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Fast radio bursts (FRBs) represent an exciting frontier in the study of gravitational lensing, due to their
brightness, extragalactic nature, and the compact, coherent characteristics of their emission. In a companion
work [Z. Kader and C. Leung, Phys. Rev. D 106, 043016 (2022).], we use a novel interferometric method to
search for gravitationally lensed FRBs in the time domain using bursts detected by CHIME/FRB. There, we
dechannelize and autocorrelate electric field data at a time resolution of 1.25 ns. This enables a search for
FRBs whose emission is coherently deflected by gravitational lensing around a foreground compact object
such as a primordial black hole (PBH). Here, we use our nondetection of lensed FRBs to place novel
constraints on the PBH abundance outside the Local Group. We use a novel two-screen model to take into
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account decoherence from scattering screens in our constraints. Our constraints are subject to a single
astrophysical model parameter—the effective distance between an FRB source and the scattering screen,
for which we adopt a fiducial distance of 1 pc. We find that coherent FRB lensing is a sensitive probe of
sub-solar mass compact objects. Having observed no lenses in 172 bursts from 114 independent sightlines
through the cosmic web, we constrain the fraction of dark matter made of compact objects, such as PBHs,
to be f ≲ 0.8, if their masses are ∼10−3 M⊙.

DOI: 10.1103/PhysRevD.106.043017

I. INTRODUCTION

Gravitational lensing occurs when spatially inhomo-
geneous distributions of mass perturb spacetime and allow
the light from background sources to take multiple paths on
their way to the observer. Since serving as one of the first
historic confirmations of general relativity [1], gravitational
lensing has become firmly established as a powerful
tool for astrophysics and cosmology. It has been used to
measure the mass of galaxy clusters [2–4], to probe the
substructure of dark matter halos [5,6], and as an inde-
pendent probe of H0 with time-delay cosmography [7,8].
Using large, time-domain surveys, the frontier in gravita-
tional lensing has turned to searching for lensed transients
such as supernovae [9–11], gamma-ray bursts (GRBs)
[12–15], gravitational waves [16,17], and fast radio bursts
(FRBs) [18–25]. These searches can yield robust con-
straints on the abundance of dark compact objects such as
primordial black holes (PBHs) [19,26–29].
PBHs may make up a large fraction of the dark matter,

and could offer new observational handles on early-
universe inflationary physics [27,28]. However they are
notoriously difficult to probe since their mass function is
unknown and can span many orders of magnitude depend-
ing on their formation and evolution history. One recent
constraint on sub-solar mass PBHs comes from the
observation of an optical microlensing event towards
M31 [30]. While these constraints are stringent, they apply
only to PBHs along the line of sight towards M31. To
constrain the cosmological abundance of PBHs, more
distant backlights must be used. The lack of microlensed
type Ia supernovae in the local Universe implies that if the
PBH dark matter has a mass function peaked at some
central mass 10−2 M⊙ ≲Mc ≲ 104 M⊙, the fraction of
dark matter within compact lenses at low redshifts can
be constrained to be f < 0.35 [11].
In this work, we analyze and interpret the results of a

novel time domain search for lensed FRBs in a sample of
bursts detected by the CHIME/FRB experiment [31,32].
FRBs [33–35] are millisecond-duration radio transients
whose brightness, compactness, and all-sky rate of
∼104 Gpc−3 yr−1 [35–38] make them outstanding back-
lights for time-domain lensing science.
Time-domain lensing searches typically look for multi-

peak light curves which arise from different lensing time

delays and different magnification ratios between images.
Perhaps themost difficult question in any time-domain search
for lensed transients [14,39–42] is this: How can temporal
structure in transient light curves induced by gravitational
lensing be conclusively distinguished from intrinsically
complex temporal structures? In past searches, detailed
statistical analysis of transient morphology in multiple
observing bands is often used to answer this question.
In our search we apply a coherent correlation algorithm,

detailed in a companion work [43], which breaks the
degeneracy between pulse morphology and gravitational
lensing. This uses the fact that gravitational lensing coher-
ently applies a delay between the two images, a measurable
effect in the wave field domain. Our coherent correlation
algorithm is similar to that used in very long baseline
interferometry (VLBI), which relies on the presence of
phase-preserving records of electric field data (hereafter
referred to as “baseband data”). We refer to this technique
as FRB gravitational-lens interferometry. In our search we
dechannelize CHIME/FRB electric field data and autocor-
relate it to search for coherently-delayed copies of the same
signal. Using electric field rather than intensity information
improves time-lag resolution from the variability timescale
of the transient (milliseconds) to the Nyquist limit of the
telescope (nanoseconds). This improves our ability to probe
low-mass objects by orders of magnitude. Our coherent
search method improves sensitivity to fainter images com-
pared to incoherent methods, and gives access to shorter
delay timescales (lower mass scales). This complements
the incoherent method of previous works based on the
intensity light curves [19,22–25]. This allows us to constrain
lensing delays of 10−9–10−1 sec, corresponding to PBHs in
the mass range of 10−4–104 M⊙. These coherent techniques
open up the exciting possibility for high time-resolution
studies of FRB sources, observation of wave-optical effects
in gravitational lensing [16,44,45], and even so-called real-
time cosmology [46–49].

II. SEARCH DESCRIPTION

The sensitivity of any microlensing search can be
characterized by calculating the expected number of
lensing events for given survey parameters. The observed
number of lensing events, k, is connected to the theoretical
lensing rate λ, through Poisson statistics. The traditional
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formalism for calculating λ (also known as the lensing
optical depth) was developed for optical microlensing
surveys [40,50–52]. We briefly review the traditional
formalism and show how we extend it to handle a detailed
description of the sensitivity of our time-domain search.
Traditionally, three numbers quantify the sensitivity of a

survey to gravitational lensing: the minimum and maxi-
mum delay timescales τmin, τmax for which the survey is
sensitive, as well as the minimum detectable flux magni-
fication ratio between the two images. Early work on FRB
lensing adapted this formalism for parametrizing time-
domain surveys [19,22,53]. τmin is typically set to the
variability timescale of the transient, and τmax is taken to be
the maximum lensing delay detectable in a given search
(often the duration of data capture).
For a lens to be detectable by a given search, the lensing

delay must fall between τmin and τmax, and the double image
must be sufficiently bright to be detected. The latter
criterion is typically written as a constraint on what flux
ratios are detectable. If the flux ratio (often denoted ε) is
taken by convention to be greater than 1 as in [19,53], the
flux criterion is written as 1 < ε < εmax for some specified
choice of εmax. For example, some works [19,53] assume
that lensing events are detectable when the dimmer image
is no more than five times dimmer than the main image,
requiring that 1 < ε < εmax ¼ 5. A more realistic criteria is
that 1 < ε < εmax ¼ 1=3 × S=N, where S=N refers to the
signal-to-noise ratio at which the burst can be detected
in autocorrelation [22]. This captures the fact that for a
brighter burst, images with fainter flux ratios may be
detected.
In our coherent search [43], we depart from this con-

vention in two ways. First, we refer to the ratio of the
wavefield amplitudes between the two images as ε, and
the corresponding flux ratio as ε2. Second, we take the
reciprocal convention where the smaller of the two ampli-
tudes is in the numerator. All of our flux ratios are therefore
less than 1. In this convention, the search sensitivity can
be expressed in the form ε2min < ε2 < 1. Our search para-
metrizes the search sensitivity in a more detailed way
than previous works. Instead of assuming a constant
threshold ε2min, we allow the threshold to vary as a function
of delay: ε2minðτÞ < ε2 < 1, where τ is the trial delay over
which we search for lenses. The motivation for this para-
metrization comes from our novel search algorithm,
which measures ε2minðτÞ.

A. Search data products

We briefly review the details of our search algorithm here
but refer the reader to [43] for an in-depth discussion. The
input data to the search is channelized baseband data,
produced by forming a voltage beam towards the best-fit
sky position of the source [54]. We measure the time-lag
autocorrelation function (ACF) of the FRB by combining
the baseband data from 1024 frequency channels, each with

a time resolution of 2.56 μs, into a single voltage time
stream VPðtÞ with a time resolution of 1.25 ns independ-
ently for the two polarizations of our telescope (P ¼ X,Y).
VXðtÞ and VYðtÞ represent the electric field projected
onto the two telescope polarizations. Then, each timestream
is windowed by multiplying it by a function W2

PðtÞ ∝
S=NPðtÞ, where S=NP½t� is proportional to the normalized
flux of the burst as detected in each telescope polarization
over time [55]. We search for echoes by time-lag correlat-
ing the productW2

PðtÞVPðtÞ against VPðtÞ, shifted by many
(∼108) trial delays τ. This yields two ACFs: CXðτÞ and
CYðτÞ, which are converted into measurements of εXðτÞ and
εYðτÞ (see Appendix C of [43]). In ε units, we measure
ε2minðτÞ as follows. We define μPðτÞ as the mean of εðτÞ,
measured when the pulse is off. μPðτÞ has the property that
it differs from zero for jτj≲ 300 ns due to instrumental
reflections, seen even when the pulse is off. We therefore
subtract this background for short lags. Then, we have

ε2minðτÞ ¼ ðεXðτÞ þ εYðτÞÞ2 < 1: ð1Þ

We allow ε2 to vary as a function of τ for the following
reasons. First, different systematics are present in the
ACF of at different time delays. For example, ∼kilohertz
bandwidth radio frequency interference present in our data
is often relevant at millisecond delay scales, and less so at
shorter delays. Second, we experience a sensitivity drop
for long time-lags due to the look-elsewhere effect (see
discussion in Ref. [43], Sec. IV). Third, in the presence of a
fixed amount of pulse broadening arising from a scattering
screen, we expect interferometric lensing to decohere more
easily for larger lens masses (and therefore larger time lags)
than at smaller lenses and smaller lags (see Sec. V).

III. LENSING EVENT RATE

To convert our search sensitivity into constraints on
primordial black holes, it is first necessary to define the
conditions under which the alignment of a lens with an
FRB creates a detectable double image. This requires
assuming a lens model which specifies the mass distribu-
tion within the lens plane. Each distinct FRB source can
then be thought of as an independent “sightline”: a pencil
beam whose end points are at Earth and the FRB source,
and whose beam size is set by the Einstein radius. For each
sightline (indexed hereafter by j), we integrate over differ-
ent lensing geometries (Sec. III A) to get the total lensing
cross section σij, where i indexes possible ranges of time
lags. Next, we must integrate over possible lens redshifts
zL. Doing this requires translating redshifts to cosmological
distances through HðzÞ ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þ ΩΛ

p
and the

source redshift zS;j, which must be inferred for unlocalized
FRBs (Sec. III B) from their DM. Finally, we must integrate
over the lens mass function dnc=dM (Sec. III C), which
depends on f. The method is summarized by Eq. (2), which
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represents the expected number of lensing events at time
lags within some τi and τiþ1 for a sightline j. We call this λij
(for the ith time-lag bin and the jth FRB source).

λij ≡
Z

∞

0

dM
dnc
dM

Z
zS;j

0

dzL
cð1þ zLÞ2
HðzLÞ

σij: ð2Þ

We sum over i and j to calculate the total event rate
(Sec. III D); this allows us to set upper limits on f, the
fraction of dark matter that is made of compact lenses
such as PBHs.

A. Possible lensing geometries

In our search, we aim to detect multiple temporally
resolved FRB images from a compact object acting as a
lens. Even though a substantial fraction of Population III
stars may form in binaries [56], we approximate the mass
profiles of lenses with a point-mass lens model for
simplicity, because it predicts two images except in the
edge case of an Einstein ring. We wish to integrate over all
possible geometries (parametrized by the different possible
impact parameters b) which could produce a lensing event.
To do so, we briefly summarize the relationship between
the astrophysical parameters (the lens mass, redshift, and
impact parameter) and the observables (the Shapiro delay
and the flux magnification ratio ε2) for the point lens
model. We introduce the dimensionless impact parameter
y ¼ b=RE, where b is the physical impact parameter of the
source in the lens plane at the lens redshift zL, and where
REðM; zL; zSÞ is the Einstein radius of a lens with some
mass M at redshift zL, magnifying an FRB at zS (see also
Fig. 4). With these definitions the differential Shapiro delay
between images is given by (see also [19])

τ ¼ 2Rsð1þ zLÞ
c

gðyÞ; ð3Þ

where Rs is the Schwarzschild radius of a putative lens of
mass M, zL is the lens redshift, and

gðyÞ ¼ 1

2

�
y

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 4

q �
þ log

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 4

p
þ yffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 þ 4
p

− y

�
: ð4Þ

We visualize Eq. (3) as a function of the lens position in the
lens plane in Fig. 1. For a given impact parameter y, the
magnification ratio between the two images is

yðε2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2

p
þ 1=

ffiffiffiffiffi
ε2

p
− 2

q
: ð5Þ

To detect a lens, we require that the dimmer image be bright
enough to be detected in voltage cross-correlation, and that
the Shapiro delay between images falls within the valid
delay range over which we are sensitive. We can express
these criteria as upper and lower bounds on y, respectively.

The minimum impact parameter ymin at which a lens is
detectable is determined by the minimum resolvable
Shapiro delay between images [i.e., plugging in τmin in
Eq. (3)]. The maximum impact parameter is a function of ε2

only. Several flux thresholds are drawn in our depiction of
the lens plane Fig. 1. However, in our search, ε2 varies as a
function of lag. We partition the full range of accessible
delays (in our case, 10−9–10−1 seconds) into logarithmi-
cally spaced bins, indexed by i, with boundaries
τi < τ < τiþ1. Within each logarithmically spaced lag range
½τi; τiþ1Þ with corresponding values of ε2ðτÞ, we take

ymin;i ¼ g−1
�

cτi
2Rsð1þ zLÞ

�
ð6Þ

and

ymax;ij ¼ min
τ∈ðτi;τiþ1Þ

�
g−1

�
cτiþ1

2Rsð1þ zLÞ
�
; yðε2jðτÞÞ

�
: ð7Þ

In Fig. 1 we plot the contribution of different delay
timescales to the lensing cross section, which may be
geometrically interpreted as an annulus in the lens plane
with boundaries ymin;i and ymax;ij due to detectability

FIG. 1. Our schematic depiction of the lens plane, with
coordinates centered on the source’s unlensed position, and
transverse distances measured in units of Einstein radii. We
shade the delay between images as a function of lens’s trans-
verse position in the lens plane (colored disk). A time-delay
based detection search space constrains possible lens positions
to an annulus within the plane. A flux-based detection thresh-
old, parametrized by ε2min, further constrains the annulus’s
outer boundary via Eq. (5) (dotted boundaries). The lensing
cross section σ can be understood as the area of the annulus
that satisfies both the flux- and time-delay based detection
thresholds [Eq. (8)].
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[Eqs. (5)–(7)]. We see that smaller misalignments from
b ¼ 0 (the center of the annulus) correspond to shorter
Shapiro delays and larger misalignments (b ≫ RE) produce
long delays and extreme flux ratios. The area of the annulus
is the cross section to lensing:

σij ¼ πR2
E;jðy2max;i − y2min;ijÞ: ð8Þ

B. Distance inference

It is difficult to infer the distance of FRBs without
independent redshift measurements. One promising proxy
for distance is the amount of dispersion in the dynamic
spectrumof the FRB, accumulated as the FRBpasses through
the intervening cold plasma of the intergalactic medium
(IGM) on its way towards the observer. The dispersion is
quantified by the dispersion measure (DM) and is readily
measurable, making this an attractive approach.
However, inferring distances from DMs has many biases

and uncertainties, which depend on factors such as the FRB
luminosity function, the survey depth/field of view, the
spectral index of the FRB emission, and contributions to
the DM which do not correlate with distance (e.g., local
environments or intervening haloes). When these effects
are taken into account, it has been shown that under certain
circumstances, large DMs are a poor proxy for distance—
i.e., that the highest DM events in an FRB survey may not
be the most distant [57]. To minimize these biases, bursts in
our sample are not selected on the basis of properties like
their DM or brightness. Instead, we select bursts only on
the criteria that baseband data were collected and proc-
essed. For baseband data to be collected, the FRB must
have a minimum S=N of ≈15 to reduce the volume of
false positives collected; this threshold has varied between
12 and 20 over the course of CHIME/FRB’s operation.
In addition, detected FRBs have a maximum DM of
≈1000 pc cm−3, which is imposed by the memory size
of the ring buffer within the CHIME correlator). This is a
factor of 2–3 below the highest-DM events observed by the
CHIME/FRB instrument for which we expect high-DM
selection bias to dominate. The total amount of smearing
is quantified by DMobs and can be written as a sum of
contributions from the Milky Way (DMMW), the interga-
lactic medium [DMIGMðzSÞ], and the host galaxy (DMhost),
as shown in Eq. (9). We determine zS by first solving
Eq. (9) for DMIGM, taking DMmw to be the NE2001
expectation along the line of sight.

DMobs ¼ DMmw þ DMIGMðzSÞ þ DMhostðzSÞ: ð9Þ

We conservatively model DMhost as

DMhostðzSÞ ¼
117 pc cm−3

1þ zS
: ð10Þ

There are several reported values for the average DMhost

in the literature; however, 117 pc cm−3 is the median value
favored by an analysis of the luminosity function of
CHIME-detected FRBs using CHIME/FRB catalog 1, after
correcting for known selection effects [58]. This is con-
sistent with the value reported for ASKAP FRBs with a
similar analysis (145þ64

−60 pc cm−3) [57]. In principle, draw-
ing from a distribution of DMhost values around the median
CHIME/FRB value would be most realistic. However,
since intrinsic correlations between DMhost and other
properties (e.g., the FRB’s distance and brightness) are
poorly constrained, we adopt the median value for all
FRBs, and quantify uncertainties related to distance deter-
mination by exploring two astrophysically motivated sce-
narios (see Sec. VII).
Once DMhost is assumed for each FRB, we can infer

DMIGM. We invert the Macquart relation [59] [Eq. (11)]
to determine the source redshift zS. In Eq. (11), we have
approximated the Universe’s chemical composition as 75%
hydrogen and 25% helium by mass, both completely ion-
ized. This leads to ne;0¼0.875Ωbρcrit=mp. Throughout
this work, we assume a Planck 2018 [60] cosmology with
H0 ¼ 67.7 km s−1 Mpc−1 and ðΩm;Ωb;ΩΛÞ ¼ ð0.30966;
0.04897; 0.68884Þ.

DMIGM ¼
Z

zS

0

cne;0ð1þ zÞ
H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1þ zÞ3 þ ΩΛ

p dz: ð11Þ

C. Possible lens masses

The final integral in Eq. (2) is a marginalization over
the unknown lens mass function dnc=dM which has units
of comoving number density (denoted nc) per unit mass.
To constrain the abundance of compact lenses, we must
assume a mass function of objects which produce the
lensing events [61,62]. For PBHs, [61] suggests modeling
the PBH function as a log-normal distribution peaked at
some value of log10ðMc=M⊙Þ and with some logarithmic
width σ measured in decades. For simplicity, we first
consider the family of monochromatic mass functions
[Eq. (12)]:

dnc
dM

¼ ρcrit
Mc

ΩcfðMcÞδðM −McÞ: ð12Þ

This family of functions is parametrized solely by their
central mass Mc, and have the property that if fðMcÞ ¼ 1,
the total mass density is normalized to the cosmological
dark matter density, i.e.,

Z
dnc
dM

M dM ¼ ρcritΩc: ð13Þ

The cosmological dark matter density Ωc is fixed at
Ωc ¼ Ωm −Ωb ¼ 0.26069 [60]. In practice, different
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formation scenarios give rise to both quasimonochromatic
ðσ= logðMc=M⊙Þ ∼ 1Þ and broad (σ= log10ðMc=M⊙Þ ≫ 1)
mass functions [27,62]. However, since Eq. (2) is linear
in dnc

dM, and since an extended mass function is a linear
superposition of delta functions, it is straightforward to
translate our calculation for delta functions to extended
PBH mass functions. This is necessary because extended

PBH mass functions allow certain inflationary scenarios to
evade current PBH constraints [61,63].

D. Combining bursts

After calculating the optical depth, it is necessary to
combine many sightlines due to the rarity of lensing events.
Only a handful of lensed supernovae have been conclu-
sively detected [9,10]; detailed estimates suggest that
lensed FRBs are similarly rare [38]. The occurrence of
lensing events in lag range i in the direction of any single
sightline j can be thought of as a Poisson process with a
low rate λijðMcÞ ≪ 1. Since independent Poisson proc-
esses are additive, we define several event rates: the rate
summed over lag bins but not sightlines (λj), the rate
summed over sightlines but not lag bins (λi), and the total
event rate for the entire search summed over sightlines
and lag bins:

λ ¼
X
j

λj ¼
X
i

λi ¼
X
i

X
j

λij: ð14Þ

In Fig. 2, we visualize λijðMcÞ (color shaded region) and
its sum λjðMcÞ (thick line) for the sightline towards FRB
20191219F [55]. We also compare our lag-dependent ε2min
approach to the traditional approach (using an arbitrarily
chosen constant value of ε2min ¼ 10−4) in Fig. 2. Figure 3
shows the analogous quantities for the entire search
summed over all sightlines i. We visualize λiðMcÞ (shaded
region) and its sum λðMcÞ (thick line) in Fig. 3. In both
Figs. 2 and 3, the color shading denotes the differential
contributions of different delay timescales to their respec-
tive total rates.
A complication arises from repeating FRBs. Repeat

bursts from the same FRB source do not necessarily probe
independent volumes of space. For low-mass PBHs with
small Einstein radii, the motion of an FRB source (with
respect to the Earth’s rest frame) may move the sightline by

FIG. 2. The expected lensing rate as a function of the lens mass
for the sightline toward FRB 20191219F. The height of the curve
can be interpreted as the Poisson rate of lensing events (i.e., the
probability that the FRB is lensed) assuming that all dark matter
is made up of compact lenses with mass Mc. For example, the
probability of seeing a statistically significant lensing signal if all
the dark matter is composed of ∼10−1 M⊙ black holes is ≈0.6.
We calculate this rate via two methods, shown by the solid and
dotted curves. Solid curve: sensitivity given by the ACF ε2ðτÞ
measured by our correlation algorithm. Dashed curve: sensitivity
given by a constant fiducial value of ε2 ¼ 10−4, shown to
illustrate the difference with the approach taken by earlier work
such as [22]. Color shading denotes the additive contributions to
the total probability from different time-delay scales. Relative to
the constant-ε2 case, the reduced event rate at short lags/low lens
masses is because instrumental systematics in the delay spectrum
at short delay scales (≈100 ns) degrade sensitivity. A similar
reduction happens at long lags because of the large trials factor at
large delay values (see text).

FIG. 3. The expected lensing event rate for our full sample of 114 FRB events assuming that all dark matter is composed of PBHs with
mass Mc (i.e., that f ¼ 1). Left: in the absence of plasma scattering screens which cause decoherence, the predicted lensing event rate
extends over a wide range of PBH masses. Right: in the presence of plasma screens, the level of decoherence is sensitive to the screen’s
effective distance from the FRB source (different traces). This shows the impact of plasma scattering on coherent FRB lensing
constraints.
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many Einstein radii between successive bursts. If the lens
and FRB do not reside in the same galaxy halo, their
relative transverse velocity v⊥ can be estimated by the
velocity dispersion of a typical galaxy cluster σ ∼
1000 km=s [64]. If we estimate the lensing distance to
be DLDLS=DS ∼ 1 Gpc, the time it takes for the lens to
move by one Einstein radius is

TE ¼ RE

v⊥
∼
RsDLDLS

DSσ
¼ 14 yr

�
M
M⊙

�
1=2

: ð15Þ

It is evident that for some masses in the range
10−4–104 M⊙, the crossing time can be much shorter than
the duration between two successive bursts from the same
source (on the order of weeks or months). In this case, two
repeat bursts illuminate disjoint sightlines through the
cosmic web. However, in the opposite limit, the transverse
motion of the FRB moves it by only a small fraction of its
Einstein radius between successive bursts. In this case,
repeat bursts from the same source illuminate the same
microlensing tube and cannot be counted independently
in the total optical depth to lensing. To be conservative,
we take only the brightest burst from each repeating FRB
source for the best measurement of ε2ðτÞ along that
sightline. Combining information from repeat bursts is in
principle possible by, e.g., stacking the measured ACF over
many bursts [65]. However, at the nanosecond time
resolution of our search, changes in the lensing delay over
time (a so-called delay rate) must be taken into account to
not wash out the signal from the stacking procedure. Hence,
we defer an optimal treatment incorporating stacking to
future work.

IV. FUNDAMENTAL LIMITATIONS

While our interferometric method allows us to break the
degeneracy between pulse morphology and gravitational
lensing, the lensing signal—an interferometric fringe—is
also fragile and demands careful consideration of all
possible sources of decoherence which could explain a
nondetection. Wave optics effects, finite source size, and
scattering screens all may result in a nondetection even
when a lens is present.
When the Schwarzschild radius of the lens is smaller

than the wavelength of light, the light propagation is
unaffected [16,44,66,67]. This imposes a low-mass sensi-
tivity cutoff. For our observing frequencies we are only
sensitive whenM > 1.5ð1þ zLÞ × 10−4 M⊙ [45]. To over-
come this, searches for FRB lensing should be conducted
at higher observing frequencies in order to probe very low-
mass objects. A second important consideration for our
search is the effect of finite source size [44]. The astro-
physics here are similar in spirit to femtolensing constraints
from GRBs [66,68], which were thought to apply to black
holes ofM < 10−13 M⊙. However, GRB emission from an
extended source is angularly incoherent when averaged

over the size of the source, washing out the correlation
signal for all but the smallest GRBs emission regions [69].
The physics of this effect is similar to very long baseline
interferometry experiments which “resolve out” extended
sources on sufficiently long baselines, suppressing the
cross-correlation fringes. This invalidates PBH constraints
from coherent femtolensing and one might wonder whether
a similar concern applies to coherent FRB lensing con-
straints. For our coherent lag-correlation pipeline [43] to
detect a lensing event, the FRB emission region must
appear as a point source as viewed with the resolving power
of the gravitational lens.
An intuitive estimate (ignoring redshift effects) goes as

follows. If the lens receives light of frequency νobs, its
wavelength is c=νobs. If the lens is of size Rlens, the FRB
emission does not appear pointlike (i.e., is resolved) if
c=ðνobsRlensÞ ∼ rem=DLS where rem is the size of the
emission region, and DLS is the distance from the lens
to the source. For a point mass gravitational lens, Rlens

can be approximated as the Einstein radius RE ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2RsDLDLS=DS

p
where Rs is the Schwarzschild radius

and DL, DS are the angular diameter distance to the lens
and the source respectively. Taking DLS;DL, and DS to be
on the order of 1 Gpc and rem ¼ 3 × 108 m (see below for
justification of this choice), we conclude that a massive
lens is needed to resolve the source:M ∼ 3 × 104 M⊙. This
places a high-mass cutoff on our lensing constraints. For
smaller masses the emission region will remain angularly
coherent, unresolved by the gravitational lens. The maxi-
mum mass accessible scales as ν−1obs. From this consider-
ation, observing at lower frequencies is advantageous.
The size of the emission region can be estimated from

the variability timescale of the transient, and fortunately,
FRBs have much shorter variability timescales [21,70] than
GRBs. The association of an FRB-like radio burst with the
Galactic magnetar SGR 1935þ 2154 [71,72] is very strong
evidence for a compact origin for at least some extragalactic
FRBs. Mechanisms by which FRB emission is produced
can be grouped into two broad categories: “close-in”
models in which the bursts are produced in the magneto-
sphere (at radii of hundreds of kilometers) and shock
models where the bursts are produced “far-out” from the
central engine [73,74]. The observation of diverse polari-
zation properties including millisecond-variability in the
polarization angle [75], long-term evolution, and signifi-
cant circular polarization [76] observed in a handful of
FRBs tentatively challenge the latter class of models,
though it is still a matter of intense debate.
Theories where the burst is emitted from the magneto-

sphere [77–79] involve distances of hundreds of neutron
star radii and are significantly more compact than the
synchrotron maser shock models. Shock models involve
Lorentz factors of Γ ∼ 102 [73,74,80]. For a millisecond-
duration FRB, this corresponds to emission region size of
≲2 × 108 Γ cm [81].
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In any of these FRB emission scenarios, the apparent
angular size of the FRB emission region is quite compact.
In the scenario where the FRB emission looks like a point
source as resolved by a putative gravitational lens, the rate
shown in the left panel of Fig. 3 applies. However,
observations of pulsars and FRBs routinely indicate the
presence of interstellar scattering along the line of sight.
Interstellar scattering increases the effective angular size
of apparent point sources at radio wavelengths, akin to
atmospheric seeing for optical observations. This will be
the topic of the next section, where we consider the effects
of angular broadening due to scattering on our results.

V. TWO-SCREEN MODEL FOR FRB LENSING

To quantify the effect of scattering from inhomogeneous
plasma, we construct a two-screen model involving a
gravitational lens and a plasma lens, or scattering screen.
We will see that the scattering screen is crucial to this
analysis, and in the following subsections we describe how
we augment the point-lens model with a scattering screen
(see Fig. 4). The extent of the scattering depends not on the
total density of the plasma but rather on the fluctuations in
the density about the mean. The plasma in the Milky Way
is known to exhibit a power-law distribution of density
fluctuations. The so-called big power law in the sky spans
over 10 orders of magnitude in length scale (see e.g.,
[82,83]), and is responsible for radio propagation effects
such as the scattering and scintillation seen in pulsars and
other radio transients [84–86].

A. Thin plasma screen

The three-dimensional density fluctuations that cause
scattering and scintillation are often modeled as a thin
screen of two-dimensional electron density inhomogeneities

at some effective distance DSc;S from the source [87]. For
instance, in a single-screen model whereDSc;S is the distance
from the screen to the source and DSc;O is the distance from
the screen to the observer, the electric field amplitude can be
expressed as a Fresnel integral over the 2D screen plane
coordinate ρ⃗ (see e.g., [88]):

EðνÞ ¼
Z

d2ρ⃗ expð2πiδnðρ⃗ÞK=νÞ

× expð2πiνρ2ðD−1
Sc;S þD−1

Sc;OÞ=ð2cÞÞ; ð16Þ

where we assume K ¼ 4149.37759 sMHz2 pc−1 cm3, and
represent density fluctuations as an 2D scalar field δnðρ⃗Þ
(collapsed over the propagation axis); these density fluctua-
tions source phase fluctuations which are amplified as ν−1 at
low frequencies.
It is evident that the effective distance ðD−1

Sc;S þD−1
Sc;OÞ−1,

is dominated by the smaller of the two distances. Since
FRBs originate from dense local environments within
their host galaxies [89], the temporal broadening is often
assumed to originate in the host environment/galaxy.
This is equivalent to taking Deff ¼ ðD−1

Sc;S þD−1
Sc;OÞ−1 ≈

DSc;S. We use this approximation for the remainder of this
work, although we acknowledge that a complete treatment
may need to contend with multiple scattering screens in
cases where amount of scattering from the Milky Way and
the host galaxy are comparable [45].
While the path integral formalism is formally correct, it

renders performing accurate calculations difficult [88], and
there are simpler characterizations that succinctly capture
the relevant physics. For example, one can define the
distance on the screen over which the rms phase fluctuation
approaches 1 radian. This can be interpreted as the size
of a coherent spatial patch on the screen, and is referred

FIG. 4. A two-screen model for a coherently lensed FRB observed at some central frequency νobs. The plasma lens is responsible for
the observed temporal broadening (τscatt;obs), produced by a scattering screen of apparent size rref . The gravitational lens, modeled as a
point mass with mass M and impact parameter b, can be thought of as a very long baseline interferometer with baseline ∼RE ∝

ffiffiffiffiffi
M

p
observing at a frequency of νobsð1þ zLÞ from the lens plane. When the scattering screen looks like a point source [Eq. (20)] to the
gravitational lens, coherence is maintained, and the observer can see an interference fringe.
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to as rdiff [84]. A similar parametrization uses the fact that
spatially inhomogeneous phase shifts lead to angular
deflections and thus multipath propagation from the screen
to the observer. This leads to temporal pulse broadening
over a timescale

cτscatt ∼
r2ref

2DSc;S
þ r2ref
2DSc;O

ð17Þ

where rref ≫ rdiff is the effective transverse size of the
screen [45,90]. We see in this picture that the scattering is
symmetric under exchanging DSc;S and DSc;O, and again
that is dominated by the shorter of the two path lengths.
Furthermore, the two pictures can be related by rdiffrref ¼
Deffc=ð2πνobsÞ [84], where D−1

eff ¼ D−1
Sc;S þD−1

Sc;O. This
geometric model is a useful simplification because unlike
rdiff or rref, τscatt can be measured for FRBs [90,91] and
allows us to use an observable to constrain the unknown
scattering physics. Doing so eliminates one of the two
model parameters (rdiff ); the only remaining astrophysical
uncertainty associated with scattering is the effective screen
distance Deff , assumed to be DSc;S.
Using this picture, we estimate the FRB’s transverse size

on the screen, and find that it far exceeds the emission
region’s intrinsic size (Sec. IV of ∼2 × 1010 cm).

rref ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cτscattDSc;S

p
∼ 1013 cm

�
DSc;S

pc
τscatt
ms

�
1=2

: ð18Þ

If the screen (of apparent size rref ) is not resolved by the
gravitational lens, then coherence is preserved (Sec. V B).
If the screen is too large, it will be resolved by the
gravitational lens. This may cause a drop in sensitivity
(Sec. V D).

B. Unresolved screens

In the limit that the lensing screen is unresolved by the
gravitational-lens interferometer, the screen phase is the
same in both “interferometer paths” along which the light
propagates to the observer. In this case, the inhomogene-
ities on the plasma scattering screen can be arbitrarily
strong. The phase φðνÞ imparted to each path can vary
rapidly, as long as their difference is less than a radian.
In the absence of cosmological redshift effects, the con-
dition for this (see Sec. 3.2 in [45]) is that

2πνobsrrefðDSc;S; τscatt;obs;jÞRE=ðcDLÞ < 1: ð19Þ

Wemodify this calculation for the case where the scattering
is in the host galaxy ðDL → DLSÞ. We also take into
account that the observed pulse broadening timescale
τscatt;obs;j has experienced time dilation: in the host frame
where the scattering occurs, the pulse broadening timescale
is τscatt;obs;jð1þ zS;jÞ−1. Finally, we note that the frequency

of the radio emission gets redshifted as it propagates from
the source to the observer. The phase is accumulated over
the entire path length, but most of the phase difference
occurs in the vicinity of the lens; it is a good approximation
to replace νobs → νobsð1þ zLÞ. Equation (19) with these
modifications becomes

2πνobsrrefðDSc;S; τscatt;obs;jÞRE=ðcDLSÞ <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ zS;j

p
1þ zL

: ð20Þ

Equation (20) is satisfied when either the gravitational
lens has less resolving power (small RE or large λ), or a
small scattering screen. The latter can be accomplished
either by using bursts with a short scattering timescale or
some knowledge of the scattering screen’s distance from
the source, as shown in Eq. (18). Scattering timescales vary
by 2–3 orders of magnitude from burst to burst. Therefore
we enforce Eq. (20) for each burst individually using the
measured pulse broadening timescale τscatt;obs;j and inferred
redshift (zS;j) for each burst. We conservatively assume that
all the broadening originates in the source-local environ-
ment (i.e., we do not attempt to subtract off the Milky Way
contribution to the pulse broadening). Then, we assume
several different values ofDSc;S to calculate the screen size.
In the CHIME/FRB analysis pipeline, τscatt;i is currently
measured at ν ¼ 600 MHz and is assumed to scale as ν−4

[87]. However, it is currently measured with low-resolution
intensity data which cannot resolve scattering timescales
≲100 μs. As a result, ≈30 of our scattering timescale
measurements are upper limits [43]. We restrict the λij
integral in Eq. (2) to regions in the M − zL plane where
Eq. (20) is satisfied. The resulting lensing rate as a function
of lens mass, for a variety of screen distances, is plotted in
the right panel of Fig. 3. It is evident that scattering screens
reduce our sensitivity to large time delays in the presence
of scattering screens far away from the source.

C. Screen’s proximity to FRB source

By constraining the scattering timescale for each
burst, we have translated the astrophysical uncertainties
associated with decoherence into a single parameter
Deff ≈DSc;S—the effective distance between the scattering
screen and the FRB. What is a representative median value
of DSc;S, averaged over a sample of CHIME-detected
FRBs? We estimate this by considering possible origins
for the excess scattering in extragalactic FRBs compared to
Galactic pulsars, as established in [89]. One explanation is
that FRBs are scattered by dense clouds in the circum-
galactic medium (CGM) of intervening galaxies [89,92,93].
In this case, the effective distance could be on the order
of 10–100 Mpc, and Eq. (18) implies that the source’s
apparent size (∼rref ) would also be correspondingly large.
However, there is growing evidence that the excess
scattering is not dominated by clouds in the CGM.
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First, if CGM scattering were an explanation for the
excess scattering present in the population of FRBs, the
screen from the Milky Way would resolve the angular
broadening from the CGM, and scintillation would not
be regularly observed in FRBs. The observation of both
scintillation and scattering in FRB 110523 [90] indicates
that the angular broadening is unresolved by a Milky Way
screen, and leads to a direct constraint on the scattering
geometry for FRB 110523 of DSc;S ≲ 44 kpc. While this is
only a single example, further examples of FRBs with
spectral structure consistent with diffractive scintillation
have been identified in ASKAP [85], UTMOST [20], and
CHIME/FRB bursts [86].
Second, leading models of CGM scattering [93] assume

that the CGM efficiently scatters radio waves. This effi-
ciency is quantified through the fluctuation parameter F̃.
Observationally, F̃ is proportional to the ratio τ=DM2, and
depends on factors including the filling factor of the gas,
the size distribution of cloudlets within the gas, the size of
density fluctuations within those cloudlets, and the inner/
outer scales of the turbulence. While the Local Group may
not be representative of the CGM of intervening galaxies,
measurements of F̃ from the Local Group [94] indicate
empirically that F̃ is two orders of magnitude smaller than
that assumed by leading theories (F̃ ∼ 500 pc−2=3 km−1=3

[93]) where the CGM provides the observed anomalous
scattering [89]. This significantly diminishes the possibility
that the CGM of intervening galaxies can provide the
observed scattering.
Two remaining possibilities are that the scattering is

provided by the host galaxies or local environments of
FRBs. Clues about the environments surrounding FRB
hosts for individual specimens [90,95] as well as popula-
tion studies [89] provide evidence that many, if not most,
FRBs are associated with special regions of their host
galaxies. This has been directly confirmed with the VLBI
localizations of FRB 20121102A [96] to a star-forming
region whose H-α radius is ∼460 pc [97]. Similarly, FRB
20180916B is only 250 pc away from (but not residing
within) a 1.5 kpc-long, V-shaped region of star formation in
its host galaxy [98,99]. The spatial association of a large
fraction of precisely localized FRBs [100] with spiral arms
in their host galaxies and the random host galaxy inclina-
tion angles robustly constrains the value of DSc;S, averaged
over all bursts, to be at most the disk thickness of a galaxy.
While disk thicknesses may vary from those measured from
the Milky Way, the scale height of electron fluctuations in
the Milky Way is ≈750 pc [101], yielding DSc;S ≲ 1 kpc.
In addition, a detailed population synthesis study inves-
tigating the DM and scattering timescale distributions [89]
provides tentative evidence for a significant contribution to
the scattering from dense, small-scale clumps near the
unknown FRB central engine.
This is a very plausible hypothesis. We note that the

Crab Nebula, which dominates the temporal broadening

observed in Crab pulses, has a physical extent of ≈1.6 pc.
Detailed studies of Crab scattering reveal plasma screen
structures located ≈2 pc away from the pulsar [102].
Pulsars or magnetars with sufficient rotational/magnetic
energy (i.e., those that are young enough) to produce bursts
luminous enough to be seen at a cosmological distance (105

times brighter than a fiducial Crab giant pulse; see [103])
could very well be, on average, embedded in similar
or even more compact host environments. The dense
environment surrounding a decades- or century-old mag-
netar which could produce an FRB [104] can easily host
parsec-scale structures which explain the observed scatter-
broadening. In the rest of our analysis, we therefore assume
a fiducial screen position of ∼1 pc, though we also quote
results for 0.1, 10, and 100 pc.

D. Resolved screens

Until now we have only considered detecting coherent
FRB lensing in systems where the scattering screen is
unresolved. If the screen is resolved, our signal, which is a
peak in the measured time-lag autocorrelation function of
an FRB, may be washed out. This is similar in spirit to
femtolensing PBH constraints; however, we emphasize that
a point source behind a scattering screen is not equivalent to
a bona fide incoherent extended source. The former has a
characteristic decorrelation bandwidth (Δνbw) over which
the signal remains coherent, whereas the latter does not.
For this reason the signal can be recovered in certain

circumstances. Since we search for peaks in the ACF, we
are most sensitivewhen peaks are localized to one delay bin
(δτ < 1.25 ns). If the screen is resolved by the lens the
peak may be washed out among many (∼τscatt=1.25 ns)
trial delays. This reduces sensitivity in a search based on
finding peaks in the ACF. Another way of saying this is that
each subband in the dynamic spectrum of bandwidth νdec
(the decorrelation bandwidth of the FRB emission) will
have a different observed delay which is a sum of the
gravitational lensing delay and a frequency-dependent
scattering screen delay. For voltage data covering a
bandwidth of νbw, the height of the lensing peak at τlens
would be suppressed by a factor of Δνdec=Δνbw. While our
search has a wide bandwidth Δνbw ¼ 400 MHz, it may the
case that, e.g., in a subbanded search, Δνdec ≈ Δνbw. The
coherence would be maintained within each subband and
subbands could then be incoherently combined. At present,
however, we do not attempt to detect resolved coherent
lensing, so we do not include this regime in our present
constraints. We defer working in the limit of a resolved
screen to future work.
There is another way to circumvent the decoherence

inflicted by scattering screens. Decorrelation bandwidths
(equivalently, the scattering timescales) are highly fre-
quency dependent, and searches for FRBs lensing at higher
frequencies may exploit the steep frequency scaling of
scattering timescales to leverage this. Hence, it is very
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possible that even if the screen is resolved at low frequen-
cies, coherence is maintained at higher frequencies. FRBs
have been detected at frequencies down to 110 MHz
[105–107] and up to 8 GHz [95], making this a promising
and straightforward possibility.

VI. CONSTRAINTS

Having calculated the expected lensing rate λðMcÞ first
without and now, with the effect of scattering screens (left
and right panels of Fig. 3), we aim to translate those rates
into constraints on the PBH abundance. First, we note that,
as a result of Eq. (12), all of our measurements of the
lensing rate have a simple linear dependence on fðMcÞ, the
fraction of the cosmological cold dark matter density
(Ωcρcrit) that is composed of PBHs of mass Mc, assuming
a mass function peaked around Mc. It is convenient to
define the function λ1ðMcÞ as the lensing rate assuming
fðMcÞ ¼ 1; from here on we can write the actual lensing
rate as λ ¼ fλ1. In the remainder of this section, we will
omit the Mc arguments for brevity, though f, λ, and λ1 are
functions of Mc.
The exclusion limit can be thought of as an estimator f̂

of the true value f satisfying f̂ > f with high probability.
However, the estimator depends on the mass function
assumed. In our case, the mass function is parametrized
by a single parameter Mc, so f̂, like f, is a function of Mc.
To constrain compact dark matter, we may employ either a
frequentist or a Bayesian framework, which have different
formalisms for calculating f̂. The process of detecting
lenses can be modeled as a Poisson process with rate
λ ¼ fλ1. Then the probability of observing k lensing
events is

PðkjλÞ ¼ e−λλk=k!: ð21Þ

In a frequentist framework [30], the probability of
getting our null search result (k ¼ 0 coherent lensing
events in our sample) is

Pðk ¼ 0jλÞ ¼ expð−f̂λ1ðMcÞÞ: ð22Þ

The inequality Pðk ¼ 0jλÞ < 0.05 constrains our false
nondetection rate and solving it sets f̂. If, for example,
we made either k ¼ 0 or k ¼ 1 detections in our entire
search, the left side of Eq. (22) would instead be
Pðk ¼ 0jλÞ þ Pðk ¼ 1jλÞ. We would instead solve the
following inequality for f̂:

expð−f̂λ1Þ½1þ f̂λ1� < 0.05: ð23Þ

In a Bayesian framework, the excluded region is defined
instead by the following condition:

0.05 > pðf > f̂jk ¼ 0Þ; ð24Þ

where k ¼ 0 denotes nondetection of lensing. Informally
Eq. (24) can be thought of as the probability of being
“wrong” about f̂, requiring that the true value of f has only
a 5% chance of being higher than our inferred value f̂. We
expand the right hand side of Eq. (24) in terms of the
posterior pðfjk ¼ 0Þ:

pðf > f̂jk ¼ 0Þ ¼
Z

∞

f̂
pðfjk ¼ 0Þdf;

which in turn can be rewritten using Bayes’s theorem:

pðfjk ¼ 0Þ ∝ pðk ¼ 0jfÞpðfÞ:

The first factor on the right-hand side is simply the Poisson
like lihood

pðk ¼ 0jfÞ ¼ expð−fλ1Þ;

and the second term is a prior on f which we take to be the
uniform distribution supported from f ¼ 0 to some cutoff
value F.
If we normalize pðfjk ¼ 0Þ we obtain

pðfjk ¼ 0Þ ¼ e−fλ1

1 − e−Fλ1

which we substitute back into Eq. (24) to yield the
Bayesian criteria for the excluded region f̂:

0.05 ¼ e−f̂λ1 − e−Fλ1

1 − e−Fλ1
: ð25Þ

Both criteria [Eqs. (22) and (25)] are valid formulations,
and they agree in the limit that F → ∞. We use the
frequentist method because it is the most conservative
and for consistency with existing constraints [30]. Our final
constraints are plotted in Fig. 5.
Our constraints are complementary to existing micro-

lensing constraints on compact dark matter [27].
Conventional microlensing constraints (e.g., [30,110,112])
extend further in mass than the ones described here.
However, those constraints are from observations of M31
and thus are only sensitive to compact objects in the local
universe. In contrast, our long sightlines extend out to non-
negligible redshifts where the dark matter density is expected
to approach its cosmological average value. The constraints
most similar to ours in the literature are those from type Ia
supernovae microlensing [11]. However, due to our coherent
search method, we are sensitive to a lighter mass range with
sensitivity approaching that of [11]. We expect that with a
larger sample of bursts from CHIME/FRB, our method will
soon provide an independent probe with sensitivity to
extragalactic compact dark matter at masses inaccessible
by other means.
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VII. DISCUSSION AND CONCLUSIONS

There are several limitations to the constraints presented
here. First, they are subject to the unknown uncertainties in
inferring the redshift of an FRB from its DM, where a large
uncertainty arises from assuming a value of DMhost. Several
clues point toward a wide range of DMhost in the FRB
population. First, the recent VLBI localization and host
identification of FRB 20190520B has revealed its extremely
large DMhost contribution of ≈900 pc cm−3 [113]. This
means that for some FRBs, the distance determination in
Eq. (9) is unreliable. Independently, a statistically significant
spatial correlation has been detected between z ∼ 0.4 gal-
axies in large optical surveys and FRBs whose extragalactic
DM≳ 785 pc cm−3. This can be interpreted as evidence that
an order-one fraction of such high-DM FRBs in the CHIME/
FRB catalog have host DMs of ∼400 pc cm−3 [114].
In light of these two lines of evidence, we have tested two

extreme scenarios to estimate the uncertainty on our con-
straints resulting from distance determination. In one sce-
nario, we assume that all three bursts in our sample with
large total DM (>1000 pc cm−3) are similar to 20190520B.
This is conservative because to the best of our knowledge,
FRBs like 20190520B are not representative of the pop-
ulation of FRBs detected by CHIME/FRB. Like FRB
20121102A, the properties of FRB 20190520B (e.g., rota-
tion measure and host galaxy) are quite different from other
FRBs localized by ASKAP [59,113,115]. In this scenario,
the total lensing rate shown in Fig. 3 is reduced by ≈15%.

In another scenario, Ref. [114] implies that some high-DM
FRBs (DM≳ 785 pc cm−3) have a large host contribution.
To conservatively model this scenario, we double the DMhost

of all bursts in our sample with DM > 500 pc cm−3 FRBs
from 117 to 234 pc cm−3. In this scenario, the optical depth
is reduced by ≈20%.
These two scenarios bracket the uncertainty in our optical

depth arising from DM-based distances. We emphasize
that this uncertainty is a short-term problem motivating a
long-term solution: to localize and follow up FRBs using
upcoming instruments like CHIME/FRB Outriggers
[55,116–118] to directly obtain their host galaxies’ redshifts.
Second, our constraints are sensitive to the measured

scattering timescale of each burst, which we use to estimate
the extent of the plasma decoherence. At present, the most
mature CHIME/FRB pipeline for measuring burst scatter-
ing timescales (intensity FITBURST) uses low-resolution
“intensity” data [31]. The intensity data’s time resolution
limits its ability to measure scattering tails with timescales
shorter than ≈100 μs. For bursts where a scattering tail is
not detected, an upper limit on the scattering of 100 μs is
adopted. This is a very conservative treatment given that
nanosecond timescales have been observed in at least one
FRB [119–121]. In the future, adapting the FITBURST

analysis pipeline (described in detail in [32,90]) to use
CHIME/FRB baseband data would allow for a higher time
resolution of ≈2.56 μs. More accurate estimates of the
screen size will lead to improved constraints.

FIG. 5. Left: 95% constraints on PBHs as a function of scattering screen distance corresponding to the optical depth calculated in
Fig. 3. We plot our fiducial (1 pc screen) model in red and suppress curves for screen distances of 10 and 100 pc because λ < 3 under
those assumptions. Right: a collection of microlensing constraints on the fraction of dark matter composed of compact objects (such as
PBHs), fðMcÞ, assuming a monochromatic mass function peaked around Mc. We have shown Local Group PBH constraints in blue
(M: MACHO [108], EROS [109], OGLE [30], Long: long-duration optical microlensing [110], Icarus [111]), and Local Universe
constraints in red (SNe [11], CHIME/FRB, this work). CHIME/FRB lensing constraints depend on our two-screen scattering model, in
which we have assumed that the average FRB is scattered by a screen at an effective distance of 1pc, and our model for how DM
correlates with distance. In these constraints, we have used Eq. (22) to define the exclusion limit as a function ofMc. Wave optics effects
suppress our signal at M ≲ 1.5 × 10−4 M⊙ and finite source size suppresses our signal at M ≳ 3 × 104 M⊙. This shows that coherent
FRB lensing has the potential to search new parameter space for exotic compact objects such as PBHs.
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Third, our search method assumes that the scattering
screen is unresolved by the gravitational lens, and is
insensitive to screens resolved by the lens. Our calculations
demonstrate that this region of parameter space corre-
sponds to solar-mass lenses, a mass range that has enjoyed
renewed interest due to the detection of gravitational waves
from compact binary mergers [122]. One way to access this
mass range with FRB gravitational-lens interferometry is
by developing more sophisticated correlation algorithms to
extract a lensing signal from the data with knowledge of the
properties of the scattering screen, which may be measured
from the data themselves. Another is to change the
observing frequency: though finite source size is less of
a hindrance at CHIME frequencies, both wave optics
effects and scattering screens are less of a problem at
higher frequencies. This will broaden the reach of a search
at the low-mass end (∝ ν−1 due to reduced wave effects)
and at the high-mass end (smaller rref ) because scattering
timescales are extremely frequency dependent ð∝ ν−4Þ.
The future of FRB gravitational-lens interferometry is

bright. Over 3000 FRBs have been detected by CHIME;
these will enable the expansion of this sample by over an
order of magnitude. In the future, FRBs will be routinely
localized; this will provide robust distance measurements.
Upcoming FRB surveys with localization capabilities such
as the Canadian Hydrogen Observatory and Radio-transient
Detector [123] and the Deep Synoptic Array [124], will
detect FRBs at an even higher rate, and access frequencies
up to 1.5 GHz to better exploit the favorable scalings of
coherent FRB lensing at higher frequencies.
In conclusion, this work and its companion paper [43]

have demonstrated a novel method of searching for
coherently lensed FRBs, and have demonstrated the ability
of coherent FRB lensing to constrain the constituents of the
cosmological dark matter, e.g., primordial black holes. We
have quantified the amount of decoherence using a two-
screen model containing a gravitational lens plane and a
plasma screen; we find that the degree of decoherence
is sensitive to the plasma screen geometry. The reach of
coherent FRB lensing is increased as the FRB looks
increasingly like a point source as viewed from the lens
plane. This is quite possible: in some cases FRB emission
only involves small amounts of temporal broadening [121].
In other cases, studies of FRB properties [90,95], their host
environments [99,100] and population studies [89,115] of
large samples of FRBs support progenitor theories involv-
ing young neutron stars [103,104] with atypical scattering
environments (i.e., more extreme and compact than those of
pulsars). Like in the case of GRB femtolensing [69], the
finite angular size of the FRB emission region imposes a
fundamental high mass sensitivity cutoff for coherent FRB
lensing. On the opposite end of the mass range, wave optics
effects complicate searches for compact objects whose
Schwarzschild radii are smaller than the wavelength of light
used [45]. Despite these limitations, and the uncertainties

due to scattering screens, our present results establish the
sensitivity of coherent FRB lensing as a probe of sub-solar
mass primordial black holes. They also strongly suggest
that it is promising to conduct future searches for coherent
lensing at higher observing frequencies, where scattering
and wave optics effects are reduced. More broadly, this
work establishes the viability of using coherent FRB
lensing as a unique tool with broader applications in
astrophysics and cosmology.
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