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The fast flavor instability (FFI) is expected to be ubiquitous in core-collapse supernovae and neutron star
mergers. It rapidly shuffles neutrino flavor in a way that could impact the explosion mechanism, neutrino
signals, mass outflows, and nucleosynthesis. The variety of initial conditions and simulation methods
employed in simulations of the FFI prevent an apples-to-apples comparison of the results. We simulate a
standardized test problem using five independent codes and verify that they are all faithfully simulating the
underlying quantum kinetic equations under the assumptions of axial symmetry and homogeneity in two
directions. We quantify the amount of numerical error in each method and demonstrate that each method is
superior in at least one metric of this error. We make the results publicly available to serve as a benchmark.
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I. INTRODUCTION

Neutrinos energize the explosions of massive stars and
drive outflows from neutron star mergers and protoneutron
stars. In both systems, interactions between neutrinos and
outflows determine the elements that form and enrich the
Universe [1–4]. Furthermore, electron-flavor neutrinos and
antineutrinos interact more strongly with matter than other
flavors due to the large masses of muons and taons, and it is
effectively only this flavor of neutrino that is able to convert
neutrons to protons and vice versa. The fact that neutrinos
can change their flavor in flight yields a complicated
relationship between neutrino flavor and observable prop-
erties of supernovae and compact object mergers (see
Ref. [5] for a recent review).
Interactions between neutrinos and other neutrinos are

expected to drive rapid and nonlinear evolution of neutrino
flavor in these extreme astrophysical environments. A rich
variety of flavor transformation phenomena have been
found resulting from the mean-field neutrino quantum
kinetic equations, including collective flavor transforma-
tions [6], the matter-neutrino resonance [7], the neutrino
halo effect [8], collisional instability [9], and more. In this
work, we focus on the fast flavor instability (FFI) [10,11],

another flavor transformation mechanism that has the
potential to drive neutrino flavor change in particularly
important regions that are inaccessible to other flavor
transformation phenomena. In a supernova, this instability
is expected to be present above the shock front, beneath the
shock front, and in the convecting protoneutron star (see
Ref. [12] and references therein). Following a neutron star
merger, the FFI is expected to be ubiquitous near and inside
the resulting accretion disk, precisely where the generation
of the Universe’s heavy elements is thought to occur
[13–16].
While instability of a distribution can be determined

analytically [17–25], numerical simulations are as of yet
required to determine the fate of the distribution after the
instability saturates (though see Refs. [26–28] for analytical
work on restricted classes of models). Unfortunately, the
spatial and time scales on which the instability operates
(sub-centimeter, sub-nanosecond) are much shorter than
the scales of the explosive processes they affect (tens of
kilometers and seconds), so direct global simulation of the
neutrino quantum kinetics in the full system is, to put it
lightly, presently not possible. In order to begin searching
for a solution to this conundrum, one can pluck out a small
piece of the explosion—i.e., small enough that the neutrino
and matter fields look approximately homogeneous—and
simulate the instability in that domain only.*srichers@berkeley.edu
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To this end, several methods of simulating the FFI have
arisen in recent years, each carrying their own set of
assumptions and numerical techniques. For simplicity,
many calculations impose symmetries in spatial, momen-
tum, or flavor degrees of freedom. Since the neutrino-
neutrino interactions driving the FFI do not depend on
neutrino energy, it is overwhelmingly common to integrate
out the neutrino energy so that the momentum space has at
most two direction dimensions. Many early calculations
were performed in a beam model, in which all neutrinos
are moving in one of two directions [29–31]. The neutrino
line model, useful for its geometric simplicity, is an initial-
value problem that assumes homogeneity and isotropy
in one Cartesian direction and allows inhomogeneity and
anisotropy in the other (the third spatial dimension is the
direction along which the calculation progresses) [32–35].
One can alternatively assume that the neutrino distribution
remains axially symmetric around some direction, usually
taken to be the radial direction for application to a core-
collapse supernova, and impose homogeneity or periodic
boundary conditions [26,27,36–52]. Most methods assume
two neutrino flavors for simplicity, but there are a growing
number of three-flavor simulations of the FFI [48,52–55].
There are relatively few methods that account for all of the
angular degrees of freedom [53,55,56] (though see similar
calculations of the multi-azimuthal-angle instability [57–
59]), and this has only recently been combined with a
treatment of two [60] and three [54] spatial dimensions.
There are as many choices of initial conditions as there

are codes. Given the increasing complexity of the codes,
there is a need to understand which aspect of the results
are a result of numerical approximations and which
are physical results of the evolution equations. Lacking
physical data against which to directly validate results, a
common approach is to verify that each code is faithfully
solving the differential equations via a comparison between
codes (e.g., Refs. [61–65]). Such comparisons will be
increasingly important in the future as the physics included
in simulations becomes more sophisticated (e.g., collisions
[9,31,47,66] and matter inhomogeneities [49]).
In this work, we demonstrate good agreement between

several codes in the literature on a standardized test
problem in one spatial dimension, axial symmetry in
momentum space, and two neutrino flavors. In Sec. II,
we summarize the salient features of each simulation
method compared in this work. We describe our carefully
defined test problem in Sec. III and show the results of the
simulations in Sec. IV. Finally, we summarize and provide
some discussion in Sec. V. The numerical data presented
here are available at Ref. [67].

II. METHODS

In this work, we assume the mixing of two neutrino
flavors, e and x. The flavor state of a neutrino can
be described either in terms of the polarization vector

P ¼ ðP1; P2; P3Þ or the density matrix ρ, where the
polarization vector components are defined as

P1 ≔ TrðρσxÞ ¼ 2ReðρexÞ;
P2 ≔ TrðρσyÞ ¼ −2ImðρexÞ;
P3 ≔ TrðρσzÞ ¼ ρee − ρxx; ð1Þ

and σi are Pauli matrices. We collectively refer to the
flavor-coherent components of the polarization vector with
the complex quantity S ¼ P1 − iP2.
For the sake of a common test problem, we assume the

neutrino distributions remain axially symmetric around ẑ
and are homogeneous along x̂ and ŷ. The direction of a
neutrino with velocity v⃗ is then specified by u ¼ v̂ · ẑ.
Under these assumptions, the neutrino distribution evolves
according to the quantum kinetic equation

ð∂t þ u∂zÞρ ¼ −i½H; ρ�; ð2Þ

or equivalently,

ð∂t þ u∂zÞP ¼ H × P: ð3Þ

We neglect contributions from non-neutrino interaction
sources and from the neutrino mass to focus on the pure
FFI. Furthermore, we assume ρ̄ ¼ ρ� for antineutrinos
(discussed below), so that

Hðz; uÞ ¼
Z

1

−1
du0ð1 − uu0Þ½μgðu0Þ − μ̄ḡðu0Þ�ρðz; u0Þ: ð4Þ

In the above expression, μ ¼ ffiffiffi
2

p
GFnν is the characteristic

strength of the Hamiltonian, where GF is the Fermi
coupling constant and nν is the total number density
of all neutrino flavors (and similarly for μ̄ for antineutri-
nos). gðuÞ and ḡðuÞ describe the angular distribution
of the neutrinos and antineutrinos with normalizationR
dugðuÞ ¼ R

duḡðuÞ ¼ 1. H follows the same vector
representation as the density matrix in Eq. (1).
Although not all of the codes in thisworkmake all of these

assumptions, the initial conditions are carefully constructed
such that the simulations are logically equivalent to this form
of the equations. In particular, the self-interaction contribu-
tion to the Hamiltonian considered here obeys H̄ ¼ −H�,
implying that ∂tðρ − ρ̄�Þ ¼ 0. If ρ ¼ ρ̄� is true in the initial
conditions, it remains true throughout the simulation up to
numerical error. Axial symmetry is also enforced in the
initial conditions for codes that do not assume it.

A. EMU

EMU is a particle-in-cell method for simulating neutrino
flavor transformation in a periodic box. The neutrino
radiation field is represented by a large number of indi-
vidual computational particles. Each particle carries with it
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the number of physical neutrinos N and antineutrinos N̄ it
represents, the density matrix ρab (ρ̄ab) common to each
(anti)neutrino in the computational particle, the position r⃗,
and the momentum p⃗ of each (anti)neutrino. Each particle
contributes to the number density and number flux vector
stored on a background Cartesian grid, which is then used
to determine the Hamiltonian for each individual particle.
The particles are integrated forward in time using that
Hamiltonian and translating at the speed of light. The full
PIC implementation uses a second-order shape function
and an unsplit fourth-order Runge-Kutta time integrator.
Further details are described in Ref. [53], and the code is
publicly available [68].

B. NuGas

NuGas is a PYTHON package that computes collective
flavor oscillations of dense neutrino media. The F2E0D1A

module, which is used in this comparison, implements
simple quadrature rules (the composite Simpson rule
in this case) for the integration over the neutrino angular
distributions and the Lax42 algorithm, a high-precision
variant of the two-step Lax-Wendroff method developed by
Joshua Martin [40,69], for spatial differentiation and
temporal integration. The details of the Lax42 algorithm
are explained in Ref. [42]. NuGas is publicly available
through GitHub [70].

C. COSEν

The COSEν code used in Ref. [50] evolves the compo-
nents of the density matrix discretized in space and the
polar angle assuming azimuthal symmetry with two differ-
ent methods for the advection. The COSEν-FD version
evaluates advection terms using a fourth-order finite-
difference method with third-order Kreiss-Oliger artificial
dissipation. The COSEν-FV version adopts a finite-volume
method with seventh-order WENO reconstruction to evalu-
ate advection terms. In both versions, the time evolution is
performed with a fourth-order Runge-Kutta scheme. The
code is publicly available at [71], and detailed description
of the code structure, test results, and performance is
documented in Ref. [72].

D. Bhattacharyya et al.

The Bhattacharyya code used in Refs. [27,60,73] is
written in PYTHON. The main principle behind this numeri-
cal setup is to convert a set of coupled nonlinear partial
differential equations to a set of coupled nonlinear ordinary
differential equations. The code discretizes space (r⃗) and
momentum direction (v⃗) into equally spaced bins, and thus
converts the set of coupled nonlinear partial differential
equations into a same set of ordinary differential equations
(ODE) as a function of time for each ðr⃗; v⃗Þ pair. The
number of discretized bins is chosen to obtain sufficient
accuracy and precision, as well as to trigger as many

Fourier modes as possible, especially the unstable ones
within limited CPU hours. The total set of ODEs are solved
in a finite spatial domain as a function of time using Zvode

solver, a variable-coefficient differential equation solver in
SciPy [74], which implements the backward differentiation
formula for numerical integration. The code uses the fast
Fourier transformmethod implemented in the SciPy.fftpack.diff

package to calculate the gradient term at each spatial
location. The differential equation solver adapts the time
step based on target relative and absolute errors. The
integrator in this simulation was allowed a relative and
absolute error of 10−12 for 0 ≤ t ≤ 1474μ−1 and a relative
and absolute error of 10−9 for 1474 ≤ t ≤ 5000μ−1. The
change was made to speed up the calculation while
maintaining acceptably low errors.

E. Zaizen et al.

The Zaizen code evolves the Fourier components of the
polarization vector discretized in wave number and neu-
trino direction with a fourth-order Runge-Kutta scheme in
time. This code adopts a pseudospectral method in evalu-
ating the advection term and computes the nonlinear mode-
coupling term in the Hamiltonian using the fast Fourier
transformation implemented in the FFTW3 library [75]
according to the convolution theorem. To align the simu-
lation setup with others, initial conditions are first built on
configuration space and then converted into Fourier space.
The spatial Fourier modes are discretized by the inverse
of the simulation box size L in this work (by vacuum
frequency in a recent application [52]). Also, this code
adopts the Gauss-Legendre quadrature for the angular
integration and arranges the angular distribution on the
roots of Legendre polynomials.

III. PROBLEM DESCRIPTION

Here, we define a common test problem to simulate
based on the neutrino distributions in Refs. [40,50] and
specify initial perturbations with a random spectrum in
order to seed the growth of the fast flavor instability. All
codes use the same spatial and angular resolution and the
same domain size. We do not control the size of the time
steps, as some methods are adaptive and others limit the
time step using a Courant factor.

A. Electron lepton number distribution

We adopt an electron lepton number (ELN) distribution
corresponding to the G3a distribution in Ref. [40]. That is,
the angular distribution of each neutrino flavor is initially
described by

gðuÞ ¼ Ae−ðu−1Þ2=2σ2 : ð5Þ

The normalization constant A is determined by requiring
that

R
dugðuÞ ¼ 1. Specifically,
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1

A
¼ σ

ffiffiffi
π

2

r
erf

� ffiffiffi
2

p

σ

�
: ð6Þ

The parameters, we use are listed in Table I. We choose this
ELN distribution because it has already been studied by
multiple groups, allowing this verification effort to directly
impact those works as well.

B. Perturbations

The fast flavor instability amplifies unstable modes
seeded by perturbations in the initial conditions. We perturb
P1 and P2 (or equivalently, ρex) according to

Sðt ¼ 0; zÞ ¼
Xamax

a¼−amax

BaeiðkazþϕaÞ; ð7Þ

where ka ¼ 2πa=L, with L being the length of the periodic
box along z. We cut off the spectrum of the perturbations at
amax ¼ Nz=20, where Nz is the number of grid cells along
z, in order to avoid small-scale structure in the perturbations
that might induce numerical errors in some methods. This
causes the smallest wavelength of perturbations to be
resolved by 20 grid cells. The amplitudes of each sinusoid
are arbitrarily chosen to be

Ba¼0 ¼ 0 and Ba≠0 ¼ 10−7jaj−1: ð8Þ

We also choose the phase ϕa to be uniformly random,
sampled independently for each a, and not synchronized
between the different simulations. The perturbations
are isotropic, in that Ba and ϕa are the same for all u.
Following perturbations to P1 and P2, P3 is adjusted to
preserve jPj ¼ 1.

C. Simulation grid

In order to come as close as possible to the calculations
of Refs. [40,50], we adopt a simulation box of size
L ¼ 10240μ−1 spanned by a uniform grid of Nz ¼
10240 cells. This choice of simulation domain, together
with the above perturbation amplitude and ELN distribu-
tion, allow the instability to saturate long before neutrinos
are able to wrap around the simulation domain. In addition,
we use 200 polar angular bins (or 201 bins in the case of
NuGas) uniformly spaced in u. In the Zaizen code, angular

bins are not uniform but set on the roots of Legendre
polynomials. The PIC calculations do not have angular
bins, per se, but instead distribute 400 particles around the
equatorial direction, which results in approximately 200
polar angles (i.e., 400 particles are needed to represent the
single direction u ¼ 0 in other methods). We assume
homogeneity in the x̂ and ŷ directions, and impose periodic
boundary conditions in the ẑ direction. We limit the
duration of the simulations to tmax ¼ 5000μ−1 in order
to prevent potential consequences for the periodic boundary
conditions. This resolution was chosen based on a reso-
lution study using the NuGas and COSEν-FV codes; doubling
the spatial resolution caused the polarization vector to be
different by at most 0.12 (NuGas) or 0.0035 (COSEν) any-
where on the domain at the end of the simulation. The
excellent agreement between methods with different con-
vergence properties (and therefore different amounts of
numerical error) suggests that the results are not signifi-
cantly influenced by the resolution.

IV. RESULTS

We first show good agreement in the average amount of
flavor transformation over time. The fraction of neutrinos
that remain in the electron-flavor state (i.e., the survival
probability) can be expressed as

PsurvðtÞ ¼
Z

1

−1
gνeðuÞ

hP3ðt; uÞi þ 1

2
du; ð9Þ

where the spatially averaged polarization vector is

hPðt; uÞi ¼ 1

L

Z
L

0

Pðt; z; uÞdz: ð10Þ

We plot the survival probability and the transition proba-
bility Ptrans ¼ 1 − Psurv in Fig. 1 with a different color for
each method. The results are remarkably similar between
simulations, especially given the very different numerical
methods and different realizations of the random perturba-
tions. The survival probability has a value close to 1 during
0 < t≲ 1300μ−1 as the perturbations grow. This can be
seen in the bottom panel, which shows a transition
probability growing exponentially during that time frame.
The differing floor values of Psurv near t ¼ 0 are a result of
differing amounts of floating-point error realized in the
different methods, but once the transition probabilities rise
above this floor, they line up very closely and grow with an
indistinguishable rate. We will discuss numerical error in
more detail below.
Once the instability saturates at t ≈ 1300μ−1, the survival

probability oscillates for a few cycles with approximately
the same amplitude and frequency in all of the simulations.
The oscillations damp out as the distribution decoheres, and
after t≳ 3000μ−1 the survival probabilities in all of the

TABLE I. Parameters for the initial angular distribution of
neutrinos as used in Eq. (5).

Flavor
ffiffiffi
2

p
GFnνi =μ σ A

νe 1 0.6 1.33095
ν̄e 0.9 0.53 1.50568
νx 0
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simulations fluctuate about Psurv ≈ 0.82. By this time, the
different simulations are in very different microscopic
realizations of the same macroscopic state as a result of
the randomized initial conditions.
Figure 2 shows the spatial average of the flavor vector

components at t ¼ 5000μ−1. The top panel shows the
magnitude of the flavor-coherent (i.e., transverse) compo-
nents of the polarization vector. The small values indicate
that by this point the flavor-coherent components of the
polarization vectors at different locations largely cancel
each other because of a persisting wavelike pattern in space
(see below). The bottom panel shows that the polarization
vectors have settled to a well-defined flavor distribution to
the left of the crossing (vertical dashed line). To the right
of the crossing, the neutrinos are fluctuating just below
hP3i ¼ 0, or complete flavor mixing. All of this is in good
agreement with Refs. [50,53].
The Fourier spectrum of the distribution also shows

excellent agreement throughout the simulation. We com-
pute the number-weighted, direction-averaged power spec-
trum given by

hS̃ðt; kÞi ¼
Z

1

−1
gðuÞdu

Z
L

0

e−ikzSðt; z; uÞdz: ð11Þ

The power spectrum of the initial perturbation common to
all simulations and described in Eq. (7) is apparent in the
dotted curves in Fig. 3. The solid curves show the power
spectrum at the end of the simulation (t ¼ 5000μ−1). By
this point, the unstable modes have already grown and
saturated. Even at this late time, all methods show excellent
agreement. The horizontal bands in both the initial and final
spectra are a result of numerical errors, and the Zaizen code
shows the smallest error in this metric. As suggested in
Ref. [53] (for different choices of neutrino distribution), the
resulting power spectrum is static, with exponential tails
away from the peak. The peak of the equilibrium spectrum
is not at k ¼ 0, reflecting the presence of a long-lived
coherent wavelike pattern in the spatial distribution of the
polarization vectors, as demonstrated by Ref. [42] and
observed in the TwoThirds simulation of Ref. [54].
This coherent wave structure is not apparent in the upper
panel of Fig. 2, because the data there are spatially
integrated over many periods, yielding a number close
to 0. Although the exponential tails seem to be a robust
feature of these simulations, we still lack a satisfactory
explanation for them.

FIG. 1. Domain-integrated survival property (top panel) and
transition probability (bottom panel) as a function of time. The
initial perturbations grow exponentially until the instability
saturates at t ≈ 1300μ−1. All simulations show the same insta-
bility growth rate, saturation time, saturation amplitude, and late-
time equilibrium.

FIG. 2. Space-integrated polarization vector components as a
function of direction at t ¼ 5000μ−1. The vertical dashed line at
u ¼ 0.786 shows the location of the ELN crossing in the initial
distribution. All simulations agree on the distribution of neutrino
flavor to the left of the crossing and show near complete mixing
to the right of the crossing. All simulations agree on the
magnitude of the flavor off-diagonal components at the end of
the simulation.
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The SU(2) symmetry of the neutrino self-interaction
Hamiltonian should preserve the net electron lepton num-
ber (ELN) of the neutrino distribution. As a test of the
quality of the numerical scheme, we show the violation of
this constraint in Fig. 4. Specifically, we define

ELNError ¼ 1

nνe þ n̄νe

����
Z

1

−1
½nνegνeðuÞ − n̄νe ḡνeðuÞ�

×

�
1 − hP3ðt; uÞi

2

�
du

����; ð12Þ

where nνe and n̄νe are the initial electron neutrino and
antineutrino number densities listed in Table I. This
quantity probes the self-interaction term in Eq. (3) more
strongly than the advection term. In all cases, the error
remains smaller than one part in 106. The error grows most
significantly during the linear growth phase, even growing
exponentially with the perturbation amplitude in some
codes. After saturation, the error continues to grow sub-
linearly with time at a rate that is not visible on this plot for
most codes. Although EMU (green) has the lowest error for
the first 1200μ−1 time units, the error then quickly grows
above both of the COSEν codes, which maintain remarkably
low ELN error throughout the duration of the simulation.
We found that in general, using an angular integration

method during postprocessing that is inconsistent with that
used to model the evolution equations shows significantly
and artificially large ELN errors. For instance, artificially
large error is reported if during the simulation angular
integrals are performed with Simpson’s rule, but in post-
processing, the integrals are performed with the pyramid
rule. Similarly, artificially large errors can be reported if the
code does not restrict P3 ¼ P̄3 but assumes so in post-
processing. The continuous and finite-difference evolution
equations based on only the neutrino-neutrino potential
(in combination with our choice of initial conditions) both
guarantee that P3 ¼ P̄3, but only up to floating-point
precision, allowing finite precision errors that violate this
guarantee to accumulate in time. Finally, errors can be
introduced by assuming that P2

3 ¼ 1 − P2
1 − P2

2, which is
numerically true only up to floating-point precision. Each
code made a particular combination of choices, and we
found that errors are minimized when the postprocessing
methods make the same assumptions as the underly-
ing code.
The Hermitian nature of the Hamiltonian also guarantees

that the length of the physical polarization vector does not
change. Since all polarization vectors start with unit
magnitude, the deviation from this at a given space-
direction bin is

δjPj ¼
����

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
1 þ P2

2 þ P2
3

q
− 1

����: ð13Þ

In Fig. 5, we show the evolution of the maximum of this
quantity over all direction bins and spatial grid cells as a
probe of numerical error. Once again, all codes show
excellent results. The vector length error grows exponen-
tially during the linear growth phase, following the expo-
nential growth of the perturbations. After saturation, the

FIG. 3. Fourier power spectrum of the flavor-coherent off-
diagonal component of the neutrino number density nex at t ¼ 0
(dotted) and t ¼ 5000 (solid). All simulations are seeded with the
same spectrum of perturbations but with random phases, and all
simulations agree on the location of the peak and the slope of the
exponential tails at late times. The horizontal bands are a result of
numerical error.

FIG. 4. Deviation of the domain-integrated electron lepton
number from its initial value, as defined in Eq. (12). The
SU(2) symmetry of the Hamiltonian guarantees that this remains
at zero, so nonzero values reflect numerical error. All codes
exhibit excellent ELN conservation to better than one part in 106.
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error grows superlinearly in time. These errors are most
strongly affected by the advection term in Eq. (3). Here the
Bhattacharyya, NuGas and COSEν codes, which evaluate the
advection terms with discretized spatial grids, yield rela-
tively larger errors compared to the Zaizen code and EMU.
In particular, the EMU results show the lowest error because
the particle nature of the code eliminates advection errors,
and the errors shown are a result of only the self-
interaction term.

V. CONCLUSIONS

All of the codes presented robustly predict the instability
growth rate, saturation amplitude, angular distribution, and
postsaturation Fourier spectrum of the neutrino distribu-
tion. As suggested by Refs. [27,28,50,53], the neutrinos
within the ELN crossing (i.e., directions dominated by the
less abundant species) undergo near complete flavor mix-
ing, while neutrinos outside the ELN crossing only exhibit
partial transformation. As demonstrated by Ref. [42] and
observed in the TwoThirds simulation of Ref. [54], the
postsaturation distribution maintains modes that do not
decay away. The exponential tail of the postsaturation
spectrum observed in Ref. [54] is robustly produced by
all codes.
Each simulation exhibits small numerical errors, though

no method is consistently better or worse than others in all
metrics. As one might expect, the Lagrangian method in
EMU yields small advection errors, and the Zaizen code,
which operates fully in the Fourier domain, has the smallest
errors in Fourier space. The COSEν code, which actively

enforces ELN conservation, maintains low ELN error. We
naturally find that time-step size and integration method
impact the magnitude of the errors, though the adaptive
nature of some codes precluded a uniform time-step choice.
We also find that it is particularly important to use a
postprocessing integration method that is consistent with
that used to evolve the distribution in order to accurately
report errors.
Since global simulations of neutrino quantum kinetics

are currently not possible, practitioners of local simulations
are forced to pick their poison when it comes to initial
conditions and boundary conditions. One approach, as we
have done here, is to perturb the entire domain and assume
periodic boundary conditions. This choice reflects an
expectation that the background distribution is homo-
geneous on the scale of the simulation domain and that
perturbations in adjacent domains look like those in the
simulated domain. Another approach is to provide a single
local perturbation and end the simulation before the
boundary conditions come into play, thereby ensuring that
any results are not a consequence of the choice of artificial
boundary conditions. Both are unrealistic, because a super-
nova is not infinitely periodic, and nature is unlikely to
ensure that perturbations in different locations never
interact with each other. Reference [50] takes the middle
ground and provides a local perturbation, but simulates
with periodic boundary conditions for more than a domain
traversal time. The results look similar to but distinct from
the same simulations with random perturbations. This work
lends confidence to the robustness of simulation results
given artificial initial and boundary conditions, setting the
stage for work toward more realistic simulations.
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