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Instead of parametrizing the pressure-density relation of a neutron star (NS), one can parametrize its
macroscopic properties such as mass (M), radius (R), and dimensionless tidal deformability (Λ) to infer the
equation of state (EOS) combining electromagnetic and gravitational wave (GW) observations. We present
a new method to parametrize RðMÞ and ΛðMÞ relations, which approximates the candidate EOSs with
accuracy better than 5% for all masses and spans a broad region of theM − R − Λ plane. Using this method
we combine the M − Λ measurement from GW170817 and GW190425, and simultaneous M − R
measurement of pulsars PSR J0030þ 0451 and PSR J0740þ 6620 to place joint constraints on NS
properties. At 90% confidence, we infer R1.4 ¼ 12.05þ0.98

−0.87 km and Λ1.4 ¼ 372þ220
−150 for a 1.4 M⊙ NS, and

R2.08 ¼ 12.65þ1.36
−1.46 km for a 2.08 M⊙ NS. Furthermore, we use the inferred values of the maximum mass of

a nonrotating NSMmax ¼ 2.52þ0.33
−0.29 M⊙ to investigate the nature of the secondary objects in three potential

neutron star–black hole merger (NSBH) systems.

DOI: 10.1103/PhysRevD.106.043012

I. INTRODUCTION

The lack of theoretical understanding of the matter
properties of a neutron star (NS) at the supranuclear
densities has prevented us from giving a unique description
of its EOS. The recent detection of gravitational waves
(GWs) by LIGO [1]/Virgo [2] (LVC) collaboration forms
two likely binary neutron star (BNS) merger events named
GW170817 [3,4] and GW190425 [5] and has ushered in a
new light to solve this problem. The tidally deformed
components of a BNS merger in their late inspiral phase
leave a detectable imprint on the emitted GW signals. The
measurement of the tidal deformabilities associated with
these observations provides direct information about the
equation of state (EOS) of the NS [6–9]. It also depends on
the superfluid nature of the matter, and symmetry of
spacetime [10–13]. Apart from GWs, other types of
astrophysical observations also have supplied complemen-
tary constraints on the properties of NS. A space-based
mission led by the Neutron Star Interior Composition
ExploreR (NICER) collaboration has already presented
quite precise measurement of mass and radius of the pulsars
PSR J0030þ 0451 [14,15] and PSR J0740þ 6620 [16,17]
using pulse-profile modeling. Additionally, observations of

massive pulsars [18–20] by radio telescopes provide
important insights on the high density part of the NS
EOS. All of these measurements of NS macroscopic
properties, such as mass (M), radius (R), and tidal defor-
mablities (λ), lead us to the EOS which is the same for all
the NSs present in the Universe.
To maximize the amount of information, we need to

combine all the present and future observations from
different astrophysical messengers. Several parametric
[16,21–29] or nonparametric [30,31] approaches already
exist in the literature which successfully combine informa-
tion of NS properties from multiple cosmic messengers and
place joint constraints on its EOS. All the parametric
approaches construct a particular functional form of NS
EOS which spans a wide range in the pressure-density
(P − ρ) plane maintaining thermodynamic stability and
causality. Since the EOS has one-to-one correspondence
with RðMÞ or ΛðMÞ (where Λ ¼ λ=M5), by choosing PðρÞ
parametrization we can reconstruct the posterior of the NS
EOS adopting a hierarchical Bayesian formalism. Though
parametrizing the PðρÞ relation gives us several advantages
as it tells us about the microphysics, however computa-
tionally it is expensive. One needs to solve both the
TolmanOppenheimerVolkoff (TOV) equation [32] and
perturbed Einstein equations to calculate RðMÞ and
ΛðMÞ for a given EOS and this process needs to be
repeated over a million times to ensure well converged
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posterior distribution of EOS parameters. In the nonpara-
metric method, a large number of EOS functionals are
generated whose ranges in the P − ρ plane are loosely
guided by a certain number of widely used candidate
nuclear EOSs from the literature, without the explicit need
for any type of parametrization. Using such method a P − ρ
plane can be constructed which can be used to compute the
macroscopic properties of NSs by solving the TOV
equation in the similar manner as the parametric methods.
However, instead of parametrizing the PðρÞ relation, one

can choose to parametrize the RðMÞ and ΛðMÞ relation. In
the past, Refs. [33,34] have considered a simple expansion
of λðMÞ about a reference mass of 1.4 M⊙: λðMÞ ¼P

j
1
j! cjðM−1.4 M⊙

M⊙
Þj. The set of expansion coefficients

fcjg is EOS sensitive and can be used to approximate
different EOSs. However, because of the simplicity of this
model this approximation breaks down for most of the
EOSs above 1.8 M⊙ [35]. Also for a set of fcjg it is not
possible to calculate the maximum mass (Mmax) of a NS in
terms of fcjg. Therefore the constraints coming from the
massive pulsar observations cannot be added under this
framework using Bayesian statistics since the probability is
associated withMmax. Nonetheless, a better parametrization
of the RðMÞ and ΛðMÞ relation overcoming the above-
mentioned difficulties would be very useful to speed up the
parameter estimation combining multiple observations. In
the parametric or the nonparametric approaches, the dom-
inant cost in parameter estimation comes from evaluating
RðMÞ;ΛðMÞ for each EOS associated with the correspond-
ing observed masses. By directly parametrizing the RðMÞ
and ΛðMÞ relation, we can avoid this step and reduce a
huge computational cost.
In this paper, we introduce a new way to parametrize

RðMÞ andΛðMÞ relations which approximate the candidate
EOSs quite accurately for all masses. We then apply this
parametrization to combine M − Λ measurements from
GW170817 and GW190425 observations,M − Rmeasure-
ments of PSR J0030þ 0451 and PSR J0740þ 6620, and
massive pulsar mass measurements to place joint con-
straints on the properties of NS. Finally based on the
inferred Mmax, we investigate the nature of the secondary
objects in three potential neutron star-black hole (NSBH)
systems announced by LVC in their third observing run.

II. USAGE OF M −Λ CURVE

We use the following functional form to parametrize the
M − Λ curve:

M
M⊙

ðΛÞ ¼
X3
i¼0

biðln ΛÞi: ð1Þ

For a given set of fbig, the maximum mass (Mmax) is
defined as

dM
dΛ

����
M¼Mmax

¼ 0: ð2Þ

Therefore, Mmax ¼
P

3
i¼0 biðln ΛmaxÞi, where lnΛmax ¼

minð−b2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b22 − 3b1b3

p
Þ=3b3. We impose the following

conditions on this parametrization: (i) b22 − 3b1b3 > 0,
otherwise Mmax is imaginary; (ii) ΛðM ¼ 1 M⊙Þ < 5000,
which takes into account the range covered by the candi-
date EOSs.
For this work, we consider 27 EOS models which are

computed from different nuclear-physics approximations
covering a wide range in the mass-radius diagram (see
Fig. 1 of [36]). These EOSs are taken from the publicly
available LALSUITE [37] package. They are consisted of
plain npeμ nuclear matter which include the following:
(i) variational-method EOSs (AP3-4) and APR [38],
APR4_EFP [38,39], WFF1-2 [40]); (ii) potential based
EOS SLY [41]; (iii) nonrelativistic Skyrme interactions
based EOSs (SLY2 and SLY9 [42,43], SLY230A [44], RS
[45], BSK20 and BSK21 [46,47], SK255 and SK272
[42,43,48], SKI2-6 [42,43,49], SKMP [42,43,50]); (iv) rela-
tivistic Brueckner-Hartree-Fock EOSs (MPA1 [51], ENG
[52]); and (v) relativistic mean field theory EOSs (MS1,
MS1B, MS1_PP, MS1B_PP where MS1_PP, MS1B_PP
[53] are the analytic piecewise polytrope fits of original
MS1 and MS1B EOSs, respectively). It should be noted
that for the choice of EOS catalog we closely follow
Refs. [36,54] but excluding EOSs with phase transition.
These EOSs are compatible with the mass measurement
(M ¼ 2.08� 0.07 M⊙ at 1σ confidence interval) of the
observed heaviest pulsar [19,20]. In Table 1 of Ref. [36],
the radius and tidal deformability of 1.4 M⊙ NS are shown
for each EOS and the corresponding ranges are (10.42,
15.07) km and (153,1622), respectively. Readers are
referred to the respective references listed in Table I as
well as Ref. [54] for the details on these EOSs.
In Fig. 1, we show the fitted M − Λ curves to the true

curves for three candidate EOSs SLy (soft) [41], MPA1
(intermediate) [51], and MS1 (stiff) [53]. As can be seen
from the bottom panel of this figure, the error in this fit is
≤ 5% for all the considered mass ranges. This parametri-
zation is fitted to wide-ranging candidate EOSs which are
listed in Table I of Ref. [36] using the least square method.
We provide the best-fit parameters in Table I. Based on the
values of the fitting parameter we choose the prior ranges.
In Table II, the prior ranges of each EOS-sensitive
parameter are shown. The boundary values of the prior
ranges of fbig have been fixed by identifying them with the
maximum and minimum values in Table I.
In order to compute the radius (R), we use the well

established EOS-insensitive relationship between the com-
pactness (C ¼ M=R) and Λ,
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C ¼ 3.531 × 10−1 − 2.889 × 10−2 ln Λ

− 1.056 × 10−3ðln ΛÞ2 þ 1.295 × 10−4 ðln ΛÞ3; ð3Þ

where the coefficients are obtained by fitting all the
candidate EOSs considered in this work. We acknowledge
there is a maximum of ∼3% error present in this relation for
the EOSs considered here. Note, we are using EOS-
insensitive C − Λ relation only for the computation of
the radius. This relation has not been used for the inference
of any other physical parameter in our work.

TABLE I. Parameters that provide the best fit to the candidate EOSs and corresponding maximum % error are given, as well as true
Mmax, fitted Mmax obtained using Eq. (2), and corresponding % error in Mmax for each candidate EOS are quoted.

EOS name b0 b1 b2 b3
Maximum %

error in MðΛÞ fit
True

Mmax½M⊙�
Fitted

Mmax½M⊙�
% error
in Mmax

AP3 [38] 2.433770 0.022338 −0.054348 0.003612 2.317 2.390 2.436 1.891
AP4 [38] 2.242567 0.031303 −0.052220 0.003488 1.716 2.213 2.247 1.538
APR4_EPP [38,39] 2.218288 0.031008 −0.051365 0.003410 1.689 2.159 2.223 2.874
BSK20 [46,47] 2.168145 0.075493 −0.056412 0.003518 1.565 2.167 2.195 1.246
BSK21 [46,47] 2.251723 0.120568 −0.065303 0.003888 1.791 2.277 2.311 1.469
ENG [52] 2.238523 0.074432 −0.055334 0.003304 0.359 2.253 2.265 0.520
MPA1 [51] 2.530978 0.033075 −0.058213 0.003810 2.774 2.469 2.536 2.647
MS1B [53] 2.918873 0.035826 −0.060997 0.003727 4.531 2.797 2.924 4.347
MS1B_PP [53] 2.819530 0.058321 −0.063682 0.003841 2.339 2.747 2.833 3.062
MS1_PP [53] 2.838732 0.044147 −0.059261 0.003532 2.570 2.753 2.847 3.313
MS1 [53] 2.939461 0.020344 −0.056119 0.003388 4.878 2.799 2.941 4.838
SLY [41] 2.025575 0.106152 −0.056934 0.003397 1.258 2.054 2.078 1.187
WFF1 [40] 2.175612 0.007872 −0.050936 0.003711 1.915 2.137 2.176 1.779
WFF2 [40] 2.237742 0.009126 −0.047259 0.003182 1.558 2.201 2.238 1.653
APR [38] 2.217008 0.033981 −0.052326 0.003495 1.665 2.190 2.223 1.473
RS [42,43,45] 2.057707 0.135273 −0.057613 0.003175 1.421 2.117 2.143 1.238
SK255 [42,43,48] 2.101598 0.123621 −0.057149 0.003211 1.593 2.144 2.173 1.335
SK272 [42,43,48] 2.213105 0.107295 −0.057295 0.003281 1.736 2.232 2.266 1.537
SKI2 [42,43,49] 2.092382 0.144265 −0.058055 0.003108 1.457 2.163 2.189 1.195
SKI3 [42,43,49] 2.186424 0.136229 −0.060239 0.003311 1.609 2.240 2.269 1.285
SKI4 [42,43,49] 2.133640 0.122718 −0.061493 0.003598 1.615 2.170 2.199 1.340
SKI5 [42,43,49] 2.187534 0.130339 −0.055545 0.002922 1.600 2.240 2.270 1.293
SKI6 [42,43,49] 2.158231 0.120201 −0.061455 0.003598 1.665 2.190 2.221 1.393
SKMP [42,43,50] 2.060798 0.125223 −0.058028 0.003301 1.402 2.107 2.133 1.220
SLY2 [42,43] 2.022697 0.109539 −0.057869 0.003462 1.298 2.054 2.078 1.163
SLY230A [42–44] 2.074374 0.111313 −0.060514 0.003666 1.553 2.099 2.129 1.395
SLY9 [42,43] 2.126594 0.116213 −0.060068 0.003528 1.566 2.156 2.186 1.390

FIG. 1. In the upper panel, mass (M) and its fitted curve are
plotted for three candidate EOSs SLy (soft) [41], MPA1 (inter-
mediate) [51], and MS1 (stiff) [53] as a function of dimensionless
tidal deformability (Λ). In the lower panel, the percentage of error
of the fit is also shown.

TABLE II. Prior ranges of various EOS-sensitive parameters.

Parameter Prior

b0 Uniform (2.007073, 2.939462)
b1 Uniform (0.007872, 0.165409)
b2 Uniform (−0.047259, −0.077523)
b3 Uniform (0.002922, 0.005051)
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III. BAYESIAN METHODOLOGY

The posterior of the EOS-sensitive parameters (denoted
as θ) is computed using the nested sampling algorithm
implemented in PYMULTINEST [55]:

PðθjdÞ ¼ PðdjθÞ × PðθÞ
PðdÞ ¼ ΠiPðdijθÞ × PðθÞ

PðdÞ ; ð4Þ

where θ ¼ ðb0; b1; b2; b3Þ is the set of our EOS-sensitive
parameters, d ¼ ðdGW; dX-ray; dRadioÞ is the set of data from
the three different types of observations that are used to
construct the likelihood, PðθÞ are the priors of those
parameters and PðdÞ is the Bayesian evidence, given the
particular EOS model. The expressions of individual like-
lihood are derived in Refs. [26,29,30], but for clarity we
repeat them here. For GW observations, information about
EOS-sensitive parameters come from the massesM1,M2 of
the two binary components and the corresponding tidal
deformabilities Λ1, Λ2. In this case,

PðdGWjθÞ ¼
Z

Mmax

M2

dM1

Z
M1

Mmin

dM2PðM1;M2jθÞ

× PðdGWjM1;M2;Λ1ðM1; θÞ;Λ2ðM2; θÞÞ;
ð5Þ

where PðM1;M2jθÞ is the prior distribution over the
component masses which should be informed by the NS
population model. However, the choice of wrong popula-
tion model starts to bias the results significantly only after
∼20–30 observations [30,34,56]. Therefore given the small
number of detections at present, this can be fixed by a
simple flat distribution over the masses,

PðmjθÞ ¼
� 1

Mmax−Mmin
iff Mmin ≤ M ≤ Mmax;

0 else:
ð6Þ

In this workwe setMmin ¼ 1 M⊙ andMmax to themaximum
mass for that particular EOS. The normalization factor on the
NS mass prior is very important as it prefers the EOS with
slightly largerMmax than the heaviest observed NSmass and
disfavors the EOS with much largerMmax. For example, two
EOSs with Mmax ¼ 2.5 M⊙ and Mmax ¼ 3 M⊙, will have
mass prior probability PðMjθÞ ¼ 2=3 and PðMjθÞ ¼ 1=2,
respectively, if Mmin ≤ M ≤ Mmax. Though both of the
EOSs support the heaviest NS mass measurement
(2.08� 0.07 M⊙) equally well, the EOS with Mmax ¼
3 M⊙ is less probable than the EOS with Mmax ¼
2.5 M⊙. A similar approach has been employed in previous
works as well [21,29,30,57]. Alternatively, the NS mass
distribution can be truncated to a largest population mass
which is informed a formation channel (e.g., supernova)—in
that situation EOSs with Mmax greater than the largest
population mass will be assigned equal probability. As we

lack the knowledge on the upper limit of NS mass distribu-
tion, we choose to limitMmax based on the EOS itself not the
formation channel. A broader discussion on different choices
of mass priors has been discussed in the Appendix of
Ref. [58]. However, if the masses in GW observation are
expected to be smaller than the mass of the heaviest pulsar,
then the upper limit on the mass prior can be chosen by the
likelihood’s domain of support to reduce the computa-
tional time.
Equation (5) can further be simplified by fixing the GW

chirp mass to its median value with not so much affecting
the result [21] given its high precision measurement. As a
result we will have one less parameter to integrate over as
M2 will be a deterministic function of M1.
From x-ray observations we get the mass and radius

measurements of NS. Therefore, the corresponding like-
lihood takes the following form:

Pðdx rayjθÞ ¼
Z

Mmax

Mmin

dMPðMjθÞ

× Pðdx rayjM;RðM; θÞÞ: ð7Þ

Similar to the GW observation, here also the explicit prior
normalization over the mass should be taken into account
or can be chosen by the likelihood’s domain of support (if
applicable).
Radio observations provide us with accurate measure-

ments of the NS mass. In this case, we marginalize over the
observed mass taking into account its measurement uncer-
tainties,

PðdradiojθÞ ¼
Z

Mmax

Mmin

dMPðMjθÞPðdradiojMÞ: ð8Þ

Here the prior normalization of mass must be taken into
account as the observed mass measurement is close to the
maximum mass predicted by the EOS.
The likelihood distributions used in this work are

modeled as follows: (a) The old mass measurement of
PSR J0740þ 6620 [19] is modeled with a Gaussian
likelihood of 2.14 M⊙ mean and 0.1 M⊙ 1σ standard
deviation. (b) The mass and tidal deformability measure-
ment from GW170817 [59] and GW190425 [5] are
modeled with an optimized multivariate Gaussian kernel
density estimator (KDE) implemented in STATSMODELS

[60]. (c) Similarly, the mass and radius measurement of
PSR J0030þ 0451 [14,15] and PSR J0740þ 6620 [16,17]
are also modeled with Gaussian KDE. Since the uncertainty
in the mass-radius measurement of PSR J0740þ 6620 is
larger for Ref. [16] than Ref. [17] due to a conservative
treatment of calibration error, we analyze both data
separately and compare the results. This is to emphasize
when we include the x-ray mass and radius measurement of
PSR J0740þ 6620, we do not add its radio mass meas-
urement to avoid double counting.
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IV. RESULTS

In Fig. 2, posterior distribution of EOS-sensitive param-
eters and their correlations with R1.4, Λ1.4, R2.08, and Mmax
are shown after adding successive observations. The corre-
sponding median and 90% credible interval (CI) of these
macroscopic quantities are listed inTable III.We note that the
inferred R or Λ values only have been sightly larger after
adding the old radio mass measurement (2.14� 0.1 M⊙) of
PSR J0740þ 6620. All the candidate EOSs which we

choose to set the prior range of b’s have Mmax ≥ 2 M⊙.
As a result, addition of PSR J0740þ 6620’s mass meas-
urement has a marginal effect on the R or Λ values. This is
nicely illustrated in the upper left panel of Fig. 3.Herewe plot
the 90% CI of mass-radius posterior distribution adding
various types of observational data successively. In the upper
left panel, the prior region is shown using solid black. In the
upper right panel, themass-radius posterior region is overlaid
after adding PSR J0740þ 6620’s mass measurement.

FIG. 2. Posterior distribution of EOS-sensitive parameters and their correlations with R1.4, Λ1.4, R2.08, and Mmax are shown here after
adding each type of observational data successively.
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TABLE III. Median and 90% CI of R1.4, Λ1.4, R2.08, and Mmax are quoted here.

+X-ray

Quantity Prior Radio +GW +Riley +Miller Combined

R1.4 [km] 11.12þ2.48
−2.14 11.19þ2.35

−1.92 11.00þ1.58
−1.47 11.95þ0.96

−0.80 12.18þ0.91
−0.88 12.05þ0.98

−0.87
Λ1.4 228þ559

−175 237þ529
−171 212þ280

−132 359þ218
−128 405þ224

−152 372þ220
−150

R2.08 [km] 11.83þ2.74
−2.69 11.92þ2.70

−2.24 11.88þ1.84
−1.83 12.50þ1.35

−1.39 13.09þ1.21
−1.52 12.65þ1.36

−1.46
MmaxðM⊙Þ 2.41þ0.46

−0.33 2.40þ0.46
−0.29 2.41þ0.44

−0.28 2.47þ0.34
−0.27 2.57þ0.30

−0.31 2.52þ0.33
−0.29

FIG. 3. 90% credible interval (CI) of mass radius are shown. At first, in the upper left panel prior is shown in black shade. Then the
upper right panel shows the effect of adding the mass measurement of PSR 0740þ 6620 from [19] and compared against the prior. In a
similar manner, two BNS merger signals and mass-radius measurements of two pulsars by NICER collaboration are added successively
in the lower panel.
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We can see it only exclude a little portion with smaller radii.
Thereafter, we add the M − Λ measurements from two GW
events named GW170817 and GW190425. The addition of
GW data makes the values of R and Λ much smaller. Within
the 90% CI R1.4 and Λ1.4 now becomes 11.00þ1.58

−1.47 km and
212þ280

−132 , respectively. We note that this bound onΛ1.4 is well
in agreement with the LVC results obtained using EOS-
insensitive analysis [4]. The corresponding 90% CI of mass
radius is overlaid in an orange shade in the lower left panel
of Fig. 3.
Finally, we add the x-ray mass and radius measurement

of PSR J0030þ 0451 and PSR J0740þ 6620 using the
datasets both from Riley et al. and Miller et al.We find the
addition of NICER yields larger values of R and Λ.
Interestingly, the posterior of Λ̃ published by the LVC
has a bimodality: The primary mode peaks at Λ̃ ∼ 200 and
the secondary one peaks at Λ̃ ∼ 500. We also see the
inferred posterior of Λ1.4 peaks around ∼200 using the GW
data. After adding two NICER observations, we find Λ1.4
prefers the secondary mode. In the lower right panel of
Fig. 3, the resulting mass-radius posteriors are compared
using both datasets. The datasets from Miller et al. clearly

favor slightly larger radii compare to Riley et al. There is
∼0.18ð0.45Þ km difference inR1.4ðR2.08Þ towards the larger
value when we add data from Miller et al. instead of
Riley et al.
As there are differences in the inferred posteriors using

the two independent datasets, we decide to marginalize
over them. One common practice is to take an equal
number of posterior samples from both analyses and
combine them into a single posterior. However giving
equal-weighted probability on both datasets might not be a
correct way as they correspond to different Bayesian
evidence i.e, one being more likely compared to the other.
As discussed in Ref. [61], it is better to weight the samples
by their corresponding posterior mixing fraction,

ξl ¼
ZlP
l
i¼0 Zl

; ð9Þ

where Zl is the evidence of the lth model. We find the log
evidences (lnZ) computed usingMiller et al. and Riley et al.
dataset are −11.47� 0.01 and −10.81� 0.02, respectively.
This results in a mixing fraction of 0.34 for the Miller et al.
and 0.66 for the Riley et al. dataset. As GW data favor the
lower NS radii, the Riley et al. dataset is slightly favored

FIG. 4. Posterior distributions of R1.4, Λ1.4, R2.08, and Mmax are compared between Riley et al. and Miller et al. dataset and also their
marginalized distributions are overlaid. Distribution of the measured secondary masses from three potential NSBHmergers are shown in
the lower panel along with Mmax distributions.
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compared to Miller et al. In Fig. 4, we overlaid the mixed
posterior distributions for each of the individual properties
along with the Riley et al. and Miller et al. dataset. We find
the mixtures are slightly closer to the results obtained using
the Riley et al. dataset.
Without the presence of an electromagnetic counterpart

and the significant evidence of tidal deformation, the
posterior distribution of Mmax can be used to classify the
nature of the secondary component in a potential NSBH
merger system [62–65]. In the third observing run LVC
detected three confirmed signals named GW190814 [62],
GW200105 and GW200115 [66] whose progenitor might
contain one NS. In the lower right panel of Fig. 4, posterior
distribution of the secondary masses are plotted for these
three signals and also the Mmax distributions obtained from
our analysis are overlaid. Following Ref. [64], we compute
the probability of the secondary mass being greater than
Mmax (combined), i.e., PðM2 > MmaxÞ ¼ PðM2 −MmaxÞ,
where Mi is the mass of the ith component of the binary.
Assuming NS and BH mass distribution do not overlap
with each other, we find that the secondary in GW190814,
GW200105, and GW200115 respectively has a maximum
62%, 2%, and 1% probability being a BH.
This is to note that the joint detection of GW170817 and

its electromagnetic counterparts could provide further
constraint on the properties of NS [67–71]. However, we
intentionally do not include that information as these
constraints are rather indirect and need careful modeling
of the counterparts. The counterpart of GW170817 sug-
gests that the merger remnant collapsed to BH shortly after
the merger. Assuming this an upper limit on Mmax ≲
2.33 M⊙ has been proposed [72]. We do not employ this
bound in our analysis and therefore, our constraint onMmax
extends to the higher values.

V. DISCUSSION

In this work, we have constructed a new method to probe
the macroscopic properties of NSs and infer the nature of
the EOS from them. In the process, we have found a
parametrized polynomial structure between M and lnΛ.
The coefficients of the polynomial depend on the EOSs.
Therefore, the measurement of these coefficients can be
used to probe the EOS of NS. We fitted this four-parameter
polynomial with the numerically foundM − Λ relations for
multiple EOSs. The resulting fitting error in the M − Λ
curve is always lesser than ∼2.7%, except MS1 and MS1B
EOS. Even though from all the current observations the
MS1 family seems to be ruled out [36], we still keep them
to make our claims as conservative as possible. For the
EOSs that do not fall in the MS1 family the fitting error is
much lower. We also would like to point out that EOSs with
phase transition are not included in this work, but it would
be interesting to explore these avenues in the future.
In the parametrized M − Λ curve, the dominant contri-

bution onM comes from the zeroth order parameter i.e., b0.

From Table I, it can be seen that the value of b0 is very close
to the Mmax; i.e., they are correlated. For a larger Mmax, b0
is also larger. This correlation is clearly visible in Fig. 2.
There is a strong correlation [Pearson correlation coeffi-
cient (PCC) ∼0.99] present between them irrespective of
the combination of dataset used in this work. The second
most dominant contribution on M comes through the next
order parameter, i.e., b1. Therefore, it is obvious to have an
anticorrelation correlation between b0 and b1. These two
parameters can compensate each other to reproduce the
same M. Interestingly, this correlation is not visible either
using radio or radioþ GWs data. It has started to appear
(though weak, PCC ∼ 0.58 with Miller et al. data) after
adding two NICER observations. This shows the impor-
tance of adding multiple observations. As b0 and Mmax are
correlated with each other and b0 and b1 are anticorrelated
with each other, this directly implies b1 and Mmax must be
anticorrelated. The same as b0 and b1, we see a weak
anticorrelation (PCC ∼ 0.48with Miller et al. data) has also
started to appear between b1 andMmax after adding the two
NICER observations. Another significant correlation
(PCC ∼ 0.84 with Miller et al. data) is present between
Mmax and R2.08. As 2.08 M⊙ represents a heavier NS, it is
no surprise that Mmax and R2.08 are correlated with each
other. As a result, b0 and R2.08 are also correlated with
PCC ∼ 0.79 using Miller et al. data. Therefore, we expect
b0 will get better constrained if in the future we measure
high-mass NS radii.
Since the systematic error (fitting error) is ≲5%, this is

quite lower than other approaches. One such approach is to
use the universal relation between 2Λs ≡ Λ1 þ Λ2 and
2Λa ≡ Λ1 − Λ2 [73,74]. In this approach the approximate
universality holds to ∼20%, if M1 ≲ 1.6 M⊙ for all M2.
However, from Fig. 4 of Ref. [74] it can be observed that
the maximum fractional difference can reach ∼50% when
M1 ∼ 2 M⊙ ∼M2. For the binary mass ratio q ¼ 1, the
maximum fractional difference increases from ∼10% to
∼50% with increasing masses. As a result, this approach
has very large systematic errors for equal mass binaries and
for NSs with larger masses. In this approach it is also not
possible to stack multiple observations.
Another approach is to extract the (mass-independent)

coefficients ðc0; c1;…Þ of a Madhava-Taylor expansion
[75–77] of the tidal deformabilities about some fiducial
mass (M0) [33,74,78]. The goodness of this representation
depends on the convergence of the expansion. It was shown
in Ref. [74] that for MS1 EOS and M0 ¼ 1.4 M⊙,
increasing the number of terms in the series decreases
the error only in the region M < 1.9 M⊙. The series
diverges in the high mass region M > 1.9 M⊙. This shows
that this parametrization is not suitable for NS binaries with
masses that are sufficiently different from M0. By consid-
ering multiple EOSs they showed that a certain level of
accuracy can be achieved by using up to three terms in the
series only within a range of M, for a given M0. As an
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example, the fractional difference is smaller than 10% for
M0 ¼ 1.4 M⊙ only within 1.1 M⊙ < M < 1.6 M⊙. If one
moves away from this range then the error can increase
significantly ∼25% or more. Although, it is possible to
stack multiple observations in this approach but the large
systematic error can lead to erroneous conclusions.
Although the current observations have statistical error

∼10%, it will be at the subpercent level in third generation
detectors with multiple detections [79]. Hence, it is needed
to construct EOS-insensitive approaches that have low
systematic error. Recently, as per our knowledge, this
has not been achieved. Hence, our approach, where the
systematic error is ≲5% (≲2.7% if MS1 family is ignored),
has the potential to resolve some of these issues. Since our
EOS-insensitive method uses a parametrized function to
probe the EOS, it also allows the stacking of multiple
observations and finding a joint constraint on EOSs from
them. Most importantly, using this approach we avoid
solving the TOV equation and calculating Λ as we directly

sample M, R, and Λ for a given set of fbig. Therefore, it
saves a huge computational cost. In comparison to a P − ρ
based EOS parametrization used in Refs. [26,29], it takes a
factor of ∼10 less time in the inference. Therefore, with the
increase in number of observations, this would certainly be
a fast approach to infer the EOS of NSs combining multiple
observations.
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