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We revisit the role that gravitational scattering off stars plays in establishing the steady-state distribution
of collisionless dark matter (DM) around a massive black hole (BH). This is a physically interesting
problem that has potentially observable signatures, such as γ rays from DM annihilation in a density spike.
The system serves as a laboratory for comparing two different dynamical approaches, both of which have
been widely used: a Fokker-Planck treatment and a two-component conduction fluid treatment. In our
Fokker-Planck analysis we extend a previous analytic model to account for a nonzero flux of DM particles
into the BH, as well as a cutoff in the distribution function near the BH due to relativistic effects or, further
out, possible DM annihilation. In our two-fluid analysis, following an approximate analytic treatment, we
recast the equations as a “heated Bondi accretion” problem and solve the equations numerically without
approximation. While both the Fokker-Planck and two-fluid methods yield basically the same DM density
and velocity dispersion profiles away from the boundaries in the spike interior, there are other differences,
especially the determination of the DM accretion rate. We discuss limitations of the two treatments,
including the assumption of an isotropic velocity dispersion.
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I. INTRODUCTION

A supermassive black hole (SMBH) will steepen the
density profile of dark matter (DM) within the hole’s sphere
of influence, i.e., within radius rh ¼ GMbh=v20. Here, Mbh
is the mass of the hole and v0 is the velocity dispersion in
the galaxy core. The density profile of this DM spike
depends both on the properties of DM and the formation
history of the SMBH. If the DM is collisionless with a
cuspy, spherical, inner halo density that follows a gener-
alized Navarro-Frenk-White (NFW [1]) profile then the
density in the absence of the hole will obey a power-law
profile, ρðrÞ ∼ r−γc . Simulations with DM alone yield
typical powers of 0.9≲ γc ≲ 1.2 [2,3], but if baryons
undergo dissipative collapse into a baryonic disk they
can induce the adiabatic contraction of the central DM
halo into a steeper power law [4–6], with values as high as
γc ∼ 1.6 allowed for our Galaxy [7].
If the SMBH grows adiabatically from a smaller seed [8]

the SMBH then alters the profile inside rh, forming a DM
spike within which ρðrÞ ∼ r−γsp , where γsp ¼ ð9 − 2γcÞ=
ð4 − γcÞ [9]. For 0 < γc ≤ 2 the power-law γsp varies at
most between 2.25 and 2.50 for this case. However,
gravitational scattering off of a dense stellar component

inside rh could heat the DM, softening the spike profile and
ultimately driving it to a final equilibrium value of γsp ¼ 1.5
[10–12], or even to disruption [13]. Other spikes, charac-
terized by other power laws, are obtained for alternative
formation histories for theBHwithin its host halo, such as the
sudden formation of a SMBH through direct collapse of gas
inside DM halos [14], mergers or gradual growth from an
inspiraling off-center seed [15], or in the presence of DM
self-interactions [16–18]. It is also possible that baryon
clumps can erase the DMdensity cusp via dynamical friction
[19,20].
DM annihilations in the innermost region of the spike, if

they occur, weaken the density profile there. The density
continues to rise with decreasing distance r from the BH, as
it forms a “weak cusp” [21,22] rather than a plateau [9].
Within the weak cusp the density increases as r−1=2 for
s-wave DM annihilation and somewhat more slowly for
p-wave annihilation.
Due to their very high DM densities, BH-induced

density spikes can appear as very bright gamma-ray point
sources in models of annihilating DM [9–11,23–27]. Many
of these models are now becoming detectable with current
and near-future high-energy gamma ray experiments, and
indeed the excess of ∼1–5 GeV gamma rays from the inner
few degrees of the Galactic Center (GC) observed by Fermi
may prove to be a first signal of annihilating DM [28–30],
although tension with limits from dwarf galaxies [31] and
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the statistical properties of the photons in the GC excess
[32,33] may indicate a more conventional astrophysical
explanation for the GC excess, such as a new population of
pulsars (see, e.g., [34–36]).
Here we revisit the issue of Newtonian gravitational

scattering of collisionless DM off a stellar component
inside rh in the presence of a massive, central BH. Our
motivation is multipurpose: (1) to obtain the steady-state
profile of DM in the cusp to which the time-dependent,
numerical integration of the Fokker-Planck equation in [10]
asymptotes at late times; (2) to generalize the zero-flux,
steady-state solution of the Fokker-Planck equation in [11]
to allow for a net flux of DM onto the BH; and, especially,
(3) to use this problem as one of the simplest laboratories
that can be exploited to compare a Fokker-Planck approach
to a two-fluid conduction approach for treating the dynami-
cal behavior of a two-component cluster of collisionless
gases interacting by gravitational scattering alone (see, e.g.,
[37–39] and references therein). Our Fokker-Planck treat-
ment is entirely analytic. Our two-fluid conduction treat-
ment is first performed analytically to gain insight, after we
adopt some reasonable approximations. Then, once we
recast the DM fluid equations in the form of a “heated
Bondi accretion” problem, we solve them numerically
without approximation.
The plan of the paper is as follows. In Sec. II we present

our Fokker-Planck treatment and in Sec. III our two-
component fluid treatment. In Sec. IV we discuss some
of the implications of our dual analyses. We adopt
gravitational units and set G ¼ 1 ¼ c throughout.

II. FOKKER-PLANCK TREATMENT

A. Phase-space distribution function

We begin by following [10,11] and adopting a Fokker-
Planck approach to addressing the problem. We regard a
Fokker-Planck treatment as the more fundamental approach
(compared with a fluid approach) to analyzing Newtonian
N-body systems that evolve by undergoing cumulative,
small-angle gravitational (Coulomb) scatterings on two-
body relaxation timescales. Here we have a two-component
system consisting of DM particles that scatter off stars to
establish a (quasi)stationary DM distribution in the presence
of a massive, central black hole (BH) of mass Mbh that
dominates the potential in the spike. The Fokker-Planck
equation can be employed to evolve the phase-space dis-
tribution function fðE; tÞ ofDMparticles bound to the BH in
the spike, where E ¼ Mbh=r − v2=2 > 0 is the DM binding
energyper unitmass.Here r is the radius from theBHandv is
the speed of a particle; the velocity dispersions are assumed
isotropic for both DM particles and stars. A power-law
distribution function for the DM satisfying fðEÞ ∼ Ep gives
rise to a power-law DM density, ρ ∼ r−3=2−p.
The Fokker-Planck equation for the evolution of the

distribution function f of DM particles of mass mχ in the
presence of stars of mass m� can be written in the form

[10,11] (see also [40], Eq. (2-86), with a slight change of
notation)

−
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where qðEÞ ¼ ð2−1=2=3ÞπM3
bhE

−3=2, A≡ 16π2m2� lnΛ and
lnΛ ¼ lnðMbh=m�Þ. Here f� is the distribution function of
the stars, which we take to be a fixed power law in the cusp,

f� ¼ KEs; E > 0 ð2Þ

for this exercise. The constant K determines the magnitude
of the stellar density at a fiducial point in the cusp (see
below) and the power law with −1 < s < 1=2 determines
the density profile there, ρ� ∼ r−β, where β ¼ sþ 3=2. For
this analysis we set the stellar density to be zero for
unbound stars that orbit outside the cusp: f� ¼ 0, E < 0.
The equilibrium distribution function we might expect for
the bound stars is f� ∝ E1=4, i.e., s ¼ 1=4, corresponding to
ρ� ∝ r−7=4, which is the Bahcall-Wolfe (BW) [41] steady-
state solution for a one-component, isotropic system of
stars deep inside the cusp around a massive BH. However
we shall leave s and β unspecified in what follows. In
principle, it is determined by solving the Fokker-Planck
equation for the stars in conjunction with Eq. (1) for
the DM.
For DM particles the first term in square brackets in

Eq. (1) is negligible since mχ=m� ≪ 1. Also we can recast
Eq. (1) as a continuity equation in E-space, as follows.
Consider the DM particle number density per unit energy,
NðE; tÞ ¼ 4π2pðEÞfðE; tÞ, where

pðEÞ≡ 4

Z
rmaxðEÞ

0

vr2dr ¼ −∂qðEÞ=∂E

¼ 2−3=2πM3
bhE

−5=2; ð3Þ

where rmaxðEÞ ¼ Mbh=E is the maximum radius reached
by a particle orbiting with energy E. Then Eq. (1) becomes

4π2pðEÞ ∂f
∂t

¼ NðE; tÞ
∂t

¼ −
∂F ðE; tÞ

∂E
: ð4Þ

Here the particle flux in E-space, F ðE; tÞ, is given by
F ðE; tÞ≡ −4π2A ∂f

∂E fg, where the terms inside the curly
brackets fg are the terms in curly brackets on the right-hand
side of Eq. (1).
An equilibrium solution satisfying ∂f=∂t ¼ 0 with no

energy flux then requires ∂f=∂E ¼ 0, or p ¼ 0. The
resulting density profile is then ρ ∝ r−3=2. This simple
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argument for the DM spike was first presented in [11].
What is particularly interesting, as the above derivation
demonstrates, is that this steady-state DM density profile
arises independently of the assumed background stellar
distribution function, f�ðEÞ, in the zero-flux case. This
same DM equilibrium solution was also achieved at
late times, away from the cusp boundaries, in the time-
dependent, numerical integration reported in [10]. There
Eq. (1) was evolved, starting from an adiabatic DM spike
with ρ ∝ r−7=3 in a fixed background stellar density cusp,
after adding an additional flux term to mimic the expected
additional capture of DM particles scattered into the black
hole loss cone, were the restriction to isotropy relaxed
[42,43] (see discussion in Sec. II D below).
We now generalize the derivation in [11] by allowing for

a nonzero energy flux, since DM particles may be captured
by the BH even for an isotropic distribution. Evaluating the
two integrals in the curly brackets in Eq. (1) and seeking a
steady-state solution again by setting ∂f=∂t ¼ 0 implies
∂F ðEÞ=∂E ¼ 0, or

d
dE

�
Es−1=2 df

dE

�
¼ 0; ð5Þ

whose solution is

fðEÞ ¼ F
ð3=2 − sÞE

3=2−s þ C; ð6Þ

where F and C are constants. Substituting Eq. (6) into the
definition of the particle flux F ðEÞ shows that F is related
to F ðEÞ according to

F ðEÞ ¼ 6π2Aq̃K
ðsþ 1Þðs − 1=2ÞF ¼ constant; ð7Þ

where we introduced another constant q̃≡ qðEÞE3=2.
Equation (7) shows that F ðEÞ is constant in both t and
E. The two constants F [or F ðEÞ] and C are determined by
two boundary conditions that we can impose on Eq. (6):

b:c: ðiÞ∶ f ¼ 0; E > Ecut ≡Mbh=rcut;

b:c: ðiiÞ∶ ρðrÞ ¼ ρh; r ¼ rh ¼ Mbh=v20: ð8Þ

The first boundary condition cuts off the DM distribution
function for high energies characterizing DM orbits that
would otherwise reside entirely very near the BH. For
example, any particle that penetrates the marginally bound
radius, where rmb ¼ 4Mbh ≪ rh for a Schwarzschild BH,
must plunge directly into the BH (see, e.g., the discussion
in [17] and references therein). In this case we should set
rcut ¼ rmb. Of course, relativistic effects would modify our
Newtonian treatment in this region, but including them is
beyond the scope of this analysis and does not affect our
main results at larger radii. Alternatively, if our DM

particles were to undergo annihilation reactions within a
larger domain rmb < r ≤ rann, then we must set rcut ¼
rann ≪ rh [21,22,24].
The second boundary condition sets the DM density to a

fiducial value ρh at the outer boundary of the spike, where
the density can be inferred by, e.g., extrapolating from solar
neighborhood estimates in the case of the Galaxy (see
Sec. II B below). Inserting b.c. (i) into Eq. (6) allows us to
relate F and C,

F ¼ −
ð3=2 − sÞ
E3=2−s
cut

C: ð9Þ

Substituting Eq. (6) into the relation for the DM density,

ρðrÞ ¼ mχ

Z
Emax

0

4πv2fðEÞdv

¼ 4πmχ

Z
Mbh=r

0

½2ðMbh=r − EÞ�1=2fðEÞdE; ð10Þ

yields ρðrÞ vs r in terms of F and C. Then employing b.c.
(ii) and evaluating ρ at r ¼ rh yields a second relation
between F and C in terms of ρh. Using both of these
relations for F and C then allows us to evaluate Eq. (6) for
fðEÞ in terms of ρh and Ecut:

fðEÞ ¼ ðρh=mχÞðMbh=rhÞ−3=2
27=2π
3

ð1 − 3
2
ðrcut=rhÞ3=2−sIÞ

�
1 −

�
E
Ecut

�
3=2−s

�
;

ð11Þ

where I ¼ Bð5=2 − s; 3=2Þ and Bðx; yÞ is the standard beta
function, i.e., I ¼ R

1
0 dxð1 − xÞ1=2x3=2−s.

B. Density

Inserting Eq. (11) into (10) yields the DM density
profile,

ρðrÞ
ρh

¼ 1− 3
2
ðrcutr Þ3=2−sI

1− 3
2
ðrcutrh

Þ3=2−sI
�
rh
r

�
3=2

; r ≥ rcut

¼
1− ð1− r

rcut
Þ3=2 − 3

2
ðrcutr Þ3=2−sI

1− 3
2
ðrcutrh

Þ3=2−sI
�
rh
r

�
3=2

; r < rcut;

ð12Þ

where I ¼ Bðr=rcut; 5=2 − s; 3=2Þ, and where Bðx; a; bÞ is
the standard incomplete beta function; more transpar-
ently, I ¼ R r=rcut

0 dxð1 − xÞ1=2x3=2−s.
We evaluate the density profile given by Eq. (12) and

plot the results in Fig. 1. We consider two cases for rcut: one
in which rcut ¼ rmb (upper plot) and the other in which
rcut ¼ rann (lower plot). For each case we treat three
possibilities for the power-law profile of the background
stars: β ¼ 1 (NFW); β ¼ 7=4 (BW) and β ¼ 1.4 (Galactic
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Center fit [11,44]). It is clear from the form of the equation
that for r ≫ rcut the equilibrium DM density profile varies
as r−3=2, as in the zero-flux case and, as in that case, it does
not depend at all on the stellar density. Moreover, for
r≲ rcut, the expression for the DM density only depends on
the stellar phase-space distribution function power-law s
(or corresponding mass density power-law β ¼ sþ 3=2)
and not its magnitude, and from the figure we see that even
the power-law dependence is barely noticeable.

In evaluating rcut in Fig. 1we adopt parameters appropriate
for a spike around SgrA* in theGalactic Center. HereMbh ¼
4 × 106 M⊙ [45,46], giving rmb ¼ 7.7 × 10−7 pc. To esti-
mate rann we follow [24], who adopt a self-conjugate DM
particle with massmχ ¼ 35.25 GeV annihilating to bb̄with
a cross section hσvi ¼ 1.7 × 10−26 cm3 s−1 (typical WIMP
values; [28]), and find that the annihilation region sets
in at ρann ¼ 1.7 × 108 M⊙ pc−3 ¼ 6.6 × 109 GeV cm−3.
Taking the DM density in the solar neighborhood to
be ρD ¼ 0.008 M⊙ pc−3 ¼ 0.3 GeV cm−3 [47], and ρh ¼
ρDðD=rhÞγc , γc ¼ 1 (NFW), whereD ¼ 8.5 kpc is the sun’s
distance to the Galactic center, we then find that rann ¼
4.4 × 10−5 pc.Herewe took v0 ¼ 182 km s−1 (

ffiffiffi
3

p
times the

line-of-sight velocity dispersion of 105 km s−1 [48]) to get
rh ¼ 0.52 pc and used Eq. (12) for the density inside rh.
We see from Fig. 1 that the DM density departs

significantly from r−3=2 for r≲ rcut. This is a result of
b.c. (i) and is most evident for rcut ¼ rann, where the density
is seen to vary as ρ ∼ r−1=2 for r ≪ rcut. As discussed in
[21,22], where this scaling was found previously, the
particles occupying this region have energies much smaller
than the potential there, and so they orbit with increasing
eccentricity and apocenters as r decreases below rcut,
penetrating well within rcut only near the pericenter.
Particles whose orbits would reside entirely within rcut
due to their large binding energy E > Ecut are never
present, as they would be destroyed by rapid capture by
the BH (rcut ¼ rmb) or annihilation (rcut ¼ rann), and this
causes the reduction in the steepness of the density spike
within rcut.

C. Velocity dispersion

The DM velocity dispersion may be computed from

v2ðrÞ ¼ 4πmχ

ρðrÞ
Z

Mbh=r

0

½2ðMbh=r − EÞ�3=2fðEÞdE: ð13Þ

Inserting Eq. (11) into (13) yields

v2ðrÞ ¼QðrÞ1−
5
2
ðrcutr Þ3=2−sÎ

1− 3
2
ðrcutrh

Þ3=2−sI ; r ≥ rcut

¼QðrÞ
1− ð1− r

rcut
Þ5=2 − 5

2
ðrcutr Þ3=2−sÎ

1− 3
2
ðrcutrh

Þ3=2−sI ; r < rcut;

ð14Þ

where

QðrÞ ¼ 6

5

�
Mbh

r

�
ρhr

3=2
h

ρðrÞr3=2 : ð15Þ

FIG. 1. Fokker-Planck solution for the DM steady-state density
profile ρðrÞ in the spike around a massive black hole, allowing for
background stars. The DM distribution function cuts off at rcut ¼
rmb (upper figure) and rann (lower figure); vertical arrows show the
location of rcut. Three stellar density profiles ρ� ∼ r−β are chosen
for each figure: β ¼ 1 (solid, red); 7=4 (dotted, blue); 1.4 (dashed,
green). The three curves are nearly indistinguishable in the plot.
The densities and radii are normalized to their values near the spike
outer boundary at rh. Parameters are chosen that characterize a
spike around Sgr A* in the Galactic Center (see text).
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Appearing in the above equations are the two quantities
Î ¼ R

1
0 dxð1 − xÞ3=2x3=2−s ¼ Bð5=2 − s; 5=2Þ and also Î ¼R r=rcut

0 dxð1 − xÞ3=2x3=2−s ¼ Bðr=rcut; 5=2 − s; 5=2Þ.
We evaluate the velocity profile given by Eq. (14) for the

cases shown in Fig. 1 and plot the results in Fig. 2. Once
again the profiles do not depend at all on the magnitude of
the background stellar density and only insignificantly on
the profile power-law s. As is seen most clearly in the cases
for which rcut ¼ rann, the DM velocity dispersion profile
has two distinct regimes. For r ≫ rcut the profile is given by
v2=ðMbh=rÞ ¼ 3=ðpþ 5=2Þ ¼ 6=5, as expected for a DM
distribution function of the form fðEÞ ∼ Ep where p ¼ 0,
or ρ ∼ r−3=2. For r ≪ rcut the profile asymptotes to
v2=ðMbh=rÞ ¼ 2, corresponding to p ¼ −1, or ρ ∼ r−1=2;

this result follows from the fact that this region is filled by
E ≈ 0 particles in highly eccentric orbits near the pericenter.

D. Flux

To evaluate Eq. (7) for the constant, nonzero DM flux F
we must first determine K, defined in Eq. (2). This quantity
serves to normalize the stellar distribution function f� to
yield a specified stellar density ρ�h at a fiducial radius, rh.
Employing an expression identical to Eq. (10), but for stars
rather than DM particles, yields

K ¼ ρ�h
4π21=2m�ðMbh=rhÞsþ3=2Ĩ

; ð16Þ

where ρ�h is the stellar density at the spike boundary at
r ¼ rh and Ĩ¼ R

1
0 dxð1−xÞ1=2xs¼Bð1þ s;3=2Þ. Relating

F to ρh and Ecut as described below Eq. (10) and inserting
the result together with Eq. (16) into Eq. (7) yields the DM
mass flux,

_M ¼ −mχF ¼ CF
lnΛm�ρ�hρhr3h
ðMbh=rhÞ3=2

; ð17Þ

where

CF ¼ ð3=2 − sÞ3π3
ðsþ 1Þðs − 1=2Þ23=2Ĩ

ðrcut=rhÞ3=2−s
½1 − 3=2ðrcut=rhrÞ3=2−sI�

;

ð18Þ

and where Ĩ ¼ R
1
0 dxð1 − xÞ1=2xs ¼ Bð1þ s; 3=2Þ. Using

the local heating time for DM particles due to gravitational
encounters with stars [10] (∼ stellar relaxation time for
distant, two-body encounters, assuming comparable stellar
and DM velocity dispersions),

tr ¼
0.0814v3

m�ρ� lnΛ
; ð19Þ

allows us to recast Eq. (17) as

_M ∼
MDM

trh

�
rcut
rh

�
3=2−s

≪
MDM

trh
; ð20Þ

where MDM ∼ 4πr3hρh=3 is the total DM mass inside the
spike and trh is the relaxation time at r ¼ rh.
The mass flux given in Eq. (20) is reminiscent of the BW

solution for the steady-state mass flux for stars onto a
central black hole. BW also assumed that the distribution
function was of the form fðE; tÞ, representing an isotropic
system. The flux at late times was found to asymptote to the
steady-state value [49]

_M�
BW ∼

M�
trh

�
rcut
rh

�
3=2−2s

≪
M�
trh

; ð21Þ

FIG. 2. Fokker-Planck solution for the DM steady-state velo-
city dispersion profile in the spike around a massive black hole,
allowing for background stars. Results are plotted for the cases
shown in Fig. 1 and the labeling is the same as in that figure. The
velocity dispersion is normalized to the square of the local
circular velocity Mbh=r.
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withM� ∼ 4πr3hρ�h=3 and s ¼ 1=4. The difference between
the exponent s in Eq. (20) for the DM flux and 2s in Eq. (21)
for the stellar flux is due to the fact that the flux of DM is
driven by interactionswith background starswhile the flux of
stars is driven by self-interactions with other stars.
A key point to appreciate is that Eqs. (20) and (21) are

both wrong! When proper allowance is made for an
anisotropic velocity dispersion described by a distribution
function of the form fðE; JÞ, where J is the angular
momentum per unit mass, it turns out that the correct flux
is much larger,

_Mlc ∼
Mh

trh
; f ¼ fðE; JÞ ≠ fðEÞ; ð22Þ

where Mh ¼ MDM, or Mh ¼ M�, depending on the com-
ponent. The reason is that the bulk of the flux originates
from high-eccentricity orbits in the outer cusp that are
scattered into the black hole loss cone and captured in an
orbital period. While the loss cone only breaks isotropy
logarithmically, it significantly increases the capture rate.
This result was first shown analytically in [42,43] and
confirmed in more detail numerically in [50,51]. (For an
early review and references, see [52]). An extra sink term
that roughly accounts for the DM loss-cone capture rate
was inserted in the Fokker-Planck equation for fðE; tÞ in
[10], similar to the “patch” introduced in an earlier treat-
ment of the equilibrium stellar distribution performed in
[43] for fðEÞ as a follow-up to the more general analysis of
fðE; JÞ in that paper. This sink term does not change the
equilibrium density or velocity dispersion profile signifi-
cantly. Generalizing the isotropic analysis presented here
by solving instead for an anisotropic DM distribution
function of the form fðE; JÞ is possible, but not the
purpose of this paper. The results should confirm those
anticipated above with regard to the role of the loss cone.
Most importantly, while the flux would be significantly
increased by allowing for the associated anisotropy, the
modification of the density and velocity profiles would not
be significant, as the deviation in f from isotropy would
only consist of a slowly varying logarithmic function of J
that reduces the DM distribution as one approaches the loss
cone at low J [42,43].
For the Galactic Center we consider stars at rh with

ρ�h ¼ 1.2 × 106 M⊙ pc−3, m� ¼ M⊙ and Λ ¼ 0.4N, N ≈
6 × 106 [10]. Together with the adopted parameters for the
DM listed above,we then have trh ≈ 1.5 × 109 yrs and aDM
mass inside rh ofMDM ≈ 80 M⊙, which gives an anticipated
DM accretion rate from Eq. (22) of _M ∼ 5 × 10−8 M⊙ yr−1.

III. TWO-COMPONENT FLUID TREATMENT

Adapting the two-component fluid formalism presented
in [37,38] to the problem at hand, the fluid equations for the
DM particles analogous to Eq. (1) become

∂ρ

∂t
þ 1

r2
∂ðρur2Þ

∂r
¼ 0; ð23Þ

∂u
∂t

þ u
∂u
∂r

¼ −
1

ρ

∂P
∂r

−
Mbh

r2
; ð24Þ

4πr2ρv̂2
�
D
Dt

�
ln

�
v̂3

ρ

�

¼ 4πr2Γ

≡ 16πr2ð2πÞ1=2 lnΛ
�

ρρ�
ðv̂2 þ v̂2�Þ3=2

�
ðm�v̂2� −mχ v̂2Þ: ð25Þ

In the above equations, u is the mean radial velocity and
the pressure P ¼ ρv̂2, where v̂ is the one-dimensional (i.e.,
line-of-sight) velocity dispersion. The dispersion is again
assumed isotropic, whereby v̂2 ¼ v2=3, and similarly for
the stars (i.e., v̂2� ¼ v2�=3). The Lagrangian time derivative
D=Dt my be expanded in the usual way according to
D=Dt ¼ ∂=∂tþ u∂=∂r. The quantity Γ appearing in
Eq. (25) gives the DM heating rate per unit volume by
gravitational scattering off stars [40]. The other variables
appearing above have their same meanings as in Sec. II.
Once again we assume that the background stellar profile is
fixed and given by a power law with ρ� ∼ r−β.
The equation of state is a γ law with γ ¼ 5=3, as it can be

written in the form P ¼ ðγ − 1Þρϵ, where ϵ ¼ 3v̂2=2 is the
particle energy per unit mass. This identification is usually
of no significance for applications involving nonrelativistic
particles, such as stars in Newtonian stellar dynamics, but it
will be useful below in drawing an analogy with the theory
of Bondi accretion.
We note that Γ has been derived assuming local

Maxwellian velocity distributions for both components.
The basic functional dependence of this term on the local
density and velocity dispersion should be the same for other
velocity distributions even though the numerical coeffi-
cients may change. This fact should be sufficient to give the
correct scaling of the ρ and v profiles with r even for non-
Maxwellian distributions, as found in previous dynamical
studies (see, e.g., [43,53]).
We are interested in solving the above fluid equations for

steady state, hence we can drop all terms involving ∂=∂t. In
addition, we can drop the term on the right-hand side of
Eq. (25) involving mχ , as mχ v̂2 ≪ m�v̂2�. The resulting
equations then become

4πr2ρu ¼ _M ¼ constant; ð26Þ

u
du
dr

¼ −
1

ρ

∂P
∂r

−
Mbh

r2
; ð27Þ

−
d lnðv̂3=ρÞ

d ln r
¼ 4πΓr3

_Mv̂2
¼ 3

2
R; ð28Þ
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where

R≡
�
Γ
4

3
πr3

�
=

�
1

2
_Mv̂2

�

≈
heating rate inside r by stars

heat per unit time transported across r
: ð29Þ

Note that in Eq. (26) and below we take u to be the
magnitude of the (inward) radial velocity. In obtaining
Eq. (28) we substituted Eq. (26) into Eq. (25). If every-
where R ≪ 1 then the heating of DM by gravitational
scattering off stars is unimportant and the DM gas is
adiabatic [specific entropy s ∝ lnðv̂3=ρÞ ¼ constant] and
reduces to adiabatic Bondi flow [54] for γ ¼ 5=3.
We solve Eqs. (26)–(28) numerically without approxi-

mation in Sec. III B. In the next section we introduce a few
simplifications that enable us to solve them analytically to
gain some preliminary insight.

A. Approximate analytic solution

We anticipate that the mean flow will be highly subsonic
(u ≪ a, where a ¼ ffiffiffiffiffiffiffiffiffiffiffi

γP=ρ
p

is the DM sound speed),
whereby we can eliminate the advective term on the left-
hand side of the momentum equation (27). With this
simplification (27) reduces to the equation of hydrostatic
equilibrium,

dP
dr

¼ −
Mbh

r2
ρ: ð30Þ

Next, if we neglect heating (R ¼ 0) and seek power-law
solutions, Eqs. (28) and (30) give

ρ ¼ ρhðrh=rÞ3=2; v̂2 ¼ v̂2hðrh=rÞ: ð31Þ

Similarly, the assumed stellar density distribution gives the
corresponding expressions,

ρ� ¼ ρ�hðrh=rÞβ; v2� ¼ v2�hðrh=rÞ: ð32Þ

Now we treat the heating as a small perturbation on these
exact expressions. For this purpose we can substitute
Eqs. (31) and (32) into the perturbation term on the right
of Eq. (28), finding

R ¼ Rhðr=rhÞ3−β; ð33Þ

whereRh ¼ RðrhÞ. Now the perturbations to the results in
Eq. (31) can be found. Details are given in the Appendix,
and lead to the result that

ρ

ρh
¼
�
rh
r

�
3=2

�
1þ 3

10ð3− βÞð2− βÞRh

�
ð1− 2βÞ

�
r
rh

�
3−β

þ 3ð3− βÞ
�
r
rh

�
− 5ð2− βÞ

��
: ð34Þ

A similar expression can be easily given for the velocity
dispersion.
We see from Eq. (34) for plausible stellar density profiles

with β < 3 that deep inside the cusp where r=rh ≪ 1 the
DM density is approximately

ρ

ρh
¼

�
rh
r

�
3=2

�
1 −

3Rh

2ð3 − βÞ
�
; ð35Þ

i.e., it assumes the same power-law profile ρ ∼ r−3=2 that
we found in the Fokker-Planck analysis away from the
inner boundary at r ¼ rcut [see Eq. (12)]. By Eq. (30) we
also get the same velocity dispersion deep inside the cusp,
v2 ¼ 3v̂2 ¼ ð6=5ÞMbh=r [see Eqs. (14) and (15)]. We also
find, using Eq. (33), that in the cusp the solution asymp-
totes to the adiabatic Bondi solution as r decreases, and is
adiabatic everywhere if Rh ≪ 1.
In our Fokker-Planck treatment it was possible to choose

the flux in energy space to make fðEcutÞ ¼ 0. In the two-
fluid approach it is tempting to adjust the mass flux (or,
equivalently, Rh) to make ρðrcutÞ ¼ 0. While Eq. (35)
shows that ρðrÞ at fixed r decreases as Rh increases, it
cannot be shown to make ρ vanish within the perturbation
theory, which assumes thatRh is small. But even if wewere
able to solve the present fluid equations without approxi-
mation, such a boundary condition would be problematic:
requiring ρðrcutÞ ¼ 0 with a nonzero mass flux contradicts
our assumption that the flow is very subsonic.
To summarize at this point, we note that the two-fluid

approach, in contrast to our Fokker-Planck treatment, does
not yield a unique value for the DMmass accretion rate, _M.
This fact is reminiscent of steady-state, adiabatic Bondi
flow, for which _M is a free parameter that yields viable
accretion solutions for all values up to a maximum, _Mmax,
which depends on γ. We will return to this issue in the next
section, once we have solved the fluid equations without
simplifying approximations.
Before proceeding, however, we make one further

observation. One way to impose a reduction in the fluid
density at rcut, having imposed boundary conditions at rh,
would be to add a sink term on the right-hand side of
Eq. (23) to effectively cut down the DM density inside rcut.
While the DM density and flux are not reduced at rmb when
DM is treated as a fluid, they can be reduced by annihi-
lations. Hence, one could introduce a collision term on the
right-hand side to account for annihilations that would
become important inside r≲ rann, or even a sink term to
model the effect of the loss cone, analogous to that
introduced in the isotropic Fokker-Planck equation in
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[10,43]. However, implementing these modifications is
beyond the scope of this paper, and we shall leave it for
a future investigation.

B. Exact numerical solution

The basic fluid equations (26)–(28) are recognized as the
usual steady-state, spherical Bondi flow equations with a
heating term on the right-hand side of (28). We recently
have worked with a similar set of equations, but in a
different context [55], namely the accretion of baryonic gas
accreting onto a SMBH (e.g., Sgr A*) heated by DM
annihilation. Adapting that heated Bondi accretion formal-
ism to the problem at hand, we can recast the nonadiabatic
fluid equations as follows:

dKD

dr
¼ −

ðγ − 1ÞΓ
ργu

; ð36Þ

dρ
dr

¼ −ρ
D2 þH

D
; ð37Þ

u ¼
_M

4πρr2
; ð38Þ

where

D2 ¼
2u2

r
−
Mbh

r2
; ð39Þ

D ¼ u2 − a2; ð40Þ

H ¼ ðγ − 1ÞΓ
ρu

; ð41Þ

and where a is the sound speed, P ¼ ρv̂2 ¼ KDρ
γ ,

γ ¼ 5=3, and Γ is again given by Eq. (25).
In the absence of heating, Γ ¼ 0, KD ¼ constant, and the

solution reduces to steady-state, adiabatic Bondi flow onto
a point mass Mbh for γ ¼ 5=3. In this case _M is an
eigenvalue which yields valid solutions for all values in
the range 0 ≤ _M ≤ _Mmax, where

_Mmax ¼ 4πρhuhr2h ¼ 4πλM2
bhρ∞a

−3
∞ ; λ ¼ 1=4; ð42Þ

andwhere the second equality assumes that the fluid is at rest
and homogeneous at infinity. The solutionwith _M ¼ _Mmax is
the only one with γ ¼ 5=3 that passes through a critical
transonic point, at which u ¼ a. This point is only reached at
r ¼ 0, while for all r > 0 the flow remains subsonic. For all
other _M < _Mmax the flow is subsonic everywhere.
As described above, the Newtonian, adiabatic, steady-

state Bondi equations do not determine _M uniquely.
However, the general relativistic analog of these equations

for spherical flow onto a Schwarzshild black hole shows
that the flow must pass through a critical point to preserve
the causality constraint a2 < 1 and hence this constraint
singles out flow with _M ¼ _Mmax as the unique solution for
steady-state flow [56]. Furthermore, typical time-dependent
integrations for adiabatic, spherical accretion [i.e.,
Eqs. (23)–(25) with Γ ¼ 0] settle on _M ¼ _Mmax when
allowed to reach steady state, even in the Newtonian case.
We have integrated Eqs. (36) and (37) inward numeri-

cally from r ¼ rh, adopting the same physical values used
in Sec. II B in our Fokker-Planck treatment for the (outer)
boundary conditions required by the ordinary differential
equations for the variables Kh and ρh that we set at r ¼ rh.
We set β ¼ 1.4 for the background stellar density profile,
ρ� ∼ r−β and vh ¼ v0 ¼ v�h.

1. Flux

We have considered four cases for the mass accretion
rate _M, which, as in the case for adiabatic Bondi flow, is not
determined uniquely in steady state. In particular, we treat

_M ¼ q
MDM

trh
; ð43Þ

where tr is defined in Eq. (19), MDM is defined just below
Eq. (20) and where we considered four values of q in the
range 0.1 ≤ q ≤ 100. The chosen range for _M was moti-
vated by the (unique) value expected from a fundamental
Fokker-Planck treatment of the problem that solves for
fðE; JÞ, as discussed in Sec. II D [see Eq. (22)].
Comparison of Eqs. (42) and (43) shows that

_M
_Mmax

∼ q
tdynh
trh

; ð44Þ

where tdynh ¼ rh=vh is defined as the dynamical (crossing)
timescale at rh. Evaluating _Mmax here and below we set
a∞ ∼ ah and ρ∞ ∼ ρh, as in the Bondi solution. The
computed values for the adopted Galactic parameters
(Sec. II B) are tdynh ∼ 2.8 × 103 yrs, tdynh=trh ∼ 2 × 10−6

and _M= _Mmax ∼ q × 1.1 × 10−6. Thus the anticipated
Fokker-Planck accretion rate for which q ∼ 1 is 6 orders
of magnitude smaller than the likely maximum fluid rate.

2. Density

Results for the DM density profile are plotted in Fig. 3
for all four cases. The density satisfies ρ ∼ r−3=2 for r ≪ rh
in all cases. Moreover, for high values of q and _M the
profile obeys this power law for almost all r. This result is
not surprising, since Fig. 4 shows that the nondimensional
heating ratio R ∼ rð3−βÞ ≪ 1 for r ≪ rh in all cases. Since
Rh ¼ 3.0=q, for sufficiently high q ≫ 1, and thus high _M,
the ratio is small everywhere, even at r ¼ rh. In the latter
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case the flow is essentially adiabatic and reduces to the
standard adiabatic Bondi solution for γ ¼ 5=3. Our
approximate analytic profile (34) reproduces this behavior
in the perturbative regime.

3. Velocity dispersion

The DM velocity dispersion is plotted in Fig. 5 for the
cases shown in Fig. 3. As expected (Sec. II C), well inside
the outer boundary we find v2=ðMbh=rÞ ≈ 6=5. Near rh the
role of heating is reflected in the higher values of v2 for
cases with lower accretion rates. As the accretion rate is
chosen smaller and the corresponding ratio R increases
well above unity, the higher heating rate may subsequently

FIG. 4. Two-component fluid solution for the DM steady-state
dimensionless heating parameter RðrÞ in the spike around a
massive black hole, allowing for background stars [see Eq. (29)].
Results are plotted for the cases shown in Fig. 3 and the labeling
is the same as in that figure.

FIG. 5. Two-component fluid solution for the DM steady-state
velocity dispersion profile vðrÞ in the spike around a massive
black hole, allowing for background stars. Results are plotted for
the cases shown in Fig. 3 and the labeling is the same as in that
figure. The velocity dispersion is normalized to the square of the
local circular velocity Mbh=r.

FIG. 3. Two-component fluid solution for the DM steady-state
density profile ρðrÞ in the spike around a massive black hole,
allowing for background stars. The stellar density is given by
ρ� ∼ r−β, with β ¼ 1.4. Four accretion rates are chosen according
to Eq. (43), with q ¼ 0.1 (solid, red); 1 (dotted, blue); 10 (dashed,
green); 100 (dot-dashed, magenta). The densities and radii are
normalized to their values at the spike outer boundary at rh.
Parameters are chosen that characterize a spike around Sgr A* in
the Galactic Center (see text).

FIG. 6. Two-component fluid solution for the DM steady-state
Mach number uðrÞ=aðrÞ in the spike around a massive black
hole, allowing for background stars. Results are plotted for the
cases shown in Fig. 3 and the labeling is the same as in that figure.
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unbind the outer regions of the cusp altogether. These
solutions may then be unstable and a time-dependent
integration of the equations might then drive the flow to
smaller accretion values before settling into steady state.

4. Mean flow velocity

All of our solutions are highly subsonic, as shown in
Fig. 6. This behavior is expected since even in adiabatic
Bondi flow when γ ¼ 5=3, the mean inflow velocity is
everywhere subsonic, except when _M ¼ _Mmax, in which
case u=a reaches unity, but only at the origin. As shown in
Fig. 6, the lower the rate of accretion and the higher the
corresponding value of R, the more important heating
becomes and the lower the Mach number u=a. Here a=v ¼
ðγ=3Þ1=2 ≈ 0.745 while for r ≪ rh we have u=a ∼ few×
qðtdynh=trhÞ ∼ few × 10−6q, which is roughly consistent
with Fig. 6.

IV. DISCUSSION

Spherical accretion onto a BH by collisionless matter
undergoing repeated, small-angle, gravitational scattering
is qualitatively different from accretion of fluid matter. In
the former case most of the captured particles move on
highly eccentric orbits that have apocenters far from the
central hole and are scattered into a loss cone and captured
in one period. In the latter case, the captured gas moves
radially as a continuous fluid, becoming tightly bound to
the black hole before plunging in. All nonradial motion is
damped in the case of spherical fluid flow [56]. Not
surprisingly, the accretion rates calculated by treating
DM by these two different descriptions result in two
different answers.
The steady-state rate of accretion anticipated from a

Fokker-Planck treatment of fðE; JÞ, i.e., Eq. (43) with
q ∼ 1, is orders of magnitude less than _Mmax for adiabatic
Bondi flow given by Eq. (42). The simple flux ratio given
by Eq. (44) highlights this fact. Yet heating is likely to be
unimportant (R ≪ 1) well inside the spike. Hence we
anticipate that as the flow approaches the BH, a general
relativistic treatment will likely pick out _Mmax as the
steady-state solution, just as it does for the equations
describing adiabatic Bondi flow, to which the DM fluid
equations reduce deep inside the spike and near the black
hole. Even a time-dependent Newtonian integration of the
equations is likely to relax to this solution. However, this
difference in the predicted accretion rate should not lead to
a major discrepancy in the computed DM density or
velocity dispersion profiles. We have already seen that
we obtain the same basic power-law profiles well inside the
spike when comparing the two-fluid solution to the Fokker-
Planck profiles associated with an isotropic fðEÞ. Similar
agreement is expected when we compare with the profiles
associated with an anisotropic fðE; JÞ, up to slowly varying

logarithmic factors, as was proven to be the case for stars in
a BW cusp around a BH.
The agreement between Fokker-Planck and fluid profiles

breaks down only near the outer boundarywheneverwe have
Rh ≳ 1, as well as near the inner boundary, since there
additional conditions can be imposed as inner boundary
conditions in the Fokker-Planck solution to constrain the
distribution function. Constraining the fluid profile similarly
requires the addition of sink terms in the continuity equation,
a departure from the standard two-fluid equations.
Generalizing from this and earlier analyses (e.g., [37–

39]), of multicomponent, large N-body dynamical systems
undergoing secular evolution on relaxation timescales due
to gravitational scattering, we infer that the multi-
component fluid approach yields similar results to a
fundamental Fokker-Planck treatment in many important
aspects, but not all, depending on the system. One must
bear this in mind when adopting what is often a computa-
tionally simpler fluid description to describe such a system.
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APPENDIX: SOLUTION OF PERTURBED
FLUID EQUATIONS

The purpose of this Appendix is to derive Eq. (34) for the
density in the case of weak heating. The equations to be
solved are Eqs. (28) and (30), and the right side of the former
represents heating. We regard this term as a perturbation of
the no-heating exact solutions of Eq. (31), which we denote
by ρ0, v̂0, respectively. Thus we write the perturbed solution
asρ ¼ ρ0ð1þ fÞ, v̂ ¼ v̂0ð1þ gÞ, wheref, g are functions of
orderR. Substituting into Eq. (28), and retaining terms only
up to first order in R, we have

−
d

d ln r

�
ln

�
v̂30
ρ0

�
þ 3g − f

�
¼ 3

2
R: ðA1Þ

The zero-order term vanishes, as the functions ρ0, v̂0 solve
the unheated equation exactly, which leads to

−rð3g0 − f0Þ ¼ ð3=2ÞRhðr=rhÞ3−β; ðA2Þ

where we have used Eq. (29), and a prime denotes an r
derivative. This integrates to

3g − f ¼ −
3Rh

2ð3 − βÞ
�
r
rh

�
3−β

þ C; ðA3Þ

where C is a constant of integration.
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In much the same way, Eq. (30) gives

f þ 2gþ ρ0v̂20
ðρ0v̂20Þ0

ðf0 þ 2g0Þ ¼ f; ðA4Þ

and so, by Eq. (31),

−
5

r
gþ f0 þ 2g0 ¼ 0: ðA5Þ

Next, Eqs. (A2) and (A3) let us remove g and g0 from
Eq. (A5), whence

f0 −
f
r
¼ 3ð1 − 2βÞ

10ð3 − βÞ
Rh

rh

�
r
rh

�
2−β

þ C
r
: ðA6Þ

By trying power-law solutions f ∝ rλ for λ ¼ 3 − β; 0
and 1 and superposing, we obtain the general solution

f ¼ 3

10

1 − 2β

ð3 − βÞð2 − βÞRh

�
r
rh

�
3−β

− CþDr; ðA7Þ

where D is another constant. The two constants C and D
can be chosen so that both f and g vanish at r ¼ rh, which
yields

C ¼ 3

2ð3 − βÞRh; D ¼ 6ð2þ βÞ
10ð3 − βÞ

Rh

rh
; ðA8Þ

obtaining Eq. (34).
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