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We consider the redshift drift and position drift associated with astrophysical sources in a formalism
that is suitable for describing emitters and observers of light in an arbitrary spacetime geometry, while
identifying emitters of a given null-geodesic bundle that arrives at the observer worldline. We then
restrict the situation to the special case of a Lemaître-Tolman-Bondi (LTB) geometrical structure and
solve for light rays propagating through the structure with arbitrary impact parameters, i.e., with
arbitrary angles of entry into the LTB structure. The redshift drift signal emitted by comoving sources
and viewed by a comoving observer turns out to be dominated by Ricci curvature and electric Weyl
curvature contributions as integrated along the connecting light ray. This property simplifies the
computations of the redshift drift signal tremendously, and we expect that the property extends to
more complicated models including Swiss-cheese models. When considering several null rays with
random impact parameters, the mean redshift drift signal is well approximated by a single Ricci
focusing term. This suggests that the measurement of cosmological redshift drift can be used as a
direct probe of the strong energy condition in a realistic universe where photons pass through many
successive structures.
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I. INTRODUCTION

Redshift drift is the temporal change in redshift of light
arriving from a distant source as viewed by the observer
[1,2]. The detection of redshift drift is a cornerstone of
upcoming precise cosmological measurements [3] and
makes possible the direct determination of kinematic
properties of the Universe, which would otherwise rely
on indirect inference and the assumption of a cosmological
model. Redshift drift is a probe of dark energy within the
Friedmann-Lemaître-Robertson-Walker (FLRW) universe
models [4,5], but it might be used as a probe of violation of
the strong energy condition within much broader universe
geometries [6,7]. Redshift drift might also be used as a test
of the FLRW spacetime conjecture [8,9].
The redshift drift signal has mostly been analyzed within

the FLRW universe models, but analytical and numerical
investigations have also been carried out within Stephani,
Lemaître-Tolman-Bondi (LTB), Bianchi I, and Szekeres
models [7,10–18]. Convenient representations of redshift
drift within arbitrary spacetime geometries have recently
been formulated [8,19], and a promising numerical tool for

fast computation of drift effects for a given specified metric
description has been proposed [20,21].
The redshift drift representation for an arbitrary geomet-

rical setting as formulated in Ref. [8] is useful for analyzing
potential systematic departures from the FLRW redshift
drift prediction induced by local structures [8], for inde-
pendent observational tests of the strong energy condition
[6], and for performing model-independent cosmographic
analyses of data [22]. The representation is furthermore
useful for investigating individual curvature and kinematic
contributions to the final redshift drift signal within model
universes of interest.
In this paper, we consider the redshift drift in a class of

LTB models with light propagating through the structure
with arbitrary angles of entry. The investigated LTB model
profile describes a central underdensity surrounded by a
steep overdensity and thus might be used as a crude model
of a void with surrounding filaments of galaxies. Using the
framework developed in Refs. [6,8,22] to decompose the
redshift drift signal allows us to analyze the hierarchy of
multipole terms contributing to the signal along the light
beam, when the light passes through the LTB structure. We
analyze the relative magnitudes of the individual terms as
well as cancellation effects related to these terms; in
particular, we analyze the conjecture that Ricci focusing
dominates the redshift drift signal when light rays are
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traversing many structures by considering the situation
where many light rays traverse a single structure with
different (random) impact parameters.
In Sec. II we review the general expression for the

redshift drift signal in terms of the physically interpretable
multipole decomposition and consider the multipole coef-
ficients in the special case of an LTB spacetime. In Sec. III
we describe the details of our analysis regarding the LTB
model parametrization and light propagation. In Sec. IV
we describe the results of our analysis, and we conclude
in Sec. V.
Notation and conventions: Units are used in which

c ¼ 1. Greek letters μ; ν;… label spacetime indices in a
general basis while Latin letters i; j;… denote spatial
indices relative to a specified foliation frame. Einstein
notation is used such that repeated indices are summed
over. The signature of the spacetime metric gμν is
(−þþþ), and the connection ∇μ is the Levi-Civita
connection. Round brackets () containing indices
denote symmetrization in the involved indices, and square
brackets [] denote antisymmetrization. Bold notation V
for the basis-free representation of vectors Vμ is used
occasionally. A subscripted comma followed by an index
indicates a partial derivative.

II. MULTIPOLE DECOMPOSITION OF THE
REDSHIFT DRIFT SIGNAL

In this section we consider the multipole decomposi-
tion of the redshift drift signal developed in
Refs. [6,8,22], which is appropriate for analyzing
kinematic and curvature contributions to the drift of
the redshift of a source. In Sec. II A we consider the
decomposition in a general spacetime setting with an
arbitrary observer congruence, and we then move on to
analyze the special case of an LTB metric with comoving
observers in Sec. II B.

A. General spacetime

Following [6,8,22] we consider a general congruence of
emitters and observers (denoted the “observer congru-
ence”) in an arbitrary spacetime. We let the observer
congruence be generated by the 4-velocity field u and
parametrized by the proper time function τ satisfying _τ ¼ 1,
where _≡ uμ∇μ is the directional derivative along the
observer congruence flow lines. The general kinematic
decomposition associated with the frame of the observer
congruence is

∇νuμ ¼
1

3
θhμν þ σμν þ ωμν − uνaμ;

θ≡∇μuμ; σμν ≡ hβhνh
α
μi∇βuα;

ωμν ≡ hβνhαμ∇½βuα�; aμ ≡ _uμ; ð1Þ

where hμν ≡ uμuν þ gμν is the spatial projection tensor
relative to the observer congruence and where hi is the
traceless and symmetric part of a spatially projected tensor.1

We may consider two causally connected members of the
observer congruence with worldlines γo and γe passing
through the events of observation O and emission E of a
null geodesic ray. Let k be the 4-momentum of a
4-dimensional noncaustic geodesic null congruence that
contains this null ray and which creates a bijection between
γo and γe in a neighborhood around the points O and E.
We define the photon energy as measured by members
of the observer congruence E≡ −uμkμ, and the spatial
unit vector eμ ≡ uμ − 1

E k
μ describing the direction of

observation or the “viewing angle” of the light ray as seen
by the same observers. We introduce the drift of the
viewing angle

κμ ≡ hμν _eν; ð2Þ

which describes the change of spatial direction of incoming
light as seen in the observer congruence reference frame.
When (2) is evaluated atO, it represents the position drift of
the astrophysical emitter as viewed on the observer’s sky.
The drift of the redshift, z≡ Eγe=Eγo − 1, as observed by

the observer along γo in the vicinity of O, can be written
as the integral

dz
dτ

����
O
¼ EE

Z
λO

λE

dλΠ; z≡ EE

EO
− 1 ð3Þ

where λ is an affine parameter along the null geodesic
congruence satisfying kμ∇μλ ¼ 1. Using the traceless
multipole decomposition in e and κ, the integrand Π can
be written as [22]

Π ¼ −κμκμ þ Σo þ eμΣe
μ þ eμeνΣee

μν þ eμκνΣeκ
μν ð4Þ

with coefficients

Σo ≡ −
1

3
uμuνRμν þ

1

3
Dμaμ þ

1

3
aμaμ;

Σe
μ ≡ −

1

3
θaμ − aνσμν þ 3aνωμν − hνμ _aν;

Σee
μν ≡ ahμaνi þDhμaνi − uρuσCρμσν −

1

2
hαhμh

β
νiRαβ;

Σeκ
μν ≡ 2ðσμν − ωμνÞ; ð5Þ

where Rμν is the Ricci curvature tensor, and Cρμσν is the
Weyl curvature tensor. The operator Dμ is the spatial
covariant derivative, which is defined through its action

1See [23] for details on the unique traceless decomposition of
spatial symmetric tensors, and see [24] for the explicit decom-
position for tensors with up to six indices.
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on an arbitrary tensor field: DμTν1;…;νn
γ1;…;γm ≡

hα1ν1…hαnνn h
γ1
β1
…hγmβmh

σ
μ∇σTα1;…;αn

β1;…;βm .
Regarding the decomposition in (4), we note that the

truncation of the multipole series at second order in the
direction variables e and κ of the photon congruence is
exact for any spacetime description. The coefficients of the
series are constructed from the kinematic variables of the
observer congruence together with the Ricci focusing term
uμuνRμν and the electric part of the Weyl tensor uρuσCρμσν.

B. Lemaître-Tolman-Bondi spacetime

We now consider the special case of the spherically
symmetric LTB spacetime metric [25–27] (see, e.g., the
books [28,29] for an introduction). We write the LTB line
element in spherical coordinates xμ ¼ ðt; r; θ;ϕÞ adapted to
the center of the LTB structure as

ds2¼−dt2þRðt;rÞdr2þA2ðt;rÞðdθ2þsin2ðθÞdϕ2Þ; ð6Þ

with Rðt; rÞ≡ ð∂rAðt; rÞÞ2=ð1 − kðrÞÞ, where kðrÞ speci-
fies the spatial Ricci curvature of the LTB model [30] and
reduces to a constant times r2 in the FLRW spacetime limit.
The metric is required to be a solution to the Einstein
equation Rμν − Rgμν=2 ¼ 8πGTμν with a dust source, such
that the energy momentum tensor reads Tμν ¼ ρδtμδ

t
ν;

for the explicit form of the independent components of
Einstein’s equations, see Sec. III A where we also specify
the LTB solution used in our analysis. We consider an
observer congruence that is comoving with the foliation
of the metric representation in (6), such that uμ ¼ δμt .
It follows immediately that ωμν ¼ 0 and aμ ¼ 0 in the
kinematic decomposition (1), and the multipole coefficients
in (5) read

Σo ¼ −
1

3
uμuνRμν; Σe

μ ¼ 0;

Σee
μν ¼ −uρuσCρμσν; Σeκ

μν ¼ 2σμν ðLTBÞ; ð7Þ

which can be straightforwardly computed in terms of the
LTB metric components (6) and their gradients. We list
the multipole terms for the LTB metric in Appendix A for
convenience.
In the case of a radially propagating congruence of

photons, κ vanishes, and the redshift drift signal is
determined solely from Ricci focusing and electric Weyl
curvature. In general, however, the propagation of photons
with a nonzero impact parameter relative to the LTB
structure will give rise to the additional terms −κμκμ and
eμκνΣeκ

μν ¼ 2eμκνσμν in (4). In the FLRW limit, the only
nonzero coefficient is the Ricci focusing term, and the

integrand (4) reduces to Π →
FLRW

− 1
3
uμuνRμν.

III. MODEL SETUP AND LIGHT PROPAGATION

In this section we describe the details of our numerical
analysis. In Sec. III A we specify the LTB model that we
investigate. In Sec. III B we detail the geodesic equations
for light propagation and discuss the initial conditions used
for specifying the light beams.

A. Parametrization of the
Lemaître-Tolman-Bondi structure

The solution of the LTB metric specified in Sec. II B is
determined by two independent components of the Einstein
field equation which can be integrated to yield

ð∂tAðt; rÞÞ2 ¼
2MðrÞ
Aðt; rÞ − kðrÞ ð8Þ

and

∂rMðrÞ
4πGA2ðt; rÞ∂rAðt; rÞ

¼ ρ; ð9Þ

where the integration constant MðrÞ is the active gravita-
tional mass inside a shell of radius r of the LTB structure.
Equation (8) can be solved for Aðt; rÞ for valid specifica-
tions of the functions MðrÞ and kðrÞ, specifications of the
functions MðrÞ, kðrÞ and initial conditions for Aðt; rÞ. We
impose that the big bang happens synchronously in the
model by requiring that the big bang function

tBðrÞ ¼ t −
Z

Aðt;rÞ

0

dÃ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2MðrÞ
Ã

− kðrÞ
q ð10Þ

is zero for all r.2 We furthermore choose the spatial
curvature profile such that

kðrÞ ¼
(
−1.3 × 10−7r2

��
r
rb

�
m
− 1

�
6

if r < rb

0 otherwise;
ð11Þ

where rb is the radius of the LTB structure, outside of which
the curvature is that of an Einstein de Sitter (EdS), which we
shall refer to as the background metric. The condition
tBðrÞ ¼ 0 and the profile (11) yield a closed-form solution
to (8) in terms of t, r and MðrÞ; see [31] or Appendix A in
[32]. The function MðrÞ can be specified through a suitable
choice of initial conditions for Aðt; rÞ [31], which in turn
specifies Aðt; rÞ throughout. Here we choose the EdS-
adapted initial conditions with Aðti; rÞ ¼ aEdSðtiÞr, where
aEdSðtiÞ ¼ ðti=t0Þ2=3 and t0 ¼ 2=3=H0, with the initial scale

2Note that this integral can be solved explicitly. Solutions are
given in, e.g., [28], but for our work we found it convenient to
solve the ODE (8).
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factor aEdSðtiÞ ¼ 1=1100 and with the initial time ti fixed
by H0 ¼ 70 km=s=Mpc.
The curvature model (11) represents a central void

surrounded by a steep overdensity. We used rb ¼ 40 Mpc
for all numerical computations. The choice m ¼ 6 was used
during the main part of our study, but to test the significance
of the exact density profile on our results, we have also
studied a single light ray passing through a structure with
m ¼ 2. In addition, we have made minor tests using different
void depths and sizes of the surrounding overdensity by
scaling the function kðrÞ. We find that the results do not
qualitatively depend on the exact choice of density profile,
but note that for a more significant change in density profile,
the results should be expected to differ even qualitatively. For
instance, this is seen by the comparisons in the Appendix
of [16], which reveal that a prominent deviation from the
FLRW result can be expected if the LTB inhomogeneity
does not reduce exactly to an FLRW background at a
reasonably small value of r. We also note that the strongest
signs of inhomogeneity appear at the edges of the LTB
structure, where the density contrast is at its steepest.

B. Light propagation and initial conditions

We choose a comoving observer located in the EdS
region of the spacetime with a worldline passing through
the pointO given by the time coordinate tO ¼ 2=3=H0 with
H0 ¼ 70 km=s=Mpc, corresponding to the present time in
our model. The radial coordinate is chosen such that the
observer is located 10 Mpc outside of the structure:
rO ¼ rb þ 10 Mpc, and the angular coordinates θO, ϕO
are fixed arbitrarily.
For each central null ray,3 we choose a random line of

sight with equal probability for all directions on the
observer’s sky. Upon transformation to spherical coordi-
nates, this determines initial values of kr, kθ, and kϕ (and
we always require kr > 0). With this procedure, some light
rays will miss the LTB structure and only propagate
through EdS spacetime. We remove these rays from the
analysis so that they do not, e.g., contribute to computations
of mean quantities. The spatial direction vector is normal-
ized in accordance with the initial condition of kt which can
be chosen arbitrarily without loss of generality. To compute
the components of κ along the central null ray, we need the
partial derivatives of the tangent vector along the ray. We
use the procedure detailed in [15]; i.e., we solve

dkμ;ν
dλ

¼ ∂

∂xν
dkμ

dλ
− kβ;νk

μ
;β ð12Þ

simultaneously with the geodesic equation

d
dλ

ðgαβkβÞ ¼ −
1

2
gμν;αkμkν: ð13Þ

The solution to the system of Eqs. (12) and (13) is specified
by the initial conditions for kμ described above, along with
initial conditions for kμ;ν. These initial conditions uniquely
define a 4-dimensional congruence of null geodesic rays
around the central null ray.
We are interested in computing the redshift drift corre-

sponding to comoving emitters, but we do not know a priori
the initial conditions for kμ;ν that correspond to a comoving
emitter passing through a given event of emission E along
the central null ray.4 We thus follow an empirical approach,
where we first define a bundle of null rays and then assess
whether emitters of the incoming light rays on the observer
worldline (almost) correspond to comoving emitters. For this
purpose, we choose initial conditions for the null bundle
such that κO ¼ 0; i.e., the emitting sources are constrained to
remain at a fixed direction on the observer’s sky. This choice
of initial condition is compatible with setting kμ;tjO ¼ 1

kt
dkμ
dλ jO

in the LTB adapted coordinate system. The remaining initial
conditions kμ;ijO must be compatible with this choice and the
geodesic requirement (13), but are otherwise gauge choices
of the signal arriving at the observer worldline.5 Following
[15], we set kμ;ijO ¼ 0 in Cartesian coordinates before
making a coordinate transformation to spherical coordinates.
We summarize our choice of initial conditions as follows:

kμ;tjO ¼ 1

kt
dkμ

dλ

����
O
; kμ;ijO ¼ 0; i ¼ x; y; z: ð14Þ

When the light rays travel exclusively in the FLRW region,
the initial conditions (14) are compatible with comoving
sources as emitters of the signal. However, once light enters
the LTB structure, these initial conditions will generally not
be compatible with comoving emitters since only radial light
rays are repeatable in LTB models (see, e.g., [33]). However,
emitters of the light contained in the bundle might never-
theless be close to being comoving.
As discussed in detail in Appendix B, we can determine

the family of 4-velocity fields of sources which are candi-
dates for having emitted the light with incoming conditions
(14) at the observer. The 4-velocity of the source can be
chosen uniquely from specifying α in (B2). Here we make
the following choice of 4-velocity:

3We use the term “central null ray” to describe the light ray
which passes between the primary points of emission E and
observation O, and around which we consider the extension into
a congruence of null rays (see below).

4In principle, we could solve for the appropriate photon
congruence description connecting a given emitter worldline
with the observer worldline, by solving the geodesic deviation
equation with Dirichlet boundary conditions as specified in
Sec. 3.1 of [19]. However, in practice, it is computationally
heavy to solve this boundary value problem for each point along
the central null ray.

5See Appendix B for further discussions on the gauge choices
involved with the initialization of the geodesic null bundle.
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nμ ≡ Xμ
scrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gνρXν
scrX

ρ
scr

q ; Xμ
scr ¼ X̃μ þ αscrkμ; ð15Þ

where X̃ is determined by (B3) and where αscr ≡ X̃μeμ=Eu.
We label the photon energy Eu ≡ −kμuμ with a subscript
from now on to distinguish the energy measured in the LTB
comoving frame from the energy as measured in other
frames. This choice of sources ensures that the spatial
direction of propagation of the photon e as seen in the
comoving LTB frame is indeed also spatial in the frame of
the source, i.e., nμeμ ¼ 0. Thus, any difference between u
and n is due to the components of u in the screen space
orthogonal to the 2-dimensional congruence of light spanned
by k and X̃, hence the use of the subscript scr which is short
for “screen space”.
The emitter 4-velocity field nν turns out to be very close

to the comoving 4-velocity field uμ at every point along the
central null ray. This can be seen by computing the norm of
u in the screen space orthogonal to n and k: Pμνuμuν, with

Pμ
ν ≡ −kμkν

E2
n

þ kμnν
En

þ nμkν
En

þ gμν . Alternatively, we could com-

pute the relative tilt −nμuμ. We show both closeness
measures in Fig. 1 for a fiducial light ray. As seen, the
two measures are very similar and indeed, in general, differ
by a factor of 2 at lowest order6 in v; therefore, we analyze
the former measure only for the full set of null rays. The
projection Pμνuμuν is shown for 1400 light rays in Fig. 2.
As seen, the projection is small—at most of order 10−6,
and of order 10−10 for emitters in the FLRW region (on
the opposite side of the structure as compared to the

observer)—which means that the relative velocity between
n and u is at most of order 10−3 and reaches levels of order
10−5 once the structure has been traversed. Thus, comoving
emitters are close to being emitters of the light signal
received at the observer worldline, even when being
situated within the structure. We thus expect the redshift
drift signal in the comoving frame to be close to that in the
frame of n.
In the following we analyze the redshift drift signal in the

frame of the almost-comoving geodesic observers gener-
ated by the 4-velocity n. Similarly to the expression for the
redshift drift used in [15], we can compute the redshift drift
corresponding to the geodesic emitter with 4-velocity nμ as
(see Appendix B for details)

δzn ≡ −δtO ·

�
En

E2
O

kt;tjO þ 1

En
nμnμ∇μkν

�
; ð16Þ

where En ≡ −kμnμ, and where evaluation is at any point
along the central null ray.
In addition, we make use of the following convenient

approximation of δzn:

δzu ≡ −δtO ·

�
Eu

E2
O

kt;tjO þ 1

Eu
uμuμ∇μkν

�

¼ δtO
ktO

�
−ð1þ zuÞkt;tjO þ

kt;tjE
1þ zu

�
; ð17Þ

which, in the following section, we verify remains close
to δzn. The approximation (17) can conveniently be written
as the integral representation (3) with integrand (4) and
coefficients (7).

FIG. 1. Projection of uμ orthogonal to nμ and kμ using the
projection tensor, together with projection of uμ along nμ along a
single light ray.

FIG. 2. Projection of uμ orthogonal to nμ and kμ using the
projection tensor. The black line indicates the mean over 1400
light rays while the grey-shaded area indicates the spread. The
result is plotted against the redshift of comoving emitters.

6It can be verified that Pμνuμuν ¼ vμvμ þOðv3Þ, where
vμ is the relative velocity defined through uμ ¼ ðnμ þ vμÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − vνvν

p
. Thus, we have the following relation: Pμνuμuν ¼

2ð−nμuμ − 1Þ þOðv3Þ.
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IV. RESULTS

In this section we present the results obtained by
propagating light rays through a single LTB structure,
as described in Sec. III. In Sec. IVA we present results
obtained by considering a single random light ray.
Afterwards we move on to present results obtained from
1400 light rays in Sec. IV B.

A. Single light ray

In this section we show results from propagating a single
light ray with a random impact parameter through the LTB
structure. We set δtO ¼ 30 years, where δtO is the observ-
er’s proper time elapsed between two measurements of the
redshift and δz is the drift (change) in the redshift of a
source during that interval. We show results using the
density profile defined by m ¼ 6, but we have verified that
the results are similar for the profile corresponding to
m ¼ 2 as well as for models with different scalings of kðrÞ
to enhance or suppress the structure.
We compute the redshift drift signal in the frame of the

geodesic and almost-comoving emitters with 4-velocity
field n, as detailed in Sec. III B and compare the exact
redshift drift signal of these emitters (16) to the approxi-
mation (17). This comparison is shown in Fig. 3 where it is
seen that the deviation between δzu and δzn is maximally of
order 10−3, as is also expected based on Fig. 2. We thus find
that δzu is a good approximation of δzn along the entire
null ray—a result which we verify holds for the full sample
of null rays considered in our analysis—and we use δzu as a
convenient approximation of the redshift drift signal in the
following.
Figure 4 shows the contributions of the multipole

components in the representation (4) together with the
total redshift drift signal approximation (17), with initial
conditions for the light bundle as specified in Sec. III B. We

immediately see that the two main contributions are those
corresponding to the Ricci and Weyl tensors. This is
encouraging since these two terms do not depend on the
extension of the congruence kμ;ν away from the central null
ray, and are thus much more easily computed than the
(integral of the) two terms −κμκμ and eμκνΣeκ

μν ¼ 2eμκνσμν
in (4).
The contribution from the drift κ is actually so small

that it is nearly swamped by the numerical errors of
the computations which make our redshift drift determi-
nations reliable only at the level of 4 significant digits.
With this precision, we are just barely able to see the
contribution from the next-smallest term, the shear term.
This is illustrated in Fig. 5 where we show the relative
difference between δzu and the approximate redshift
drift computed using only the two or three dominant
multipole contributions, respectively. We see that the
approximation δzWeylþRicciþshear≡E

R tO
tE dt=EΣ

oþΣee
μνeμeνþ

Σeκ
μν¼2σμνeμκν, using the three dominant multipole con-

tributions, gives an accurate determination of δzu within the
numerical errors, a rough estimate of which is shown as a
shaded area. The integral term involving −κμκμ is roughly 2
orders of magnitude smaller than what can be resolved
within the numerical errors of this analysis, and might thus
be neglected for all practical purposes.
We note that the Weyl contribution to the redshift drift

signal is significant—also for emitters placed outside of
the LTB structure (on the opposite side of the observer).
However, the Weyl contribution can be both positive and
negative, so the mean Weyl contribution may be modest
when averaging over many individual light rays with
different impact parameters. Figure 6 shows the Weyl
contribution along two arbitrarily chosen fiducial rays
with positive and negative Weyl contributions, respec-
tively. The contributions are shown together with the

FIG. 3. Deviation between two redshift drifts along a fiducial
light ray.

FIG. 4. Individual components of the redshift drift signal along
a light ray. The two subdominant components are scaled to ease
assessment of their qualities.
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density profile along the individual rays to illustrate that
the negative Weyl contribution appears to occur when
light rays move further into the underdense region of
the structure. Although it is not clearly visible in the
figure, we note that the redshift is nonmonotonous along
both rays.
Before moving on to discuss the results obtained when

averaging over several light rays, we note that a simple
relation between the redshift drift and the local expansion
rate along light rays is not apparent. Indeed, in the absence
of certain systematic impacts of anisotropies along the
central null ray, the redshift drift signal is expected to
simplify to an expression similar to the FLRW relation [8]

δzsimple ≡ δtOðð1þ zÞHO −HÞ; ð18Þ

with the generalized “Hubble parameter” H≡ 1
3
θþeμeνσμν

describing the rate of expansion of length scales along the
direction of the photon 4-momentum. However, Fig. 7
shows that (18) is not a good approximation for emitters
located within the LTB structure. The approximation
δzsimple departs from δzu by orders of magnitude for most
emitters located within the LTB structure, which might be
assigned to both the large departures of θ from the EdS
background expansion rate for most points within the LTB
structure and to the projected shear contribution within the
structure. This is illustrated in Fig. 4 along a fiducial light
ray. For emitters located in the FLRW region (on the
opposite side of the structure from the observer), Eq. (18)
provides an extremely good approximation as it is simply
the background EdS redshift drift which δzu reduces to
outside of the structure, to the precision of our computa-
tions (around 5 significant digits).

B. Multiple light rays

In this section, we redo the analysis for 1400 light rays
and compute the mean value and spread of the results.
The observer is always the same (placed at t ¼ tO and
r ¼ rb þ 10 Mpc). Each light ray is propagated until it
reaches z ¼ 0.025, which is enough to traverse the entire
LTB structure.
Figure 8 shows the integrated multipole components of

the redshift drift. It is visible from the figure that the two
components which depend on the drift of the viewing
angle, κ, are subdominant and can, to a high precision, be
neglected, as we also found for the single light ray above.
This means that we can, to a good precision, approximate
the redshift drift signal from the Ricci and electric Weyl
curvature components along the individual null rays. The
figure also shows that the Weyl contribution does not

FIG. 6. Weyl contributions to the redshift drift along fiducial light rays with opposite sign of the Weyl contribution. The contributions
are shown together with the density profiles along the light rays.

FIG. 5. Deviations between δzu and two approximations com-
puted by including the two and three most dominant multipole
contributions—either Weylþ Ricci or Weylþ Ricciþ shear
components, corresponding to δzWeylþRicci ≡ E

R tO
tE dt=EΣo þ

Σee
μνeμeν and δzWeylþRicciþshear≡E

R tO
tE dt=EΣoþΣee

μνeμeνþΣeκ
μν¼

2σμνeμκν, respectively. The shaded area indicates a rough estimate
of the numerical precision of the computations, corresponding to 4
significant digits.
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vanish on average after traversal of the light ray through the
structure, but the remaining mean effect is much smaller
than the contribution from the average Ricci term, with the
mean of the former making up approximately 5% of the
signal after traversal of the entire structure. This is also
seen in Fig. 9, which shows the mean and spread of the
Ricci andWeyl contributions together with the total redshift
drift signal.
In Fig. 10, we show the deviations between δzu and the

signal corresponding to the redshift drift without the
κ-contributions, as well as the difference between δzu
and δzn. Both of the differences are subpercentage, again
indicating that we can, to a good approximation, treat the

sum of the Ricci and Weyl contributions to the redshift drift
as the redshift drift signal measured by a comoving
observer in the FLRW region and emitted by comoving
sources along the light paths.
Lastly, Fig. 11 shows the difference between the mean

redshift drift and the EdS (background) redshift drift. The
difference becomes quite large for typical emitters of light,
emphasizing the potential importance of taking effects of
structures into account when interpreting real upcoming
redshift drift data. However, we note that the relative
departures from the EdS signal are expected to decrease
for longer distances of light propagation than a single
LTB structure.

FIG. 9. Ricci and Weyl contributions to the redshift drift along
1400 light rays. The black lines indicate mean values while the
shaded areas indicate the spread.

FIG. 10. Deviation between redshift drifts δzu and δzn as well
as between δzu and the redshift drift computed without the
κ-contributions, i.e., δzWeylþRicci ≡ E

R tO
tE dt=EΣo þ Σee

μνeμeν. The
black lines indicate mean values while the spreads are indicated
by shaded areas.

FIG. 8. Mean of individual components of the redshift drift
signal along 1400 light rays. The two subdominant components
are scaled to ease assessment of their qualities and are shown
together with their spreads (shaded areas).

FIG. 7. Actual redshift drift compared with simple expectation
based on generalized FLRW relation along a single light ray. A
close-up is included since the simple approximation is several
orders of magnitude larger than the actual redshift drift several
places along the light rays.
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For the comparison in Fig. 11, we compute the EdS
redshift drift as

δzEdS ¼ ð1þ zuðλEÞÞH0 −HðzuðλEÞÞ; ð19Þ

where HðzuÞ is the background EdS Hubble parameter
function as parametrized in terms of EdS redshift zEdS and
evaluated at the value zEdS ¼ zu. We note that, since the
local difference between zEdSðtðλÞÞ and zuðλÞ is subper-
centage along the null rays, the result does not change
significantly if we instead use an EdS parametrization in
terms of the time parameter of emission:

δzalternativeEdS ¼ ð1þ zEdSðtEÞÞH0 −HðzEdSðtEÞÞ; ð20Þ

and compute the difference between δzu and zalternativeEdS at
equal values of λE (or tE) instead of equal values of redshift.
Note also that the steep edges of the shaded area in this as

well as other figures are not actually vertical but merely
very steep, corresponding to the steep density profile of the
studied model.

V. CONCLUSION

We considered a formalism for computing the redshift
drift in a general spacetime with an arbitrary observer and
arbitrary emitting sources, and we investigated the special
case of an LTB model. We pointed out the importance of
the position drift of the photons arriving at the observer and
that different values of position drift correspond to different
potential emitters of the signal. For the LTB model we find
that the contributions to the redshift drift from terms
involving the drift of the viewing angle of light are several

orders of magnitude smaller than the dominant Ricci and
Weyl contributions. We can therefore, to a good approxi-
mation, neglect these complicating factors. Since we find
that the drift of the viewing angle almost vanishes once the
ray has traversed the LTB structure, cumulative effects must
be small. Hence, we expect the redshift drift signal to be
dominated by its Ricci and Weyl contributions, also in
Swiss-cheese models based on LTB structures, but defer a
detailed study of this point to upcoming work. Based on the
similarities regarding the redshift behaviors in LTB and
Szekeres models as studied in, e.g., Sec. IV A in [34], we
also expect the result to hold for quasispherical Szekeres
models and the corresponding Swiss-cheese models.
We considered the mean redshift drift signal for 1400

light rays with random impact parameters relative to the
LTB structure. The mean redshift drift is dominated by the
Ricci contribution, but we note that the mean Weyl
contribution has an importance of around 5%, even in
the FLRW region after the light rays have traversed the
structure. We also note that inside the inhomogeneous
region, the redshift drift associated with typical emitters
deviates by several tens of percent from the “background”
FLRW value. Although we expect such deviations to
become less pronounced when light travels over greater
distances, this indicates that the local effect of structures on
the redshift drift signal may need attention when dealing
with upcoming real data.
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APPENDIX A: MULTIPOLE COMPONENTS
FOR THE LTB MODEL

In this appendix, we provide a list with the explicit
multipole components of Eq. (7) for the LTB model
together with the explicit components of the drift of the
viewing angle, κ.
For a random light ray, the components of κ are, for the

LTB metric, given by

FIG. 11. Deviation between δzu and the background (EdS)
redshift drift. The line indicates the difference between the EdS
redshift drift and the mean redshift drift while the shaded area
indicates the spread.
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from which the multipole term −κμκμ follows trivially.
Using the Einstein equation, the monopole term of the
redshift drift can simply be written as

Σo ¼ −
1

3
uμuνRμν ¼ −

4πG
3

ρ: ðA2Þ

This is the dominant redshift contribution for the consid-
ered setup. The other significant term is given by

Σee
μνeμeν ¼ −uρuσCρμσνeμeν

¼ −ðCtrtrerer þ Ctθtθeθeθ þ CtϕtϕeϕeϕÞ; ðA3Þ

with

Ctrtr ¼ −
1

2
R;tt þ

1

4

R2
;t

R
−
4

3
πGρR; ðA4Þ

Ctθtθ ¼ −AA;tt −
4

3
πGρA2; ðA5Þ

Ctϕtϕ ¼ −AA;ttsin2ðθÞ −
4

3
πGρA2sin2ðθÞ: ðA6Þ

Finally, the shear term, which turns out to be negligible in
the considered setup, is given by

Σeκ
μνeμκν¼2σμνeμκν

¼2

3
Σð−2RerκrþA2eθκθþsin2ðθÞA2eϕκϕÞ; ðA7Þ

where Σ≡ A;t

A − A;tr

A;r
.

APPENDIX B: GEODESIC DEVIATION
AND DRIFT EFFECTS

In the study of drift effects, we are interested in following
the same emitter over time and considering the temporal
change in various observable signals associated with that
emitter. In order to describe drift signals in mathematical
detail, we thus need to define a connecting congruence of
photons between the observer worldline and the emitters
under consideration. There are two ways that we might
approach the selection of an emitter as viewed from a given

observer worldline: (i) we might simply consider a priori
fixing the emitter worldline. This uniquely determines a
connecting congruence of null rays in the absence of
caustics; or (ii) we can consider a fixed congruence of
photons intersecting the observer worldline and deduce the
class of potential emitters that intersect this congruence
with their worldlines. From this class we might further
identify a unique emitter from an appropriate criterion.
There can be advantages of both approaches. For the

purpose of explicit calculation, it can, in practice, be
computationally difficult to construct the connecting null
congruence between the observer and the fixed emitter as in
the first approach. Thus, it is sometimes more convenient to
take the second approach and simply consider the emitters
that happen to intersect a given null congruence as
initialized at the observer. We describe the latter approach
here. See [19] for details on the first approach.
Let the observer of interest be represented by its

worldline γo as generated by the 4-velocity uo. We
consider a central null geodesic as received at the point
of observationO on γo, and we further consider a bundle of
null geodesics around this central null ray that form a
nonintersecting congruence. We might consider an appro-
priate extension of the congruence along the observer
worldline to form a two-dimensional congruence. We
might also consider a small extension of the congruence
in the space orthogonal to uO and the central incoming null
ray in order to form a four-dimensional congruence of null
rays. In any of the cases, there will be a 1-parameter family
of null geodesics Γo with 4-momentum field k intersecting
the observer’s worldline γo. We might ask which emitters
could have sent this family of photons that were later
received by the observer. For a source to have emitted
the null geodesics in Γo, its worldline must intersect the
family of null lines of Γo. Formally, this is equivalent to
demanding that the emitter 4-velocity is a deviation vector
of Γo. Thus, we assume that a source worldline γe
intersects the central null ray at a point E; for this source
to be an emitter of Γo, we require that its 4-velocity
satisfies uμE ¼ ðEE=EOÞXμ

E , with E ¼ −kμuμ, and where Xμ

is given by the propagation law

kν∇νXμ − Xν∇νkμ ¼ μkμ; Xμ
O ¼ uμO; ðB1Þ
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where μ is an arbitrary function, only restricted by the
requirement that Xμ remains timelike, representing the
possible parametrizations of the rays (with affine para-
metrizations characterized by kν∇νμ ¼ 0). The choice of
proportionality constant in uμE ¼ ðEE=EOÞXμ

E is compatible
with the conservation law Xμkμ ¼ ðXμkμÞO ¼ −EO fol-
lowing from (B1). The solutions to (B1) can be reformu-
lated as

Xμ ¼ X̃μ þ αkμ; kμ∇μα ¼ μ; αO ¼ 0; ðB2Þ

with X̃μ given by the solution to the propagation law
without a source term,

kν∇νX̃μ − X̃ν∇νkμ ¼ 0; X̃μ
O ¼ uμO; ðB3Þ

such that X̃μ obeys the usual geodesic deviation equation

kα∇αðkβ∇βX̃μÞ ¼ Rμ
αβνkαkβX̃ν; ðB4Þ

with a unique solution from the initial conditions X̃μ
O ¼ uμO

and X̃β∇βkμjO. The condition α > X̃μX̃μ=EO=2 ensures
that Xμ is timelike. The class of possible emitters of the
null congruence Γo as received by the observer is described
by the class of tangent vectors given by (B2) and satisfying
the timelike condition. Conversely, emitters with 4-veloc-
ities that are not proportional to any of the tangent vectors
in class (B2) could not have emitted the photons of Γo, and
describing the drift effects of such emitters thus requires
considering other appropriate photon congruences.
In practice, for a given photon congruence, we might

solve for the possible emitters of the photons intersecting
the observer worldline by first solving (B3) and then
considering the allowed class of transformations of the
emitter tangent vector (B2). At each point along the central
null ray, α might be chosen to uniquely determine an
emitter 4-velocity nμ ¼ Xμ=ð−XνXνÞ12. For instance, α
might be chosen in a way that maximizes nμUμ for a
given preferred 4-velocity U, which might not itself be
intersecting Γo.
We note that for a given emitter associated with a

solution Xμ to (B1), the position drift of the emitter on
the observer’s sky is

κμO ≡ pμ
νuα∇αeνjO ¼ −pμ

ν
1

E
uα∇αkνjO þ pμ

νaνjO

¼ −pμ
ν
1

E
kα∇αXνjO þ pμ

νaνjO

¼ −pμ
ν
1

E
kα∇αX̃νjO þ pμ

νaνjO: ðB5Þ

The last equality shows that the position drift is invariant
under transformations of the source’s tangent vector of the
type (B2), and follows from (B2) and the orthogonality

between kμ and the screen space projector pμ
ν ≡ − kμ

E
kν
E þ

kμ
E uν þ uμ kν

E þ gμν as defined on the observer worldline.
It follows that the position drift is determined by the
initial conditions uμO, a

μ
O, k

μ
O and uα∇αkμjO ¼ kα∇αX̃μjO.

Physically, the observed angular drift of the source is
independent of the exact points of emission along Γo, and
the position drift signal is given entirely from the initial-
ization of the congruence of null rays at the observer
position.
For a given emitter 4-velocity nμ ≡ Xμ=ð−XνXνÞ12 and

associated photon energy En ≡ −nμkμ, the redshift drift
signal is

dz
dτo

����
O
¼ −

EnjE
EO

uμo∇μE

E

����
O
þ nμ∇μEn

En

����
E

¼ −
nμkμjE
EO

ðaμokμ þ uμouνo∇μkνÞjO
EO

þ aμkμ þ nμnν∇μkν
nμkμ

����
E
; ðB6Þ

with emitter and observer 4-accelerations given by aμ ≡
nν∇νnμ and a

μ
o ≡ uνo∇νu

μ
o. The emitter 4-acceleration is not

constrained by the above geodesic deviation analysis and
must be chosen independently. We are usually interested in
setting the 4-accelerations to zero, corresponding to the
case of physical emitters and observers that are subject only
to gravitational physics. We can exploit that

nμnν∇μkν
ðnμkμÞ2

����
E
¼ 1

E2
O

XμXν∇μkν ¼
1

E2
O

X̃μX̃ν∇μkν ðB7Þ

to rewrite (B6) as

dz
dτo

����
O
¼ −

nμkμjE
EO

�ðaμokμ þ uμouνo∇μkνÞjO
EO

−
ðE2

Oa
μkμ=ðnμkμÞ2 þ X̃μX̃ν∇μkνÞjE

EO

	
: ðB8Þ

Thus, the final redshift drift signal depends only on the
components of ∇μkν as projected onto the canonical
deviation vector X̃μ. The evolution of the velocity vector
X̃μ∇μkν can in turn be calculated along the central null ray
from the geodesic deviation equation (B4), where the right-
hand side is known once X̃μ is determined from the initial
conditions X̃μ

O ¼ uμO and uα∇αkμjO. Thus, the final expres-
sion for redshift drift depends only on the initial conditions
for uμO, a

μ
O, k

μ
O and uα∇αkμjO together with aμE and the

transforming parameter αE. The latter parameter deter-
mines the photon energy as evaluated at the emitter
EnjE ¼ −nμkμjE .
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The expression (B8) makes it explicit that the redshift drift signal depends only on the extension of kμ on the observer’s
worldline through uα∇αkμjO and does not depend on the initialization of any of the other independent components7 of∇μkν.
Any intermediate calculation making use of these should thus cancel for the final redshift drift signal.
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