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We apply a Bayesian approach to construct a large number of minimally constrained equations of state
(EOSs) and study their correlations with a few selected properties of a neutron star (NS). Our set of minimal
constraints includes a few basic properties of saturated nuclear matter and low-density pure neutron matter
EOS which is obtained from a precise next-to-next-to-next-to-leading-order (N3LO) calculation in chiral
effective field theory. The tidal deformability and radius of a NS with mass 1–2 M⊙ are found to be
strongly correlated with the pressure of β-equilibrated matter at densities higher than the saturation density
(ρ0 ¼ 0.16 fm−3) in a nearly model-independent manner. These correlations are employed to parametrize
the pressure for β-equilibrated matter, around 2ρ0, as a function of neutron star mass and the corresponding
tidal deformability. The maximum mass of the neutron star is also found to be strongly correlated with the
pressure of β-equilibrated matter at densities ∼4.5ρ0.
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I. INTRODUCTION

Gravitational-wave astronomy promises unprecedented
constraints on the equation of state (EOS) of neutron star
matter through the detailed properties of the gravitational
waveform observed during the merging of binary neutron
stars (BNSs). In addition, x-ray observations from the
Neutron Star Interior Composition Explorer (NICER)
instruments have also provided a compelling constraint
on the equation of state independently. The tidal deform-
ability parameters inferred from these gravitational-wave
events encode information about the EOS. For the first
time, a BNS event (GW170817) was observed by the
LIGO-Virgo detector from a low-mass compact binary
neutron star merger with a total mass of the system
2.74þ0.04

−0.01 M⊙ [1,2]. Another gravitational-wave event
likely originating from the coalescence of BNSs,
GW190425, was observed [3] subsequently. These two
events have already triggered many theoretical investiga-
tions to constrain the EOS of neutron star matter [3–12].
The upcoming runs of LIGO-Virgo-KAGRA and the future
detectors, e.g., Einstein Telescope (ET) and Cosmic
Explorer (CE), are expected to observe many more BNS
signals emitted from coalescing neutron stars. The mass
and radius of NSs, observed either in isolation or in
binaries, by NICER [13–15] have offered complementary
constraints on the EOS. A sufficiently large number of such

observations over a wide range of NS masses may be
employed to constrain several key quantities associated
with the EOS of β-equilibrated matter which are not readily
accessible in the terrestrial laboratory. The behavior of the
EOS at suprasaturation densities is generally studied using
the observed maximum neutron star mass, together with
radius and tidal deformability corresponding to the neutron
star with canonical mass 1.4 M⊙ [16–18]. Recently, in
Refs. [19–24], efforts were made to constrain the EOS of
β-equilibrated matter which is relevant to the studies of
NS properties. The values of tidal deformability of NSs
with mass 1–2 M⊙ are found to be strongly correlated with
the EOS at twice the saturation density.
Statistical tools are quite helpful in providing a quanti-

tative interpretation of NS observables. A Bayesian
approach is often applied to analyze gravitational-wave
signals, which involves nearly 15 parameters for binary
compact object mergers, to infer their source properties
[25]. It has been also extended to investigate the properties
of short gamma-ray bursts [26], neutron stars [27–29], the
formation history of binary compact objects [30–34], and to
test general relativity [35–38]. Of late, the Bayesian
approach has become a useful statistical tool for parameter
estimation in the field of nuclear physics and nuclear
astrophysics [39]. It allows one to obtain joint posterior
distributions of the model parameters and the correlations
among them for a given set of data. Various constraints on
the parameters known a priori are incorporated through
their prior distributions. Bayesian techniques have also*bijay.agrawal@saha.ac.in
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been employed to constrain symmetry energy [40], masses,
and radii of NSs [41] using the bounds on the EOS obtained
from chiral effective field theory. Bayesian techniques have
been extensively applied to constrain the EOS for sym-
metric nuclear matter, β-equilibrated matter (BEM), and
density dependence of symmetry energy coefficient using
various finite nuclei and NS properties [42–53].
We use a Bayesian approach to construct large sets of

EOSs which correspond to the Taylor and n
3
expansions

[53]. The expansion coefficients in the former case are the
individual nuclear matter parameters (NMPs), whereas in
the latter case they are their linear combinations. The EOSs
are consistent with a set of minimal constraints that
includes a few low-order nuclear matter parameters at
the saturation density and the EOS for the pure neutron
matter (PNM) at low densities obtained from a precise next-
to-next-to-next-to-leading-order (N3LO) calculation in chi-
ral effective field theory. The marginalized posterior dis-
tributions of NMPs and the various NS properties obtained
from the set of minimal constraints are found to be within
reasonable bounds. The correlations of various NS proper-
ties, such as tidal deformability, radius, and maximum
mass, with key EOS parameters are studied. These corre-
lations are investigated for a wide range of NS masses and
densities for the EOS.
The paper is organized as follows. The Taylor and n

3
expansions for the EOS of neutron star matter and the
Bayesian approach are briefly outlined in Sec. II. The
results for the posterior distributions of nuclear matter
parameters and associated NS properties together with their
correlations with some key quantities associated with EOSs
are presented in Sec. III. The main outcomes of the present
investigation are summarized in Sec. IV.

II. METHODOLOGY

The energy per nucleon for neutron star matter Eðρ; δÞ at
a given total nucleon density ρ and asymmetry δ can be
decomposed into the energy per nucleon for the symmetric
nuclear matter, Eðρ; 0Þ, and the density-dependent sym-
metry energy EsymðρÞ in the parabolic approximation as

Eðρ; δÞ ¼ Eðρ; 0Þ þ EsymðρÞδ2 þ � � � ; ð1Þ

where δ ¼ ðρn−ρpρ Þ with ρn and ρp being the neutron and
proton densities, respectively. The value of δ at a given ρ is
determined by the condition of β equilibrium and the
charge neutrality. Once δ is known, the fraction of neutrons,
protons, electrons, and muons can be easily evaluated. In
the following, we expand Eðρ; 0Þ and EsymðρÞ appearing in
Eq. (1) using Taylor and n

3
expansions. The coefficients of

expansion in the case of Taylor correspond to the individual
nuclear matter parameters. In the latter case, they are
expressed as linear combinations of the nuclear matter
parameters.

A. Taylor’s expansion

The Eðρ; 0Þ and EsymðρÞ can be expanded around the
saturation density ρ0 as [54–58]

Eðρ; 0Þ ¼
X
n

an
n!

�
ρ − ρ0
3ρ0

�
n
; ð2Þ

EsymðρÞ ¼
X
n

bn
n!

�
ρ − ρ0
3ρ0

�
n
; ð3Þ

so that

Eðρ; δÞ ¼
X
n

1

n!
ðan þ bnδ2Þ

�
ρ − ρ0
3ρ0

�
n
; ð4Þ

where the coefficients an and bn are the nuclear matter
parameters. We truncate the sum in Eqs. (2) and (3) at
fourth order; i.e., n ¼ 0–4. Therefore, the coefficients an
and bn correspond, respectively, to

an ≡ ε0; 0; K0; Q0; Z0; ð5Þ

bn ≡ J0; L0; Ksym;0; Qsym;0; Zsym;0: ð6Þ

In Eqs. (5) and (6), ε0 is the binding energy per nucleon,K0

the incompressibility coefficient, J0 the symmetry energy
coefficient, L0 its slope parameter, andKsym;0 the symmetry
energy curvature parameter, andQ0ðQsym;0Þ and Z0ðZsym;0Þ
are related to third- and fourth-order density derivatives of
Eðρ; 0Þ [EsymðρÞ], respectively. The subscript zero indicates
that all the nuclear matter parameters are calculated at the
saturation density.
It may be noticed from Eq. (4) that the coefficients an

and bn may display some correlations among themselves
provided the asymmetry parameter depends weakly on the
density. Furthermore, Eq. (4) may converge slowly at high
densities, i.e., ρ ≫ 4ρ0. This situation is encountered for
the heavier neutron stars. Neutron stars with a mass around
2 M⊙ typically have central densities ∼4–6ρ0.

B. n
3 expansion

An alternative expansion of Eðρ; δÞ can be obtained by
expanding Eðρ; 0Þ and EsymðρÞ as [59,60]

Eðρ; 0Þ ¼
X6
n¼2

ða0n−2Þ
�
ρ

ρ0

�n
3

; ð7Þ

EsymðρÞ ¼
X6
n¼2

ðb0n−2Þ
�
ρ

ρ0

�n
3

; ð8Þ

Eðρ; δÞ ¼
X6
n¼2

ða0n−2 þ b0n−2δ
2Þ
�
ρ

ρ0

�n
3

: ð9Þ
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We refer to this as the n
3
expansion. It is now evident from

Eqs. (7) and (8) that the coefficients of expansion are no
longer the individual nuclear matter parameters, unlike in
the case of Taylor’s expansion. The values of the nuclear
matter parameters can be expressed in terms of the
expansion coefficients a0 and b0 as, respectively,

0
BBBBBB@

ε0

0

K0

Q0

Z0

1
CCCCCCA

¼

0
BBBBBB@

1 1 1 1 1

2 3 4 5 6

−2 0 4 10 18

8 0 −8 −10 0

−56 0 40 40 0

1
CCCCCCA

0
BBBBBB@

a00
a01
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1
CCCCCCA
; ð10Þ

0
BBBBBB@
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1
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¼
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b00
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1
CCCCCCA
: ð11Þ

The relations between the expansion coefficients and the
nuclear matter parameters are governed by the nature of the
functional form for Eðρ; 0Þ and EsymðρÞ. The off-diagonal
elements in the above matrices would vanish for the Taylor
expansion of Eðρ; 0Þ and EsymðρÞ as given by Eqs. (2) and
(3), respectively. Therefore, each of the expansion coef-
ficients is simply the individual nuclear matter parameter
given by Eqs. (5) and (6). Inverting the matrices in Eqs. (10)
and (11), we have

a00 ¼
1

24
ð360ε0 þ 20K0 þ Z0Þ;

a01 ¼
1

24
ð−960ε0 − 56K0 − 4Q0 − 4Z0Þ;

a02 ¼
1

24
ð1080ε0 þ 60K0 þ 12Q0 þ 6Z0Þ;

a03 ¼
1

24
ð−576ε0 − 32K0 − 12Q0 − 4Z0Þ;

a04 ¼
1

24
ð120ε0 þ 8K0 þ 4Q0 þ Z0Þ; ð12Þ

b00¼
1

24
ð360J0−120L0þ20Ksym;0þZsym;0Þ;

b01¼
1

24
ð−960J0þ328L0−56Ksym;0−4Qsym;0−4Zsym;0Þ;

b02¼
1

24
ð1080J0−360L0þ60Ksym;0þ12Qsym;0þ6Zsym;0Þ;

b03¼
1

24
ð−576J0þ192L0−32Ksym;0−12Qsym;0−4Zsym;0Þ;

b04¼
1

24
ð120J0−40L0þ8Ksym;0þ4Qsym;0þZsym;0Þ: ð13Þ

Each of the coefficients a0 and b0 is the linear combination
of nuclear matter parameters in such a way that the lower-
order parameters may contribute dominantly at low den-
sities. The effects of higher-order parameters become
prominent with the increase in density.

C. Bayesian estimation of nuclear matter parameters

A Bayesian approach enables one to carry out detailed
statistical analysis of the parameters of a model for a given
set of fit data. It yields joint posterior distributions of model
parameters which can be used not only to study the
distributions of given parameters but also to examine
correlations among model parameters. One can also incor-
porate prior knowledge of the model parameters and
various constraints on them through the prior distributions.
This approach is mainly based on the Bayes theorem,
which states that [61]

PðθjDÞ ¼ LðDjθÞPðθÞ
Z

; ð14Þ

where θ and D denote the set of model parameters and the
fit data, respectively. The PðθjDÞ is the joint posterior
distribution of the parameters, LðDjθÞ is the likelihood
function, PðθÞ is the prior for the model parameters, and
Z is the evidence. The posterior distribution of a given
parameter can be obtained by marginalizing PðθjDÞ over
remaining parameters. The marginalized posterior distri-
bution for a parameter θi can be obtained as

PðθijDÞ ¼
Z

PðθjDÞ
Y
k≠i

dθk: ð15Þ

We use a Gaussian likelihood function defined as

LðDjθÞ ¼
Y
j

1ffiffiffiffiffiffiffiffiffiffi
2πσ2j

q e
−1
2

�
dj−mjðθÞ

σj

�
2

: ð16Þ

Here, the index j runs over all the data, and dj and mj are
the data and corresponding model values, respectively. The
σj are the adopted uncertainties. The evidenceZ in Eq. (14)
is obtained by complete marginalization of the likelihood
function. It is relevant when employed to compare different
models. However, in the present work, Z is not very
relevant. To populate the posterior distribution of Eq. (14),
we implement a nested sampling algorithm by invoking the
Pymultinest nested sampling [62] in the Bayesian Inference
Library [25].

III. RESULTS AND DISCUSSIONS

We obtained the EOSs for BEM using Taylor and n
3

expansions as discussed in previous Eqs. (4) and (9). The
coefficients of the Taylor expansion are the individual

NEARLY MODEL-INDEPENDENT CONSTRAINTS ON DENSE … PHYS. REV. D 106, 043024 (2022)

043024-3



nuclear matter parameters, whereas they correspond to
linear combinations of nuclear matter parameters for the n

3

expansion. We have constructed marginalized posterior
distributions for the nuclear matter parameters by applying
a Bayesian approach to both the expansions considered.
The nuclear matter parameters or the corresponding EOSs
are consistent with a set of minimal constraints that
includes basic properties of saturated nuclear matter and
low-density (ρ ¼ 0.08–0.16 fm−3) EOS for pure neutron
matter from the (N3LO) calculation in chiral effective field
theory [63]. This large number of EOSs is employed
to evaluate the properties of the neutron star such as
tidal deformability, radius, and maximum mass. The
correlations of neutron star properties with the pressure
of β-equilibrated matter at a given density are studied. Most
of these correlations are sensitive to the choice of the
neutron star mass and EOS at a given density. Our results
for the correlations of tidal deformability with pressure for
β-equilibrated matter are analogous to those obtained using
a diverse set of nonrelativistic and relativistic mean-field
models (MFMs) that reemphasize their model independ-
ence. Such model-independent trends inspire us to para-
metrize the pressure for β-equilibrated matter around 2ρ0 in
terms of neutron star mass and the corresponding tidal
deformability.

A. Priors, likelihood, and filters

We apply a Bayesian approach to obtain two large sets of
EOSs corresponding to the Taylor and n

3
expansions. The

posterior distributions for the NMPs are obtained by
subjecting the EOSs to a set of minimal constraints which
include some basic properties of nuclear matter evaluated at
the saturation density ρ0 and EOS for the pure neutron
matter at low density. The constraints on the nuclear matter
parameters are incorporated through the priors and those
from the EOS for the pure neutron matter through the
likelihood function. Not all the nuclear matter parameters
are well constrained. Only a very few low-order nuclear
matter parameters constrained within narrow bounds are
the binding energy per nucleon ε0 ¼ −16.0� 0.3 MeV,
nuclear matter incompressibility coefficients K0 ¼ 240�
50 MeV for the symmetric nuclear matter, and symmetry
energy coefficient J0 ¼ 32.0� 5 MeV. The values of ε0
and J0 are very well constrained by the binding energy
of finite nuclei over a wide range of nuclear masses
[10,64–68]. The value of K0 is constrained from the
experimental data on the centroid energy of isoscalar giant
monopole resonance in a few heavy nuclei [69,70]. The
values of L0 have been extracted from experimental data on
a variety of phenomena in the finite nuclei as well as from
neutron star observations. The model-independent estimate
of L0 is expected to be derived from the measurement of
neutron-skin thickness in asymmetric nuclei. Recent meas-
urement of neutron-skin thickness in 208Pb nucleus yields
L0 ¼ 106� 37 MeV [71]. However, this value of L0 has

only marginal overlap at the lower side with those deter-
mined using experimental data on isovector giant dipole
resonances in several nuclei [72] and recent neutron star
observations [73]. The remaining nuclear matter parameters
Q0, Z0, Ksym;0, Qsym;0, and Zsym;0 are constrained only
poorly [24,74–77]. The priors for the nuclear matter
parameters employed in the present work are listed in
Table I. The prior distributions of ε0, K0, and J0 are
assumed to be Gaussian with rather smaller width, whereas
the other higher-order nuclear matter parameters corre-
spond to Gaussian distribution with very large width. We
have also repeated our calculations with uniform priors for
the higher-order nuclear matter parameters, and the results
for the median values are found to be practically unaltered
and uncertainties are modified marginally, up to 10% (not
shown). In what follows, we present only those results
which are obtained with priors as listed in Table I.
We know that the direct application of the lattice QCD

simulations is challenging to hadronic physics at finite
density due to the sign problem in Monte Carlo simula-
tions. However, analytical calculations in terms of the
effective degrees of freedom at low energy (ρ < ρ0) like
chiral effective theory are valid with negligible uncertainty.
The precise N3LO calculations are usually fitted to the
nucleon-deuteron scattering cross section or few-body
observables and even saturation properties of heavier nuclei
[78]. The low-density EOS for the pure neutron matter
obtained from a (N3LO) calculation in chiral effective field
theory [63] is employed as pseudodata to obtain a simple
likelihood function as given by Eq. (16). The d’s and the σ’s
in Eq. (16) are the pseudodata for the energy per neutron
and the corresponding uncertainties taken from Ref. [63],
respectively. This has been employed in many of the past

TABLE I. The prior distributions of the nuclear matter param-
eters. The nuclear matter parameters considered are the binding
energy per nucleon (ε0), incompressibility coefficient (K0),
symmetry energy coefficient (J0), its slope parameter (L0),
and symmetry energy curvature parameter (Ksym;0), and
Q0ðQsym;0Þ and Z0ðZsym;0Þ are related to third- and fourth-order
density derivatives of Eðρ; 0Þ [EsymðρÞ], respectively. All the
nuclear matter parameters are evaluated at saturation density
ρ0 ¼ 0.16 fm−3. The parameters of Gaussian distribution (G) are
the mean (μ) and standard deviation (σ).

NMPs (in MeV) Pr-Dist μ σ

ε0 G −16 0.3
K0 G 240 50
Q0 G −400 400
Z0 G 1500 1500
J0 G 32 5
L0 G 50 50
Ksym;0 G −100 200
Qsym;0 G 550 400
Zsym;0 G −2000 2000
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analyses as their pseudodata [22,79–82]. We have consid-
ered the values of energy per neutron over the density range
ρ ¼ 0.08–0.16 fm−3. At densities lower than 0.08 fm−3,
the neutron star matter is expected to be clusterized.
We have filtered the nuclear matter parameters by

demanding that (i) the pressure for the β-equilibrated
matter should increase monotonically with density
(thermodynamic stability), (ii) the speed of sound must
not exceed the speed of light (causality), and (iii) the
maximum mass of the neutron star must exceed 2 M⊙
(observational constraint). The causality breaks down at
higher density mostly for the Taylor EOS. In such cases, we
use the stiffest EOS, PðϵÞ ¼ Pm þ ðϵ − ϵmÞ, where Pm and
ϵm are the pressure and corresponding energy density at
which the causality breaks, respectively [83].

B. Posterior distribution of nuclear matter parameters

To undertake the correlation systematics as proposed, we
need a large number of EOSs with diverse behavior and
corresponding neutron star properties. The posterior dis-
tributions for the nuclear matter parameters for the Taylor
and n

3
expansions are obtained by subjecting the EOS to a

set of minimal constraints as discussed above. The joint
posterior distribution of the NMPs for a given model
depends on the product of the likelihood and the prior
distribution of nuclear matter parameters [Eq. (14)]. The
posterior distribution of each individual parameter is
obtained by marginalizing the joint posterior distribution
with the remaining model parameters. If the marginalized
posterior distribution of a nuclear matter parameter is
localized more than the corresponding prior distribution,
then the nuclear matter parameter is said to be well
constrained by the data used for model fitting.
The corner plots for the marginalized posterior distribu-

tions for the nuclear matter parameters in one and two
dimensions obtained for Taylor and n

3
expansions are

displayed in Figs. 1 and 2, respectively. The differences
between the one-dimensional posterior distributions for the
nuclear matter parameters and corresponding prior distri-
butions reflect the role of low-density EOSs for pure
neutron matter in constraining the nuclear matter param-
eters. The EOS for the pure neutron matter mainly con-
strains the values of J0, L0, and Ksym;0 and to some extent
Qsym;0 and Zsym;0. The shapes and the orientations of the
confidence ellipses suggest that the correlations among
most of the NMPs are weak. Most strong correlations exist
only between Q0 − Z0, L0 − J0, and L0 − Ksym;0 for both
the expansions with correlation coefficient r ≃ 0.8. The
K0 −Q0 correlation is slightly better in the case of n

3

expansion (r ∼ −0.6) as compared to Taylor (r ∼ −0.18).
The median values of the nuclear matter parameters and the
corresponding 68% (90%) confidence intervals obtained
from the marginalized posterior distributions are listed in
Table III (see the Appendix). We also provide the values for
the nuclear matter parameters obtained without the PNM

constraints. The low-density pure neutron matter mainly
constrains those nuclear matter parameters which are
associated with the density dependence of the symmetry
energy. The median values of L0 and Ksym;0, which
determined the linear and quadratic density dependence
of the symmetry energy, become smaller, suggesting softer
symmetry energy “at high density” with the inclusion of
pure neutron matter constraints. Furthermore, the uncer-
tainties on L0 reduced by more than 50%. The median
value of Qsym;0 remain more or less unaltered. From the
recent measurement of the neutron-skin thickness for 208Pb
nucleus (PREX-II) [71,84], ΔRskin ¼ 0.283� 0.071 fm,
the value of L0 has been determined to be 106�
37 MeV [71]. This value of L0 agrees with the ones
obtained in the present work with PNM constrained only
within 90% confidence interval.

C. Properties of neutron stars

Once the EOS for the core and crust are known, the
values of NS mass, radius, and tidal deformability corre-
sponding to a given central pressure can be obtained by
solving Tolman-Oppenheimer-Volkoff equations [85,86].
The EOSs for the core region of a neutron star, correspond
to the β-equilibrated matter over the density range 0.5–8ρ0,
are obtained from the posterior distributions of nuclear
matter parameters for the Taylor and n

3
expansions. The core

EOSs are matched to the crust EOSs for obtaining the NS
properties. The EOS for the outer crust is taken to be the
one given by Baym, Pethick, and Sutherland [87]. The
inner crust that joins the inner edge of the outer crust and
the outer edge of the core is assumed to be polytropic [88]:
pðεÞ ¼ c1 þ c2εγ . Here, the parameters c1 and c2 are
determined in such a way that the EOS for the inner crust
matches with the outer crust at one end (ρ ¼ 10−4 fm−3)
and with the core at the other end (0.5ρ0). The polytropic
index γ is taken to be equal to 4=3. The radii of neutron
stars with mass ∼1 M⊙ are more sensitive to the treatment
of crust EOSs [89]. It is demonstrated that the treatment of
crust EOSs employed in the present work may introduce
uncertainties of about 50–100 m in the radii of NSs having
mass 1.4 M⊙. It is shown in Ref. [90] that the choice of
EOS for the inner crust does not significantly impact the
values of tidal deformability which depends on the Love
number k2 as well as the compactness parameter.
We have obtained the distributions of Λ1.4, R1.4, R2.07,

and Mmax using the posterior distributions for the nuclear
matter parameters corresponding to the Taylor and n

3

expansions. The corner plots for these NS properties are
displayed in Fig. 3. The effective priors for the NS
properties as shown by green lines are obtained using
the priors for the nuclear matter parameters. The posterior
distributions of NS properties are narrower than the
corresponding effective priors, indicating the significance
of the low-density EOS for the pure neutron matter.
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FIG. 1. Corner plots for the nuclear matter parameters (in MeV) obtained for Taylor expansions for the EOS of asymmetric nuclear
matter. The one-dimensional marginalized posterior distributions (salmon) and the prior distributions (green lines) are displayed along
the diagonal plots. The vertical lines indicate a 68% confidence interval of nuclear matter parameters. The confidence ellipses for two-
dimensional posterior distributions are plotted with 1σ, 2σ, and 3σ confidence intervals along the off-diagonal plots. The distributions of
nuclear matter parameters are obtained by subjecting them to minimal constraints (see the text for details).
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The posterior distributions of Λ1.4 and R1.4 for both the
expansions are quite close to each other. The differences
begin to appear for the case of R2.07, which become even
larger for the maximum mass. This is due to the fact that
the Taylor EOSs are much more stiffer than those for n

3
.

The dichotomy in the high-density behavior of the Taylor
and n

3
expansions would help us to understand the extent to

which the correlations of the EOSs with the properties of
NSs, for masses in the range 1–2 M⊙, are model depen-
dent. It is clear from off-diagonal plots that Λ1.4 is strongly

FIG. 2. The same as Fig. 1, but for n
3
expansions for the EOS of asymmetric nuclear matter.
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correlated with R1.4, and the correlation coefficient is
r ∼ 0.9. The Λ1.4 and R1.4 also display stronger correlations
with R2.07 (r ∼ 0.8) for the case of Taylor and somewhat
moderate correlations (r ∼ 0.7) for the n

3
expansion. The

maximum mass of the neutron star is almost uncorrelated
with the other NS properties considered.
We have summarized in Table IV (see the Appendix) the

median values of NS properties along with 68% (90%)

confidence intervals. Like in the case of nuclear matter
parameters, the NS properties get significantly constrained
by the EOS of pure neutron matter at low density. For
instance, the median values of Λ1.4 become smaller by
about 15% and the associated uncertainties by about 40%
with the pure neutron matter constraints. The median values
of R1.4 and the corresponding uncertainties also become
noticeably smaller. The R2.07 and Mmax do not show
significant changes with the inclusion of low-density pure
neutron matter constraints. With the PNM constraints, the
90% confidence interval of the neutron star properties such
as tidal deformability, radius, and mass overlap with the
currently available bounds Λ1.4 ∈ ½70; 580� [4], R1.4 ∈
½11.41; 13.61� km [91], R2.07 ∈ ½11.8; 13.1� km [92], and
Mmax ≥ 2.09 M⊙ [93]. The Mmax ¼ 2.48þ0.06

−0.07 M⊙
obtained for the Taylor EOSs is on the slightly higher side
in comparison to the ones derived by combining the
GW170817 observations of merging of binary neutron
stars and quasiuniversal relation [94]. The observed electro-
magnetic emissions in the form of a kilonova and the
detection of a gamma-ray burst have been linked to the
formation of a black hole and, thus, have been utilized to
infer the maximum mass of a stable neutron star. However,
such inference of the maximum mass is subjected to
uncertainties originating from model dependence of post-
merger dynamics. Recent observation of the GW190814
event, a neutron star black hole–binary neutron star merger,
has triggered an assessment of the maximum mass of a
stable neutron star [95]. While there are different opinions
available in the literature, the nature of a compact object in
the range of 2.5–2.67 M⊙ being a neutron star or black hole
seems to be an unsettled issue to date [94–99]. So the
maximum mass (Mmax) we got for the Taylor model
supporting the static NS of mass greater than 2.5 M⊙
may not be ruled out at present.
We obtain joint probability distribution PðM;RÞ for a

given mass and radius for both the Taylor and n
3
expansions.

They display qualitatively very much similar trends. In
Fig. 4, we plot the PðM;RÞ obtained for the n

3
expansion.

The 90% confidence interval is represented by a red dashed
line. The color gradient from orange to dark purple
represents the lowest to highest probability. The most
probable values for R1.4 and R2.07 are approximately
13.3 and 12.3 km, respectively. The PðM;RÞ is maximum
forM ∼ 1.4–2.0 M⊙ andR ∼ 12.4–13.4 km. The 90% con-
fidence interval has significant overlap with LIGO-Virgo
and NICER estimations. It may be, however, pointed out
that the main objective of the present work is to construct
large sets of EOSs with diverse behavior to assess various
correlation systematics as follows.

D. Correlations of neutron star properties with EOSs

We randomly select 1000 EOSs and corresponding NS
properties from marginalized posterior distributions
obtained for the Taylor as well as n

3
expansions. They

FIG. 3. Corner plots for the marginalized posterior distributions
(salmon) of the tidal deformability Λ1.4, radii R1.4 (km) and R2.07
(km), and the maximum mass Mmax (M⊙) for Taylor (top) and n

3

(bottom) expansions. The green lines represent effective priors
obtained using the priors for nuclear matter parameters (see also
Table I).
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are used to study the correlations of various NS properties
with key quantities determining the behavior of the EOS.
The correlations of Λ1.4, R1.4, R2.07, and Mmax with the
pressure of β-equilibrated matter over a wide range of
densities are evaluated. The values of correlation coeffi-
cients are plotted as a function of the density in Fig. 5. We
also display the values of correlation coefficients for NS
properties with the pressure of β-equilibrated matter calcu-
lated using unified EOSs for a diverse set of 41 non-
relativistic and relativistic MFMs [89]. The various NS
properties considered show strong correlations with
PBEMðρÞ around a particular density. The density at which
the correlation is maximum increases with the NS mass.
The values of Λ1.4 and R1.4 are strongly correlated with
PBEMðρÞ at density ∼1.5–2.5ρ0. The R2.07 is strongly
correlated with PBEMðρÞ around 3ρ0. The Mmax is strongly
correlated with PBEMðρÞ around 4.5ρ0. Our results for the
Taylor and n

3
expansions for the region of maximum

correlations are in line with those obtained using a diverse
set of mean-field models, except for the case of R2.07.
Thus, it seems possible that the EOS over a range
of densities beyond ρ0 can be constrained in a nearly
model-independent manner with the help of various NS
observables.
In Table V (see the Appendix), we list the values of

correlation coefficients obtained between the NS properties
and the EOSs at some selected densities. The correlation

coefficients are obtained using 100 and 1000 EOSs,
corresponding to Taylor and n

3
expansions, randomly

selected from the posterior distributions. We also present
the results which are obtained by combining 1000 EOSs
corresponding to each of the expansions. The values of
correlation coefficients for the combined set of EOSs are
close to those obtained separately. The values of the
correlation coefficients are close to those obtained for
mean-field models listed in second column. We plot in
Fig. 6 the variations of PBEMðρÞ, at selected densities, with
Λ1.4, R1.4, R2.07, and Mmax for which the correlations are
stronger. We compare our results with those obtained from
a diverse set of mean-field models. The correlation lines
obtained by combining results of the Taylor and n

3
expan-

sions are also plotted to estimate the values of PBEMðρÞ at
selected densities with the help of NS properties. The
equations for the correlation lines are obtained using linear
regression as

FIG. 4. Plot for joint probability distribution PðM;RÞ as a
function of the mass and radius of the neutron star obtained for n

3

expansion. The red dashed line represents the 90% confidence
interval. The outer and inner gray shaded regions indicate the
90% (solid) and 50% (dashed) confidence interval of the LIGO-
Virgo analysis for the BNS component from the GW170817
event [100–102]. The rectangular regions enclosed by dotted
lines indicate the constraints from the millisecond pulsar PSR
J0030þ 0451 (purple and black) NICER x-ray data [103,104]
and PSR J0740þ 6620 (green) [92]. FIG. 5. The correlation coefficients rðx; PBEMðρÞÞ, as approxi-

mated by both Taylor and n
3
expansion along with the mean-field

theory calculations, are shown in this figure. Here, x represents
either of the tidal deformability Λ1.4, radii R1.4 and R2.07, or
maximum mass Mmax of the neutron star, whereas PBEMðρÞ
represents the pressure for β-equilibrated matter at a density ρ.
The calculations are performed with neutron star properties
obtained using marginalized posterior distributions of nuclear
matter parameters in Taylor and n

3
expansions. For comparison,

the results are also displayed for a diverse set of nonrelativistic
and relativistic microscopic MFMs.
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PBEMð2ρ0Þ
MeVfm−3 ¼ ð0.96� 0.10Þþ ð0.0473� 0.0002ÞΛ1.4;

PBEMð2ρ0Þ
MeVfm−3 ¼ ð−85.63� 0.89Þþ ð8.01� 0.06ÞR1.4

km
;

PBEMð3ρ0Þ
MeVfm−3 ¼ ð−233.16� 2.85Þþ ð25.86� 0.23ÞR2.07

km
;

PBEMð4.5ρ0Þ
MeVfm−3 ¼ ð−895.85� 4.00Þþ ð524.75� 1.70ÞMmax

M⊙
:

ð17Þ

We extend our analysis for the correlations of the
pressure for the β-equilibrated matter with tidal deform-
ability over a wide range of neutron star mass. In Fig. 7, we
display a color-coded graph for the correlations of tidal
deformability of neutron stars for the mass 1.2–2.0 M⊙
with the pressure for β-equilibrated matter at densities
0.5–5ρ0 [rðΛM; PBEMðρÞÞ]. One can easily obtain the value
of the correlation coefficient as a function of the density at a
given NS mass. The PBEMðρÞ at ρ ∼ 1.5–2.5ρ0 are strongly
correlated (r ∼ 0.8–1) with tidal deformability for NS
masses in the range 1.2–2.0 M⊙. Hence, PBEMðρÞ can
be parametrized at a given ρ as

PBEMðρÞ
MeV fm−3 ¼ aðMÞ þ bðMÞΛM; ð18Þ

with mass-dependent coefficients aðMÞ and bðMÞ
expanded as

aðMÞ ¼ ða0 þ a1ðM −M0Þ þ a2ðM −M0Þ2Þ; ð19Þ

bðMÞ ¼ ðb0 þ b1ðM −M0Þ þ b2ðM −M0Þ2Þ; ð20Þ

respectively, where M0 is taken to be 1.4 M⊙ and the
values of ai and bi are estimated using a Bayesian
approach with the help of PBEMðρÞ and tidal deformability
obtained for Taylor and n

3
expansions. For a given ρ,

Eq. (18) is fitted using the tidal deformability correspond-
ing to NS mass 1.2–2.0 M⊙. The priors for ai and bi are
taken to be uniform in the range of −100 to 100. The
calculations are performed for ρ ¼ 1.5, 2.0, and 2.5ρ0. All
the ai’s are strongly correlated with corresponding bi’s.
The median values of parameters ai and bi and associated
uncertainties are summarized in Table II. It may be noticed
that the values of a0 and b0 for the case of PBEMð2ρ0Þ are
not the same as those in Eq. (17). This may be partly due
to the strong correlations between a0 and b0 of Eq. (18).
Moreover, Eq. (17) is fitted to the values of tidal
deformability at a fixed NS mass 1.4 M⊙. To validate
our parametrized form for PBEMðρÞ, we have calculated
the values of PBEMð2ρ0Þ using Eq. (18) with the help
of tidal deformability for 1.4 M⊙ obtained for a large
number of mean-field models which includes the one
considered in Fig. 5 along with those taken from
Refs. [23,81,105]. The average deviation of PBEMð2ρ0Þ,
obtained using Eq. (18), from the actual values is about
10%. We find marginal improvement when the terms
corresponding to quadratic in tidal deformability are
included in Eq. (18).
In Fig. 8, we display the variations of tidal deformability

as a function of the mass and pressure for β-equilibrated
matter at ρ ¼ 1.5, 2.0, and 2.5ρ0. These results are obtained

FIG. 6. The variations of pressure for β-equilibrated matter
[PBEMðρÞ] at selected densities versus tidal deformability Λ1.4,
radii R1.4 and R2.07, and maximum massMmax of the neutron star.
The red dashed lines are obtained by linear regression [see
Eq. (17) in Sec. III D].

FIG. 7. Dependence of correlation coefficients between tidal
deformability (ΛM) and the pressure of β-equilibrated matter
[PBEMðρÞ] on neutron star mass (M) and density (ρ) is depicted in
this plot. Here, ρ0 ¼ 0.16 fm−3 is used only for scaling purposes.
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using the parametrized form for PBEMðρÞ as given by
Eq. (18). One can easily estimate the values of PBEMðρÞ for
ρ ∼ 2ρ0 once the values of tidal deformability known in NS
mass ranges 1.2–2.0 M⊙.

IV. CONCLUSIONS

We have used Taylor and n
3
expansions of equations of

state to construct marginalized posterior distributions of the
nuclear matter parameters which are consistent with the
minimal constraints. Only a few low-order nuclear matter
parameters, such as the energy per nucleon, incompress-
ibility coefficient for the symmetric nuclear matter, and
symmetry energy coefficients at the saturation density (ρ0),
are constrained in narrow windows along with the low-
density pure neutron matter EOS obtained from a precise
N3LO calculation in chiral effective field theory. The tidal
deformability, radius, and maximum mass are evaluated
using large sets of minimally constrained EOSs.
The correlations of neutron star properties over a wide

range of mass with various key quantities characterizing the
EOSs are investigated. We find that the values of tidal
deformability and radius for the neutron star with 1.4 M⊙
are strongly correlatedwith the pressure for theβ-equilibrated
matter at density∼2ρ0. The radius for 2.07 M⊙ neutron star is
strongly correlatedwith the pressure for β-equilibratedmatter
at density ∼3ρ0. The maximum mass of the neutron star is
correlated with the pressure for the β-equilibrated matter at
density∼4.5ρ0. These correlation systematics are in harmony
with those obtained for unified EOSs for the β-equilibrated
matter available for a diverse set of nonrelativistic and
relativistic mean-field models. We exploit the model inde-
pendence of correlations to parametrize the pressure for
β-equilibrated matter, in the density range 1.5–2.5ρ0, in
terms of the mass and corresponding tidal deformability
of the neutron star. Such a parametric form may facilitate a
back-of-the-envelope estimation of the pressure at densities
around 2ρ0 for a given value of tidal deformability of neutron
stars with mass in the range of 1.2–2.0 M⊙.
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APPENDIX: SOME USEFUL TABLES

We present our results in tabular form which are obtained
with the minimal constraints. The values of the nuclear
matters, properties of neutron stars, and their correlations
with various key quantities associated with EOSs are listed
in Tables III–V. These results are depicted in Figs. 1–6.

TABLE III. The median values and associated 68% (90%) uncertainties for the nuclear matter parameters from their marginalized
posterior distributions. The results are obtained for Taylor and n

3
expansions with and without PNM constraints.

Without PNM With PNM

NMPs (in MeV) Taylor n
3

Taylor n
3

ε0 −16.02þ0.23ð0.41Þ
−0.28ð0.56Þ −15.99þ0.27ð0.43Þ

−0.27ð0.51Þ −16.00þ0.27ð0.42Þ
−0.30ð0.54Þ −16.00þ0.27ð0.44Þ

−0.28ð0.56Þ
K0 236.42þ42.78ð74.34Þ

−42.58ð79.62Þ 233.38þ48.94ð76.14Þ
−42.73ð83.95Þ 237.43þ44.24ð72.25Þ

−45.75ð83.22Þ 231.96þ44.80ð72.94Þ
−41.33ð76.63Þ

Q0 −436.23þ273.36ð419.17Þ
−306.50ð603.76Þ −411.84þ207.53ð301.56Þ

−210.88ð409.00Þ −419.81þ262.95ð437.69Þ
−272.47ð531.58Þ −418.89þ187.43ð300.76Þ

−179.25ð377.42Þ
Z0 1441.51þ792.45ð1298.64Þ

−696.39ð1381.30Þ 1600.07þ1067.33ð1883.00Þ
−1362.28ð2615.10Þ 1403.84þ704.56ð1133.85Þ

−690.82ð1386.25Þ 1638.14þ1241.83ð1906.75Þ
−1277.48ð2244.23Þ

J0 32.37þ4.08ð6.79Þ
−4.26ð8.83Þ 32.37þ4.69ð7.22Þ

−4.71ð10.23Þ 31.88þ0.87ð1.43Þ
−0.92ð−1.85Þ 31.87þ0.93ð1.49Þ

−0.82ð1.68Þ
L0 59.88þ41.14ð65.90Þ

−39.84ð78.17Þ 55.60þ37.59ð63.89Þ
−43.88ð84.62Þ 51.25þ13.32ð21.60Þ

−13.91ð25.54Þ 52.25þ13.55ð22.73Þ
−12.76ð23.04Þ

Ksym;0 −85.86þ192.67ð327.83Þ
−151.57ð266.76Þ −40.03þ161.60ð271.89Þ

−135.08ð234.67Þ −96.65þ141.41ð225.69Þ
−127.49ð216.74Þ −67.44þ127.18ð206.09Þ

−114.80ð200.38Þ
Qsym;0 731.13þ308.54ð543.01Þ

−347.82ð669.47Þ 705.36þ311.23ð511.39Þ
−352.72ð727.86Þ 699.56þ324.38ð521.95Þ

−323.52ð639.30Þ 726.49þ300.40ð510.33Þ
−358.51ð631.86Þ

Zsym;0 −2.07þ1190.67ð2153.84Þ
−820.92ð1473.09Þ −1390.39þ1518.69ð2526.53Þ

−1856.18ð3623.74Þ 55.34þ1205.62ð2255.28Þ
−782.52ð1415.84Þ −1622.35þ1606.61ð2788.70Þ

−1911.81ð3468.40Þ

TABLE IV. Similar to Table III, but for the neutron star properties, namely, the tidal deformability (Λ1.4), radii (R1.4 and R2.07), and
maximum mass (Mmax).

Without PNM With PNM

NS properties Taylor n
3

Taylor n
3

Λ1.4 527.72þ250.72ð477.68Þ
−186.11ð292.57Þ 455.85þ223.65ð465.72Þ

−163.05ð243.23Þ 426.20þ139.93ð224.58Þ
−130.32ð205.18Þ 386.52þ132.76ð213.24Þ

−102.84ð199.09Þ
R1.4 (km) 14.69þ1.78ð3.43Þ

−1.63ð2.74Þ 14.15þ1.87ð3.34Þ
−1.69ð2.58Þ 13.37þ0.67ð1.03Þ

−0.75ð1.60Þ 13.22þ0.64ð0.99Þ
−0.67ð1.59Þ

R2.07 (km) 13.24þ0.82ð1.49Þ
−0.82ð1.42Þ 12.27þ0.88ð1.52Þ

−0.80ð1.52Þ 12.72þ0.55ð0.85Þ
−0.59ð1.07Þ 12.02þ0.54ð0.88Þ

−0.58ð1.23Þ
Mmax (M⊙) 2.45þ0.07ð0.11Þ

−0.06ð0.13Þ 2.19þ0.10ð0.19Þ
−0.09ð0.09Þ 2.48þ0.06ð0.10Þ

−0.07ð0.14Þ 2.20þ0.10ð0.16Þ
−0.09ð0.11Þ
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