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The gravitational-wave detector is a complex and sensitive collection of advanced instruments that are
impacted not only by mechanical/electronics systems but also by the surrounding environment. Hence, it is
of great importance to classify and mitigate noises to detect gravitational-wave signals by using information
from many auxiliary channels related to such devices and surroundings. This improves the signal-to-noise
ratio and reduces false alarms from coincident loud events. For this reason, it is essential for identifying
coherent relationships between complex channels. This study presents a way of identifying (non)linear
couplings between associated channels by using the method of correlation coefficients. We show that the
method can be applied to practical problems in the gravitational-wave detector, such as noises by lightning

strokes, air compressors vibrations, and noises caused by wind effects.
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I. INTRODUCTION

The detection of a gravitational wave (GW) emitted from
the binary black hole coalescence (GW150914) [1] opened
the era of GW astronomy, which is expected to pursue new
perspectives of understanding the structure of the Universe
and the evolution of astrophysical objects such as stars and
galaxies. For a more profound understanding and expan-
sion of the knowledge of the Universe, there still exist many
challenges to be overcome for GW physics and astronomy.
Much more accurate sky localization for GW sources and a
much farther range of luminosity distance in GW obser-
vation requires the improved sensitivity of GW detectors,
overcoming the present limitation of technologies.

Detectors’ sensitivity confines the boundary of observa-
tions so that the number of GW events within the boundary
determines the detection rate that can be achieved in the
current GW detector. The currently operating ground-
based laser interferometric GW detectors such as Laser
Interferometer Gravitational-wave Observatory (LIGO),
Virgo, and the KAGRA have a similar design sensitivity
curve with a frequency band of 30-2000 Hz, which is
characterized by three primary noise sources: photon shot
noise by the laser system in the high-frequency range,
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thermal noise by test-mass mirrors in the midfrequency
range, and seismic noise by ground vibrations in the low-
frequency range [2-5]. Those GW detectors are now being
operated for detecting GW signals and planned for
upgrades to improve their sensitivities using many engi-
neering challenges such as cryogenics, quantum squeezed
light, and so on. Furthermore, next-generation ground-
based GW detectors with new conceptual designs are now
being planned [6,7].

Besides, advanced methodologies and analysis algo-
rithms should be required to enhance the quality of data
[8—10] taken from the very sensitive instruments and isolate
GW signals from noises caused by the sensitive devices
and the surrounding environments efficiently because it
improves the detection statistics such as signal-to-noise
ratio (SNR) to provide the reliable detection criterion. This,
consequently, also improves the detection range of GW
detectors, which yields better detection rates of GW
sources. In this point of view, both developments of
advanced methodologies for data analysis and understand-
ing the status of GW detectors, as well as the most sensitive
instruments, are of special importance to achieve for
detecting GW signals coming from the farthest GW
emitting objects. For this reason, many different tools
for characterizing noises have been developed and utilized
for analyzing GW signals so far. The first purpose of those

© 2022 American Physical Society
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tools is to categorize and classify transient/continuous
noises that are harmful to the GW strain channel, identify-
ing the causal relationship in the coincident families of
noisy channels. Then they should be mitigated with the
help of various advanced mathematical algorithms as
possible. Finally, if they are caused by some instrumental
defects with a possibility of repeated malfunctions, the
causes should be reported and amended for maintaining the
consistent status of the detector.

Studies of finding coherence between the strain channel
and auxiliary channels of the GW detectors have been
extensively performed in LIGO-Virgo collaborations, in the
context of continuous GW and stochastic GW background
searches [11-16]. Many efforts for identifying and vetoing
transient noises have been made so far and are widely
utilized for GW data analysis, such as a computation of
significance called hierarchical veto (Hveto) [17] and Used
percentage veto (UPV) [18], noises associated with long-
duration transients [19,20], Q-transform based trigger
generator [21], the Hilbert-Huang transform-based method
[22], the bicoherence method [23], linear regressions [24],
machine learning algorithms [25], and so on. These
methods cover classification and a vetoing method as well
as identification of the influences between the GW strain
channel and auxiliary channels monitoring the environ-
mental and/or instrumental status. This needs a consistent
understanding of which channel effects can cause the
transient noises in the GW strain channel and/or which
can be useful to mitigate such abnormalities to maintain the
normal status of the detector. However, we still face great
challenges in dealing with the noises of GW data because
the GW detector behaves with a highly nonstationary and
nonlinear nature.

For this reason, it is necessary to develop more advanced
analysis tools for noise hunting to improve the detector’s
data quality. Here we focus on the couplings between a
certain auxiliary channel and the GW strain channel. In
Ref. [26], it has been shown that the excess noises from
bilinear and nonlinear couplings in GW interferometers can
be treated using the bilinear coupling veto (BCV) method
[27] with the trigger-based correlation coefficient. Along
this line, we suggest a new way of identifying coherent
associations between the GW strain channel and the related
auxiliary channels, in which we use three kinds of the
correlation coefficient: Pearson’s correlation coefficient
(PCC) [28] and Kendall’s 7 coefficient (Ktau) [29] as a
linear measure and maximal information coefficient (MIC)
as a nonlinear measure [30-32], respectively. In particular,
MIC is an information-theoretic measure to discriminate
the nonlinear association between two random variables.
Together with these measures, we construct a systematic
way of identifying the noises from (non)linear couplings
and causalities propagating from instrumental and/or
environmental disturbances of GW detectors. Then we
apply the suggested method to the well-known issues of

data analysis and noise identification in the KAGRA
detector, expecting that the correlation unidentified in
the previous methods can be verified as a nonlinear
correlation effect.

In this study, we present a way of identifying coherent
associations between the GW strain channel and auxiliary
noise channels by computing correlation measures. The
method we consider here is the PCC and Ktau as a linear
measure and MIC as a nonlinear measure. We construct a
consistent way of discriminating the relevant noise effect
and its causality, applying it to some issues in GW
detection. In Sec. II, we describe the methods to measure
(non)linear associations and build an analysis process with
proper statistical algorithms between the GW strain channel
and many auxiliary channels. In Sec. III, we exhibit the
exemplary results based on some noise data taken from the
KAGRA GW detector; a lightning stroke, air compressor
noises, and the noises caused by the wind effect. Finally, we
summarize and discuss our results in Sec. IV.

II. METHOD AND WORKFLOW

We use the data taken from the GW strain channel and
many auxiliary channels in the KAGRA GW detector. The
KAGRA is a gravitational-wave detector with a similar
configuration of laser interferometry such as the LIGO/
Virgo except for the cryogenic test-mass mirrors and
the underground installation [33]. The initial installation
of the KAGRA has finished in 2019, and after year-
long commissioning, it started its first observing run during
a month in 2020 and joined the O3 observing run
together with the advanced LIGO and the Advanced
Virgo, recently [34].

The major feature of the KAGRA is the cryogenic and
underground GW detector, which implies that the KAGRA
detector has somewhat unique characteristics caused by the
nature of the underground cryogenic facility, producing the
relevant noise effects that were not reported in the ground-
based GW detectors. Therefore, it is of great importance to
understand the noise characteristic of the KAGRA detector
and its environment.

A. Methods for data correlations

We introduce three methods of analysis for investigating
the correlation between two data samples; the PCC, the
Ktau, and the MIC. Let us consider two time-series data X
and Y to be nonstationary and univariate datasets with an
equal size of n. We assume that (x;,y;) is a set of ith
bivariate data pairs from the paired data (X,Y). If we
assume that the dataset Y includes certain noises, being
affected by the sensitivity of GW detectors, there exists a
meaningful statistical association between two observed
variables X and Y because the noise can propagate to
another dataset X. With these assumptions, we analyze the
correlated relationship of noises resulting from the
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instrumental anomalies and/or environmental interference
in GW detectors. In this section, we describe three major
methods to estimate the linear and nonlinear associations
based on the time-series data recorded in each channel.

The PCC is defined as the ratio between the covariance
and the product of standard deviation of each variable,
which produces the linear correlation score. More precisely,
letx=>", x;/nand y =" | y;/n be the means of X
and Y, respectively, then, the PCC p is

Z? (i =%) (i =)
\/Z (x; — X) Z?:l(yi_)_’)z’

which determines the value between —1 and 1. For inde-
pendent two variables, we have |p| = 0. When |p| > 0.5, itis
typically interpreted as a significant correlation. |p| =1
indicates that two variables have a perfect linear correlation,
where positive and negative signs imply increasing and
decreasing linear dependence, respectively. Here, we used
the absolute value of the PCC for convenience.

The Ktau [29] measures the strength of the monotonicity
of the relationship between two variables, which is defined by

2(c—d)
nn—1)"

p(X.Y) =

(1)

(X, Y) = (2)
where ¢ and d are the number of concordant and discordant
pairsin (X, Y), respectively. Given two data samples from the
combined variable set, (X,Y) = {(x;,y1), (x2,¥2), ...,
(X, ¥,)}, if sampled pairs are either x; > x; and y; > y;
orx; <xjandy; <yj itis called a concordant pair. On the
other hand, if they are either x; > x; and y; < y; orx; < x;
and y; >y, it is called a disconcordant pair. Hence, Ktau
provides the ordinal association that is proportional to the
difference between ordered and disordered pairs in all
possible combinations. As with the PCC, 7(X,Y) varies
from —1 to 1. If the order of two pairs is randomly distributed,
they are monotonically independent, yielding (X, Y) = 0.If
Y values tend to change with increasing or decreasing X
values, the absolute value of Ktau becomes one.

Meanwhile, the mutual information (MI) can estimate
and characterize the strength of shared information between
two random variables. For given two discrete random
variables A and B with a joint probability mass function
p(a,b) and marginal probability mass functions p(a) and
p(b), Ml is defined by

ZZP a,b)log,———~

a€A beB

p(a.b)
p(a)p(b)’

Note that MI provides non-negative values, /(A; B) > 0. If
the random variable B is a function of A, B = f(A), I(A; B)
diverges. In addition, if A and B have no shared informa-
tion, p(a,b) = p(a)p(b), then I(A;B) clearly vanishes;
they are statistically independent. Refer to [35] for more
detailed properties of MI.

(3)

Suppose that the joint probability distribution pyy (i, j) is
approximated by the number of points falling into the i-by-
Jjth bin on the partitioned plane of scattered plots by X and
Y. Then, the approximated MI is obtained by the occupied
elements in each cell as

k

Pxy Pxy (i, J)
Zzlogzmm{k 78, apG) Y

i=1 j=1

where px (i) and py(j) are marginal distributions on the ith
column and jth row. In addition, k and / indicate the partition
size of the X column and Y row, respectively. Because the
Jensen’s inequality, 0 < I(X;Y), ; < log, min {k, [}, is sat-
isfied [35], Eq. (4) can be normalized and the value spans
between zero and one.

To overcome a heuristic approach of maximizing the MI
value for all possible resolutions of k-by-/ grid [30], three
intrinsic properties in Eq. (4) are utilized; they are (1) mon-
otonic convex function, (2) bounded set, and (3) uniformly
continuous function, which allows computing Eq. (4) more
efficiently and effectively.

Let S be a n-ordered pair set and B(n) = n* and the
parameter ¢ restricts the total grid size. Here, a is a
dimensionless parameter that controls the size of grids and
c is controlling the coarseness of maximizing the discrete
grid search. Then, the empirical MIC called MICe is

defined as
max I[*](S, k1)
{—} 5)

MICe(X,Y,a,c) =
el @c) = max log, min{k, [}

ab<B(n)

where I1/(S, k, 1) denotes the maximized MI in k x [ grids.
Note that the coefficient of MICe varies from zero to one. If
two time-series data have a clear association, Eq. (5) con-
verges to one for sufficiently large data sizes whereas it
becomes zero in the opposite condition. Even though MICe
has a unique performance to extract the complex associa-
tions, it was uncertain how reliable MICe values can be
provided in the aspect of the parameter selection. To
guarantee the reliability of computed MICe, we suggested
an empirical way of determining the relevant parameters of
MICe through the statistical power to optimize them in [36].

B. CAGMon: A novel tool for
identifying correlations

We utilize the aforementioned correlation measure indi-
ces to identify the data associations between the GW strain
channel and auxiliary channels of GW detectors. To
monitor the chronological trend of association coefficients
between two datasets, we considered a minimal bin of data
segments, called stride, which represents a piece of an
equal interval unit in the whole data segments. For given
datasets, the aforementioned three correlation coefficients,
X, Y),7(X,, Y,),MICe(X,,,Y,,)}, are computed
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for divided subsets of X,, and Y,, by stride. By gathering
the sequential coefficients together, we can demonstrate a
time-serial trend of the association strength between two
channels. In this section, we present a novel tool for
identifying and diagnosing the association of two datasets,
called CAGMon; the workflow and design of the algorithm.

The workflow of CAGMon tool is depicted in Fig. 1,
which comprises four different stages: (i) reading initial
configuration, (ii) loading time-series data and preprocess-
ing, (iii) computing each coefficient and the relevant
statistics, and (iv) plotting results and building a result
summary page. First, the configuration file consists of user-
defined parameters, preprocessing options, and general
features of data such as sampling rate, start/end times,
and stride. Because each coefficient is computed for each
stride of time-series datasets, the tool can only investigate
the similar timing coincidence within the same stride bin.
Hence, there was a limitation in identifying the association

[ read initial configuration J
1

fetch and load time-series
data

verify
data flawless
(blank or NaN)

zero array
padding

Yes

¥

[ data pre-processing ]

matched

sampling frequencies re-sampling ]

Yes

compute
P, T, MICe

- post-processmg
- compute statistics

- generate plots
- record files

build result
summary page

YY)

end

FIG. 1. A flowchart of the CAGMon tool.

between transient noises correlated to noise with a specific
frequency. To overcome this limitation, we provide several
customized options for data preprocessing, such as high-
pass, low-pass, and bandpass filters, for a variety of
scalable analyses. In addition, the general feature of data
comprises a primary channel name, the path of data files, an
auxiliary channel list file, segment file, output file type and
its save path, and so on. When the time-series data is
retrieved from GW frame files, the configuration option
refers to the initial configuration file to apply the prepro-
cessing. If time-series data contain either blank or NaN,
zero arrays would be padded properly to avoid a computa-
tional error. Then, data are rescaled to have the same data
size using the resampling algorithm. The detailed discus-
sion and analyses on the reliability of MICe values, data
sample size, and optimal parameters of MICe have been
presented in [36]. In this study, we select a set of optimal
parameters of MICe presented in Table 1.

In Fig. 2, the CAGMon tool presents: (i) a correlation
matrix of p, 7, and MIC between two datasets, (ii) a
scattered pattern between both channels, and (iii) the
correlation trend behavior during a certain time period
between two channels. The correlation method simply
produces the coherence between two datasets. So one
requires a way of improving the statistical significance
of a detected observation. Quantitatively, the way of using
timeslide studies in [37,38] can implement the statistical
significance of the coincident events. Originally, the
method is based on the signal-to-noise ratio (SNR) of
the matched filter, but in our case, we could incarnate it
with the correlation score instead of using the SNR. Then
we could conduct the timeslide by shifting a stride back and
forth for a given high-scored event, counting the number of
events.

Qualitatively, an alternative way is to refer to the
subsystems that affect each other. When we investigate a
family of correlated subsystems that is closely related,
because some similar observations can be seen from the
different related channels, one can estimate the observed
correlation with a reliable statistical significance, at least,
qualitatively. More precisely, when we investigate the effect
of magnetic fields, the magnetometer-related channels with
a family of the same subsystem (MAG-subsystem) are
affected with similar behaviors, i.e., a similar correlation
appears. Therefore, we could conclude that the correlation
index in the magnetometer-related channels reveals a piece

TABLE 1. The channel information and parameters of MICe
used in this study: these values are selected by the empirical
optimized parameter selection in [36].

Sampling
Channel type  Stride(s) rate (Hz) Data size a c
GW strain 2 4096 8192 0.5 07
BNS range 512 16 8192 05 7.0
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FIG. 2. Exemplary plots provided by the CAGMon tool: (a) correlation matrix plot of p, 7, and MIC between GW strain channel and
auxiliary channels, (b) scattered plot of both channels (each relative amplitude is rescaled by its median), and (c) correlation trend plot
within a certain duration. Here, we demonstrate one of the vibration isolation system (VIS) channels among tens of auxiliary channels in

the KAGRA GW detector as a simple example.

of reliable evidence with the statistical significance of the
observation. A specific example can be found in the
applications in the following section.

III. APPLICATION TO
GRAVITATIONAL-WAVE DATA

The CAGMon tool was designed to identify and diag-
nose associated auxiliary channels that influence the
GW strain channel for GW detection, producing a time-
sequential correlation trend propagated by instrumental or
environmental disturbances. We can estimate a significant
association as excess from the long duration trend of its
median value. In this section, we apply the CAGMon tool to
the KAGRA GW data for characterizing and identifying
associations between channels caused by well-known
environmental and instrumental events such as lightning
stroke and air compressor noises.

A. Magnetic field transients from lightning stroke

First, the CAGMon tool can be applied to investigate a
magnetic field transient noise caused by a lightning stroke
event observed by the KAGRA collaboration that was
verified by a clear mutual relationship between two

K1:LSC-DARM_IN1_DQ x10*

103
. °3
T I3
5] 3
3 100 5
g °%
[ Py é‘s
105 04 02 04
Time [Seconds] epoch 5050-03-22 023840 uTC( 268870038, 38
Ki:PEM-MAG_BS BOOTH BS Z OUT DQ x107
108 ‘
1.50
3
o
g 1.00 3
g 100 075 '®
o E
w o
0 =
107
-0.4 02 04
Tlme [Seconds] epoch 2020 03- 22 02:38:40 UTC ( 1268879938 38
FIG. 3. Omega scan plots of the GW strain channel (top) and

the magnetometer channel at the beam splitter (BS) station
(bottom).
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channels in [39]. A lightning stroke is a locally enormous
release of electromagnetic waves, which clearly affects the
GW detector by a sudden variance of magnetic fields. Note
that the relevant studies in LIGO, Virgo, and KAGRA are
shown in terms of a short duration magnetic fields effect
[38], the amplified magnetic effect in the underground site
[40], and the transient magnetic effects caused by a large
scale lightning strike during GW150914 [41].

The KAGRA GW detector was influenced by a lightning
stroke at 02:38:40.38 on March 21, 2020, UTC, which was
recorded in the GW strain channel and magnetometers. This
detection was the first evidence observed by the KAGRA GW
detector that the lightning strokes in the atmosphere would be
able to affect the underground-based GW detector within the
detection range. The disturbance caused by the electromag-
netic fields from the lightning stroke can affect the GW strain

Coefficients Trend K1:PEM-MAG_BS_BOOTH_BS_Z OUT_DQ (stride: 2.0 seconds)
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channel of the KAGRA GW detector, producing a coincident
transient noise in the strain channel with a significant
association. Hence, we can infer that there exists a significant
correlation between the GW strain channel and the magne-
tometer-related channels. The omega-scan spectrogram plots
based on Q-transform are presented in Fig. 3.

Here, we used two seconds stride of data with 8192
data size from the GW strain channel to investigate a
correlation between short-duration data segments. The
mutual correlations between the GW strain channel and
the magnetometer-related channels detect a meaningful
signal at the event time of the lightning stroke. Here,
correlation trend plots are depicted in Fig. 4, yielding a
clear peak signal at the event time of the lightning stroke.
It is inferred that the magnetic field noise from the lightning
stroke event can affect the GW strain channel. Interestingly,

Coefficients Trend K1:PEM-MAG_EYC_BOOTH_EYC_Z_OUT_DQ (stride: 2.0 seconds)
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FIG. 4. Correlation trend plot of association between the GW interferometer channel and magnetometer associated channels at the BS
station at the lightning event time. The solid line and the dashed line indicate the strength of the correlation coefficient and median value,
respectively. Here, the star mark represents the maximum value of (MICe, p, 7).
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TABLE 1II. Correlation values of MICe, p, and 7 at the lightning stroke event time and some associated channels with the
magnetometer in the KAGRA GW detector.
Med(MICe)" Med(p) Med(7)
Event time (GPS) Associated auxiliary channels® MICe (1072) p (1072) 7 (1072)
K1:PEM‘-MAG_BS_BOOTH_BS_Z_OUT_DQ  0.079 2.210 0.021 0.212 0.022 0.172
March 22, 2020 K1:PEM-MAG_BS_BOOTH_BS_Y_OUT_DQ 0.050 2.210 0.052 0.250 0.015 0.275
02:38:39-41UTC K1:PEM-MAG_BS_BOOTH_BS_X_OUT_DQ 0.026 2.188 0.040 0.266 0.001 0.197
(1268879937.38  KI1:PEM-MAG_EXC_BOOTH_EXC_X_OUT_DQ 0.021 1.499 0.064 0423 0.047 0.521
—1268879939.38) KI1:PEM-MAG_EYC_BOOTH_EYC_Z OUT_DQ 0.069 2.309 0.141  0.709 0.045 0474
K1:PEM-MAG_SR_BOOTH_SR_Z_OUT_DQ 0.022 2.271 0.052 1595 0.040 1.458

?All exhibited channels here are related to magnetometers installed in several areas nearby the KAGRA GW detector.
The median value was computed for four minutes duration segment.
‘PEM stands for the physical environment monitor that is related to subsystems for sensing environmental changes such as

seismomter, magnetometer, accelerometer, and so on [42].

the aspect of each correlation exhibited in Fig. 4 shows that
they are linearly or nonlinearly correlated with each other
for the individual subsystems. The values with significant
correlations are much greater than the median values of four
minutes duration data segment. In addition, we list the
magnetometer-associated subsystems with a significant
correlation to the lightning stroke event in Table. II.

B. Periodic noises from air compressors

We applied the CAGMon tool to the observing run of
KAGRA (O3 GK run) from April 7, 2020, to April 21,
2020 [43.,44]. Unlike the aforementioned analysis for
transient noise, we used the binary neutron star (BNS)
range channel instead of the GW strain channel to inves-
tigate the coherence between the sudden drops in the BNS
range plot and the air compressor noises. The BNS range
channel is a monitoring channel that represents the volume/
orientation-averaged distance based on the GW signals
with a matched filtered signal-to-noise ratio (SNR) of 8
from the two 1.4 M neutron stars in a GW detector [5,45].
The slowly moving behavior caused by long-duration noise
disturbances in the LIGO detector has been investigated via
the least absolute shrinkage and selection operator regres-
sion, where the BNS range channel was used [24].

In this analysis, we examined internal or external
influences on the detector’s sensitivity during the long
period of observational mode. Because data record a
minute trend of sensitivity range with around three minutes
latency, we set 512 seconds of stride and 8192 of data size.
With this configuration, significant correlations were peri-
odically repeated between the BNS range channel and
microphone channels near the beam splitter (BS) station.
These correlated peak signals have a harmonic frequency of
26.5 Hz and repeat with a periodicity of 2.58 hours every
day. Figure 5 exhibits the correlation trend plots of this
periodic behavior using the CAGMon tool. In addition, it
has been found that the air compressor at the output mode
cleaner (OMC) produces periodic vibrations that correlated
through nearby instruments to result in the sudden drop of

the BNS range of the KAGRA sensitivity curve. The BNS
range drop owing to the periodical air compressor noises is
demonstrated in Fig. 6. This phenomenon was previously
reported during the KAGRA engineering operation and
reduced significantly via the installation of vibration
isolation and soundproof devices in the air compressors.
However, the CAGMon tool caught this effect even if it had
been reduced.

Consequently, this example indicates that association
may exist if the trend of the coefficients is changed
regardless of their strength.

Coefficients Trend K1:PEM-MIC_BS_TABLE_POP_Z_OUT_DQ (stride: 512.0 seconds)
median — PCC ---

401 — Mice --
0.035

median — Kendall --- median

0.030 -
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o
=4
o

0.010

0.005 44

Aciive-r——- 7 . ’
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FIG. 5. Correlation trend plots between the BNS range and
microphone channels installed in the BS station Pick-off Port
room on April 9, 2020 (top) and April 11, 2020 (bottom);
relatively strong MICe correlations were repeated every
2.58 hours.
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FIG. 6. The BNS range curve experiences a sudden drop of as
much as about 50 kpc owing to the air compressor vibration from
the OMC station on April 9, 2020 (top) and April 11, 2020
(bottom).
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C. Glimpse of acoustic noise from winds

Another interesting point via the CAGMon tool was
observed by a clear correlation between the BNS range
channel and the microphone/vibration isolation channels.
The correlation trend plot exhibits a meaningful association
from morning (9 a.m., JST) to evening (7 p.m., JST) every
day in the spring season, which is inferred by a relationship
with strong wind power during this time (Fig. 7). Because
the KAGRA GW detector is installed inside the under-
ground tunnel in Mt. Ikeno, we infer that this is responsible
for the propagation of an acoustic wave noise owing to
strong winds between Mt. Ikeno. Figure 7 exhibits an
interesting feature of MICe because this association only
was detected by MIC rather than PCC and Ktau; one can
infer that the effect of winds can affect nonlinearly the
KAGRA detector. A theoretical possibility of influences by
the fluctuating gravity gradient noises in the ground and air
around the detector has been studied in [46]. For this
reason, it is worthwhile studying because the seismic
coupling and up-conversion effect may affect the GW
detection band for the underground detector.

A potential scenario of this effect is considered by a
simple simulation of the elastic wave equation in the
underground like the KAGRA detector. The wall of
the L-shape tunnel in the KAGRA detector consists of
the concrete material and air inside the tunnel. The y arm

Coefficients Trend K1:PEM-SEIS_BS_GND_Y_OUT_DQ (stride: 512.0 seconds)

— MICe --- median — PCC --- median — Kendall --- median
0.5
g 04
©
>
s 03
)
=
8 o2 ‘
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0.1 i ‘_‘v__v_y_ A 1 AN M
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Wind speed at Atotsu

Wind speed [m/s]
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Time [hours] from 2020-04-11 00:00:00 UTC (1270598418.0)

FIG.7. Correlation trend plots between the BNS range channel and microphone channel installed in the initial x-arm tank (top left), the
test mass optical leverage at the BS VIS channel (bottom left), and the y-axis seismometer at BS (top right). The plot of wind speed is
defined as the average wind speed over two minutes at the entrance of KAGRA (Atotsu) on April 11, 2020 (bottom right).
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The simulation of seismic and acoustic wave propagation in the underground tunnel of KAGRA and its x-arm sound pressure

level in diverse frequencies. The perfectly matched layer was applied in the end region of the x arm.

of the KAGRA detector is parallel to the slop of the valley
in Mt. Ikeno whereas the x arm is located from the slope to
deep inside the mountain. The seismic incident wave
generated from the strong winds striking the slope vibrates
and propagates then transforms into an acoustic wave
inside the tunnel. This acoustic vibration produces sound
pressure noise inside the tunnel. Because of the location of
both arms in the KAGRA detector, the sound pressure noise
level in the y-arm direction is much more severe than that in
the x-arm direction due to the attenuation inside the deeper
region of the tunnel.

The finite element method simulation of the seismic and
acoustic waves with a multiphysics configuration and the
sound pressure level along the x-arm direction in diverse
frequencies are shown in Fig. 8.! Consequently, the seismic
vibration from the slope can propagate to air fluctuation in
the tunnel of the KAGRA, then producing acoustic noises
inside the tunnel, which needs to be verified by more
accurate simulation and instrumental measurement.

IV. DISCUSSIONS

We developed a novel tool for identifying and diagnos-
ing data association between two variables to investigate
presumably correlated events between multichannels of the
GW detectors, called CAGMon. In this tool, three linear and
nonlinear measures, PCC, Ktau, and MIC, were adopted
and the optimized parameter selection for MIC was referred
to in [36].

'"The simulation has been performed by COMSOL-Multiphysics
5.6 with somewhat ad hoc parameters and assumptions to check
the possibility of the scenario.

We applied this tool for the transient and periodic noises
caused by a lightning stroke event and an acoustic noise
caused by an air compressor in the KAGRA GW detector,
respectively. Consequently, we verified that several mag-
netometer-associated subsystems influenced by the light-
ning stroke event have a significant association with the
GW strain channel. On the other hand, we found that
the sudden detection range reductions in the BNS range
curve of the KAGRA detector are associated with the
periodic noise every 2.58 hours appearing in the micro-
phone channels. The noise was identified with a harmonic
frequency of 26.5 Hz and the evident cause was confirmed
by acoustic noises from the air compressor nearby the BS
station. Finally, it observed a glimpse of the wind effect on
the underground detector via the CAGMon tool. In the
daytime, the air in nearby mountains becomes heated and
makes a relatively strong wind between mountains. This
wind hits the ground surface where the detector is located,
yielding and propagating microseismic noise and infra-
sound waves toward the underground detector [47].
Thus, the detector experiences acoustic and seismic vibra-
tions during windy times. This scenario seems plausible
but needs to verify in various aspects. Consequently, the
seismic vibration from the slope can propagate to air
fluctuation in the tunnel of the KAGRA, then produc-
ing acoustic noises inside the tunnel, which needs to be
verified by more accurate simulation and instrumental
measurement.

Potentially, the CAGMon tool and its application will help
to overcome several limitations in the KAGRA detector, and
thereby contribute not only to improving the noise reduction
study but also to developing advanced tools and interfaces
for the next-generation gravitational-wave telescopes.
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Furthermore, this tool will help scientists in the GW
detection as well as other fields of science.
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