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We present a novel way of modeling common envelope evolution in binary and few-body systems. We
consider the common envelope inspiral as driven by a drag force with a power-law dependence in relative
distance and velocity. The orbital motion is resolved either by direct N-body integration or by solving the
set of differential equations for the orbital elements as derived using perturbation theory. Our formalism can
model the eccentricity during the common envelope inspiral, and it gives results consistent with smoothed
particles hydrodynamical simulations. We apply our formalism to common envelope events from binary
population synthesis models and find that the final eccentricity distribution resembles the observed
distribution of post-common-envelope binaries. Our model can be used for time-resolved common-
envelope evolution in population synthesis calculations or as part of binary interactions in direct N-body
simulations of star clusters.
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I. INTRODUCTION

Common envelope (CE) evolution is the process during
which one component of a binary star gets engulfed in the
envelope of its companion. During this phase, the gaseous
envelope becomes gravitationally focused and exerts a drag
force onto the stars, which begin to inspiral toward each
other. CE evolution ends when either the two stars merge or
the envelope is (partially) ejected. If the envelope is ejected
and the two stars survive, the post-CE binary separation is
much shorter than the initial one. Originally proposed to
explain the existence of short-period dwarf binaries [1–3],
CE evolution is now the key process of many other
astrophysical phenomena, from gravitational wave sources
[e.g., [4–7], see [8] and references therein], to x-ray binaries
[9,10], and type Ia supernovae [11–13].
CE evolution is arguably one of the least understood

phases of interacting binary stars. From the observational
point of view, direct detection of CE is exceptionally

elusive, first because of its short duration (a few years
for the rapid inspiral phase, and possibly up to 105 yr for the
complete envelope ejection [14–16]), and second because
the binary is hidden by the CE, making it appear as a giant
star. Nevertheless, luminous red novae, a new class of
transients, have been claimed as a promising candidate of
CE events [17–19].
Theoretical models of CE also have their share of

limitations. Hydrodynamical simulations are computation-
ally expensive, and they either are not able to model the
entire CE evolution or miss some physical ingredients
(e.g., recombination of the envelope’s gas, radiative and
convective transport) [20–31]. Similar considerations
apply to 1D models of CE evolution, which can follow
the slow, self-regulating evolution of the CE inspiral better
than 3D hydrodynamics but miss other key aspects
[23,32–38]. Conversely, all demographic studies of com-
pact object formation adopt much simpler analytic for-
malisms [1,12,39–43]. One of the most widely adopted
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formalisms is the αλ model, which is based on a simple
energy balance equation that takes into account the
binding energy of the envelope (parametrized by λ) and
the efficiency of CE inspiral (parametrized by α, see
Sec. III A for more details). Because of its straightforward
implementation and computational ease, most binary
population synthesis (BPS) codes adopt the αλ model
[e.g., [7,44–53]].
However, simplicity comes at a cost. Being based on an

energy balance equation, the αλmodel completely neglects
angular momentum. Consequently, it is not possible to
meaningfully predict the post-CE eccentricity in BPS
codes, which is always set to zero.1 While most observa-
tions suggest that, in fact, CE events circularize the
binaries, some observations of post-CE systems show
residual, non-negligible eccentricities [54–58].
Another drawback is that CE evolution in BPS codes is

instantaneous, i.e., it consists of a jump in orbital sepa-
rations from the pre-CE semimajor axis to the post-CE
one. In BPS codes, this makes it impossible to handle other
processes that may occur during CE evolution, like super-
novae explosions. This issue is exacerbated when combin-
ing BPS codes with direct N-body codes [59,60] or secular
evolution codes for multiple stellar systems [61,62], which
poorly handle discontinuities in the evolution.
In this paper, we propose an alternative approach for CE

evolution that can overcome these limitations and can be
applied to N-body and BPS codes alike.
The main assumptions of our model are presented in

Sec. II. Using perturbation theory, we derive the rate of
change in orbital semimajor axis a, eccentricity e, and
argument of pericenter ω due to the drag (Sec. II A). In
Sec. III we discuss how the halting of the CE inspiral can be
incorporated in our model, either by assuming self-similar
expansion of the envelope or by estimating the energy losses
with the αλ model. We compare our model with hydrody-
namical simulations to find the most suitable form for the
drag force in Sec. IV. Finally, we apply our model to CE
evolution triggered by the excitation of eccentricity in triple
systems (Sec. VA), and to CE in isolated binary evolution
(Sec. V B). Comparing our model with the CE evolution in
BPS codes, we find that our model predicts nonzero orbital
eccentricities, similar to the observations. This and other
results are summarized in Sec. VI.

II. DRAG FORCE FORMALISM

We consider that the two bodies undergoing CE evolu-
tion are experiencing a drag due to the surrounding gas. We
assume that the drag force is always opposite to the bodies’

velocity vectors, and express it in the following general
form:

F ¼ −CvlPðrÞv̂; ð1Þ

where C is a dimensional constant, l is a real number that
sets the drag force dependence on the relative velocity. PðrÞ
is a function representing the drag force dependence on
radius. In this paper, we examine a power-law form for the
function PðrÞ (Sec. II A).
To better motivate the choice of the drag force, we

compare Eq. (1) with the expression for the fluidodynamical
drag force:

Fdrag ¼ −
1

2
ρv2CDA: ð2Þ

In the expression above, ρ represents the local density of
the fluid, A is the cross-sectional area of the body immersed
in the fluid, and CD is a dimensionless coefficient that
depends on the Reynolds and Mach numbers. At high
Mach numbers, CD ¼ 2, while at low Mach and Reynolds
numbers CD ∝ 1=v, which makes the force scale as
Fdrag ∝ v.
Equation (2) refers to the fluidodynamical drag force of a

body immersed in a viscous fluid. On the other hand, the
drag force during CE evolution is thought to be caused by
the dynamical friction from the gravitationally focused gas,
as supported by hydrodynamical simulations. Numerical
experiments have further shown that the gravitational drag
is well expressed by Eq. (2), albeit with a different
dimensionless coefficient [26,63,64].
Equation (1) reduces to Eq. (2) if l ¼ 2 and PðrÞ ≔ Aρ.

Therefore, the function PðrÞ expresses the dependency of
the gas density ρðrÞ and cross-sectional area AðrÞ as a
function of the distance between the two bodies.
If acceleration from the drag force is small compared to

the mutual gravity, and once given an analytic expression
for PðrÞ, we can apply the classical tools of perturbation
theory and derive the evolution of the binary’s orbital
elements.
In the following sections, we choose an analytically

convenient form for PðrÞ and derive the corresponding
differential equations for the orbital elements. As a first
approximation, we consider the two bodies to be point
masses of mass m1 and m2, located at the center of mass of
each star, corresponding to the stellar cores. Mass loss and
transfer can be added as extra terms in a second step [e.g.,
[65]]. For completeness, in the Appendix A, we present the
additional terms in _a, _e, _ω that describe the change in
orbital elements under the assumption of isotropic mass
loss. Knowing that the force in Eq. (1) has no component
outside the plane of the binary, we can decompose the
acceleration into its radial and tangential components:

1BPS codes like BSE use the CE energy loss first to circularize
the orbit. In principle, they may allow a final eccentric orbit if the
energy loss is less than that required to circularize the binary. In
practice, this is never the case when significant shrinking of the
orbit occurs.
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f ¼ frr̂þ fνν̂: ð3Þ

From these we derive the time derivative of the binary
semimajor axis a, eccentricity e, argument of pericenter ω
and true anomaly ν:

_a ¼ 2a2

μ
ð_rfr þ r_νfνÞ; ð4Þ

_e ¼ 1 − e2

e

�
_a
2a

−
_h
h

�
; ð5Þ

_ω ¼ h
eμ

�
2þ e cos ν
1þ e cos ν

fν sin ν − cos νfr

�
; ð6Þ

_ν ¼ ð1þ e cos νÞ2
ð1 − e2Þ3=2

ffiffiffiffiffi
μ

a3

r
− _ω; ð7Þ

where h ¼ jr × vj is the magnitude of the specific angular
momentum and μ ¼ Gðm1 þm2Þ is the standard gravita-
tional parameter.
The above equations describe the evolution of the binary

as a function of time. However, they are still phase-
dependent, in the sense that they depend on the true
anomaly ν of the binary at any given time. On the other
hand, the equations that are commonly employed in BPS
codes are orbit-averaged.

We can derive the secular equations from Eqs. (4)–(6) by
averaging over the mean anomaly M. Given a phase-
dependent derivative _qðνÞ, the corresponding orbit-averaged
equations can be derived as:

h _qi ¼ 1

2π

Z
2π

0

_qðνÞdM¼ 1

2π

Z
2π

0

ð1− e2Þ3=2
ð1þ ecosνÞ2 _qðνÞdν: ð8Þ

In the next sections, we focus mainly on the phase-
dependent equations. The orbit-averaged expressions suit-
able for the inclusion in BPS codes are presented in the
Appendix B.

A. Power-law radial dependence

A general form for P in Eq. (1) is a power-law
PðrÞ ¼ r−k. In this case, the acceleration has a magnitude of

f ¼ −C
vl

rk
; ð9Þ

and C has physical dimensions ½C� ¼ L1−lþkTl−2. We
choose a power-law force mainly because it is analytically
convenient to treat. In our forthcoming work, we will focus
on a more realistic density profile for the envelope.
Keeping the exponents l and k, we derive the following

set of ordinary differential equations for the orbital
elements:

_a ¼ −2Cμl−1
2 a

3−l−2k
2 ð1 − e2Þ−lþ1þ2k

2 ð1þ e cos νÞkð1þ e2 þ 2e cos νÞlþ1
2 ; ð10Þ

_e ¼ −2Cμl−1
2 a

1−l−2k
2 ð1 − e2Þ−l−1þ2k

2 ð1þ e cos νÞkð1þ e2 þ 2e cos νÞl−12 ðeþ cos νÞ; ð11Þ

_ω ¼ −2Cμl−1
2 a−

l−1þ2k
2

ð1 − e2Þ−l−1þ2k
2

e
ð1þ e cos νÞkð1þ e2 þ 2e cos νÞl−12 sin ν; ð12Þ

_ν ¼ ð1þ e cos νÞ2
ð1 − e2Þ3=2

ffiffiffiffiffi
μ

a3

r
− _ω: ð13Þ

For l ¼ 2 (and even numbers), Eqs. (10)–(13) gain a
term in

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2 þ 2e cos ν

p
which makes the integral in the

orbit-averaged Eq. (8) impossible to be expressed in
closed form because it gives rise to an elliptic integral.
Alternatively, the elliptic integral can be tabulated as a
function of e.
The value of C sets the timescale of the CE inspiral, and

it relates to the density of gas in the envelope. However, we
treat it at first as a given constant to investigate the
qualitative behavior of Eqs. (10)–(13). We therefore define
a dimensionless CE efficiency χa ¼ P=τa, where P is the
binary period and τa ¼ ja= _aj is the characteristic timescale
of the binary’s inspiral. Setting e ¼ 0 in Eq. (10), the
expression for χa is:

χa ¼ Cπμ
l−2
2 a

4−l−2k
2 : ð14Þ

We can then use Eq. (14) to find the values of C for
models with different k, l but similar inspiral time. For the
perturbative equations to be valid, the drag force needs to
be weaker than the mutual gravitational acceleration,
hence 0 < χa ≪ 1.
We now integrate numerically Eqs. (10)–(13) and

compare them with direct N-body integration, in which
we apply the force of Eq. (9) directly as a perturbative force
over the Newtonian equations.
For the integration of the perturbative equations, we

employ an adaptive Runge-Kutta method of order 8(5,3).
The directN-body integration is computed with the Hermite
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integrator from the AMUSE software environment [66,67].
The drag force is added as a velocity kick every 1=100th of
an orbital period.
In the following examples, the binary star has masses

m1 ¼ 81 M⊙ and m2 ¼ 32 M⊙, an initial semimajor axis
a0 ¼ 4000 R⊙ and eccentricity e0 ¼ 0.2. Because we have
not yet introduced a self-limiting mechanism to stop the
inspiral, we stop the integration once the binary semimajor
axis reaches 40 R⊙. For both the N-body and the pertur-
bative integration we choose l ¼ 1; 2; k ¼ 0, and set
χa ¼ 0.05. The binary is initialized just before pericenter
passage, at ν ¼ 270°. The initial argument of pericenter
is ω ¼ 90°.
Figure 1 shows the result of the integrations for l ¼ 2 and

l ¼ 1. The two curves agree to a satisfactory degree, but the
perturbative equations take ∼50 less computational time to
integrate. For l ¼ 2, the binary eccentricity decreases on
average but oscillates during one orbital period, with the
eccentricity decreasing at the pericenter and increasing at
the apocenter. In contrast, for l ¼ 1, the eccentricity
oscillates around a constant value and the inspiral proceeds
at constant eccentricity. In both cases, the long-term
evolution of ω appears to disagree between the perturbative
equation and direct integration. As apparent from Eq. (12),
the argument of pericenter is supposed to only oscillate
around a median value, without any long-term deviation.
We attribute the discrepancy to the simple implementation
of our N-body model rather than to some inaccuracy of the
perturbative equations. Performing the orbit-averaging on
Eqs. (11)–(12) for l ¼ 1, k ¼ 0, further confirms that the
eccentricity and argument of pericenter remain constant
over long timescales (see Appendix A).
It is clear that a drag force linear in the velocity (l ¼ 1)

does not agree with our naive expectations of CE evolution
circularizing the binary. We will see later that introducing a
radial dependency in the force can quickly circularize the
binary, even for l ¼ 1. Having now validated our set of
equations with the N-body integration, we now investigate
the effect of radial dependency, controlled by the param-
eter k.
The same system integrated with k ¼ 1 and k ¼ 2 is

shown in Fig. 2. Here we set the binary with different initial
eccentricities to appreciate the effect of radial dependency
on the circularization timescale. Even a moderate radial
dependency (k ¼ 1; f ∝ 1=r) introduces strong orbit cir-
cularization, and the drop in the semimajor axis occurs
mostly at the pericenter.
For l ¼ 2, k ¼ 1, the final eccentricity after the binary

reaches our target semimajor axis is negligible, while for
l ¼ 1, k ¼ 1 the binary still retains some eccentricity after
the inspiral.

B. Drag force from first principles

Let us now examine how the expression for the force
should depend on r and v using only theoretical principles.

Besides the explicit dependency in v2, Eq. (2) may include a
hidden dependency in the cross-section area A. In our case,
the cross section identifies the size of the sphere around the
perturbing body where the gas becomes gravitationally
focused. According to the Hoyle-Lyttleton-Bondi accretion
theory [68–70], the radius of this sphere is

Ra ¼
2Gm

c2s þ v2
; ð15Þ

where cs is the sound speed of the gas and m is the mass of
the perturber. Given that the orbital velocity is much higher

FIG. 1. Evolution of semimajor axis (a), eccentricity e, argu-
ment of pericenter ω and true anomaly ν for a CE inspiral using
the model in Eq. (9) with l ¼ 2, k ¼ 0 (top panel) and l ¼ 1,
k ¼ 0 (bottom panel). The blue curves were obtained integrating
Eqs. (10)–(13), while the orange curves are the result of direct N-
body integration with the drag force applied as a perturbation.
The two curves overlap to a great extent.
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than the sound speed in the envelope, we can approximate
Ra ≈ 2Gm=v2. Consequently, A ∝ v−4 and the force
appears to scale inversely proportional with the velocity:
f ∝ v−2. To first order, the scaling v−2 is the same as that of

the dynamical friction force in collisionless or gaseous
media [71–77]. However, integrating Eq. (11) reveals that
for negative l the eccentricity increases rather than
decreases with time. The physical reason is the following.
In the Hoyle-Lyttleton-Bondi accretion model, as the
velocity increases, the size of the gravitationally focused
fluid decreases accordingly, leading to the drag force being
stronger at the apocenter, where the orbital velocity has a
minimum, rather than at the pericenter, where the velocity
is the highest. Consequently, the perturber loses more
energy and angular momentum at apocenter than at peri-
center. The net effect is that the orbit becomes more radial
after the apocenter passage than it can circularize at the
pericenter.
This is especially true for l ¼ −2. Large values of k can

mitigate the increase of the eccentricity, because the factor
r−k makes the drag force stronger at pericenter than at
apocenter. However, only a very steep radial density profile
can prevent the growth of the eccentricity for l ¼ −2.
Numerical integration shows that the eccentricity grows
faster than exponentially for k < 3. In practice, for
l ¼ −2; k < 3, a single apocenter passage at high eccen-
tricities (e≳ 0.5) can make the orbit radial e ≃ 1. We
demonstrate this rigorously in the Appendix C, where we
analyze the evolution of the eccentricity for l ¼ −2 by orbit-
averaging Eq. (11). This behavior is clearly an artifact of the
simplified physics adopted in the dynamical friction model.
One issue can stem from the fact that, as the eccentricity
increases, the ram pressure at the pericenter also increases,
likely supplanting the gravitational drag as the force driving
the orbital decay. Moreover, dynamical friction forces with
scaling ∝v−2 are based on the assumption of a body
traveling in a uniform, infinite medium, while the envelope
of a giant producing the drag force on companion is not
uniform nor infinite. The gravitationally focused fluid does
not travel in a straight line, always directly behind the
companion, but follows perturbed Keplerian trajectories.
Finally, spiral density waves that generate during the
inspiral can also apply a torque on the binary, but their
effect cannot be easily modeled without introducing axi-
symmetry. For these reasons, hereafter we consider only
positive values of l of the drag force model, considering
it an “effective” drag force rather than one purely caused
by dynamical friction and gravitational focusing. Our choice
is further confirmed by the comparison with hydrodynam-
ical simulations (Sec. IV), which consistently show a
decrease in the eccentricity [78], and previous numerical
studies on the gravitational drag force in wind tunnel
simulations [63,64].
In general, the loss of tangential velocity due to the

dynamical friction is necessary for the inspiral motion at the
first place, and acts against the tidal circularization. In
addition, past studies and simulations shows that even an
initial circular orbit developed some eccentricity by the end
of the inspiral [22,78–81].

FIG. 2. Evolution of semimajor axis a, eccentricity e, argument
of pericenter ω. For a CE inspiral using the model in Eq. (9) with
l ¼ 2, k ¼ 1 (top panel), l ¼ 1, k ¼ 2 (middle panel) and l ¼ 1,
k ¼ 2 (bottom panel). Each curve indicates a different starting
eccentricity.
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On the other hand, values of kmay be linked to the radial
density profile of the giant star. Whether or not the envelope
density profile could be approximated by a power-law, one-
dimensional stellar profile is unlikely to represent the stellar
structure during the CE inspiral because the presence of the
secondary into the primary’s envelope will significantly
affect its density profile. Besides this, the stellar structure of
the primary might be altered even prior to the inspiral phase
due to mass transfer and tidal forces. These considerations
further motivate us to regard the profile in Eq. (9) as an
effective force rather than strictly associate it to a specific
physical mechanism.

C. Analytic solutions for zero eccentricity

For zero initial eccentricity, the dependency on the
true anomaly disappears, and we are left with a single
differential equation for a:

_a ¼ −2Cμl−1
2 a

3−l−2k
2 : ð16Þ

Defining the parameter m ¼ ð3 − l − 2kÞ=2, this equation
has the following solutions:

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 −m

p
a1−m0 − 2ð1 −mÞCtμl−1

2 m ≠ 1; ð17Þ

a ¼ a0e−2Ctμ
ðl−1Þ=2

m ¼ 1: ð18Þ

The decay is exponential for m ¼ 1, which corresponds
to the case l ¼ 1, k ¼ 0.

III. HALTING THE INSPIRAL

So far, we have neglected any self-limiting mechanism
to the binary inspiral. However, in a realistic CE evolu-
tion, the orbital energy is spent on unbinding the envelope,
which may result in its complete ejection. The detailed
mechanism of envelope ejection during a CE event is still
under discussion. In many hydrodynamical simulations,
the envelope is never fully ejected, but it simply extends to
larger separations while remaining bound to the binary
[21,22,80,82–85]. Additional mechanisms, such as hydro-
gen and helium recombination [23,27,30,31,86] or dust-
driven winds [16], have been invoked to explain the
complete envelope ejection.
While our simple 0-dimensional model cannot capture as

many details as a full 3D hydrodynamical simulation, it is
still tempting to seek a self-limiting mechanism for our CE
model, which may be analytically tractable. In this section,
we discuss the possible models and their limitations.

A. Using the αλ formalism

The simplest way to halt the inspiral phase is to rely
on the αλmodel. In the αλ, the orbital energy lost during CE
is calculated on the basis of an energy balance equation.

The binding energy of the envelope is parametrized by λ in
the following expression [41]:

Ebind ¼ −
Gm1;envm1

λR
; ð19Þ

where m1;env is the mass of the envelope. When both stars
are giants at the onset of CE, the binding energy of both
envelopes is included in Eq. (19).
The binding energy is compared to the difference in

orbital energy

ΔEorb ¼ −
Gm1;cm2

2af
þ Gm1m2

2ai
; ð20Þ

where ai and af are the pre- and post-CE semimajor axes.
The parameter α is introduced before equating Eqs. (19)

and (20), and represents the CE efficiency. The final
expression from which the final semimajor axis af is
calculated reads as:

Gm1;cm1;env

R
¼ αλ

�
Gm1;cm2

2af
−
Gm1m2

2ai

�
: ð21Þ

In BPS codes, sometimes αλ are used together as a single
parameter, although this approach creates a degeneracy
between the binding energy estimate and CE efficiency.
A better approach is to estimate λ from detailed 1D stellar
evolution models [50,87–91].
We can use the αλ formalism together with the drag

force formalism presented in Sec. II. This choice has the
advantage of producing results consistent with the αλ (by
construction), while still allowing for nonzero final eccen-
tricity and avoiding discontinuities in the evolution of the
semimajor axis.
We can express the expected orbital energy loss by

rewriting Eq. (21) as

ΔEorb ¼
1

αλ

Gm1m1;env

R
: ð22Þ

While using the drag force formalism, we can then keep
track of the orbital energy loss as

_Eorb ¼
Gm1m2

2a2
_a; ð23Þ

and we can stop the integration as soon as the accumulated
orbital energy loss equates Eq. (22):

ΔEorb ¼
Z

tend

t0

_Eorbdt: ð24Þ

As stated earlier, Eq. (23) takes into account for the
energy losses caused by drag force only. Although it is
straightforward to add the additional derivative terms
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accounting for mass changes (see Appendix A), finding an
expression for the mass loss _M ≔ _menv consistent with the
αλmodel is not as simple. The reason is that the αλmodel is
fine-tuned to result in the complete ejection of the envelope
as soon as the inspiral ends. This is possible because it uses
a simple energy balance equation. However, the drag force
model decouples mass loss and energy loss, allowing for
inspirals to end before the envelope is fully ejected.
A possible way to couple mass loss and inspiral is to
impose that the mass loss _menv is proportional to the rate of
orbital decay due to the drag force, times the remaining
envelope mass, _menv ∝ menv _a=a. However, this coupling
would need to be precisely fine-tuned to achieve the
envelope ejection only when the total ΔEorb equates to
the amount prescribed by the αλ model.
We believe that this is not a drawback of the model, but a

feature that enables a more realistic modeling of the CE
phase. In fact, recent studies point out that a fraction of the
envelope will likely remain bound to the core after the
inspiral has stalled [38,92].

B. Self-similar expansion

In reality, the energy loss goes into unbinding the
envelope, so that its density decreases, the drag force
becomes weaker, and the inspiral stalls.
The binding energy of a nonrotating star can be

calculated with the following integral:

Ebind ¼
Z

M

mc

�
Eint −

Gm
r

�
dm; ð25Þ

where Eint is the internal energy, while the second term is
the gravitational term. In the past, only the gravitational
binding energy was taken into account, but recent works
have begun to include the thermal energy Eint term and
even recombination energy [89,91,93,94].
A simple approach is to assume that the envelope

expands homologously, conserving mass. Given an expan-
sion factor gðtÞ, the density ρ as a function of time and
position can be expressed as:

ρðt; rÞ ¼ 1

gðtÞ3 ρ0
�

r
gðtÞ

�
; ð26Þ

where ρ0 is the original density at time t ¼ 0 so that
gðt ¼ 0Þ ¼ 1 (see [95] for an analogous method with a
constant expansion factor). Intuitively, the density at
position r and time t is the density of the original profile
at the old position r0 ¼ r=g, rescaled by a factor g3 in order
to conserve the mass. The radius of the envelope at time t
is therefore RðtÞ ¼ R0gðtÞ. For a polytropic sphere, the
binding energy B is proportional to the inverse of the
radius, so that we can write:

BðtÞ ¼ B0

gðtÞ : ð27Þ

Equating the orbital energy losses _Eorb to the binding
energy losses:

_B ¼ −_g
B0

g2
¼ _Eorb; ð28Þ

so that the expansion factor gðtÞ evolves as:

_g ¼ −
mredμ

2a2
_a
B0

g2; ð29Þ

where mred is the reduced mass. This equation can be
integrated alongside Eqs. (10)–(13), but requires an initial
estimate of the initial binding energy B0. It is possible to use
the classic λ parametrization of B0 [Eq. (19)].
Changes in the local density ρðt; rÞ reflect on the drag

force through the parameter C. Because the power-law
model assumes that ρ0ðrÞ ∝ r−k, it follows from Eq. (26)
that CðtÞ ¼ C0=gðtÞ3−k, which closes our set of equations.
Figure 3 shows the common envelope evolution of a

1 M⊙ giant, 0.6 M⊙ companion binary with the inclusion of
the expansion factor. Here the initial orbit has an eccen-
tricity of 0.2 and a semimajor axis of 100 au. To estimate
the initial binding energy, we assume that the radius of the
giant star is R ¼ 83 R⊙ and its core mass 0.39 M⊙. The
introduction of the envelope expansion makes the inspiral
self-limiting: as the gas density decreases, the inspiral slows
down until it stalls. The final value of both eccentricity and
semimajor axis depends on the value of the binding energy,
parametrized by λ. Lower binding energies (larger values
of λ) halt the inspiral sooner, leaving the binary at larger
separations and higher eccentricity.

FIG. 3. Evolution of semimajor axis (top) and eccentricity
(bottom) as a function of time, assuming self-similar expansion of
the envelope. The colors indicate different initial binding energy
of the envelope, parametrized by the λ parameter [Eq. (19)]. Blue:
no envelope expansion. Orange: λ ¼ 0.2. Green: λ ¼ 0.5. Red:
λ ¼ 1. Purple: λ ¼ 2. We set χa ¼ 0.05.
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IV. COMPARISON WITH HYDRODYNAMICAL
SIMULATIONS

As explained in Sec. II A, the drag force model can be
considered as an effective model that can reproduce the
underlying physics of common envelope inspiral. It is
difficult to assess a priori which values of l, k, and C
better describe the complex physics at play. For this reason,
we compare the power-law model with smoothed-particle
hydrodynamical simulations of eccentric CE run by [78].
Figure 4 compares the core separation between the semi-
analytic model and four simulations with different stellar
parameters and initial orbital eccentricities. We note, that
while here we consider the location of the cores where the
center of mass of each star is, this is not necessarily the case
in the hydrodynamical simulations, where the envelope is
not limited to a spherical expansion. The left panels of Fig. 4
show a CE event between a 8 M⊙ giant and a 2 M⊙, while
the right panels involve a 1 M⊙ giant with a 0.6 M⊙

companion. We compare the hydrodynamical simulations
with the self-similar expansion model of Sec. III B, choos-
ing different values of k, C and λ, but fixed l ¼ 2.
The semianalytic model can reproduce the CE inspiral of

the hydro simulations with relatively good agreement. Even
though the 1D density profile of the giant star’s envelope
roughly follows a power-law exponent of≲3, the inspiral is
well reproduced by k ¼ 1. For the right panels of Fig. 4, the
simulations with 1 M⊙ giant and a 0.6 M⊙ companion
have a much faster inspiral than the k ¼ 1 model, and
k ¼ 1.5 better matches the separation decay.
The two different stellar models are better matched by a

different power-law index k, confirming our ansatz that the
radial partPðrÞ of the drag force represents the local density.
On the other hand, the estimated power-law k is signifi-
cantly shallower than the radial density profile of the 1D
stellar evolution model. This might be caused by the fact
that the stellar profile has been significantly altered by the
tidal field of the companion. In real systems, the stellar

FIG. 4. Comparison of the binary separation evolution for four hydrodynamical simulations and the power-law drag force model.
From top to bottom, left to right: simulations 8R2G5, 8R2G-0, 1R06P5, 1R06P7 from Glanz and Perets [78]. For clarity, we compared models
in 8R2G-0 from the second apocenter approach, where the CE rapid plunge-in began. The blue line is the separation obtained from the
hydrodynamical simulations, while the thick purple line is the power-law model. All the semianalytic curves use the quadratic drag force
(l ¼ 2). The left panels use a drag force linearly decreasing with radius (k ¼ 1), while the right panel adopts a power-law of k ¼ 3=2.
The top-right panel shows the difference between k ¼ 1 and k ¼ 3=2.
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profile might have been further altered by mass transfer and
tidal spin up.
In addition to the stellar density profile, the equation of

state of the star plays a crucial role in the unbinding of the
CE material and the stalling of the inspiral. In particular,
more massive stars are radiation-pressure dominated, and
therefore they have a lower binding energy than low-mass
stars. Hydrodynamics simulations have showed that CE
events of red supergiant stars end at a larger separation and
with a higher fraction of unbound mass when radiation
pressure and recombination energy contributions are
included [ [30,31], see also [94]].
In our model, besides adopting a different value of k,

differences between massive and low-mass stars can be
incorporated into the initial binding energy B0 when using
the self-similar expansion assumption, or into the parameter
λ, in the same way it is to the αλ model. This is agreement
with the best-match values of λ estimated from the
comparison in Fig. 4, which are λ ≃ 0.25 for the low-mass
model and λ ≃ 0.5 for the high-mass one.

V. APPLICATIONS TO ASTROPHYSICAL
SCENARIOS

A. CE triggered by the von Zeipel-Kozai-Lidov
mechanism in triples

In hierarchical triple systems, a stellar binary is orbited by
a tertiary star. The tertiary may affect the orbital evolution of
the binary through gravitational interactions, giving rise to
the so-called von Zeipel-Kozai-Lidov (ZKL) mechanism,
wherein the eccentricity of the inner binary can be excited to
extremely high values [96–100]. The ZKL mechanism has
been invoked to explain a variety of astrophysical phenom-
ena, for example, gravitational wave mergers of compact
objects [e.g., [101]], type Ia supernovae detonation from
white dwarf collisions [e.g., [102]], or evolutionary path-
ways in interacting stellar triples [e.g., [103]].
In stellar triples, the high eccentricity during a ZKL cycle

can trigger tidal interaction, mass transfer, and even CE
evolution [e.g., [103,104]]. While it is straightforward to
include tidal and mass transfer interactions in N-body or
triple stellar evolution codes [61,105–107], no analytic self-
consistent CE model for few-body systems exists yet [see
also [29,108]]. Here we show how our drag force model can
be included in direct N-body codes, enabling the modeling
of CE in hierarchical triples and even higher multiple
systems.
Figure 5 shows the evolution of a triple system consisting

of a 66 M⊙, 2771 R⊙ giant with a 29 M⊙ main sequence
companion, and a tertiary 29 M⊙ star. The tertiary is
inclined by 90° with respect to the inner binary, which
gives rise to ZKL oscillations. During the first ZLK cycle,
the eccentricity of the inner binary grows enough that the
secondary enters into the envelope of the primary. In the
absence of drag forces or collisions, the ZLK cycle

continues and the eccentricity naturally decreases again
(dotted lines in Fig. 5). This happens because, in the absence
of binary interactions, this configuration is stable and the
triple could undergo another ZLK cycle, with the eccen-
tricity oscillating between ∼0.06 and 0.96. When we
include the drag force, the binary semimajor axis begins
to decay as soon as the secondary is engulfed by the primary
(solid lines in Fig. 5). However, the drag is too weak to
damp the increase in eccentricity, which continues to rise
and decay following the ZKL cycle. However, as the
semimajor axis decreases, the perturbation from the tertiary
star becomes weaker, and the eccentricity decreases slowly.
We stop the simulation once the energy released by the drag
force matches the binding energy of the envelope, as
calculated using the prescriptions of Claeys et al. [91].
In the end, the semimajor axis has shrunk by a factor of 20,
retaining an eccentricity of ∼0.35. Conversely, αλ model
predicts a similar final semimajor axis (af ≃ 634 R⊙), but
with zero final eccentricity.
In this example, we focused on the main differences

between our common envelope prescription and the αλ
model. Therefore, we have neglected other forces, like tidal
interactions or mass transfers prior to the CE event.
Additional forces to model these effects can be easily
included [65,109], but they would be limited to altering the
binary parameters prior to the CE event.

B. CE in isolated binary stellar evolution

BPS codes employ the αλ model, meaning that they
cannot estimate the eccentricity of binaries after CE events.
In the BSE code and derivatives, the final eccentricity is set to
zero after practically every CE evolution. However, this is in

FIG. 5. Semimajor axis (top), eccentricity (middle), and sep-
aration (bottom) of the inner binary of a triple stellar system as a
function of time. Solid lines: simulation including a drag force
term with l, k ¼ 2, 0 and χa ¼ 0.005. Dotted line: simulation
with no drag force. We stop the CE simulation as soon as the
energy released by the drag equals the binding energy of the
envelope. Evolved by means of direct N-body integration with an
Hermite scheme [66,67].
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tension with the observation of systems believed to be post-
CE binaries, such as close binaries with a subdwarf B=O
star. In fact, while most studies assume zero eccentricity for
such systems, a few post-CE binaries show eccentricities up
to ∼0.15 [54–58].
We have extracted a sample of CE episodes from 2659

runs of a modified version of BSE [110], and we have rerun
them with our new model, using the perturbative equations
of Sec. II A. The BSE runs were obtained from the following
setup. The initial mass function (IMF) of primary stars
follows Kroupa’s IMF [111] with the minimum and
maximum masses of 10 and 150 M⊙, respectively. Mass
ratios of secondary stars to primary stars are distributed
uniformly between 0 and 1. The semi-major axis distribu-
tion is uniform in a logarithmic scale between 1 and
106 R⊙. The eccentricity distribution is thermal. The single
star evolution is Hurley’s model [45] with stellar metallicity
Z ¼ 0.002. We adopt common envelope parameters α ¼ 1

and Claeys’s λ [91]. The common envelope evolution sets
in under the same criteria as [87].

BSE already includes recipes for the tidal circularization
of close binaries and orbital changes due to mass and
momentum transfer. Nonetheless, many systems enter the
CE phase with a significant eccentricity, as shown by the
blue distributions in Figure 6. This is consistent with the
population synthesis study of Vigna-Gómez et al. [28],
which estimated that at least 18% of the binaries will be
eccentric at the onset of the Roche lobe overflow that leads
to the CE event. This result is also supported by detailed
studies on the tidal evolution of evolving giants with close
companions [112].

For all the runs with our common envelope formalism,
we adopt l ¼ 2, k ¼ 1 and χa ¼ 0.05. As described in
Sec. III A, we make our model consistent with the αλmodel
by stopping the integration once the energy released by the
drag force equals the binding energy of the envelope. We
also avoid applying the drag once the secondary is outside
the envelope of the primary.
Our model allows to estimate the eccentricities after CE,

which are not necessarily zero. This is clear from Fig. 6,
which compares the distributions of pericenter distances
and eccentricity before and after CE evolution. While the
final eccentricity distribution is indeed peaked at zero, there
is a tail of systems with some residual eccentricity, up to
ef ∼ 0.2. This is surprisingly similar to the observed
distribution, even though our simulations consider CE of
a broad range of stellar types, and not just of subdwarf O=B
stars or white dwarfs [see Fig. 2 from [58]]. Given that the
residual eccentricities in our model are very small, the final
pericenter distribution does not differ significantly from the
one obtained from BSE.

VI. SUMMARY

In this paper, we presented a new semi-analytic model of
CE evolution, which can be incorporated in N-body and
BPS codes alike. Even though our model is based on simple
assumptions, it offers several advantages with respect to
previous models. First, it can be easily incorporated into
N-body codes, enabling the modeling of CE evolution in
hierarchical triple and higher multiple stellar systems with-
out the need of running expensive hydrodynamical simu-
lations. Finally, it can be made consistent with the αλmodel,

FIG. 6. Pericenter distance (left) and eccentricity (right) distributions, pre-CE (blue) and post-CE (red). In the left panel, the post-CE
semimajor axes distribution derived from BSE is outlined in green. Using the drag force model with χa ¼ 0.05, l ¼ 2, k ¼ 1, and
stopping the inspiral to be consistent with the αλmodel, as described in Sec. III A. The common envelope events are taken from the BPS
calculations of Tanikawa et al. [110]. In BPS codes, the final eccentricities are in practice always zero, while we obtain small but finite
eccentricities in our model.
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widely used in BPS codes, with the advantage of being able
to follow the CE inspiral and provide the final eccentricity
of the binary.
Even though our model is still mostly phenomenologi-

cal, i.e., relying on convenient (albeit arbitrary) para-
metrizations, it lays the foundations for a more predictive
semianalytical model of CE evolution. We explore
this direction in our forthcoming work, which will focus
on incorporating improved physics into the model, includ-
ing more realistic density profiles, angular momentum
exchange, and mass loss.
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APPENDIX A: MASS LOSS PRESCRIPTIONS

For completeness, we write here the equations of motion
for adiabatic mass loss or mass gain. If both particles
accrete or lose mass isotropically (i.e., with no net linear
momentum transfer onto the particles), at rates _m1, _m2, we
can write the total mass change as _M ¼ _m1 þ _m2. From
energy conservation, it is possible to derive the net force per
unit-mass acting on the reduced mass system:

f ¼ −
_M

2M
v: ðA1Þ

We can see that this perturbative force amounts to a linear
drag, that is Eq. (9) with l ¼ 1, k ¼ 0, and C ¼ _M=2M.
Consequently, the equations of motion follow from
Eqs. (10)–(13):

_a ¼ −
_M
M

a
1 − e2

ð1þ e2 þ 2e cos νÞ; ðA2Þ

_e ¼ −
_M
M

ðeþ cos νÞ; ðA3Þ

_ω ¼ −
_M
M

sin ν
e

: ðA4Þ

These equations can be added directly to the drag force
equations, once a suitable expression for _M is provided.
Note that these equations are valid as long as the

perturbative force in Eq. (A1) is relatively small compared
to the Newtonian one. If this is not the case, a better
description is provided by the impulsive approximation,
which assumes instantaneous mass loss [113].
Equations (A2)–(A4) can also be orbit-averaged by

integrating them over the mean anomaly (see Eq. (8),
and, e.g., [114]). The resulting secular equations are:

h _ai ¼ −
_M
M

a; ðA5Þ

h_ei ¼ 0; ðA6Þ

h _ωi ¼ 0: ðA7Þ

In other words, assuming isotropic and adiabatic mass
changes, the only net secular effect is the change in the
binary semimajor axis, while the eccentricity and the
apsidal orientation are not affected. This is in agreement
with the bottom panel of Fig. 1, which shows the integrated
evolution of the orbital elements for a drag force with l ¼ 1,
k ¼ 0. Neglecting the fast oscillations on the orbital time-
scale, the semimajor axis decreases exponentially (as a
straight line in the log-linear plot) while ω and e remain
constant, in agreement with Eqs. (A5)–(A7).

APPENDIX B: ORBIT-AVERAGED EQUATIONS

Equations (10)–(13) express the evolution of the binary
orbital elements, including the true anomaly ν, while BPS
and triple evolution codes adopt secular equations that
average out the dependency on ν. It is not easy to obtain
orbit-averaged expressions for generic power-law exponents
l and k, so we write here the orbit-averaged expressions for
the most physically relevant cases.
In the following, the functions KðxÞ, EðxÞ, and Πðx; yÞ

are the complete elliptic integrals of the first, second, and
third kind, respectively. The orbit-averaged argument of
pericenter h _ωi is zero for all the reported cases. Finally, to
simplify the writing, we make use of the following auxiliary
variables:

x ¼ −
4e

ðe − 1Þ2 ; ðB1Þ

y ¼ 4e
ðeþ 1Þ2 ; ðB2Þ

z ¼ 2e
eþ 1

; ðB3Þ
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w ¼ 2e
e − 1

: ðB4Þ

1. f ∝ v2 (l = 2, k = 0)

h _ai ¼ C
ffiffiffiffiffiffi
aμ

p
ð1− e2Þπ ½ðeþ 1Þðe− 1Þ2EðxÞ− ðeþ 1Þ2ðe− 1ÞEðyÞ

− ð7þ e2Þðeþ 1Þ KðxÞ þ ð7þ e2Þðe− 1Þ KðyÞ
þ 4ðeþ 1Þ2Πðw;xÞ þ 4ðe− 1Þ2Πðz; yÞ�; ðB5Þ

h_ei ¼ C
eπ

ffiffiffi
μ

a

r
½ðeþ 1Þðe − 1Þ2EðxÞ − ðeþ 1Þ2ðe − 1ÞEðyÞ

− ð3þ e2Þðeþ 1Þ KðxÞ þ ð3þ e2Þðe − 1Þ KðyÞ
þ 2ðeþ 1Þ2Πðw; xÞ þ 2ðe − 1Þ2Πðz; yÞ�: ðB6Þ

2. f ∝ v2
r (l = 2, k= 1)

h _ai ¼ 2C
ðe2 − 1Þπ

ffiffiffi
μ

a

r
½2ðeþ 1ÞEðyÞ þ 2ð1 − eÞEðxÞ

þ 2ðe − 1Þ KðyÞ − 2ðeþ 1Þ KðxÞ
þ ðeþ 1Þ2Πðw; xÞ þ ðe − 1Þ2Πðz; yÞ�; ðB7Þ

h_ei¼−
2C
aeπ

ffiffiffi
μ

a

r
½ðeþ1ÞEðyÞþð1−eÞEðxÞþ2ðe−1ÞKðyÞ

−2ðeþ1ÞKðxÞþðeþ1Þ2Πðw;xÞþðe−1Þ2Πðz;yÞ�:
ðB8Þ

3. f ∝ v2

r2
(l = 2, k= 2)

h _ai ¼ −
2C

3aðe2 − 1Þ2π
ffiffiffi
μ

a

r
½−ðe2 þ 1Þðe − 1ÞEðxÞ

þ 7ðe2 þ 1Þðeþ 1ÞEðyÞ þ ðe2 − 1Þðeþ 1Þ KðxÞ
− ðe2 − 1Þðeþ 1Þ KðyÞ�; ðB9Þ

h_ei ¼ C
3a2eðe2 − 1Þ2π

ffiffiffi
μ

a

r
½−ðe2 þ 1Þðe − 1ÞEðxÞ

þ ð13e2 þ 1Þðeþ 1ÞEðyÞ þ ðe2 − 1Þðeþ 1Þ KðxÞ
− ðe2 − 1Þðeþ 1Þ KðyÞ�: ðB10Þ

In Fig. 7 we compare the numerical integration with the
phase-dependent equations (Eqs. (10)–(13) with l¼2, k¼0)
and the orbit-averaged counterparts [Eqs. (B5)–(B6)].
As expected, the orbit-averaged evolution does not exhibit
any oscillations on the orbital timescale, but represents
the average value of semimajor axis and eccentricity over
one orbit.

APPENDIX C: EVOLUTION OF THE
ECCENTRICITY WITH DYNAMICAL

FRICTION FORCES (l = − 2)
In this section we analyze the evolution of the eccen-

tricity for l ¼ −2. This case corresponds to the dynamical
friction force in collisionless and collisional media, wherein
a massive body moving in sea of smaller bodies is slowed
down by the overdensity that forms in its wake. We note
that, during the finalization of this manuscript, Szölgyén
et al. [115] posted an analysis of this case using a simplified
toy model, finding that k ¼ 3 is the boundary between the
increase and decrease in eccentricity. Our results agree with
their estimate, and in this Appendix we provide a complete
explanation grounded in perturbation theory.
We begin our analysis by considering that for l ¼ 2,

Eq. (11) reads as:

_e ¼ −2Cμ−3
2a

3−2k
2 ð1 − e2Þ3−2k2 ð1þ e cos νÞk

× ð1þ e2 þ 2e cos νÞ−3
2ðeþ cos νÞ: ðC1Þ

After applying the orbit-averaging technique from Eq. (8),
the integrand function obtains the following form:

_e
2π

dM
dν

¼ hðC; μ; aÞð1 − e2Þ3−kð1þ e cos νÞk−2

× ð1þ e2 þ 2e cos νÞ−3
2ðeþ cos νÞ; ðC2Þ

FIG. 7. Comparison between phase-dependent [Eqs. (10)–(13)]
versus orbit-averaged evolution [Eqs. (B5)–(B6)] for the case
l ¼ 2, k ¼ 0. Top panel: semimajor axis. Bottom panel: eccen-
tricity. Both integrations are carried out with a Dormand-Prince
8th order integrator. In both cases, χa ¼ 0.05.
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where

hðC; μ; aÞ ¼ −
Cμ−

3
2a

3−2k
2

π
: ðC3Þ

After carrying out all the constant terms, the integral in ν
contains only

Iðν; eÞ ¼ ð1þ e cos νÞk−2ð1þ e2 þ 2e cos νÞ−3
2ðeþ cos νÞ:

ðC4Þ

Unfortunately, we were not able to find a generic
solution to the integral

IðeÞ ¼
Z

2π

0

Iðν; eÞdν ðC5Þ

for arbitrary values of k. It is however possible to derive
analytic solutions for fixed values of k. We derived the
analytic expressions of h_ei for k ¼ 1, 2, 3, 5, and show the
integral −IðeÞ for different values of k in Fig. 8. Here we
quote only the complete expression for k ¼ 3:

h_ei¼ 2C

πa3=2ðeþ1Þ2μ3=2 ½ðe−1ÞEðxÞþðeþ1ÞEðyÞ�; ðC6Þ

where we have used the notation of the previous section.
It can be shown that for jej<1, ðe−1ÞEðxÞ¼−ðeþ1ÞEðyÞ
and consequently h_ei ¼ 0 for k ¼ 3.
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