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We study the impact of a binary companion on black hole superradiance at orbital frequencies away from
the resonance bands of the superradiant cloud. A superradiant state can couple to a strongly absorptive state
via the tidal perturbation of the companion, thereby acquiring a suppressed superradiance rate. Below a
critical binary separation, this superradiance rate becomes negative, and the boson cloud gets absorbed by
the black hole. This critical binary separation leads to tight constraints on the resonant transitions of the
cloud. Especially, a companion with mass ratio q > 10−3 invalidates all fine structure transitions, as well as
almost all Bohr transitions except those starting from the jψ211i state. Meanwhile, the backreaction on the
companion manifests itself as a torque acting on the binary, producing floating/sinking orbits that can be
verified via pulsar timing. In addition, the possible termination of cloud growth may help to alleviate the
current bounds on the ultralight boson mass from various null detections.
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I. INTRODUCTION

Superradiance instability of ultralight bosons near a
spinning black hole is a well-studied topic. The dissipative
ergoregion of a Kerr black hole amplifies incoming waves
and radiates out particles classically, a phenomenon widely
known as superradiance [1–3]. More interestingly, if the
bosonic particle carries a nonzero mass, its mass barrier
located at a Compton wavelength away from the ergoregion
reflects the amplified wave back, thereby generating more
particles [4–6]. These copiously produced bosons then
condensate into clouds surrounding the black hole, with
structures similar to those of an electron in the hydrogen
atom [6,7].
Such a gravitational atom enjoys very rich phenomenol-

ogy. For an isolated gravitational atom, the boson cloud
quickly extracts the spin of black hole up to a saturation
value. Observing black holes with spin higher than the
saturation value then constrains superradiance and the
boson properties [8–10]. The boson cloud also emits
monochromatic gravitational waves via pair annihilations
[7,11], which are potential targets for gravitational wave
detectors such as LIGO and LISA. Null detection then puts
bounds on the boson mass [12–15]. On the other hand, if
the gravitational atom is in a binary system, more exciting
physics kick in. For instance, a gravitational atom in a

binary exhibits resonant transitions triggered by the orbital
motion [16–18], observable via gravitational wave probes
and pulsar timing [19,20]. These so-called gravitational
collider physics (GCP) [17] transitions contain valuable
information about the structure of the cloud as well as the
properties of the boson. In addition, the mass quadrupole of
the cloud induces orbital precession in an eccentric binary
[21], observable from the gravitational wave or pulsar-
timing signatures. At orbital separations close to the cloud
radius, molecular structures emerge with distinctive obser-
vational signatures [22–24].
However, we point out that, hidden in many of the

phenomena above, is the crucial assumption of the exist-
ence of a boson cloud with total mass not far away from
(e.g., 1–3 orders of magnitude smaller than) that of the
black hole itself. In the case of a truly isolated black hole,
superradiance guarantees the saturation of cloud growth,
and the cloud can only deplete slowly via gravitational
wave emission. In the presence of a binary companion,
however, the stability of cloud is far from obvious. For
example, it is known that the resonant GCP transitions may
deplete the cloud efficiently [16,25,26], while ionization
effects may evaporate the cloud [18,27,28].
In this work, we highlight the fact that the superradiant

modes (e.g., jψ322i) can overlap with the dangerous
absorptive modes (e.g., jψ300i) via the tidal perturbation
of the binary companion. Depending on the binary sepa-
ration, the superradiance growth rate may be suppressed,
and even become negative if the companion is too close
(see Fig. 1 for an illustration). Consequently, the cloud
cannot exist when the binary separation is below a critical
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distance. This dramatically affects the gravitational atom
phenomenology. First, the parameter space of certain GCP
transitions becomes constrained. Second, we may still
observe orbital period derivative changes due to the back-
reaction of cloud absorption, which produces floating/
sinking orbits away from the GCP resonance bands.
Third, the bound on boson masses from various null
detections may be alleviated, due to unknown companion
objects depleting the cloud.
This paper is organized as follows. In Sec. II, we first

review the basic ingredients of black hole superradiance
and tidal perturbation theory. Then in Sec. III, we compute
the suppressed superradiance rate due to the gravitational
perturbation of the binary, and determine the critical
distances below which superradiance is turned off. We
discuss the implications for the gravitational atom phe-
nomenology in Sec. IV. At last, we conclude in Sec. V. We
set G ¼ ℏ ¼ c ¼ 1 throughout the paper and our conven-
tions and notations largely follow from [17,19].

II. THE GRAVITATIONAL ATOM
AND TIDAL PERTURBATIONS

In this section, we begin with a lightning review of black
hole superradiance instability and tidal perturbation theory.
Consider an ultralight (scalar) boson field with mass μ
around a Kerr black hole with mass M and dimensionless
spin parameter ã. The bosons generated by the Kerr black
hole condensate into clouds and form a bound state
together with the black hole. The spectrum of this gravi-
tational atom is governed by the Klein-Gordon equation in
Kerr spacetime:

ðgαβ∇α∇β − μ2ÞΦ ¼ 0: ð1Þ

If the gravitational fine structure constant α≡GMμ ≪ 1 is
perturbatively small, then the cloud is mostly nonrelativ-
istic and we can factor out a rest-mass dynamical phase
from the boson field,

Φ≡ 1ffiffiffiffiffi
2μ

p e−iμtψ þ c:c: ð2Þ

Using the Boyer-Lindquist coordinates, we insert (2)
into the Klein-Gordon equation and expand in powers of
α, the resulting equation takes a Schrödinger form at
leading order,

i∂tψðt; rÞ ¼ H0ψðt; rÞ; H0 ≡ −
1

2μ
∂
2
r þ VðrÞ; ð3Þ

where the potential VðrÞ ¼ − α
r þOðα2Þ resembles that of a

hydrogen atom. Solving the system with in-going boundary
condition at the black hole outer horizon yields the
quasistationary bound states, which at large distance
(r ≫ M) approximate to

ψnlmðrÞ ¼ RnlðrÞYlmðθ;ϕÞe−iωnlmt; ð4Þ

where Rnl is the hydrogen radial function and n, l,m are the
usual principle, angular and magnetic quantum numbers.
The key difference from that of hydrogen atom is that the
eigenvalues of boson clouds are in general complex (hence
the instability),

ωnlm ¼ Enlm þ iΓnlm; ð5Þ

due to an absorptive horizon and dissipative ergoregion.
The detailed form of the energy levels and decay widths can
be found from inspecting the higher-order corrections of
the Kerr geometry. Up to hyperfine splittings, the energy
levels are given by [16,29]

Enlm ¼ μ

�
−

α2

2n2
−

α4

8n4
−
ð3n − 2l − 1Þα4
n4ðlþ 1=2Þ

�

þ 2ãmα5

n3lðlþ 1=2Þðlþ 1Þ þOðα6Þ: ð6Þ

The decay widths are given at α≲ 0.4 via the Detweiler
approximation1 [31],

Γn00 ¼ −
4

n3

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ã2

p �
μα5;

Γnlm ¼ 2r̃þCnlglmðã; α;ωÞðmΩH − ωnlmÞα4lþ5: ð7Þ

FIG. 1. The life cycle of the boson cloud near a rotating black
hole in binary. I: the boson is produced via black hole super-
radiance instability. II: the tidal perturbation of the binary
companion (gray) turns the boson from a superradiant state
(jψ322i) to an absorptive state (jψ300i) in an off-resonance
fashion. III: the boson is quickly reabsorbed by the black hole.
This whole process contributes negatively to the growth rate of
the boson cloud, thereby suppressing superradiance. Here M is
the mass of the black hole and M� is the mass of the binary
companion.

1Note that numerics shows a factor of 2 uncertainty in the
Detweiler approximation, although this is not important for our
purpose. See a recent refinement in [30].
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Here r̃≡ r=M, r̃þ ≡ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ã2

p
, and ΩH ≡ ã=½2M2ð1þffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ã2
p

Þ� is the angular velocity of the outer horizon. The
definition of Cnl and glm are given as

Cnl ≡ 24lþ1ðnþ lÞ!
n2lþ4ðn − l − 1Þ!

�
l!

ð2lÞ!ð2lþ 1!Þ
�
2

; ð8Þ

glmðã; α;ωÞ≡
Yl
k¼1

ðk2ð1 − ã2Þ þ ðãm − 2r̃þMωÞ2Þ: ð9Þ

For an isolated black hole, the occupation number of

superradiant states (Γnlm > 0) grows at a timescale TðgrowÞ
nlm ¼

Γ−1
nlm ∝ α−ð4lþ5Þ until saturation. In contrast, states with

Γnlm < 0 will be absorbed into the black hole at a timescale

TðabsorbÞ
nlm ¼ Γ−1

nlm ∝ α−ð4lþ5Þ. After saturation, the superradiant
statesconstantlyemitmonochromaticgravitationalwavesand
deplete at a much longer time scale TðdepleteÞ ∝ α−ð4lþ10Þ.
Now consider inducing a binary companion of massM�.

At leading order, we can understand the influence of a
binary companion as generating a time-periodic tidal field
around the gravitational atom. In the Fermi normal coor-
dinates, the Newtonian potential of the binary companion
can be expanded using spherical harmonics as

V� ¼ −αq
X
l�≥2

X
jm�j≤l�

El�m� ðι�;φ�ÞYl�m�ðθ;ϕÞ

×

�
rl�

Rl�þ1
�

ΘðR� − rÞ þ Rl��
rl�þ1
�

Θðr − R�Þ
�
: ð10Þ

Here q ¼ M�=M is the mass ratio of the companion and the
black hole,2 R� is the binary separation, and ι�;φ� are the
inclination angle and true anomaly, respectively. ΘðxÞ is
the Heaviside step function. The tidal moment E can be
computed from the geometry of the binary. For equatorial
orbits, the quadrupole contribution simplifies considerably
to [17]

E2∓2 ¼
1

2

ffiffiffiffiffiffi
6π

5

r
e�2iφ� ; E2∓1 ¼ 0; E20 ¼−

ffiffiffi
π

5

r
: ð11Þ

The tidal field of the binary companion decays as Rl�þ1
� for

the l�th multipole moment. Although V� is small for large
separations, it introduces weak mixings between energy
eigenstates of H0. This overlap of two H0 eigenstates is
calculated as

hψn0l0m0 jV�ðtÞjψnlmi≡ ð−1Þm0þ1αq

×
X
l�;m�

El�m� ðtÞGl0l�l
−m0m�m

Ir: ð12Þ

Here Gl0l�l
−m0m�m

is the Gaunt integral,

Gl0l�l
−m0m�m

¼
Z

dΩYl0−m0 ðθ;ϕÞYl�m� ðθ;ϕÞYlmðθ;ϕÞ; ð13Þ

which implicitly imposes a set of selection rules,

−m0 þm� þm ¼ 0

lþ l� þ l0 ¼ 2p; for p ∈ Z

jl − l0j ≤ l� ≤ lþ l0: ð14Þ

And Ir is the radial integral,

Ir ¼
Z

R�

0

r2drR�
n0l0 ðrÞRnlðrÞ

rl�

Rl�þ1
�

þ
Z

∞

R�
r2drR�

n0l0 ðrÞRnlðrÞ
Rl��
rl�þ1
�

: ð15Þ

The radial integral is dominated by the first term if the
companion is far outside the cloud, i.e., R� ≫ n2r1, where
r1 ≡ ðμαÞ−1 ¼ M=α2 is the Bohr radius.
The dynamics of the system is then determined from

solving the full Hamiltonian H ≡H0 þ V� with orbital
backreaction. It is widely known that the periodic tidal
perturbation V� can trigger atomic resonances when the
orbital frequency matches the energy difference of two H0

eigenstates. These GCP resonances exhibit distinctive
floating/sinking features in their orbital evolutions, which
can be observed via multiple messengers [20].

III. TERMINATION OF SUPERRADIANCE

One might think that when the binary separation is much
larger than the cloud radius, i.e., R� ≫ r1 ∼ ðμαÞ−1, the
gravitational perturbation of the binary companion
(hV�i ∼ αr21=R

3� ≪ μα2) may be too small to affect the
cloud dynamics, which is typically of order hH0i ∼ μα2.
However, one must recall that the superradiance rate, which
governs cloud formation, is also small. For instance, the
jψ322i state has a superradiance rate Γ322 ∼ μα12. Therefore,
it might be the case that the cloud formation process can
be dramatically influenced by the presence of a binary
companion. Indeed, we will see that the tidal perturbation
of the binary companion typically suppresses the super-
radiance rate, and may even terminate superradiance and
prevent the cloud from ever growing up.

2Notice that in most cases that we are considering, the mass of
the boson cloud is substantially smaller than that of the black
hole, thus we can neglect the mass of the boson cloud in the
definition of q.
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A. The adiabatic case

We start with the perturbed Hamiltonian H ¼ H0 þ V�
of the boson. Its matrix element is given by

hψn0l0m0 jHjψnlmi ¼ ωnlmδn0nδl0lδm0m þ hψn0l0m0 jV�jψnlmi:
ð16Þ

The diagonal terms are dominated by the eigenvalues of the
free Hamiltonian while the off-diagonal terms are led by the
gravitational level mixings due to the companion. The level
mixings couple two states together whenever the selection
rule allows. In particular, the superradiant states can be
coupled to the absorptive states, bringing negative con-
tributions to the imaginary part of the frequencies. Most
dangerous of all absorptive states are the spherically
symmetric jψn00i states, since they decay the fastest.
Hence we expect the leading order correction to the
superradiant rate of jψnlmi to come from its mixing with
jψn00i (if the selection rule allows). Therefore, we will
focus on a two-state subspace fj1i; j2ig, where j1i denotes
a superradiant state jψnlmi and j2i denotes a highly
absorptive state such as jψn00i. In matrix form, the
perturbed Hamiltonian reads

H ¼
�
ω1 þ V11 V12

V21 ω2 þ V22

�
≡

�
Ē1 þ iΓ1 η�

η Ē2 þ iΓ2

�
;

ð17Þ

where we have denoted η≡ V21 ¼ h2jV�j1i and Ēi≡
Ei þ Vii, i ¼ 1, 2. Notice that both ĒiðtÞ and ηðtÞ implicitly
depend on time through the binary orbital motion.

Thus in the adiabatic limit j _η
Ē2
i
j; j _̄Ei

Ē2
i
j ≪ 1, the state of

the cloud ciðtÞ≡ hψ ijψðtÞi can be solved using the
Wentzel—Kramers—Brillouin (WKB) approximation ,

ciðtÞ ¼ Ciþe
−i
R

λþdt þ Ci−e
−i
R

λ−dt; i ¼ 1; 2; ð18Þ

where λ� are the two instantaneous eigenvalues of the
perturbed Hamiltonian (17),

λ� ≡ ω̄1 þ ω̄2

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jηj2 þ

�
ω̄1 − ω̄2

2

�
2

s
;

≃

8<
:

Ē1 þ jηj2
Ē1−Ē2

þ i
h
Γ1 −

Γ1−Γ2

ðĒ1−Ē2Þ2 jηj
2
i
;þ

Ē2 þ jηj2
Ē2−Ē1

þ i
h
Γ2 −

Γ2−Γ1

ðĒ1−Ē2Þ2 jηj
2
i
;−

ð19Þ

where ω̄i ≡ ωi þ Vii. The approximation is made under the
limit jĒ1;2j ≫ jηj; jΓ1;2j, which is always valid given the
superradiance context. Thus we see that λþ (λ−) represents
the corrected frequency of the quasistationary state j1i (j2i).
Inparticular, their imaginaryparts aremodified.Sincewehave

assumed Γ1 ≥ 0 and Γ2 < 0, the effective superradiance rate
is now suppressed:

Γ̃1≡Γ1þΔΓ1; ΔΓ1≃−
Γ1−Γ2

ðĒ1− Ē2Þ2
jηðR�Þj2 < 0: ð20Þ

This suppression term in the effective superradiance rate
mainly depends on the distance R� between the binary. If
the absorptive state j2i happens to be a highly dangerous
state such as jψn00i, the corresponding suppression can be
significant if R� is not large. For instance, consider the case
n ¼ 3; l ¼ m ¼ 2. The fine-structure splitting is

E322 − E300 ≃ 0.04 s−1
�

α

0.1

�
5
�

M
10 M⊙

�
−1
: ð21Þ

The superradiance/absorption rates at maximal black hole
spin (ã ¼ 1) are

Γ322 ≃ 3 × 10−13 s−1
�

α

0.1

�
13
�

M
10 M⊙

�
−1
; ð22Þ

Γ300 ≃ −3 × 10−3 s−1
�

α

0.1

�
5
�

M
10 M⊙

�
−1
: ð23Þ

Then at a binary separationR� ¼ 105M, the size of the level
mixing is

jηðR�Þj ≃ 2 × 10−7 s−1
�

α

0.1

�
−3 q

0.2

�
M

10 M⊙

�
−1
: ð24Þ

This results in a correction to the superradiance rate

ΔΓ322 ≃ −7 × 103
q2

α10
M5

R6�
;

≃ −0.6 × 10−13 s−1
�

α

0.1

�
−10

�
q
0.2

�
2
�

M
10 M⊙

�
−1
;

ð25Þ

which already gives Γ̃322 ∼ 4
5
Γ322, i.e., a reduction of 20%.

As one expects from the quadrupole tidal perturbation,
ΔΓ322 grows as R−6� as the binary separation decreases.
Therefore, inside a critical distance R� < R�;c defined from
the condition

Γ̃nlmðR�;cÞ ¼ Γnlm þ ΔΓnlmðR�;cÞ≡ 0; ð26Þ

the effective superradiance rate becomes negative, and the
mode jψnlmi can no longer grow even at maximal black
hole spin. For the jψ322i example, the critical distance is
easily read out from (22) and (25):
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R�;cð322Þ ≃ 106 km

�
α

0.1

�
−23=6

�
q
0.2

�
1=3 M

10 M⊙
: ð27Þ

Before moving on to further discussions, we would like
to make a few comments on suppressed superradiance and
the critical distance.
(1) First, it is interesting to see the interplay of UV and

IR effects here. The imaginary part of the eigenval-
ues of the free HamiltonianH0 can be understood as
an UV effect, which is relevant near the black hole
horizon scale rUV ∼M. Yet its correction involves
IR effects which has nothing to do with the black
hole geometry. These corotating bosons produced
via superradiant scattering leak to an IR scale rIR∼
ðμαÞ−1, and are turned into non/counter-rotating
bosons by the tidal perturbation of the binary
companion, which then get absorbed by the black
hole again in the UV (see again Fig. 1).

(2) Second, if the binary separation is shorter than the
critical distance R�;cðnlmÞ, then there can be two
scenarios. If the cloud has not been formed, yet the
black hole spin appears to be capable of super-
radiance (Γnlm > 0), then superradiance will be shut
off. No jψnlmi cloud will be produced, and black
hole spin cannot drop below the saturation value for
modes with magnetic quantum number m. This is
because, unlike Hawking radiation, superradiance is
not spontaneous and can only amplify a given cloud
state. But if such a cloud state is easily depleted,
there is no seed particles left for amplification, hence
no extraction of black hole spin. On the other hand,
if the cloud has already been formed, it will decay
slowly at the rate jΓ̃nlmj. Like GCP resonances, this
process generates backreaction to the binary orbit
and can be observed. More discussions on this
possibility will be elaborated in Sec. IV B.

(3) Third, the superradiance termination we are dealing
with here is similar but not identical to resonant
depletion scenarios considered in the literature
[16,25,26]. Specifically, we need no requirement on
the orbital frequency or orbit direction (corotating/
counter-rotating). In fact, we will mostly stay away
from the GCP resonance bands and analyze the
viabilityofGCPresonancesconsideringsuperradiance
termination in Sec. IVA.

B. Beyond adiabaticity and multiple states

The above calculations are performed under the
assumption of adiabaticity. However, when the orbital
frequency is high, the naive WKB approximation (18)
breaks down and we need a better treatment of the
perturbed HamiltonianH. For simplicity, we will specialize
to the case of equatorial circular orbits. The tidal moments
thus reduce to [17]

El�m� ¼
4π

2l� þ 1
Yl�m�ðπ=2;φ�ðtÞÞ ¼ el�m�e

im�φ�ðtÞ; ð28Þ

where

el�m� ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

2l� þ 1

ðl� −m�Þ!
ðl� þm�Þ!

s
Pm�
l� ð0Þ ð29Þ

and Pm�
l� ðxÞ is the associated Legendre polynomial. This

eim�φ�ðtÞ time dependence is inherited by the off-diagonal
term ηðtÞ. Therefore, we follow the standard procedure and
perform a time-dependent unitary transformation to go into
the corotating frame [17,22,32],

HD ¼ UðtÞ†ðHðtÞ − i∂tÞUðtÞ;
with UðtÞ≡ e−iφ�ðtÞLz ; ð30Þ

where Lz is the cloud angular momentum operator along
the spin axis. In component form, the Hamiltonian in the
corotating frame reads

HD ¼
�
Ē1 þ iΓ1 −m1 _φ� jηj

jηj Ē2 þ iΓ2 −m2 _φ�

�
: ð31Þ

Notice that we have applied the selection rule (14) and set
m� ¼ m2 −m1. Now the fast oscillations in H are elimi-
nated and we are left with a corotating frame Hamiltonian
HD that varies slowly in time only through R�ðtÞ. Going
through the same procedure as before, we obtain the
correction to the superradiance rate of j1i

ΔΓ1 ≃ −
Γ1 − Γ2

½Ē1 − Ē2 − ðm1 −m2Þ _φ�ðR�Þ�2
jηðR�Þj2: ð32Þ

Clearly, in the adiabatic limit, j _φ
Ei
j ≪ 1, the above expres-

sion reduces to (20). The impact on superradiance becomes
severe when the denominator vanishes. This corresponds to
the resonant depletion scenario [16,25,26], where the cloud
state j1i largely mixes into j2i and is quickly absorbed into
the black hole. Since we focus more on the off-resonance
scenario, the denominator will typically be dominated
either by Ē1 − Ē2 (the adiabatic case) or by ðm1 −m2Þ _φ
(the diabatic case).
Since both the tidal perturbations and the instability rates

are small compared to the energy levels, the two-state result
(32) can be readily generalized to that of multiple states. To
leading order in jηijj, the impact on superradiance is just a
simple summation,

ΔΓ1 ≃ −
X

i¼n0l0m0

Γ1 − Γi

½Ē1 − Ēi − ðm1 −miÞ _φ�ðR�Þ�2
jη1iðR�Þj2;

ð33Þ

TERMINATION OF SUPERRADIANCE FROM A BINARY … PHYS. REV. D 106, 043002 (2022)

043002-5



where η1i contains a sum of tidal moments El�;mi−m1
. The

critical distance is again determined by requiring
Γ̃1 ¼ Γ1 þ ΔΓ1 ¼ 0. Due to the R� dependence in the
denominator, there may be multiple solutions of R�;c when
entering/exiting a resonance. We are more interested in the
off-resonance solutions.
In Fig. 2, we have plotted the binary separation depend-

ence of the effective superradiance rate Γ̃nlmðR�Þ for
different states and black hole spins. It can be seen that
the effective superradiance rate Γ̃nlm tends to the Detweiler
value Γnlm at large binary separations, since the tidal
perturbations become negligible in this limit. As we
decrease the binary separation, Γ̃nlm quickly drops to zero
near a critical distance, where superradiance is terminated
due to mixing into absorptive states. The sharp peaks and

valleys are caused by GCP resonances, where the mixing
effect is nonperturbatively large. Interestingly, when the
black hole spin is high (e.g., ã ¼ 1), the high-l states such
as jψ433i and jψ544i receive positive enhancement to the
superradiance rate first, before negative suppression terms
take over and terminate superradiance as R� decreases. This
is because of their mixings into low-l states such as jψ411i
and jψ522i, which possess larger positive growth rates.
Yet as the black hole spin drops below the threshold for
superradiating these low-l states, the superradiance rate
Γ̃nlm for high-l states can no longer benefit from the
mixings, and thus monotonically drop to zero as R�
decreases, as indicated by the dashed lines in Fig. 2.
The critical distance can be solved numerically from (26)

in the case of multiple states beyond adiabaticity. As
mentioned before, we focus on systems with an orbital
frequency away from the GCP resonance bands, because
such a configuration occupies the most proportion of the
binary lifetime and are more typical statistically. Henceforth,
it will be convenient to perform a “Wick” rotation and
replace the denominator in (33) by

1

½Ē1 − Ēi − ðm1 −miÞ _φ�ðR�Þ�2

→
1

ðĒ1 − ĒiÞ2 þ ½ðm1 −miÞ _φ�ðR�Þ�2
: ð34Þ

This modification removes the resonance poles, but it keeps
the off-resonance physics mostly unaltered. Since the tidal-
perturbation-theory calculations are under the assumption of
R� > rn, the resulting critical distance must be greater than
the cloud radius,

R�;cðnlmÞ > rn ¼ n2r1 for consistency: ð35Þ

Under this constraint, we solve (26) for the critical distance
and plot its dependence on α andq in Fig. 3. Becausewe have
chosen a maximal black hole spin, the resulting critical
distance is the minimal requirement for cloud stability. This
means superradiance of a given state jψnlmiwill be terminated
completely belowR� < R�;cðnlmÞ, and an existing cloudwill
decay quickly at a rate comparable to its original growth rate.
From Fig. 3, we see that for fixed α andM (hence fixed boson
mass), thecritical distancedecreaseswitha smallermass ratio.
This is in agreement with intuition, since a lighter (heavier)
binary companion is expected to have weaker (stronger)
gravitational perturbations on the cloud dynamics, resulting
in a broader (narrower) safe region. Cloud states with higher l
appear to be less stable in the presence of a binary companion,
as their critical distances are larger. At last, we stress that as an
off-resonance quantity, the critical distance solved in this way
does not depend on the orbit orientation, which matters only
for the triggering of a GCP resonance.
Before concluding this section, we point out that the

destabilization of superradiant states and superradiance
termination are to be considered as long-term effects.

FIG. 2. The effective superradiance rate Γ̃nlm as a function of
the binary separation R� for corotating orbits (upper panel) and
counter rotating orbits (lower panel). The solid lines correspond
to the maximal black hole spin ã ¼ 1, while the dashed lines

correspond to the previous saturation black hole spin 4ðm−1Þα
ðm−1Þ2þ4α2

for the mth state (e.g., ã ¼ 2α
1þα2

when considering the m ¼ 3

state). The other parameters are chosen to be α ¼ 0.1,
M ¼ 10 M⊙, and q ¼ 0.2. It is clear that the effective super-
radiance rate reduces to the Detweiler value at large binary
separations, while dropping below zero generically at a finite
critical distance.
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Below the critical distance, the cloud can actually exist for a
period of time much longer than that of the typical cloud
dynamics, though much shorter than that of the orbital
dynamics. Such quasibound boson cloud can be found, for
instance, as molecular states when the binary separation is
close [22]. Yet in the long run, they are still transient
phenomena that decay away at a timescale Oð1Þs ð M

10 M⊙
Þ.

IV. OBSERVATIONAL CONSEQUENCES

Given the potential threat of a binary companion to the
boson cloud, how does this superradiance termination
effect influence the phenomenology of the gravitational
atom? In this section, we will briefly examine three of its
main consequences.

A. Implications for GCP transitions

First, the termination of superradiance poses a constraint
on observable GCP transitions. This is natural since GCP is
based on resonant cloud transitions. If there is no cloud
when the binary enters the resonance band, there is
certainly no cloud transition, and no observable signal.
Therefore, roughly speaking, in order to have successful
GCP transitions, we must require that the binary separation
at resonance to be greater than the critical distance of the
initial cloud state,3

R�;rðnlm → n0l0m0Þ > R�;cðnlmÞ: ð36Þ
Otherwise, the cloud either cannot form, or would have
been depleted via Γ̃nlm < 0 long before entering the
resonance band.
Scanning through the parameter space, we plot the “safe”

region for various GCP transitions in Fig. 4. It is clear from
the plot that superradiance termination poses a tight bound
on the parameters of the binary system. Bohr transitions
with floating orbits are most severely constrained, because
they happen at relatively high orbital frequencies. This
means the binary separation at resonance is short, and the
cloud is vulnerable to absorption. Hyperfine transitions, on
the contrary, are influenced the least. In particular, we note
that the jψ211i → jψ21–1i and jψ322i → jψ300i transitions
are safe to occur throughout the parameter space. This is
because they happen at low orbital frequencies, where the
overlap between the superradiant mode and absorptive
modes is still small. Overall, except the hyperfine ones and
Bohr transitions starting from the state jψ211i, most
transitions are forbidden for mass ratio q≳ 10−3. They
are allowed only below a certain mass ratio, corresponding
to a small mass of the binary companion.

B. Observing cloud absorption

Before entering the critical distance R�;c, the cloud may
have already grown up. Then the negative effective

FIG. 4. The “safe” region for having various hyperfine, fine and
Bohr GCP transitions. The solid lines represent the boundary
where the resonance distance is equal to the critical distance, and its
shaded side satisfies (36) and is allowed. Note that the hyperfine
transitions jψ211i → jψ21–1i and jψ322i → jψ320i are allowed
throughout the parameter space. For Bohr transitions, we also
included the constraint R�;rðnlm → n0l0m0Þ > max fn2r1; n02r1g
to keep the validity of tidal perturbation theory. The black hole spin
is chosen to be the saturation value of the initial cloud state.

FIG. 3. The critical distance R�;c (in units of the horizon size)
as a function of α and q for different cloud states. The gray region
is excluded by the consistency constraint (35). The black hole
spin is chosen to be maximal, ã ¼ 1. Therefore, below the critical
distance, no net superradiance is present and no existing boson
cloud can last for a period longer than its original typical
growth time.

3Notice that both sides of (36) depend on α and q. Thus this is
effectively a constraint on the relative sizes of three mass
parameters (namely, μ;M;M�) in the system.
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superradiance rate within R�;c will gradually deplete the
cloud. The loss of angular-momentum-carrying particles
backreacts on the orbit and produces an effective torque on
the binary companion, leading to floating/sinking orbits in
a manner similar to GCP transitions. The difference here is
that such orbital backreaction does not occur at a fixed
resonance band.
The total angular momentum of the cloud is

ScðtÞ ¼ Sc;0

�
m1jc1ðtÞj2 þ

X
i≠1

mijciðtÞj2
�
; ð37Þ

where Sc;0 is the cloud angular momentum at the saturation
of jψ1i, and 0 ≤ jc1j2 ≤ 1 is the percentage of cloud
occupation. It effectively describes the boson particle
number, i.e., the larger jc1j2 is, there are more particles
in the cloud. Since except the superradiant mode jψ1i with
m1 > 0, most other modes are usually unoccupied (ci ≃ 0),
we can approximate ScðtÞ ≃ Sc;0m1jc1ðtÞj2. In the case of a
planar circular orbit, considering backreaction of the cloud
evolution yields an orbital period derivative

_P ¼ ð _PÞGR þ ð _PÞC; ð38Þ

where ð _PÞGR represents the usual orbital decay in general
relativity (GR),

ð _PÞGR ¼ −
96

5
ð2πÞ8=3 q

ð1þ qÞ1=3M
5=3P−5=3; ð39Þ

and ð _PÞC is the extra contribution due to cloud backreaction
[17,19],

ð _PÞC ¼ −3ð2πÞ1=3ð1þ qÞ−2=3 Sc;0m1

M2

djc1ðtÞj2
dt

M1=3P2=3:

ð40Þ

The cloud evolution would have been unitary but for the
absorption, which means c1ðtÞ ∝ e−Γ̃1t and

djc1ðtÞj2
dt

¼ −2Γ̃1ðR�Þjc1ðtÞj2: ð41Þ

For instance, using Kepler’s law to rewrite R� in terms of P,
we can obtain the fractional correction to the period
derivative for jψ322i

ð _PÞC
ð _PÞGR

≃−15jc322j2
�

α

0.1

�
−9

×
q

ð1þqÞ7=3
�

M
10M⊙

�
5=3

�
P
1 hr

�
−5=3

: ð42Þ

The minus sign shows that this is a floating orbit. Thus the
correction to the orbital period derivative can be significant
for certain parameter choices.4 Such corrections should be
detectable via multimessengers such as gravitational waves

FIG. 5. The parameter region reachable for detecting cloud
absorption using a pulsar with mass M� ¼ 1.4 M⊙ and width
w ¼ 0.01 s, for different cloud occupation fraction jc1j2. Here we
have taken the state jψ322i as an example. The orbital period is
chosen to be near the critical distance, P ¼ 0.95PðR�;cð322ÞÞ.
Different contours represent different total observational time
Tobs. The daily observation time is chosen to be tobs ¼ 5 hr. In
addition to the timing accuracy, requirements on cloud formation
and depletion are also included: TðgrowÞ > 106 yr, TðdepleteÞ <
108 yr [17,19].

4Since the cloud has been decaying for some time after
entering the critical distance, we generally expect jc1j2 to be a
small number. In principle, assuming natural evolution, one can
solve the whole history and determine jc1j2. Here, for simplicity,
we will treat it as a free parameter.
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and pulsar timing [33,34]. For instance, consider the
gravitational atom in a pulsar-black hole binary, the
periastron time shift is calculated by

ΔP ≡ t − Pð0Þ
Z

t

0

dt0

Pðt0Þ ≈
1

2

_P
P
t2; ð43Þ

where we have Taylor expanded the orbital period to the
linear order. In order to observe the extra periastron time
shift caused by the backreaction of cloud absorption, we
must require the deviation from the GR result to be larger
than the timing error of pulse counting,

jΔP − ðΔPÞGRj > σΔP
: ð44Þ

For a pulsar with rotation period τ and pulse width w≲ τ,
the timing error σΔP

can be roughly estimated as [19]

σΔP
∼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t=1 day

p w
tobs=P

; ð45Þ

where tobs is the duration of a continuous observation
window every day. In Fig. 5, we plot the timing accuracy
for a pulsar of width w ¼ 0.01 s and total observation time
Tobs. We see that with enough observational time (e.g.,
Tobs ∼ 1 decade), much parameter region can be uncovered,
even when the cloud is extremely dilute (e.g., jc1j2 ∼ 10−6).

C. Toward relaxing the bound on boson mass

As mentioned before, boson clouds in isolated black
holes only deplete by emitting gravitational waves whose
frequency is peaked around the boson rest mass μ. Thus the
null detection of such near-monochromatic gravitational
waves poses constraints on the mass of the ultralight boson,
under certain assumptions on the initial black hole spin,
cloud ages and the distance from earth. For instance, the
LIGO search for continuous gravitational waves from the
Milky Way center has reported constraints for the boson
mass rage 10−13 eV < μ < 10−12 eV [14] (see also
[12,13,15,35]). However, it is likely that spinning black
holes are not isolated in the galactic center, where the
density of objects is high. Therefore, in such a high-density
and highly dynamical region, black hole superradiance may
be influenced by the presence of a binary companion or
other objects, possibly even suppressed to the extent of
terminated cloud growth. Henceforth, the gravitational
wave null detection bound could be relaxed. We have also
seen in Sec. III B that states with higher l are more severely
affected by the tidal perturbation of nearby objects. Thus
we expect the bound should be state dependent, with cloud
states of higher l being constrained less.
Another boson mass bound comes from measuring the

mass-spin distribution of black holes (the so-called Regge
plane). Assuming efficient superradiance growth of the
cloud, the black hole angular momentum will quickly be

extracted, and its spin parameter is cut off at a value less
than 1. This effect manifests itself as a gap on the black hole
Regge plane, which can be tested statistically with LIGO
and LISA [8–10]. Considering superradiance termination,
such constraints are also subjected to relaxation if the black
hole is in a binary. As mentioned in Sec. III B, if the
superradiance of a certain state is shut off by a close
companion, then the black hole spin cannot further
decrease by producing that state. If, in addition, this
superradiant state is the one with the lowest l that the
black hole spin is capable of producing, all other states will
be shut off. For example, if R� < R�;cð322Þ, and ã < 4α

1þ4α2
,

both jψ322i and jψ211i cannot grow, and neither can the
higher-l modes (since they have even larger R�;c). Then the
black hole spin will not be cut off at the saturation value
α

1þα2
of the jψ322i state. Such considerations must be taken

into account in the statistical analysis of the black hole
Regge plane.
Other bounds come from, for example, testing the

birefringence of photons [36] and the stellar kinematics
[37] near supermassive black holes, with the help of
powerful telescopes such as EHT [38,39] and the Keck
Observatory [40]. These bounds also assume the presence
of cloud, and are subjected to a similar relaxation as
mentioned here, since supermassive black holes are known
to be surrounded by numerous stars. A detailed analysis of
the impact of superradiance termination on various boson
mass bounds is beyond the scoop of this paper, but it no
doubt deserves further investigations in future works.

V. CONCLUSION

Superradiance instability of ultralight bosons near a
rotating black hole leads to lots of interesting phenomena,
many of which are based on the existence of a hydrogen-
atom-like cloud. In this work, however, we raise the
question on the robustness of black hole superradiance
in the presence of a binary companion. We have found that
through the tidal perturbation of the companion, super-
radiant states can be coupled to dangerous absorptive states
and receive negative corrections to its growth rate, thereby
suppressing superradiance. We have found that for a given
cloud state, there exists a critical binary distance below
which its superradiance is terminated. This fact leads to
several important consequences. On one hand, it poses tight
constraints on possible GCP transitions. For instance,
except hyperfine transitions and Bohr transitions starting
from jψ211i, almost all other transitions must have a mass
ratio q ≪ 1. On the other hand, after entering the critical
distance, an existing cloud is absorbed back into the black
hole. This process can be observed via multiple messengers
such as pulsar timing. In addition, the termination of
superradiance implies the absence of certain cloud states.
This effect is expected to relax the constraints on the
ultralight boson mass using various methods that rely on
the existence of such clouds.
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We have followed a simplistic route in the current work.
And there are certainly many improvements to make and
prospects to explore in the future. To name a few: First,
since the effect of superradiance termination is an off-
resonance effect, it is expected to apply for generic
companion star orbits as well. It is thus interesting to
solve generic orbits explicitly in the future. Second, we
need to understand in detail how superradiance termination
can affect the current boson mass bounds. Third, aside from
bounded binary orbits considered here, external objects
with unbounded orbits or nonaxisymmetric accretion disks
around the black holes may also influence the cloud. It is
then interesting to study the stability of the gravitational

atom for more complex dynamics such as scattering with
stellar objects or nonaxisymmetric accretion processes.
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