of state that is crucial to solve the
H0 tension, can only worsen the σ8 tension.
In face of these problems, one may wonder if it is even

possible to solve both tensions modifying only the late-time
dark energy behavior. Of course, in a consistent dark
energy model one should not only study the background
evolution, but the perturbations as well. And while the
background evolution is governed by the dark energy
equation of state wðzÞ, the perturbations are also affected
by the dark energy sound speed csðzÞ. Hence, at first sight
one could conclude that with two arbitrary functions at
hand it should not be difficult to find a dark energy model
that solves both tensions at once. However, this is not the
case since in realistic scenarios such as vector Galileons
both functions are not independent and their observational
impact is very different. In fact, while csðzÞ is relevant for
observables like the ISW effect, the modifications in wðzÞ
are the main force driving the values of σ8 and H0. In the
light of these considerations we will therefore narrow down
the scope of this work by mostly neglecting the effects of
dark energy perturbations and address the following main
question:

Can the H0 and σ8 tensions be simultaneously relieved
modifying only the dark energy equation of state wðzÞ at
late times?
We will show that the answer is no if the dark energy

equation of state does not meet some very definite criteria.
These conclusions apply to any dark energy model in
which the perturbations do not play a leading role in the
determination of σ8. After this, we will generalize the
results to the case where dark energy also affects the growth
of structure through a change in the effective gravitational
constant. Thus, our results provide valuable insights into
the behavior of the dark sector and can be seen as hints
toward building successful models beyond ΛCDM.
The main steps of the computation can be succinctly

summarized as follows:
(i) We will start off with a late-time ΛCDM cosmology,

that can effectively be described by two free param-
eters ðh;ωmÞ, i.e., the Hubble constant and the
matter abundance. In a second step, we consider
an alternative cosmology with slightly different
parameters and with a different expansion history
(hþ δh, ωm þ δωm, δHðzÞ). Here, δHðzÞ is an
arbitrary function that produces a small deformation
of the ΛCDM expansion history, for fixed h and ωm.
Restricting ourselves to late time modifications
translates into the assumption that δHðzÞ ¼ 0 for
roughly z > 300. With all the deformations consid-
ered to be small, the Hubble parameter in the
alternative cosmology can be written as

H ¼ HΛCDM þ ΔHðδh; δωm; δHðzÞÞ: ð1Þ

(ii) Working to first order, we compute the variations
induced by the modified Hubble parameter in differ-
ent cosmological observables.

(iii) Because of the deformation δHðzÞ, the observatio-
nally preferred values for h and ωm in the new
cosmology will be different compared to the initial
ΛCDM model. The variations δh and δωm can be
related to δHðzÞ by choosing two very well mea-
sured observables whose value should not change in
the new cosmology, i.e., we impose their variation to
be zero in order to be compatible with observations.
This allows us to compute the response functions

δh
h

¼
Z

RhðzÞ
δHðzÞ
HðzÞ

dz
1þ z

; ð2aÞ

δωm

ωm
¼

Z
Rωm

ðzÞ δHðzÞ
HðzÞ

dz
1þ z

: ð2bÞ

In this work we will choose the variations of the
CMB distance priors [49] to vanish. The response
functions Rh and Rωm

are fully analytical and are
defined in (22).
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(iv) Based on the results above we can then compute the
response function of any other quantity, and cru-
cially in our case

Δσ8
σ8

¼
Z

Rσ8ðzÞ
δHðzÞ
HðzÞ

dz
1þ z

: ð3Þ

Depending on the shapeof the response functions, this
allows us to derive general requirements on the func-
tional form of δHðzÞ in order to achieve the desired
variations in h and σ8. Again, Rσ8 can be computed
analytically and it will be derived in Sec. IV.

(v) In Sec. IV C, we will generalize these results and
include a second free function, δGeffðzÞ, that affects
the evolution of σ8, computing its associated
response function along the same lines.

This paper is organized as follows. In Sec. II we introduce
the deformations of the background andmost of the notation.
Section III will cover the choice of observational data (CMB
priors) used to compute the response functions. Section IV
deals with the variations of the growth factor and σ8. It also
includes a generalization for models that modify the effec-
tive Newton constant. In Sec. V we address the resolution of
theH0 tension in more detail, analyzing the differences that
arise when formulated in terms of the supernova absolute
magnitude M. Section VI summarizes the results of this
work.AppendixAcollects all the analytical formulas used to
derive the results in the main text. Finally, in Appendix Bwe
present some tests performed to check the accuracy of the
first-order, analytical results against the full numerical
computation with a Boltzmann code for a particular dark
energy model.

II. DEFORMATIONS OF THE EXPANSION
HISTORY

The Hubble parameter in a flat ΛCDM model can be
written as

H2
ΛCDM ¼ H2

0ðΩmð1þ zÞ3 þΩrð1þ zÞ4 þ ΩΛÞ
¼ C2

Hðωmð1þ zÞ3 þ ωrð1þ zÞ4 þ ωΛÞ; ð4Þ

where CH ≡ 100 km s−1Mpc−1 and

ωΛ ¼ h2 − ωm − ωr: ð5Þ
Letusconsidernowagenericextension that slightlymodifies
the expansionhistory, for fixedvaluesof all the cosmological
parameters, so the new Hubble parameter is

Hðh;ωmÞ ¼ HΛCDMðh;ωmÞ þ δH: ð6Þ

This deformation of the expansion history will also shift
the preferred values for the ΛCDM parameters, by a small
amount. The observationally preferred background in
ΛCDM and in the generic extension can then be related as

Hðhþ δh;ωm þ δωmÞ ¼ HΛCDMðh;ωmÞ þ ΔH; ð7Þ

wherewe are also assuming that δH only produces late-time
changes so the cosmology can be effectively described by h
and ωm. Assuming that all these variations are small and
working to first order we have

ΔH
H

¼ H2
0

H2

δh
h
þmðzÞ δωm

ωm
þ δH

H
;

mðzÞ≡ ωmC2
H

2H2
ðð1þ zÞ3 − 1Þ: ð8Þ

Starting with the general variation (8), we can propagate
its effect to any cosmological observable. In general, for
every cosmological quantity gðzÞ we will express its
variation as

ΔgðzÞ
gðzÞ ¼ IgðzÞ

δh
h
þ JgðzÞ

δωm

ωm

þ
Z

∞

0

dxz
1þ xz

Rgðxz; zÞ
δHðxzÞ
HðxzÞ

: ð9Þ

For instance, from the definition of the conformal, lumi-
nosity and angular diameter distances,

χðzÞ ¼
Z

z

0

dz
HðzÞ ; ð10aÞ

dLðzÞ ¼ ð1þ zÞχðzÞ; ð10bÞ

dAðzÞ ¼
1

1þ z
χðzÞ; ð10cÞ

we can easily compute

8>>>><
>>>>:

IχðzÞ¼ IdLðzÞ¼ IdAðzÞ¼− 1
χðzÞ

R
z
0 dxz

H2
0

H3 ;

JχðzÞ¼ JdLðzÞ¼ JdAðzÞ¼− 1
χðzÞ

R
z
0 dxz

H2
0

H3mðxzÞ;
Rχðxz;zÞ¼RdLðxz;zÞ¼RdAðxz;zÞ¼−ð1þxzÞ θðz−xzÞ

χðzÞHðxzÞ :

ð11Þ

Notice that, since we are working to first order, every
function like χðzÞ and HðzÞ can be computed in the base
ΛCDM cosmology. The full analytical expressions for all
the ðI; J; RÞ functions that are used in this work are
collected in Appendix A.
Finally, notice that we can also express the previous

results in terms of a variation on the energy content

H2ðh;ωmÞ ¼ H2
ΛCDMðh;ωmÞ þH2

0δΩ: ð12Þ

with δΩ ¼ 0 at z ¼ 0. Working again to first order we have
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δH
H

¼ H2
0

2H2
δΩ: ð13Þ

Note that we did not, and will not, specify a functional form
for either δH or δΩ. However, in particular models some
additional properties may be desirable. For instance, if δΩ
arises from a dark energy model, we may want to require
that the dark energy density is positive, leading to

ΩDEðzÞ≡ΩΛ þ δΩðzÞ > 0 ðDE modelÞ ð14Þ

In this case, we can also relate the variation to the equation
of state of dark energy wðzÞ

δΩðzÞ ¼ ΩΛ

�
exp

�
3

Z
z

0

ð1þ wðzÞÞ dz
1þ z

�
− 1

�
: ð15Þ

Following the same reasoning, in a model with dark matter
and dark energy interactions we have

ΩDE−DMðzÞ≡ΩΛ þ Ωcdmð1þ zÞ3 þ δΩðzÞ > 0

ðInteracting DM-DE modelÞ ð16Þ

III. CMB PRIORS AND THE H0 TENSION

In the previous section we considered a generic back-
ground modification over a ΛCDM cosmology. However,
we know that the extremely precise observations of the
CMB severely restrict such modifications. Two combina-
tions of parameters are particularly well measured,

θ� ≡ rsðz�Þ
ð1þ z�ÞdAðz�Þ

; ð17aÞ

R� ≡ ð1þ z�ÞdAðz�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩmH2

0

q
: ð17bÞ

where rsðzÞ is the comoving sound horizon

rsðzÞ ¼
Z

∞

z

dz
H

cs; cs ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð1þ RÞp ;

R ¼ 3Ωb

4Ωγð1þ zÞ ; ð18Þ

and z� ≃ 1090 is the redshift at decoupling, see [49] for a
more accurate interpolation formula. These are commonly
referred to as the CMB distance priors: the acoustic scale
(θ�) and the shift parameter (R�), that govern the angular
position and the height of the peaks in the CMB spectrum,
respectively. Their latest values using the Planck 2018
release, for ΛCDM and some extensions, can be found in
[49]. We can compute their variation following the steps of
the previous section

Δθ�
θ�

¼ Δr�s
r�s

−
Δd�A
d�A

; ð19aÞ

ΔR�
R�

¼ Δd�A
d�A

þ δωm

2ωm
: ð19bÞ

Here we are using the shorthand notation d�A ≡ dAðz�Þ. The
variation in these two parameters is only a small fraction of
all the possible changes that any modified cosmology can
produce in the CMB. If we want to compute all these
changes and definitively establish the level of agreement of
a given model with the CMB, we must resort to a
Boltzmann code and perform the numerical computation.
However, we can argue that in order not to be directly
excluded, any reasonable ΛCDM extension must keep θ�
and R� approximately fixed. Then, imposingΔθ�,ΔR� ≃ 0,
we obtain the following system

ðI�dA − I�rsÞ
δh
h
þ ðJ�dA − JrsÞ

δωm

ωm

¼
Z

dxz
1þ xz

ðR�
rs − R�

dA
Þ δH
H

; ð20aÞ

I�dA
δh
h
þ
�
J�dA þ

1

2

�
δωm

ωm
¼ −

Z
∞

0

dxz
1þ xz

R�
dA

δH
H

: ð20bÞ

Solving the system we get the response functions for h
and ωm

δh
h

¼
Z

∞

0

dxz
1þ xz

RhðxzÞ
δHðxzÞ
HðxzÞ

; ð21aÞ

δωm

ωm
¼

Z
∞

0

dxz
1þ xz

Rωm
ðxzÞ

δHðxzÞ
HðxzÞ

: ð21bÞ

where

Rh ¼
1

D�

��
J�dA þ

1

2

�
ðRrsðx; z�Þ − RdAðx; z�ÞÞ

− ðI�rs − I�dAÞRdAðx; z�Þ
�
; ð22aÞ

Rωm
¼ 1

D�
fI�rsRdAðx; z�Þ − I�dARrsðx; z�Þg; ð22bÞ

D� ¼ I�dAðJ�rs − J�dAÞ − ðI�rs − I�dAÞ
�
J�dA þ

1

2

�
: ð22cÞ

The response functions allow us to connect the changes
produced in the expansion history by a generic model with
changes of the observationally preferred parameters in the
new cosmology. The observations considered in this case
are the CMB priors, which ensure that all the modified
cosmologies considered are roughly compatible with the
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CMB. While the expressions derived so far are general, we
will restrict ourselves to late-time modifications, so that
δHðzÞ ¼ 0 for z > 300.
We can now use the previous results to compute the

response function of any other cosmological quantity. After
plugging (22) in the expression for a general variation, (9),
we obtain

ΔgðzÞ
gðzÞ ¼

Z
∞

0

dxz
1þ xz

Rgðxz; zÞ
δHðxzÞ
HðxzÞ

; ð23Þ

where the response function Rg can be expressed as

Rgðxz;zÞ≡IgðzÞRhðxzÞþJgðzÞRωm
ðxzÞþRgðxz;zÞ: ð24Þ

These results allow us to answer one of the main questions
of this work. The response functionRh, depicted in Fig. 1,
is strictly negative, so to increase the value of h and thus
solve the Hubble tension we need δHðzÞ < 0 for some z. In
the context of dark energy models, according to (15), this
means that the equation of state must be phantomlike, i.e.,
wðzÞ < −1 for some z. To reach this conclusion we only
used the fact that Rh is strictly negative. Its shape will be
important in the next section, where we will try to
simultaneously solve the H0 and the σ8 tensions.
After evaluating (22), one can see that the response

function of ωm is very close to zero in the whole range
0 < z < 300. Even though we will present the analytical
results with full generality, for late-time modifications it is
completely justified to keep ωm fixed, i.e., Rωm

→ 0. The
variation of the Hubble parameter can then be obtained
using only the first CMB prior in (19)

δh
h
≃ −

1

I�dA

Z
∞

0

dxz
1þ xz

R�
dA

δH
H

: ð25Þ

Finally, notice that in this work we are neglecting the
changes in the ΛCDM parameters that could be induced by
the modified ISWeffect. Late-time changes of the equation
of state, and especially modifications to the perturbations
(e.g., clustering dark energy), lead to a modification of the
ISW effect that might affect the determination of the
ΛCDM parameters τreio and As, i.e., the optical depth to
reionization and the amplitude of the spectrum of scalar
perturbations. However, in particular dark energy models,
e.g., [48], the modification on As has been shown to be very
small and the effects considered in this work (modifications
of wðzÞ and Geff ) were the ones driving σ8 above the
ΛCDM value. Hence, we will neglect this contribution
here, leaving a detailed analysis of the ISW effect for
future work.

IV. GROWTH FACTOR AND THE σ8 TENSION

A. Growth factor and σ8 in ΛCDM
After decoupling, the time evolution of matter perturba-

tions can be encapsulated in the growth factor. The growth
factor in ΛCDM obeys

d2D
da2

þ dlogða3HÞ
da

dD
da

− FðaÞD ¼ 0;

FðaÞ≡ 3ΩmH2
0

2a5H2
: ð26Þ

This equation remains valid even if the expansion history
HðaÞ is different from ΛCDM, as long as the equations
describing the perturbations are not modified. For a

FIG. 1. Left: response functions for h and σ8. Notice that both have the same sign so, unless δH changes sign, both variations follow
the same trend, i.e., if we increase h we also increase σ8. Right: response functions for other clustering-related quantities. The curves
have been computed using the Planck 2018 [1] best-fit values.
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late-time ΛCDM universe, where matter and Λ are the
dominant components, the two independent solutions of
(26) can be expressed analytically

DþðaÞ ¼
5Ωm

2

HðaÞ
H0

IðaÞ;

IðaÞ≡
Z

a

0

dxa
H3

0

ðxaHðxaÞÞ3
; ð27aÞ

D−ðaÞ ∝ HðaÞ; ð27bÞ

where Dþ and D− are the growing and decaying mode,
respectively. It is also common to define the linear growth
rate f, that in ΛCDM can be approximated as

f ≡ d logDþ
d log a

≃
�
ΩmH2

0a
−3

H2

�
0.55

: ð28Þ

We start with the definition, e.g., see [50],

σ2R ≡ hδ2m;RðxÞi; ð29Þ
where

δm;RðxÞ≡
Z

d3x0 δmðx0ÞWRðjx − x0jÞ;

WRðrÞ ¼
� 3

4πR3 ; x < R

0; x > R
ð30Þ

It is common practice to evaluate this averaged clustering
amplitude in spheres of radius R ¼ 8h−1 Mpc and denote it
as σ8. It can be equivalently expressed in Fourier space and
in terms of the matter power spectrum as

σ2R ¼
Z

dk
k
PmðkÞW2ðkRÞ; WðxÞ≡ 3j1ðxÞ

x
; ð31Þ

where j1 is a spherical Bessel function. The approximate
form of the linear matter power spectrum in terms of the
matter growth factor and the transfer function is [50]

PmðkÞ≡ k3

2π2
PmðkÞ¼

4

25

k4

Ω2
mH4

0

T2ðkÞD2þðaÞPRðkÞ; ð32Þ

where the primordial power spectrum of curvature pertur-
bations is

PRðkÞ ¼ As

�
k
kp

�
ns−1

; kp ¼ 0.05 Mpc−1: ð33Þ

For the transfer function we will adopt the Eisenstein-Hu
fitting formula [51] that takes into account the baryonic
suppression at small scales and proves important for an
accurate computation of σ8. Following the notation of the
original work [51]

q ¼ k
Mpc−1

Θ2
2.7

Γeff
; Γeff ¼ ωm

�
αΓ þ

1 − αΓ
1þ ð0.43ksÞ4

�
;

T0ðqÞ ¼
L0

L0 þ C0q2
; αΓ ¼ 1 − 0.328 logð431ωmÞ

ωb

ωm
þ 0.38 logð22.3ωmÞ

�
ωb

ωm

�
2

;

L0ðqÞ ¼ logð2eþ 1.8qÞ; s ¼ 44.5 logð9.83=ωmÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 10ðωbÞ3=4

p Mpc;

C0ðqÞ ¼ 14.2þ 731

1þ 62.5q
; ð34Þ

whereΘ2.7 is the temperature of the CMB in 2.7 K units. So
finally, the transfer function that we will use is TEHðkÞ ¼
T0ðqðkÞÞ Also notice that we will always assume that k in
the integral is measured in Mpc−1 and not in Mpc−1h units.
After rewriting (31), we can write the σ8 as

σ28 ¼
4

25ωm
D2þðaÞIk; ð35Þ

where

Ik ¼
Z

∞

0

dk
k

�
k
CH

�
4

T2ðkÞW2ðkRÞPRðkÞ; ð36Þ

and again R ¼ 8h−1 Mpc. Closely related, S8 is defined as

S8 ≡ σ8

ffiffiffiffiffiffiffi
Ωm

0.3

r
: ð37Þ

This quantity is closer to what is actually measured in
weak-lensing surveys and is commonly used to reformulate
the σ8 tension as a S8 tension. Spectroscopic surveys on the
other hand usually target the combination fσ8, that can be
precisely measured with redshift-space distortions.

B. The σ8 tension

The evolution of the variation of the growth factor is
described by
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d2

da2
ΔDþ dlogða3HÞ

da
d
da

ΔD − FðaÞΔD ¼ gðaÞ; ð38Þ

where

gðaÞ≡ −
d
da

�
ΔH
H

�
dD
da

þ FD

�
δωm

ωm
− 2

ΔH
H

�
: ð39Þ

Using the Wronskian method, we can construct the
particular solution to the inhomogeneous equation (38)
and express the variations of the growth factor and the
linear growth rate as

ΔD ¼ HðaÞ
H0

Z
a

0

dxa
x3aH2ðxaÞ

H2
0

ðIðaÞ − IðxaÞÞgðxaÞ; ð40Þ

Δf ¼ d
d log a

ΔD
D

: ð41Þ

The full analytical expressions for the ðI; J; RÞ pieces of
the variations can be found in Appendix A. We are now
in position to compute the variation in the σ8 clustering
amplitude. This variation can be written as the
combination

Δσ8
σ8

¼ ΔD
D

−
δωm

ωm
þ 1

2

ΔIk

Ik
: ð42Þ

We still need to compute the variations on the integral Ik

ΔIk ¼ 2

Z
∞

0

dk
k
T2ðkÞ

�
k
CH

�
4

WðkRÞΔWðkRÞPRðkÞ

þ 2

Z
∞

0

dk
k
TðkÞΔTðkÞ

�
k
CH

�
4

W2ðkRÞPRðkÞ: ð43Þ

Similarly, the variation of S8 is

ΔS8
S8

¼ Δσ8
σ8

−
δh
h
þ 1

2

δωm

ωm
: ð44Þ

The response functions for σ8, fσ8 and S8 are repre-
sented on the right hand side of Fig. 1. Both Rσ8 and Rfσ8
are strictly negative, which means that in order to reduce
them we need δHðzÞ > 0 at some z. This can be compared
with the result of the previous section, which showed that in
order to increase H0 we need δHðzÞ < 0. The bottom line
of this analysis is that both conditions must be fulfilled to
solve the two cosmological tensions, otherwise we improve
one at the cost of worsening the other. In particular, for a
dark energy model (15) a change of sign in δHðzÞ implies
that the equation of state wðzÞmust cross the value w ¼ −1.
However, the results for S8 are slightly different, since at
very late-times the response function changes its sign. This
feature could be very positive if, with the results of

upcoming LSS surveys, we find ourselves in a situation
where the clustering amplitude tension is clearly more
severe in S8 or in fσ8. The different behavior of their
response functions might be then a clear explanation and
could give us hints about the shape of δHðzÞ.

C. Deformations beyond the background: Geff

We define Geff as a modification in the sub-Hubble
regime that leads to the modified evolution for the growth
factor

d2D
da2

þ dlogða3HÞ
da

dD
da

−
Geff

G
FðaÞD ¼ 0: ð45Þ

Many realistic scenarios actually produce this kind of
modification, e.g., see [48]. Following the same steps as
in previous sections, if we assume that the effective
gravitational coupling is close to the ΛCDM case,
Geff ¼ Gþ δGðzÞ, we get

d2

da2
ΔDþ dlogða3HÞ

da
d
da

ΔD − FðaÞΔD

¼ FðaÞDðaÞ δGðaÞ
G

; ð46Þ

where in this caseΔD stands for a variation keeping fixed all
the cosmological parameters and HðzÞ. The particular
solution is

ΔD
D

¼ HðaÞ
DðaÞH0

Z
a

0

dxa
x3aH2ðxaÞ

H2
0

ðIðaÞ

− IðxaÞÞFðxaÞDðxaÞ
δGðxaÞ

G

¼
Z

∞

0

dxz
1þ xz

Gðxz; zÞ
δGðxzÞ

G
; ð47Þ

where the response function for δG is

Gðxz;zÞ¼
H3ðzÞDðxzÞ
H3

0DðzÞ ðIðzÞ−IðxzÞÞFðxzÞ
θðxz−zÞ
ð1þxzÞ4

: ð48Þ

Since we are working to first order, the complete variation,
modifying the background as well, is just a linear combina-
tion with the results of the previous section, i.e.,

ΔD
D

����
full

¼
Z

∞

0

dxz
1þxz

�
RDðxz;zÞ

δHðxzÞ
HðxzÞ

þGðxz;zÞ
δGðxzÞ

G

�
:

ð49Þ

Including two free functions δHðzÞ and δGðzÞ make the
results more general but unfortunately prevent us from
making strong statements about the behavior of any of
them. In order to proceed further, we restrict ourselves to
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the case in which δHðzÞ does not change sign. We know
that this scenario is realized in many physically relevant
models, for instance when we have a dark energy fluid that
does not cross the phantom divide.
We already discussed that in this case in order to solve

the H0 tension we require δH < 0. If we do not modify the
evolution of the perturbations, i.e., Geff ¼ G, this leads to
an increase in σ8, sinceRσ8< 0. However, including δGðzÞ
we have enough freedom to increase H0 while reducing σ8.
Intuitively, it seems evident that we can achieve this goal
just reducing the effective strength of gravity enough, i.e.,
δGðzÞ < 0. Defining αðxzÞ≡ −Rσ8ðxz; 0Þ=Gðxz; 0Þ and
using the previous results we can derive the stronger
condition

δGðxzÞ
G

< αðzÞ δHðxzÞ
HðxzÞ

< 0 for some xz > 0; ð50Þ

that a model must satisfy if we want to reduce the value of
σ8, while increasing H0. The response function for the
gravitational coupling constant and αz are shown in Fig. 2.

V. SUPERNOVA ABSOLUTE MAGNITUDE

Most discussions on the Hubble tension are formulated in
terms of theH0, orh, parameter. However, the parameter that
is closer to what is actually measured by collaborations like
SH0ES [2], is the absolutemagnitudeM used to calibrate the
observed apparent magnitudes of SNe. This is the actual
source of the Hubble tension, as has been stressed by [52],
which also presented models where H0 is raised without

affecting M. In this section we will compute the response
function for M, paying special attention to its differences
with respect to the response function for h. The apparent
magnitude and distance modulus are defined as [53]

m≡ 5 log10

�
dL
Mpc

�
þ 25þM; ð51Þ

μ≡m −M; ð52Þ

whereM is the absolute magnitude, that must be calibrated
to infer the distance from the observed apparent magnitude.
The χ2 can then be constructed as

χ2SNe ¼ ðmi
obs −mi

thÞðC−1Þijðmj
obs −mj

thÞ; ð53Þ

and it can be analytically minimized for M

∂χ2SNe
∂M

¼ 0 → Mbest fit ¼
P

ijðC−1Þijðmj
obs − μjthÞP

ijðC−1Þij
: ð54Þ

For given values of h and ωm, this is the absolute magnitude
that provides the best fit to SNe data. Its variation is

ΔM ¼ −5
δh
h
−

5P
ijðC−1Þij

X
ij

ðC−1ÞijΔdLðzjÞ
dLðzjÞ

; ð55Þ

so we have

FIG. 2. Left: response of σ8 to small changes in the effective gravitational constant, G in (48). The second curve αðzÞ depicts the bound
defined in (50). Right: response function of h and the supernova absolute magnitude M. Notice that the latter becomes negative at very
low redshift, so a very late-time modification that tries to increase the value of h would also increase M and thus fail at addressing the
H0 tension between the CMB and supernovae-based direct measurements. The curves have been computed using the Planck 2018 [1]
best-fit values.
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RMðxzÞ ¼ −5RhðxzÞ −
5P

ijðC−1Þij
X
ij

ðC−1ÞijRdLðxz; zjÞ:

ð56Þ

In this work, we will use the Pantheon sample [53] for the
computation of (56). In Fig. 2, we can see that, in contrast
with h, the response function for M changes sign at low
redshift. This means that models that rely on modifications
at very low redshift may increase the Hubble constant
without actually decreasing M, a result in line with the
conclusions of [52].

VI. SUMMARY AND CONCLUSIONS

In this paper we have addressed the question of why
typical late-time dark energy models only solve the H0

tension at the cost of predicting a large clustering amplitude
σ8 and whether it is therefore actually possible to relieve
both tensions simultaneously by perturbatively modifying
the expansion history, and maybe the gravitational constant,
at late times. Using a model independent approach we
derived a set of necessary conditions on the functional form
of δHðzÞ which have to be satisfied in order to tackle both
the H0 and σ8 tensions. For the particularly interesting case
in which the deformation is due to dark energy with
equation of state wðzÞ our results can be summarized
schematically as follows

(i) Solving the H0 tension ⇒ δHðzÞ < 0 for some
z ⇒ wðzÞ < −1 for some z.

(ii) If the perturbations are not modified (Geff ¼ G)
then: Solving the H0 and σ8 tensions ⇒ δHðzÞ
changes sign ⇒ wðzÞ crosses the phantom divide.

(iii) If Geff ¼ Gþ δGðzÞ and δHðzÞ does not change
sign then: Solving the H0 and σ8 tensions⇒

δGðzÞ
G <

αðzÞ δHðzÞ
HðzÞ < 0 for some z. where δHðzÞ < 0

and αðzÞ > 0.
(iv) Solutions that rely on significant modifications at

low redshift (z < 1) can increase H0 without de-
creasing the supernova absolute magnitude M, thus
failing to address the Hubble tension.

Note that while we chose here to present the implications
of our results for the specific case of a dark energy model,
the conditions on the form of δHðzÞ are much more general
and can be applied to any theory. If the theory in question
introduces changes beyond a modification of the back-
ground, we can use the previous conditions to gain insight
on how these additional changes must behave. For instance,
if we know from the previous analysis that the background
effects worsen the σ8 tension, at least some of the changes
beyond the background must work toward improving it,
otherwise the theory is doomed.
Providing a full catalog of models ruled out by these

necessary criteria will be left for future work, as well as the

further study of theories meeting them. It would for
example be interesting to include low redshift constraints
from baryon acoustic oscillation (BAO) data and address
concerns along the lines of [54].
Another interesting avenue would be to extend this

results to early dark energy models. In this case, the
CMB would be modified in a different way and different
observational anchors should be used. The variation of ωm,
negligible for this work, would have to be taken into
account and would potentially play an important role.
Finally, while the computations in the present paper, in

particular the solution (40), explicitly assume a ΛCDM
background with only matter and curvature contributions
on top of the cosmological constant, it is possible to
generalize our analysis to arbitrary backgrounds. This will
allow the application of the method to deviations from
general DE models or theories beyond Einstein gravity and
will be useful especially in the context of effective field
theory of dark energy to consider observables at the
perturbation level beyond Geff presented here.
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APPENDIX A: FULL ANALYTICAL RESULTS

This appendix contains the full analytical expressions
used in this work. Unless otherwise stated, every function
inside the integrals depends on the integration variable xz.
Comoving, luminosity and angular diameter distance:

8>>><
>>>:

IχðzÞ¼ IdLðzÞ¼ IdAðzÞ¼− 1
χðzÞ

R
z
0 dxz

H2
0

H3

JχðzÞ¼ JdLðzÞ¼ JdAðzÞ¼− 1
χðzÞ

R
z
0 dxz

H2
0

H3mðxzÞ
Rχðxz;zÞ¼RdAðxz;zÞ¼RdAðxz;zÞ¼−ð1þxzÞ θðz−xzÞ

χðzÞHðxzÞ

ðA1Þ

Comoving sound horizon:

8>>><
>>>:

IrsðzÞ ¼ − 1
rsðzÞ

R
∞
z dxz

H2
0

H3 csðxzÞ
JrsðzÞ ¼ − 1

rsðzÞ
R
∞
z dxz

H2
0

H3 mðxzÞcsðxzÞ
Rrsðxz; zÞ ¼ − ð1þxzÞcsðxzÞ

rsðzÞ
θðxz−zÞ
HðxzÞ

ðA2Þ
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Integral defined in (36): 8>>>>><
>>>>>:

IIk
¼ − 2

Ik

R
∞
0

dk
k T

2ðkÞPRðkÞ
�

k
CH

�
4

kRWðkRÞW0ðkRÞ

JIk
¼ 2ωm

Ik

R∞
0

dk
k TðkÞ ∂TðkÞ∂ωm

PRðkÞ
�

k
CH

�
4

W2ðkRÞ
RIk

¼ 0

ðA3Þ

Growth factor:

8>>>>>>>>><
>>>>>>>>>:

IDðzÞ ¼ − HðzÞ
H0DðzÞ

R∞
z

dxz
1þxz

H2
0
D

H2

�
H0

H f þ Nðz;xzÞF
1þxz

�
1þ ð1þxzÞ3

F
d logH
dxz

f

��

JDðzÞ ¼ 1
5
þ HðzÞ

H0DðzÞ
R
∞
z

dxz
ð1þxzÞ2 Nðz; xzÞFD

− HðzÞ
H0DðzÞ

R
∞
z

dxz
1þxz

mD

�
H0

H f þ Nðz;xzÞF
1þxz

�
1þ ð1þxzÞ3

F
d logH
dxz

f

��

RDðxz; zÞ ¼ − HðzÞDðxzÞ
H0DðzÞ

�
H0

HðxzÞ fðxzÞ þ
Nðz;xzÞFðxzÞ

1þxz

�
1þ ð1þxzÞ3

FðxzÞ
d logH
dxz

fðxzÞ
��

θðxz − zÞ

ðA4Þ

Linear growth rate:

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

IfðzÞ ¼ −IDðzÞ
�
1þ 1þz

f
d logH
dz

�
− H2

0

H2ðzÞ

− ð1þzÞ2H2
0

fðzÞH2ðzÞDðzÞ
R∞
z

dxz
ð1þxzÞ5 FD

�
1þ ð1þxzÞ3

F
d logH
dxz

f

�

JfðzÞ ¼ −
�
JDðzÞ − 1

5

��
1þ 1þz

f
d logH
dz

�
−mðzÞ

þ ð1þzÞ2
fðzÞH2ðzÞDðzÞ

R
∞
z

dxz
ð1þxzÞ5 H

2FD

�
1 −m

�
1þ ð1þxzÞ3

F
d logH
dxz

f

��

Rfðxz; zÞ ¼ −RDðxz; zÞ
�
1þ 1þz

f
d logH
dz

�
− δðxz − zÞ

− 1
ð1þzÞfðzÞ

ð1þzÞ3H2ðxzÞDðxzÞ
ð1þxzÞ3H2ðzÞDðzÞ

FðxzÞ
1þxz

�
1þ ð1þxzÞ3

FðxzÞ
d logH
dxz

fðxzÞ
�
θðxz − zÞ

ðA5Þ

Supernova absolute magnitude:

8>>>>>><
>>>>>>:

IM ¼ − 5
M − 5

M
P

ij
ðC−1Þij

P
ij
ðC−1ÞijIχðzjÞ

JM ¼ − 5

M
P

ij
ðC−1Þij

P
ij
ðC−1ÞijJχðzjÞ

RMðxzÞ ¼ − 5

M
P

ij
ðC−1Þij

P
ij
ðC−1ÞijRχðxz; zjÞ

ðA6Þ

APPENDIX B: NUMERICAL BENCHMARKS

The analytical expressions of the previous section have been tested for two particular dark energy models, w ¼ const and
the CPL [55,56] parametrization w ¼ w0 þ wað1 − aÞ. In the latter, we choose fix parameter w0 ¼ −1.05 to obtain a
deformation δHðzÞ that changes sign at late times. We compare the analytical results with the numerical ones obtained using
CLASS [57], keeping fixed the acoustic scale θ� and ωm. The analytic results show a very satisfactory performance as can be
seen in Tables I and II.
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FIG. 3. δHðzÞ for two common dark energy parametrizations.

TABLE II. Comparison of our analytical results with the full computation in CLASS, keeping fixed θ� and ωm, for a
dark energy model with an equation of state wðaÞ ¼ −1.05þ wað1 − aÞ. Notice that in this case δHðzÞ changes
sign, as shown in the right panel in Fig. 3, and for the case wa ¼ 0.174 the variations have opposite signs. Even
though they are too small to relieve the tensions, this example shows that when δHðzÞ changes sign it is possible to
increase h while reducing σ8.

100 × δh=h 100 × Δσ8=σ8
wa CLASS Analytical CLASS Analytical

−0.05 2.81 2.61 2.24 2.08
−0.01 2.35 2.22 1.86 1.75
0.03 1.89 1.80 1.47 1.39
0.07 1.42 1.37 1.07 1.03
0.11 0.946 0.93 0.66 0.64
0.14 0.465 0.46 0.24 0.23
0.174 0.095 0.093 −0.089 −0.092
0.18 −0.022 −0.025 −0.19 −0.20
0.22 −0.52 −0.53 −0.64 −0.65
0.26 −1.02 −1.07 −1.09 −1.13
0.3 −1.54 −1.62 −1.56 −1.64

TABLE I. Comparison of our analytical results with the full computation in CLASS, keeping fixed θ� and ωm, for a
dark energy model with a constant equation of state w.

100 × δh=h 100 × Δσ8=σ8
w CLASS Analytical CLASS Analytical

−0.80 −8.57 −10.97 −8.98 −7.13
−0.85 −6.47 −7.76 −6.29 −5.32
−0.90 −4.35 −4.89 −3.93 −3.53
−0.95 −2.19 −2.32 −1.85 −1.76
−1.05 2.22 2.10 1.65 1.75
−1.10 4.47 4.01 3.12 3.48
−1.15 6.75 5.74 4.45 5.21
−1.20 9.07 7.33 5.66 6.93
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