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Redundant calibration is a technique in radio astronomy that allows calibration of radio arrays whose
antennas lie on a lattice by exploiting the fact that redundant baselines should see the same sky signal.
Because the number of measured visibilities scales quadratically with the number of antennas but the
number of unknowns describing the individual antenna responses and the available information about the
sky scales only linearly with the array size, the problem is always overconstrained as long as the array is big
and dense enough. This is true even for nonlattice array configurations. In this work we study a generalized
algorithm in which a per-antenna gain is replaced with a number of gains. We show that it can successfully
fit data from an approximately redundant array on square lattice with pointing and geometry errors, but that
the model’s parameters are difficult to link to the quantities of interest. We discuss the parametrization,
limitations, and possible extensions of this algorithm.
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I. INTRODUCTION

The 21-cm emission from neutral hydrogen is promising
to transform our understanding of the universe across the
ages: from low-redshift observations of neutral hydrogen in
galaxies through the epoch of reionization all the way to the
dark ages at redshift z ∼ 100 in the future.
The field received a major boost when it was realized that

developments in computing and rf technology allow tele-
scopes to be build almost entirely in software. A number of
experiments were born, some already operating, such as
Canadian Hydrogen Intensity Mapping Experiment
(CHIME) [1], Tianlai [2], Hydrogen Era of Reionization
Array (HERA) [3], Murchison Widefield Array [4],
Precision Array for Probing the Epoch of Reionization
[5], and Giant Metrewave Radio Telescope [6]; some are
under construction, including Hydrogen Intensity and
Real-Time Analysis eXperiment (HIRAX) [7], BAO from
Integrated Neutral Gas Observations [8], Square Kilometer
Array-low [9], and Canadian Hydrogen Observatory and
Radio-transiet Detector [10] and some proposals for future
very large facilities, such as Packed Ultra-wideband
Mapping Array [11].
Large interferometric radio arrays require a large number

of calibration parameters. It was soon noticed that arrays of
indistinguishable elements on regular lattice possess strong
redundancy. The total number of possible pairs of antennas,
correspondingwith the total number ofmeasured visibilities,
scales with the square of the number of elements in the array.
On the other hand the number of unique baselines (given by
the number of unique separationvectors between all possible
pairs of antennas) scales only linearly with the number of

elements. Since all baselines made of identical elements and
spanning the same distance vector should measure the same
signal, we can use this to back out calibration factors of
individual antennas, without ever knowing anything about
the actual sky signal. The solution is unique up to intrinsic
degeneracies of the system corresponding to the overall shift,
scaling in amplitude, and translation of the sky signal (i.e.,
applying a phase gradient across the uv-plane). This cali-
bration procedure is known as redundant calibration and has
been worked in detail in [12,13].
Unfortunately, it soon became clear that real arrays are

much less redundant for the simplest form of redundant
calibration to be sufficient. For example, [14] studied
redundancy in HERA and found that real-life nonredund-
ancy produces spurious temporal structure in gain solutions.
Other works such as [15–20] discuss the shortcomings and
possible solutions of redundant calibration in both real
telescope arrays and simulations.
In some sense, these findings indicate that redundant

calibration is the victim of its own success. A possible way
to look at the problem is that it is not that the arrays are too
nonredundant, but that they are too sensitive. They are
sensitive enough that the particularities of individual
elements produce big enough effects that a good fit cannot
be found for the data. One possible approach has been
studied in [21]: a pair of nearly, but not perfectly,
redundant baselines will have very strong, but not perfect,
correlation between measured visibilities. These slight
decorrelations can be propagated self-consistently using
a quadratic estimator formalism to allow stable solutions
and almost by construction, a good fit. This process has the
advantage of gracefully dealing with outlier antennas:
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there is no need to cut them out if we can instead model
them as such. A more recent paper [22] proposed a unified
approach to sky-based and redundant calibration, in which
both can be used concurrently in a self-consistent Bayesian
model, assuming we have a model of the telescope and its
calibration uncertainties.
In this paper we take a different approach: instead of

describing every single antenna with one complex number, a
single gain, we are looking for a description in terms of
multiple numbers per element that can be adjusted in order to
achieve a good fit aswell as give somephysical insight into the
type of imperfections. Note that this does not break the basic
premise of redundant calibration: the number of unknowns
still scales linearly with the number of antennas, while the
number of measurements scales quadratically. So, for arbi-
trarily complex description of per-antenna nonidealities, the
systemwill be overconstrained for large enough array (as long
as the number of free parameters per antenna is finite).
We will focus on two of the canonical errors in a

redundant radio array, pointing errors and geometric errors.
Some of the other canonical errors include beam shape and
beam size. The pointing errors refer to the fact that the
beams of individual element are not aligned (i.e., the
telescope points away from the zenith in a transit array
configuration) and geometric errors, which means that the
entire dish is displaced from its nominal lattice positions
affecting the effective baseline lengths. These are the kinds
of errors that we study, but we do not explicitly fit for them.
Instead, we build a general pixelized description of the
response of each element that is arbitrarily fine resolved
given by a tunable parameter M. Ideally, our scheme would
also be able to deal with beam shape and beam size issues;
however, we focus on geometric and pointing errors.

II. PROBLEM SETUP

Let us consider a general interferometric array observ-
ing, for simplicity, in a single polarization mode. We
consider a pair of antennas pointing at the zenith and
observing in a narrow frequency range. The noiseless
observed visibility for pairs of antennas i and j in the
flat-sky approximation is given by

Vij ¼
Z

IðθÞe−2πiðxi−xjÞ·θBiðθÞB�
jðθÞd2θ

¼ FT ½IBiB�
j �ðxi − xjÞ; ð1Þ

where xi is the geometric position of antenna i measured in
wavelengths, IðθÞ is the intensity signal coming from the
sky as a function of angle on the sky, θ, and Bi is the beam
of antenna i. The operator FT ½X� denotes the Fourier
transform of X. The signal IðθÞ is real and in principle spans
the entire sky. The beams Bi are in general complex and
compact in Fourier space (i.e., on the uv-plane). They
correspond to the complex amplitude response to an
incident uniform plane wave just above the aperture.

Multiplication in real space corresponds to convolution
in Fourier space. Addition of the random-noise component
ϵ gives the general equation for the observed visibility for a
pair of antennas:

Vo
ij ¼

Z
Uðxi − xj þ u:ÞðB̃i⊛B̃†

jÞð−u:Þd2u:þ ϵ; ð2Þ

where the uv-plane U ¼ FT ½I� contains the image of the
sky (in Fourier space), and B̃i ¼ FT ½Bi� are beam repre-
sentations in this domain. Variable ϵ is a random variable
describing the noise realization. We have used notation
B̃†ðu:Þ ¼ FT ½B��ðu:Þ ¼ FT ½B�ð−u:Þ, i.e., complex con-
jugation of a real-space quantity results in mirroring across
the origin in the Fourier domain. The crucial insight is that
beams are compact in Fourier space, essentially corre-
sponding to the physical extent of the dishes, and thus
B̃i⊛B̃†

j is also compact. Therefore, the limits of integration

in Eq. (2) need to extend only as far as support of B̃i⊛B̃†
j .

It is instructive to compare this equation with the one that
is typically used to set up redundant calibration:

Vo
ij ¼ Ui−jgig�j þ ϵ; ð3Þ

where i − j indexes redundant baselines corresponding to
the baseline vector xi − xj. If we set our beams to be the
same, scaled by only a complex gain factor for each dish,
namely BiðθÞ ¼ giBðθÞ, we find that Eq. (2) reduces to
Eq. (3) with

Ui−j ¼
Z

Uðxi − xj þ u:ÞðB̃⊛B̃†Þð−u:Þd2u: ð4Þ

In other words, the redundant calibration assumes that all
dishes have exactly the same sky response that are only
allowed to vary by an overall complex gain, which is
assumed to be coming from electronics, amplifiers, etc. It
reconstructs these gains, but also the uv-plane information,
after the beam convolution.
But in general, massive redundancy in compact arrays

allows us to go beyond this approximation (wewill quantify
this in the next section). The main idea is to start with Eq. (2)
as the main ingredient and reconstruct both B̃ for each
antenna and the uv-planeU. It is important to note, from the
beginning, that we cannot unpick the variations in complex
gain coming from electronics from those arising from the
imperfect dish. Therefore, action of a gain gi is equivalent to
multiplying the entire beam by the same factor.

A. Discretization

We will try to build an intuition that will prepare us for
formulation of general redundant calibration in steps.
In short, we will try to build a redundant calibration that
will replace the parameters Ui−j and gi for the standard
redundant calibration in Eq. (3) with a new, larger, but still
finite number of parameters that can still be solved for by

PRAKRUTH ADARI and ANŽE SLOSAR PHYS. REV. D 106, 043006 (2022)

043006-2



using the inherent redundancy in the system but can allow
for some freedom in nonredundancy.
In order to proceed, we need to express the integral of

Eq. (2) as a sum over a finite number of degrees of
freedom. Our approach is to pixelize the beam maps B̃i
and choose the pixelization in the uv-plane U that matches
the beam pixelization in a way that expresses Eq. (2) as a
sum that is cubic in input parameters without entailing any
interpolation.
For concreteness, let us consider an interferometric

array on regular square grid of size Ns × Ns with a total
of Na ¼ N2

s antennas. We will measure all distances in the
units of wavelength and take the lattice spacing to be L. We
start by introducing the “oversampling” parameter M. The
beam map is pixelized in ð2M þ 1Þ2 pixels, i.e., a central
pixel and M additional pixels on each side. For M ¼ 0 the
beam is reduced to a single pixel and the method reduces to
a redundant calibration. The requirement on the odd
number of pixels in the beam description is there to ensure
that a single-pixel description of each beam is a natural
limit of the problem.
The convolution of two beams ðB̃i⊛B̃†

jÞ is of the size
ð4M þ 1Þ × ð4M þ 1Þ, which sets the natural pixel size to
be L=ð2M þ 1Þ for both the beam grid and the U grid.
We can therefore rewrite Eq. (2) in a pixelized form
schematically as

Vij ¼
Xþ2M

m¼−2M

X2M
n¼−2M

Uioþm;joþnðB̃i⊛B̃†
jÞmn; ð5Þ

where io and jo are the grid offsets corresponding to
the i − j redundant baseline (the baseline probed by beam
B̃i and B̃j) on the uv plane, and m, n are the pixel indices
over the convolved beam. Note that the sum is over
ð4M þ 1Þ × ð4M þ 1Þ corresponding to the convolution
of two ð2M þ 1Þ × ð2M þ 1Þ -sized beam maps. This is
illustrated in Fig. 1. We urge the reader to spend some time
trying to understand this figure as this pixelization is
essential for the understanding of our approach. Consider
the shortest E-W baseline of a closely packed dish array.
Dishes have diameterD so the distances between pieces of
reflector surface on the same dish vary between 0 and D.
The possible distances between pairs of pieces of reflector
surface on two dishes vary between 0 (at points where the
dishes nominally touch) and 2D. In the formalism, this is
encoded by the beam being ð2M þ 1Þ2 pixels in size for
an individual beam and ð4M þ 1Þ2 for the convolution of
the two beams. This then defines the extent on the uv-
plane to which this particular baseline is sensitive. In the
limit of large M it comes arbitrarily close, but never
reaches the origin of the uv-plane (corresponding to the
monopole signal) and similarly gets arbitrarily close but
never reaches two lattice spacings (corresponding to
sensitivity due to pieces of reflector surface that are

furthest apart). In Fig. 1 this is illustrated with the blue
grid. This is the correct and expected behavior for the flat-
sky approximation. We discuss the nonflat-sky case
further below.
In Fig. 1 we also show squares around other nominal

lattice pointings. We see that most uv points are being
probed by multiple baselines, except those on precise grid
spacings. This severely limits the degeneracies present in
the problem, which we will further comment on in a later
section. We also note that we need to describe just one half
of the uv-planewith the other half given by the reality of the
observed field. Together with rules about Fourier trans-
forms of conjugated fields, this ensures that prediction for
the antenna pair i, j is always a complex conjugate of the
prediction for the antenna pair j, i.

B. Phased-up array interpretation

To continue building intuition about the pixelization,
consider the pixel m in the antenna i and pixel n in the
antenna j. The visibility for the pairs of dishes i and j is
given by

Vij ¼
X

m∈ Beam i
n∈Beam j

UΔði;mÞ−ðj;nÞB̃i;mB̃�
j;n; ð6Þ

where the index to U schematically implies the -plane
distance between pixel m on antenna i and pixel n on
antenna j. This equation now has the form of Eq. (3) (with
gains replaced by pixels inside the beam response), but
added over all the pixel pairs formed by the two beams.

FIG. 1. Illustration of the pixelization scheme for M ¼ 1.
Labeled points illustrate the lattice points on the uv-plane for
a square close-packed array. For example, (1,0) corresponds to
baselines one lattice spacing apart in the E-W direction and (0,1)
is the same for N-S baselines. (0,0) is the origin of the uv-plane
and corresponds to single-dish observations. Individual beam is
described by 3 × 3 pixelized grid, so ðB̃⊛B̃†Þ is the 5 × 5
pixelized grid shown in blue around (1,0). Making prediction
for a particular (1,0) baseline amounts to multiplying the values
of the blue beam-convolved map on the blue grid and the
corresponding points in the uv-plane and summing them up.
See text for further discussion.
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In other words, the pixelization is in effect modeling the
redundant array made of Ns × Ns antennas as a grid of
Neff ¼ ð2M þ 1ÞNs × ð2M þ 1ÞNs independent antenna
elements which are phased up in blocks of ð2M þ 1Þ×
ð2M þ 1Þ.
We can now return to the question of the applicability of

this technique to the flat-sky approximation. The redundant
calibration is typically derived without considering going
beyond the flat-sky approximation, but it is clear that it
applies generally. An identical pair of antennas will see
nominally the same signal and so the values on the uv-
plane can be thought as simply keeping track of the true
visibility corresponding to a certain baseline orientation
without specifying how these are related to the actual sky
emissions. The same argument applies to our case, but now
involves an approximation. Our model implies that the
individual beam can be composed from phased-up ele-
ments of equivalent antennas. Consider two sub-baselines
of one such baseline pair of the same length, one stretching
from central to central pixel and one stretching from two
side pixels. While the model can account for different
gains, it cannot account for different “primary fields of
view” of two such finite-size subelements, especially far
away from the pointing center. Therefore, this description
will be necessarily approximate. At the same time, it is also
true that in the limit of arbitrary fine pixelization, where the
subelements are smaller than the wavelength, the primary
fields of view of imagined subelements encompass the
entire sky and can thus describe a general beam profile.
However, the number of unknowns in that case will explode
beyond what can be reasonably fit.

C. Redundancy factor

The total number of unknowns to be determined is thus
given by (i) the total number of pixels required to describe all
the beams Nað2M þ 1Þ2 and (ii) the pixels required to
describe the uv-plane, which are given by the number of
redundant baselines in the effective phased-up array
2NeffðNeff − 1Þ ¼ 2Nsð2Mþ 1Þð2MNsþNs− 1Þ. The total
number of measurements, on the other hand, goes as the
total number of baselines with measured visibilities, which
is given by NaðNa − 1Þ=2. Thus, we can construct the
redundancy factor for a square close-packed array:

r ¼
ffiffiffiffiffiffi
Na

p ðNa − 1Þ
2½ð2M þ 1Þð6M ffiffiffiffiffiffi

Na
p þ 3

ffiffiffiffiffiffi
Na

p
− 2Þ�; ð7Þ

which describes the ratio of the number of measured
quantities divided by the number of unknowns. TheM ¼ 0
case reduced to the standard redundant calibration scheme.
Note that since we are assuming a square array, the

ffiffiffiffiffiffi
Na

p
is

always an integer. When r ≥ 1, the system is overcon-
strained and we can hope to constrain it, subject to known
degeneracies. Also, note that the ratio in Eq. (7) is for the
particular case of square lattice. For an imperfectly filled

array or a hexagonal close packing, the ratio would be
different. But, note that this formalism does not even
require antennas to be on the lattice. It can be calculated for
any array and even an irregular but sufficiently packed
array will have r > 1.
In Fig. 2 we plot r as a function of Na for a couple of

values of M. We see that the for the traditional redundant
calibration, even very small arrays containing tens of
antennas are sufficiently redundant. HIRAX, with a 32 × 32
array, can theoretically model up to M ¼ 5 but realistically
more likely up to M ¼ 2. In what follows we will focus on
the M ¼ 1 case which is perhaps sufficient for the current
arrays such as HERA. In this exploratory work, we have not
done an explicit calculation for a cylinder array configura-
tion like that of CHIME, although that would be a straight-
forward generalization.

D. Comparison with other approaches

This is not the first paper to extend the minimal redundant
calibration. In fact, in the seminal paper [12] they consid-
ered an option to Taylor expand the uv-plane to first order
around the lattice positions. In other words, the model for
visibilities is expanded from Eq. (3) to

Vo
ij ¼ ðUi−j þ∇Ui−j · Δxi;jÞgig�j þ ϵ; ð8Þ

where Δxi;j ¼ xi − xj is the vector difference between the
nominal and actual baseline length, so that the term in
brackets corrects for the slightly nonredundant baseline
length. One can then self-consistently fit for all the
derivatives ΔUi−j and individual antenna positions.
Given the discussion above [see Eq. (3)], the standard

redundant calibration assumes the primary beams to be
perfectly aligned and so the quantity Ui−j is the actual uv-
plane after the convolution with primary beams. Therefore,

FIG. 2. Redundancy ratio as a function of Na with varying M.
Solid black line is r ¼ 1 and dashed black line is r ¼ 5
corresponding to significant redundancy.

PRAKRUTH ADARI and ANŽE SLOSAR PHYS. REV. D 106, 043006 (2022)

043006-4



the Taylor expansion method can deal with geometrical
errors (see below) exactly (within the limits of Taylor
expansion), but not with pointing errors. We see that an
almost natural extension of this approach is to extend the
Taylor expansion in the beam mispointing direction as
follows:

Vo
ij ¼ ðUi−j þ∇Ui−j · Δbi;j þΦi−j · Δpi;jÞgig�j þ ϵ; ð9Þ

where Φ is a 2D field defined on the grid points that
represents a response of the system to mispointing and
Δpi;j¼ðpiþpjÞ=2 is the mean mispointing.1 The system
will still be overconstrained for a sufficiently large array. We
have not pursued this approach in the name of generality.
Since sufficiently big arrays can bevery redundant, the idea is
to let the system be capable of absorbing arbitrary imper-
fections, even those that fall in the standard expectation of
geometry, pointing, and beam-size errors.
An alternative approach has also been described in [21].

The idea here is to deal with imperfect redundancy by
sweeping it under the rug, statistically. The main idea is that
in a perfectly redundant array, the redundant baselines
would measure the same number; as we dial up the array
imperfections, the nominally redundant arrays will not
measure the same values, but only highly correlated ones.
One can self-consistently write a statistical quadratic model
that tracks those correlations and is able to gracefully
describe the array nonredundancy. The main issue with this
approach is that the differences are not exploited for their
information content; they are simply treated as random
fields rather than information that can be used to under-
stand in precisely what way the array is imperfect.

III. NUMERICAL IMPLEMENTATION

In previous sections we have presented a general method
for modeling the signals from an imperfect interferometer.
The method contains the “resolution” parameter M which
controls how fine the pixels which describe the response of
each individual beam are. M ¼ 0 corresponds to standard
redundant calibration and M → ∞ is a completely general
description. The hope is that a relatively small M will be
sufficient to describe typical level of nonredundancy. The
purpose of this section is to find to what extent this is true
and our logic is to attempt to use M ¼ 1 on relatively
small arrays to focus on pointing and geometry errors.
The path we follow is to assume a concrete perfectly
redundant array observing a given sky and then see how
the general redundant calibration performs compared to

a standard redundant calibration as we introduce beam
nonredundancies.

A. Model beam and its imperfections

Our model beam is a circularly symmetric tapered filled
circle in the Fourier space:

B̃cðrÞ ¼ 1 −
1

1þ e−2·
r−r0
Δr

: ð10Þ

This is a more realistic than the usual approximations which
usually assume a purely Gaussian or purely Airy disk beams
and suffices for this exploratory work. We plot the function
in Fig. 3. Note that this is the description of the Fourier
transform of the beam, rather than the beam itself, i.e., the
real-space beam becomes an Airy disk in the limit of Δr
going to zero. The reason why we specify the beam in
Fourier space is partly because this is the input quantity we
need for making predictions, but also more importantly it
corresponds to space with a compact beam representation.
Since the antenna is physically compact, the complex
electric field in a plane just above the antenna is compact.
This approximation breaks down in two ways in realistic
instruments. First, when we Fourier transform this to obtain
the shape of the beam on the sky we are implicitly making a
flat-sky approximation. Second, coupling to neighboring
elements will make the antenna physical size bigger than
what we mechanically consider to be the antenna element.
We use units of lattice spacing, so radius r0 ¼ 0.5L

would correspond to dishes that just touch. In our simu-
lation we use r0 ¼ 0.4L and Δr ¼ 0.05L. We show the
beam in real and Fourier space in Fig. 4. The beam shows
the expected sidelobes in real space.
In this work we focus on the most common types of

errors encountered in redundant arrays: the pointing errors
(the center of the beam of the dish is misplaced) and
geometry errors (the dish is not at its nominal location on
the lattice). Pointing errors are displacement of the beam in
the Fourier space and thus correspond to applying a phase

FIG. 3. Radius response function with R ¼ 0.4L and
taper ¼ 0.05L.

1While seemingly counterintuitive, the mispointing goes with
the mean displacement, not the difference. If one dish points off
center to the north, while the other off-center to the south, then to
first order they will see the same signal, which is suppressed by
factor that is quadratic in mispointing. If they both mispoint north,
the signal will change in proportion to the mean mispointing.
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gradient across the complex beam response of a single dish.
The geometry errors on the other hand are just simple
displacement of the dish in the Fourier domain. A full
expression for the beam is thus given by

B̃ðx;yÞ¼AB̃c

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx−xoÞ2þðy−yoÞ2

q �
e−iðpxxþpyyÞ; ð11Þ

where A corresponds to the overall complex gain factor,
ðxo; yoÞ is the geometric error, and ðpx; pyÞ is the pointing
error. We draw both the overall complex gains from a
Gaussian distribution centered around 1þ 0i with a vari-
ance of σg. Geometric and pointing errors are drawn from
2D Gaussians with 1D variances of σg and σp, respectively.
In Fig. 5 we illustrate a perfect and an imperfect array

with the types of errors discussed above.

B. Simulating signal

We simulate the signal relying on a flat-sky approxima-
tion. We do so using two approaches. In the first approach,
we simply generate data using a large value of M. We use
M ¼ 14 (corresponding to beam images of 29 × 29 pixels).
In this case we take the true values of the uv-plane as
random Gaussian variates, corresponding to a white-noise
signal on the sky. We have checked that increasing M
beyond the chosen value used does not affect our results.

FIG. 4. 2D visualization of the beam B̃ used on the left and its
Fourier transform, the actual primary beam B, on the right. The
left image spans the uv-plane while the right is in the x-y plane. In
the limit of no taper, the beam on the right would be an Airy disk
pattern.

FIG. 5. Example image of a 4 × 4 array in uv space with a perfectly redundant system on the left and a perturbed version of the same
systems on the right. The top images are generated usingM ¼ 30 and bottom are the same system but downscaled toM ¼ 1 resolution.
The complex gain of each pixel in the telescope dish is turned into an RGB value for this image with the color bar referring to the overall
amplitude ranging from 0 to slightly greater than 1. The perturbations for the right-side graphs were generated with geometric errors at
σg ¼ 0.1L and pointing errors at σp ¼ 0.5. Pointing errors which lead to phase changes are modeled as a gradient on each beam and
geometry errors are modeled as circle offsets.
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In this approach, the code using for generating the signal
and fitting is essentially the same with only the value
of M being different. On one hand this is elegant, but it is
also prone to a potential bug inadvertently canceling out
between data generation and fitting. Moreover, the realistic
skies are often dominated by a few bright sources.
In the second approach we generate the signal as a sum

over discrete sources. This is to take into account the fact
that some sources are considerably brighter than the others.
For each source and baseline we do the following:

(i) Calculate the primary beam response at the location
of the source for both dishes. Given pointing errors,
this is different for each baseline.

(ii) Directly calculate the response of the interferometer
for the baseline length spanned by a given pair of
dishes (taking into account geometry errors).

We use sources whose fluxes are randomly drawn uni-
formly in log from 1 to 1000. A comparison between the
two methods can be found in Fig 6. Aside from an overall
scale factor the two are quite similar.
In both approaches, once the noiseless visibilities are

calculated, we multiply visibility by the total complex gain
contribution gig�j , where gi is the gain for dish i. Note that
the method is completely general with respect to individual
gains, i.e., they can be perfectly absorbed into the beam
description. Therefore, we keep the variance small to avoid
dealing with solver falling into local minima.

Finally, we add complex noise ϵ drawn from a Gaussian
with variance σ2ϵ . Since the only quantity that matters is the
level of noise compared to the level of signal, we will report
our results in terms of signal-to-noise ratio (SNR). We
define the SNR per visiblity as

SNR2 ¼ 1

Nvisibilities

X
baselines i−j

�jV2
i−jj
σ2ϵ

�2

: ð12Þ

There are thus six additional degrees of freedom per each
dish: two for pointing error, two for geometry error, and
two for overall gain. Even with M ¼ 1, each beam is
described by 9 complex numbers (i.e., 18 degrees of
freedom) so there is reasonable hope that the description
is sufficient. However, on purpose, we decided to consider
the types of errors that are not perfectly reproducible by our
model to assess its flexibility. Had we instead decided to
model dish imperfections as random deviations the size of a
pixel on our ð2M þ 1Þ2 grid, say as dirt 1=9th the size of
our dish for M ¼ 1, our model would be guaranteed to
perform better compared to redundant calibration.

IV. SOLVING FOR B̃i AND U

In this work we use simple iterative solvers for beams B̃i
and the true uv-plane U. Since we are focusing on the
modeling side, i.e., how well the solutions perform, these
solvers are not designed to be either particularly stable or
fast. That being said, some notes and improvements are
listed in the relevant sections below.
In general, we are trying to maximize the log likelihood

of the model, which is equivalent to minimizing the χ2,
given by

χ2 ¼
X

all pairs i;j

ðVo
ij − Vp

ijðB̃; UÞÞ2
σ2ϵ

; ð13Þ

where Vp
ij denotes the predicted visibilities which are a

function of all beam parameters and uv-plane values. At
each step we optimize for either visibilities or beam
parameters.

A. Visibility

To solve for visibilities, U, we rely on the fact that
observed visibilities are linear in the input visibilities:

Vo
i ¼ MikUk þ ϵ: ð14Þ

Here, i iterates over observed visibilities and k over the
input, or true, visibilities. While the specific values will
depend on the geometry of the array, i ∼ N2

a and k ∼ N2
aM2.

The matrixM is quite sparse, but because beams overlap, it
is not a block matrix. In other words, neighboring baselines
do probe some of the same sky signals as illustrated

FIG. 6. Histogram comparing the magnitude of observed
visibilities generated between the two methods. There are 100
discrete sources used to model the sky. The overall statistics of the
two are comparable, alleviating concern about the sky simulation
with M.
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in Fig. 1. MatrixM depends on all beams and so we assume
the current best guess for the beams (which improve
with every iteration). We rely on SciPy [23] for actual
calculations. Specifically, to calculate ðB̃i⊛B̃†

jÞ. we use
scipy.signal.convolve| and to solve the sparse
system we rely on scipy.sparse.linalg.lsqr.
The rest is rather painful but otherwise straightforward
housekeeping. For interested readers we point at some of
the more subtle technical issues in the Appendix.
At this point we can use any number of methods to solve

a linear equation, with scipy.sparse.linalg.lsqr
being the most direct in application. We can also employ
any number of tools to better solve our linear system
such as the Wiener filter, which we motivate in the
Regularization section. Using Eq. (19) we can use
scipy.sparse.linalg.spsolve to solve the sys-
tem, avoid any tough inversions, and although there is
more overhead, it is ultimately faster than directly solving
Eq. (14). Notably, employing a Wiener filter is also
considerably better at reducing χ2 per iteration over
scipy.sparse.linalg.lsqr, which makes the
filter a worthwhile implementation.

B. Beams

While Eq. (2) is nominally quadratic in the beams, this is
not an issue in our actual problem, because we do not
consider autocorrelation signal. To solve for the beam Bi,
we fix all the remaining beams and the solved uv-plane U,
so that

Vo
k ¼ MklB̃i;l þ ϵ: ð15Þ

Here, index k runs over all visibilities that depend on the
beam i (i.e., all baselines that contain antenna i) and l over
all pixels of beam B̃i. This is a dense system that we solve
using scipy.optimize.lsq_linear separately for
each beam i. While this can be embarrassingly parallel, we
found improvements to χ2 per iteration when done sequen-
tially. After solving for B̃i, the updated solution is used
when writingMkl for B̃iþ1 and so on. Of course this can be
circumvented with some clever distributed computing
which we leave for the future.

V. PERFECT DEGENERACIES

The standard redundant calibration has perfect degen-
eracies spanning four degrees of freedom:

(i) Multiply gains by complex factor α and divide sky
signal by αα� (this is often split into the overall
amplitude degeneracy and the overall phase
degeneracy);

(ii) Translate the sky by a vector p and apply a com-
mensurate phase gradient across the gain solution.

The same degeneracies continue to exist in our case. One
would naively expect that we also have a similar set of per-

element degeneracies; however, these are not present, in
general, because neighboring antennas actually measure
many of the same points in the uv-plane, thus introducing
“interlocking” of the uv-plane solutions.
However, we have a different kind of degeneracy

present. We know that if an array is truly redundant, then
one needs only ∼3N2

s numbers to describe the data. So, if
the array is actually fully redundant, we are free to pick any
“shape” of the beam B̃ for M > 0 and still have sufficient
freedom in the U array to form a model that gives precisely
the same predictions. In the other limit, if the array is really
nonredundant then this degeneracy disappears. Therefore,
this is not really a model degeneracy, but a degeneracy
associated with perfectly redundant array solutions which
are, from a mathematical perspective, pathological. This is
analogous to solving a matrix equation Mx ¼ y, which for
a general matrix M is solvable by x ¼ M−1y, unless matrix
M is singular. Removing these degeneracies using polari-
zation data, as suggested by [24], should be plausible but
tenuous with nonredundant arrays. With our array formal-
ism it is possible to tackle this issue but left as a future
endeavour.
In practice, the presence of noise will instead use the

extra model freedom to “fit the noise” and find a nominally
better solution as we will describe in the Results section. A
formally correct way would be to perform a strict Bayesian
model comparison, where we weight the solutions by the
Bayesian evidence in favor of a certain model: if the model
with M > 0 can fit the data equally well as the standard
redundant calibration, then the standard redundant calibra-
tion would be strongly favored due to having many fewer
priors.

VI. REGULARIZATION

To prevent overfitting, we implement two regularization
schemes as follows. We first introduce a prior on the beam
parameters that attempts to pull the beam solution back to
the fiducial, redundant beams, and also include an option to
minimize the variance on solved visibilities. The total
likelihood with the beam prior is thus given by

log L ¼ −
1

2
χ2 þ

X
beam i

X
pixel k

�
−2 log σB −

jðB̃ik − B̃0
kÞj2

2σ2B

�
;

ð16Þ

where χ2 is given by Eq. (13) and B̃0 corresponds to the
beam prior. As stated above we choose this to be the
perfect, unperturbed beam.
The σB describes typical deviation from perfect beams.

Taking derivative of the log Lwith respect to σB (with other
parameters fixed), one gets
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σB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2N

X
beam i

X
pixel k

ðjðB̃ik − B̃0
kÞj2Þ

s
; ð17Þ

with N being the total number of pixels over all
beams, ð2M þ 1Þ2Na.
If the array is close to truly redundant, the system can

achieve a good fit by floating beams towards nominal beam
values and lowering σB (and thus achieve a large likelihood
improvement through the normalization term − log σB).
However, for a nonredundant array, it is better to raise σB
and instead improve the χ2. This prior will bias the beams
towards having a magnitude of 1, or whatever the nor-
malization of the perfect beam is set to. To counteract this
bias, we introduce an overall gain for each dish which
applies to each pixel. Our solver implements the omnical
[14] method to iteratively solve for overall gains.
Finally, we put a prior on visibilities. In a more complete

treatment, we would solve for the visibility power spectrum
at the same time as we solve for the visibility map, similar
to the Gibbs’ sampling approach to CMB (see [25]). In our
case we just add a penalty term to the solved visibilities in
the form of

f ¼ jjΣ−1
b · ðMikUk − Vo

i Þ þ Σ−1
v ·Ukjj ð18Þ

with respect to Uk, where Σ−2
b ¼ N−1 is the noise covari-

ance and Σ−2
v ¼ S−1 is the data covariance. In our simu-

lations we assume both are diagonal to simplify
calculations. This leads to a Wiener filter. Following the
form written in [26] we specifically solve for visibilities
using the following linear equation:

½S−1 þ ðMikÞ†N−1Mik�Uk ¼ ððMikÞ†N−1ÞVo
i : ð19Þ

VII. RECAP OF THE ITERATIVE SOLVER

To recap, we maximize the likelihood with iterative
steps. In order, each step involves fitting for:
(1) The visibilities by solving either Eq. (14) or (19).
(2) The beam shape by solving (15) and incorporating

the prior parameter, σB, by adding rows to the
bottom of our linear system.

(3) The overall per-antenna gain parameters Ai via
omnical [14].

(4) Finally, the beam parameter σB which amounts to
calculating the variance of beam solutions with
respect to their nominal values as written in (17).

VIII. RESULTS

The purpose of telescopes is to image the sky. If we have
an imperfect description of the physical effects that affect
the instrument’s response, and calibration vectors that are
only approximately correct and whose values are “effec-
tive,” it should not matter as long as the map of the sky is

faithfully reproduced. Therefore, the method that will best
recover the input uv-plane is the most successful method.
We have condensed our results into two figures, Figs. 7

and 8, that succinctly summarize our results regarding the
method. For both figures, the upper row of plots corre-
sponds to rather modest geometry and pointing errors, while
the bottom row contains considerably worse errors. All
figures show various quantities plotted as a function of per-
visibility SNR [see Eq. (12)]. The left column shows the
values of χ2: high values of χ2 indicate a poor fit, while
lower values a better fit; values below the shaded region
indicating the expected χ2 given degrees of freedom indicate
overfitting. The central left column shows the goodness of
the uv-plane recovery as measured by the variance between
the true and recovered uv-plane, labeled σV . This is only
done for the uv-plane pixels that lie on the nominal beam-
array lattice positions where the SNR is concentrated. The
lower the value, the more faithful recovery of the uv-plane a
certain method is giving. The central right column plots
show the variance of the recovered beams relative to the
true beams which we call ΣB, while the variance between
recovered beams and prior beams, σB, is plotted in the
rightmost column. The lower the ΣB, the closer we are in
recovering the true values of the beam. The value of σB on
the other hand tells us not only how far the beams are from
their nominal (unperturbed) values but also how far our
method thinks they are in average, since σB is at the same
time a regularization parameter (see Sec. V). Remember that
the overall phase factor is set in a separate parameter and
that the central beam pixels were set to unity—central pixels
are not used in the variance calculation.
Three different colors correspond to three different

methods. In blue we plot the standard redundant calibration
which we implement by simply forcing beams to be at their
nominal, unperturbed values and recover just the gains and
the uv values. Note that it is still not exactly the same as
standard redundant calibration, because the recovery is on
the uv-plane quantities before convolution with the beam.
In orange we plot the same, but this time we instead fix the
beams to their true value by assuming that somehow these
were independently calibrated with infinite precision. This
sets the upper limit of how well a generalized redundant
calibration should perform. Finally, in green we show the
results of our method in its full self-calibrating glory.
We start with a simplified case, Fig. 7, in which we

generate the data using exactly the same theory as we fit
(the data are generated with M ¼ 1 and fit with M ¼ 1). In
this case, the fitted theory is by construction a perfect
description of the data. The purpose of this exercise is to
isolate the effects of overfitting from effects of using an
approximate theory.
At low signal to noise, the method cannot really detect

with certainty that the beams are different from their
unperturbed values. The regularization thus follows the
beam prior, resulting in a small σB and a relatively large ΣB.
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As the signal to noise increases, the tension becomes
significant, and the method relaxes σB, allowing beams to
unstick from their unperturbed prior values. ΣB therefore
undergoes a transition to smaller values with beam values
moving towards their true values. In the bottom panel, as
SNR increases, our algorithm asymptotes towards ΣB ¼ 0,
matching the orange line. The process works better for the
more nonredundant array, because while nonredundancy is
a source of noise generically, in our case it is also a source
of signal. In χ2 this is manifested as χ2 increasing with
signal to noise and then “snapping” down towards lower
values when σB is relaxed. We find that even in this case the
statistical system is prone to overfitting. This indicates that

further regularization is likely warranted in the uv-plane
sector. At the same time, we see the redundant calibration
simply unable to explain the data with the χ2 monotonically
increasing away from good fit with either increasing SNR
or the nonredundancy of the array.
In the second column we see consistent behavior. The

orange line with known beams performs best and its
variance on the visibilities monotonically decreases as
the SNR increases—the fidelity of the solution increases.
The standard redundant calibration is systematically limited
and as the χ2 increases it is simply unable to improve its
solution. Overall, the generalized redundant calibration is
between the blue and orange lines with issues of falling into

FIG. 7. Comparison of our algorithm (green) against perfect knowledge of beam shape (orange) and also against an assumption of a
perfectly redundant array (blue). Blue and orange have fixed beams, at the prior and truth, respectively, and can only vary the visibilities
and overall gain factors. As such, these two methods are forms of standard redundant calibration. Our algorithm solves usingM ¼ 1 and
the data are generated with M ¼ 1, meaning that the model is a perfect description of the data. The top row corresponds to a weak
departure from perfect redundancy with the geometric and pointing errors set to 0.01, while the bottom row is for relatively strong
departure from redundancy with geometric and pointing errors set to 0.1. The plots in the first column show χ2 for each model to see if
we can recreate the data. The purple dashed box is the 5% percentile to 95% percentile bound of the expected χ2 for generalized
redundant calibration with no regularization. χ2 below this box is indicative of overfitting. The second column plots the variance
between the solved and true visibilities, σV , to see if we are accurately recovering the true sky—since we are generating and solving
using M ¼ 1 we can compare the solved to true values directly. The third column plots the variance between the solved and true beam
shapes, labeled ΣB, to see if we recover the correct array. As the blue and orange lines use a fixed beam shape (the beam prior and true
beams, respectively), their values for ΣB are constant. The fourth column plots the variance between the solved and prior beam shape, σB
from Eq. (17).
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local minima at low SNR. But, for sufficiently high SNR it
outperforms the standard redundant calibration as expected.
In never performs quite as well as the case with known
beams, because the latter utilizes significant extra amounts
of information.
In Fig. 8 we show the same set of plots for more realistic

cases where we simulated data with M ¼ 14 and recover
them with M ¼ 1 theory as before. Here, the beam are
described in a true theory by a 29 × 29 matrix which we
average to a 3 × 3 matrix in cells in order to get “true”
beams. Similarly, we average the true uv-plane into a
reduced resolution uv-plane that we compare with recov-
ered values. The details of how this is performed matter, but
largely do not affect our results. The right-hand side plots
showing the σB behavior are largely unchanged. However,
we see that the χ2 plot keeps increasing as the SNR
increases. This indicates that we are fitting a model that
is actually unable to fit the data. The main assumption of
this paper, namely that a low number of extra degrees of
freedom in individual beams parametrized as pixels will be
sufficiently flexible to describe a general geometrical and
pointing errors has proven to be insufficient at SNR per

measurement of over ∼10. As we increase the signal to
noise, the recovery of the map (second panel) first improves,
but then starts to get worse. Interestingly, we find that for
large level of array nonredundancy all methods perform
worse at higher SNR; this is possible when methods fall into
the wrong local minima or where the imperfections of the
model are such that better formal fits actually perform worse
in the quantities of interest. But, it is also possible that our
recipe to convert theM ¼ 14 truth intoM ¼ 1 pixelized uv-
plane is just too simplistic. In this case, the implication is
that we have a solution that is formally good but with a
poorly understood relation to the underlying truth.

IX. CONCLUSIONS

We have presented a new method for calibrating imper-
fect redundant arrays. The method is a derivative of
redundant calibration and models each independent beam
element as a phased-up array of ð2M þ 1Þ × ð2M þ 1Þ
subelements, each with its own complex gain factors. In the
limit of large M, the method is capable of modeling any
array by having a complete freedom to represent the

FIG. 8. Same as Fig. 8 but with data generated using M ¼ 14 which is essentially indistiguishable from the continuous model. The
data were still fitted usingM ¼ 1model, which is now an approximate model. For σv, the central pixels from the fitted uv data have been
compared with the averaged uv-plane pixels from the corresponding area from the model representing the truth. See text and caption to
Fig. 8 for complete description.
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response of each dish as pixelized ð2M þ 1Þ × ð2M þ 1Þ
complex beam response. In the limit ofM ¼ 0, the method
reduces to the standard redundant calibration.
To avoid fitting for the noise we have attempted a

regularization scheme that models the departures from the
perfect beams using a Guassian with diagonal scatter. The
magnitude of scatter σB is a fitted parameter. As expected,
we found that when signal to noise is low, and the data are
sufficiently well described by the standard redundant
calibration, the beam solutions relax to their priors and
σB becomes essentially zero. In this limit, the system has
less tendency to fit for the noise, although we find that the
χ2 remains too low and and noise fitting remains an issue.
When the signal to noise is sufficient to detect non-
redundancy, the value of σB rises and for sufficiently
nonredundant array, the solutions approach those without
regularization.
In this paper we have focused on methodological

aspects of this method, namely, is the method capable
of producing good fits to the data? In practice, while this
might be true, the very high dimensionality of this problem
makes finding these solutions difficult. We found that,
unless we start with a good approximate guess, the method
is likely to fall into local minima. Therefore, in order to
make this method practically usable, it is necessary to first
find efficient minimizers. Moreover, the method currently
works with a single sky snapshot and should be general-
ized to time-stream data.
Unfortunately, we have found that low-M configurations

are not good at describing generic array errors. The high-M
configurations will likely perform considerably better,
however, given the increased model complexity in that
case is even more likely to suffer from overfitting and
preponderance of local minima. The correct solution to
these issues is to employ a much more sophisticated
marginalization scheme than the maximum likelihood
scheme employed in this work.
While we have focused on nearly redundant arrays,

our method is trivially generalizable to only partially
redundant arrays in arbitrary configuration. A fixed value
of M defines a grid with D=ðλMÞ in the uv-plane. Any
array containing dishes (even heterogeneous ones!), whose
response with respect to some arbitrary original can be
satisfactorily described on the uv-plane in this grid can be
in general fit with generalized redundant calibration.
Of course, this model is interesting only if the array has
a sufficient redundancy that the number of unknowns
does not exceed the number of observed visibilities,
since otherwise it is capable of trivially explaining any
measurement.
We found that the main downside of this method is that it

is nontrivial to connect the measured values to the under-
lying quantities of interest. We have seen that the central
uv-plane pixels (i.e., those on the nominal lattice positions)
are well recovered, but this has not been investigated in any

detail. In comparison, in the standard redundant calibration,
the interpretation of the fitted uv values is clear: they are
exactly the values of the true uv-plane convolved with the
appropriate beam responses. Unfortunately, in generalized
redundant calibration, however, the actual beams are not
made up from identical sub-beams. Therefore, it is non-
trivial to precisely connect the recovered ð2M þ 1Þ ×
ð2M þ 1Þ pixelized beam back to actual pointing and
geometric offsets.
The beauty of the proposed scheme is that is it very

general, especially for a large array that could afford to go
beyond M ¼ 1. On the other hand, if we did know that the
dominant errors are pointing and geometry errors, one
could design a model that would fit explicitly for those. In
that case, the contents of the uv-plane could be modeled by
the values and its spatial derivatives at the lattice points.
We leave extended comparisons of these methods for the
future.
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APPENDIX: TECHNICAL CONSIDERATIONS
IN FITTING

Since we are probing nearby baselines, it is possible that
we probe the conjugate of a known visibility, i.e., while
looking at the baseline (0,1) we will pick up some amount
of signal from the baseline ð− 1

3
; 1Þ. It is important that we

are careful to enforce that

Uð−1
3
;1Þ ¼ ðUð1

3
;−1ÞÞ�: ðA1Þ

This means that even if we construct a large sparse matrix
M [from Eq. (14)] with each row corresponding to the
probed baseline α ¼ ði; jÞ with coefficients from Pij (the

convolution of two beams), we cannot simply solve for U⃗
using this system.
Thus, the correct way to implement Eq. (14) would

be to split our U⃗ into real and complex components
and doing the same with our data. Explicitly, given a
generic a; b ∈ C, with a ¼ a1 þ a2i and similarly for b, we
can say

a · b ¼ ða1b1 − a2b2Þ þ ða1b2 þ a2b1Þi; ðA2Þ

a� · b ¼ ða1b1 þ a2b2Þ þ ða1b2 − a2b1Þi: ðA3Þ
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So, it simply comes down to flipping the sign on a few of
the coefficients of our convolution, Pij, for some of the
baselines.
While the housekeeping for visibility solving boils down

to changing signs and splitting our complex data into two
parts, writing out Eq. (15) to solve for the beams is a bit
more involved.
To write our 2D convolution as a matrix product we can

use a blocked Toeplitz matrix. For each B̃i we can write its
effect in convolution as a matrix βi by writing it as a
blocked Toeplitz matrix, and for B̃†

j we simply have β†j .
Then, our data can be written as

Vij ¼ ðB̃†
j⊛B̃iÞ · U⃗α ðA4Þ

¼ U⃗α · ðβ†j B̃iÞ ðA5Þ

¼ ðU⃗T
αβ

†
jÞ · B̃i ðA6Þ

¼ MijB̃i ðA7Þ

Here, we have a fixed i and iterate over the other beams j.
Unlike the visibility solver, there is no relation between any
of the beams and thus we are able to solve each one as an
independent linear system.
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