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The juggled interferometer (JIFO) is an Earth-based gravitational wave detector using repeatedly free-
falling test masses. With no worries of seismic noise and suspension thermal noise, the JIFO can have much
better sensitivity at lower frequencies than the current Earth-based gravitational wave detectors. The data
readout method of a JIFO could be challenging if one adopts the fringe-locking method. We present a phase
reconstruction method in this paper by building up a complex function which has a fringe-independent
signal-to-noise ratio. Considering the displacement noise budget of the Einstein Telescope (ET), we show
that the juggled test masses significantly improve the sensitivity at 0.1–2.5 Hz even with discontinuous
data. The science cases brought with the improved sensitivity would include detecting quasinormal modes
of black holes with 104–105 M⊙, testing Brans-Dicke theory with black-hole and neutron-star inspirals,
and detecting primordial-black-hole-related gravitational waves.
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I. INTRODUCTION

The current Earth-based laser interferometric gravita-
tional wave (GW) detectors keep detecting gravitational
waves with best sensitivity at ∼100 Hz [1–5]. With longer
arm length and improved techniques, next-generation
detectors will have sensitivity down to h ∼ 10−24=

ffiffiffiffiffiffi
Hz

p
[6,7]. However, the sensitivity at lower frequencies
(f < 1 Hz) is still limited by seismic noise and suspension
thermal noise. Seismic noise is related to the natural
phenomena and human activities. Suspension thermal noise
comes from the suspension system used by the current GW
detectors to isolate the test masses from the earth. As
frequency decreases, both of these two noises increase.
To achieve lower-frequency GW detection, several space-

based gravitational wave observatories including LISA [8],
DECIGO [9,10], Taiji [11,12], and Tianqin [13] are in
progress. These space projects are designed to be sensitive in
the frequency range from 1 mHz to 10 Hz. By monitoring
the arrival time of signals from millisecond pulsars, the
pulsar timing arrays [14,15] can detect GWs ranging from
10−9–10−7 Hz. By detecting the B-mode polarization in
cosmic microwave background [16–18], primordial GWs
with a wavelength of cosmic scale can be detected indirectly.
There are also other methods to improve the sensitivity

of GW detection at lower frequencies on Earth, such
as atom interferometry [19], suspension point interferom-
etry [20], torsion bar antenna [21,22], and juggled

interferometer (JIFO) [23]. Here we focus on the JIFO,
which uses repeatedly free-falling test masses. With this
juggling method, the Earth-based GW detectors can be free
of suspension thermal noise as well as seismic noise, and,
therefore improve their sensitivity significantly at lower
frequencies. In addition, JIFO can be a good test bed on
earth for the space project of GW detection, such as
DECIGO (possibly for the quantum noise investigation
[24]), because of the free-falling state of the test masses.
In the previous study [23], the basic setup and data

analysis method of the JIFO were investigated. In this
paper, more details about the data readout method are
provided and the science bonus of a JIFO in GW detection
is discussed, assuming implementation of juggled test
masses in an Einstein Telescope (ET) [25]-like interfer-
ometer. This paper is organized as follows. In Sec. II, we
introduce the conceptual design of a JIFO. Then in Sec. III,
two methods to obtain GW signals with a JIFO are
analyzed, followed by the discussion of promising science
cases with juggled test masses in Sec. IV. We finish this
paper with a brief conclusion and outlook.

II. CONCEPTUAL DESIGN OF A JUGGLED
INTERFEROMETER

A JIFO is basically a Michelson-type interferometer with
juggled test masses. Like all the other laser interferometric
gravitational wave detectors, GW signal is detected by the
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JIFO through the interference of two laser beams. However,
a JIFO does not have Fabry-Perot cavities in its two arms.
At lower frequencies, mirror displacement noise dominates
the noise budget of an Earth-based gravitational wave
detector. Since the application of Fabry-Perot cavities
accumulates the GW-induced cavity length change as well
as the mirror displacement noise, the SNR is not improved
with the Fabry-Perot cavities for the low-frequency band.
The basic setup for a JIFO is shown in Fig. 1. The optics

are attached to a linear motion guide with clamps and
experience repetitive moving processes. First the optics are
accelerated upwards along with the slider on the guide.
After reaching a certain velocity, the clamps are loosened
and the optics are released to proceed a free-falling cycle.
The clamps fasten again when the optics are back, and the
slider will move again for the next cycle. In this repeatedly
accelerated and released operation, the effective data will
be discontinuous because only the data collected during the
free-falling cycle is free of seismic noise.
Please note that the initial velocity and position of the

test masses in each release could differ. This information
will exist in the displacement data together with GW
signals. So we will first undergo a “detrend” method
developed in the previous research [23]. The blue curves
in Fig. 2 are the simulated displacement signal of a JIFO,
and the linear trend of the curves is caused by the initial
position and velocity of the test masses. By subtracting a
linear fit from these blue curves, one can obtain the
detrended red curves independent of the initial effects
from the test masses.
Inevitably, the GW signals will also be detrended, but

this will not influence the signal-to-noise ratio (SNR) for
the case of oscillatory signals, since the noises will also be
detrended equally. This leads to no requirement for the free-
falling time or height. However, for a nonoscillatory signal
like the gravitational memory effect [26], the detrend
method is no longer applicable.
The acceleration time is set to be the same as the free-

falling time (1 s, for example) in Fig. 2. In principle,
acceleration time can be shortened as much as possible.
For the case of detecting continuous GWs and considering
matched filtering method, if the free-falling time occupies
1
N of the total time, then the resulted SNR will be 1ffiffiffi

N
p of

that from continuous observation with signal reduced by
a factor of N and noise reduced by a factor of

ffiffiffiffi
N

p
.

By setting up another JIFO with staggered acceleration
time, the data intervals can even be filled, making no SNR
loss for continuous GWs and greater opportunities for
detecting bursts.

III. INTERFEROMETER READOUT AND
DISPLACEMENT SIGNAL RECONSTRUCTION

In the laser interferometer experiment, the directly
measured data is the interfered laser power, while we
are more interested in the test mass displacement signal,
which straightforwardly indicates the GW signal. Since the
interfered laser power varies with the test mass position in a
cosine wave (Fig. 3), one cannot directly tell the mirror
motion from the power variation measured by photodetec-
tor (PD). Normally, the interferometric GW detectors use
the fringe-locking method to solve this problem. This
method is also applied to JIFO but is more challenging.
In this section, we discuss the fringe locking of the JIFO
and also provide a new reconstruction method to obtain a
test mass displacement signal in the JIFO experiment.

FIG. 1. Conceptual design of a juggled interferometer [23].

FIG. 2. Displacement signal obtained by a JIFO before (blue)
and after (red) the detrend process. The intervals between the data
indicate the nondata periods during the acceleration cycles [23].
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FIG. 3. Dependence of the interfered laser power on the test
mass position in a cosine wave.
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A. Fringe locking of JIFO

Fringe locking is achieved by controlling the test masses
of the interferometer. For example, if the interferometer is
locked at the middle fringe, where the interfered laser
power changes linearly to the mirror position, the mirror
control signal then indicates the information about the
mirror motion. The same thing happens to the control
signal when locking at a dark fringe with Pound-Drever-
Hall method [27]. For the juggled test masses of a JIFO,
a remote noncontacting actuator such as an electrostatic
drive [28,29], would be a good controller. Given the limited
free-falling time, fast response of the controller is
demanded.

B. Reconstruct displacement signal from fringe data

The other option is to reconstruct the displacement signal
from the laser power signal and modulation-demodulation
signal. For the simplicity of the experiment, we avoid
juggling the electro-optic modulator (EOM) and, instead,
premodulate the laser beam before the beam splitter, as is
shown in Fig. 4. To maintain mirror motion signal for this
premodulated interferometer, macro differential arm length
ðLx ≠ LyÞ is adopted here [30]. Here we assume the signals
are at dark fringe when t ¼ 0s. Then the interfered laser
power (P1) and modulation-demodulation signal (V1),
normalized in power will be

P1 ≈
P0

2
ð1 − cosðϕðtÞÞ; ð1Þ

V1 ≈ −
P0meff

2
sinðϕðtÞÞ; ð2Þ

where P0 is the input laser power and meff ¼ m sinðΦ0Þ
with m the modulation depth. Φ0 ¼ jLy − Lxj × 2π

λm
is the

macro phase difference caused by differential arm length
with Lx and Ly representing the initial arm length in the
x direction and y direction. λm is the wavelength of the
modulation signal. ϕðtÞ ¼ 2jΔLy − ΔLxj × 2π

λ is the phase
change introduced by the mirror motion which is the signal
that we want to reconstruct. Signals at frequencies higher
than the modulation frequency are filtered.
For the convenience of the calculation, here we ignore

the constants in Eqs. (1) and (2), and adopt only the cosine
or sine part:

p1ðtÞ ¼ cos ðϕðtÞÞ; ð3Þ

v1ðtÞ ¼ sinðϕðtÞÞ: ð4Þ

The phase signal ϕðtÞ can be obtained by

ϕðtÞ ¼ tan−1
�
v1
p1

�
þmπ þ ϕ0; m ¼ 1; 2; 3… ð5Þ

and the integer m is chosen with a phase unwrapping
algorithm to ensure a continuous phase change [31].
However, this method is complicated when the mirror,
and therefore the phase signal, is oscillated with time. This
issue can be avoided by building two complex functions
with the interfered laser power [Eq. (3)] being the real part
and the modulation-demodulation signal [Eq. (4)] being the
imaginary part:

p1 þ iv1 ¼ eiϕðtÞ; ð6Þ

p1 − iv1 ¼ e−iϕðtÞ; ð7Þ

thus the differential of ϕðtÞ can be obtained from:

dϕðtÞ
dt

¼ −i ×
deiϕðtÞ

dt
× e−iϕðtÞ; ð8Þ

while ϕðtÞ can be reconstructed by integration the equation
of over time:

Z
t

0

dϕðtÞ
dt

dt ¼ ϕðtÞ þ const: ð9Þ

Note that we cannot determine the initial phase difference
with this method which indicates the initial position of the
test mass. Also note that high frequency noise would be
introduced from the differentiation in Eq. (8) but can be
removed by the integration in Eq. (9).
It is worth discussing the SNR of the data readout with

the complex function when we take the modulation-
demodulation signal from the laser-side port (V2 in Fig. 5).
In this case, we have v2 ¼ −v1, and

FIG. 4. Modulation-demodulation of a laser beam. P1 is the
interfered laser power and V1 is the modulation-demodulation
signal.
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eiϕðtÞ ¼ p1 þ iv1 ¼ p1 − iv2: ð10Þ

The shot noise in terms of the laser power is usually
calculated by:

nshot ¼ hν × Ñ ¼
ffiffiffiffiffiffiffiffiffi
Phc
λ

r
; ð11Þ

where Ñ ¼
ffiffiffiffi
Pλ
hc

q
½1=s� is the photon number fluctuation, h is

the Plank constant, c is the speed of light, P is the laser
power and ν is the laser frequency. Since the shot noise
from the two PD ports are uncorrelated, the total shot
noise in terms of the laser power change can then be
calculated by:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P1hc
λ

r
2

þ
ffiffiffiffiffiffiffiffiffiffiffi
P2hc
λ

r
2

s
¼

ffiffiffiffiffiffiffiffiffiffiffi
P0hc
λ

r
: ð12Þ

We can see that in this case, the shot noise is determined by
the input laser powerP0 and does not changewith the phase
signal. Considering only shot noise, the SNR of (p1 − iv2)
will be

SNRðeiϕðtÞ ¼ p1 − iv2Þ

¼ P0=2 × jdeiϕðtÞjffiffiffiffiffiffiffiffi
P0hc
λ

q
¼ P0jdϕðtÞj × jcosðϕðtÞÞ þ i sinðϕðtÞÞj

2

ffiffiffiffiffiffiffiffi
P0hc
λ

q

¼ jdϕðtÞj
2

ffiffiffiffiffiffiffiffi
P0λ

hc

r
: ð13Þ

The same result can be derived by the combination of p2

and v1. Here we assume the shot noise of the modulation-
demodulation signal on the laser-side port (V2) is consistent

with that of the interfered power laser (P2) and uncorrelated
with P1. It is interesting to see that the SNR of this
combination is fringe-independent and is half of the SNR at
the dark fringe.
Compared with the fringe-locking method mentioned in

Sec. III A, the reconstruction method is much more
convenient since there is no need to lock the test masses
anymore. But we have to pay attention to the ADC (analog
to digital converter) resolution with the demand of large
output voltage scale ranging from the dark fringe to the
bright fringe. In addition, the output laser power would be
too large for a single PD and may need to be shared by
multiple PDs.

IV. PROMISING SCIENCE CASES OF A
JUGGLED INTERFEROMETER

In this section, we assume a Michelson-type interfer-
ometer with the same scale and displacement-noise budget
as the ET [6,7], which is the next-generation gravitational
wave detector planned to be operational in the 2030s.
The implement of juggled test masses, which means no
worries of seismic noise and suspension thermal noise, will
result in significant improvement in the detector’s sensi-
tivity below ∼2.5 Hz, as is shown in Fig. 6. To achieve this
sensitivity level, the laser frequency noise should be below
3 × 10−5 Hz=

ffiffiffiffiffiffi
Hz

p
and the laser power fluctuation should

be below 10−6=
ffiffiffiffiffiffi
Hz

p
, assuming a length difference of two

arms to be within 1 m and the offset from the middle fringe
to be 10−13 m.

FIG. 5. Extension of Fig. 4 by collecting light power (P2) and
modulation-demodulation signal (V2) on the laser-side port.
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The following discussions will mention several promis-
ing science cases for the JIFO with the improved sensitivity
below ∼2.5 Hz.

A. Detecting quasinormal modes of massive black holes

The perturbations of black holes, which normally happen
when particles fall into them or in the late process of two
massive bodies coalescing into a black hole, will generate
gravitational waves called black-hole quasinormal modes
(BH QNMs) [32,33]. The strain of BH QNMs has an
exponential decrease feature indicating that GWs take
energy away from the system.
According to general relativity, the central frequency of a

BH QNM is related to the mass of the black holeM and its
spin angular momentum a ¼ ½0; 1Þ [34]:

fcðHzÞ ¼
32 × 103 M⊙

M
× ½1 − 0.63ð1 − aÞ0.3�; ð14Þ

and the 0.1–2.5 Hz frequency band corresponds to black
holes with 104–105 M⊙. Under the assumption that the
signal is monochromatic, the effective dimensionless strain
of the QNMs are estimated by [35,36]

heff ∼ 3 × 10−20
�

E
250 M⊙c2

�
1=2

�
fc

1 Hz

�
−1=2

�
r

6 Gpc

�
−1
;

ð15Þ

where E is the emitted energy which is assumed to be 1%
of the mass of the black hole in this paper and r is the
luminosity distance. Figure 7 shows the effective strain
divided by the square root of frequency, resulting in the
same unit with the noise budget. The BH QNMs in
0.5–2.5 Hz is lying above the improved sensitivity (blue
curve) with an SNR up to 200 around 1.7 Hz according to
the matched filtering method, corresponding to the black
holes with a mass of about 1.5 × 104 M⊙. These sources
are beyond the detection ability before the improvement
(red curve).
BH QNMs have been extensively discussed as a power-

ful tool to test the theory of gravity [37,33]. The compari-
son between the observed signals and the predictions can be
a convincing test of different gravitational theories.

B. Testing Brans-Dicke theory

In Brans-Dicke (BD) theory [38], the scalar field and
tensor field both mediate the gravitational interaction.
When the BD parameter ωBD approaches infinite, BD
theory is back to general relativity. A GW signal from the
inspiral of two dense objects, with one of which is a neutron
star, is used to constrain ωBD [39]. Figure 8 shows that
the improved sensitivity curve (blue) has more chances to
detect NS-BH (neutron star and black hole) inspirals
below 2.5 Hz.

Following the method in Refs. [39,40], we obtained the
lower bound of ωBD as 8.8 × 104 by assuming the detection
of a ð1.4; 10Þ M⊙ NS-BH binary below 2.5 Hz at 78 Mpc
which gives SNR ¼ 10, according to the matched filtering
method. See the Appendix for more details. This event rate
is believed to be 0.01–1 in 5 years [41]. As a comparison,
the solar system experiment using the Saturn probe satellite
Cassini obtained ωBD > 4 × 104 [42] and the space GW
detector DECIGO could obtain ωBD > 2 × 106 [39].
Considering multiple events with frequency over 1 Hz,
the bound from ET could be ωBD > 106 [43].
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C. Primordial black holes research

Primordial black holes (PBHs), which would be directly
formed from the primordial curvature perturbations in the
radiation-dominated universe [44,45], have been attracting
attention in recent years. Unlike black holes originating
from astrophysical processes, which must be massive
enough, PBHs could have been formed to have a vast
mass range, and quite a number of PBHs lighter than the
Sun could exist. In particular, such a PBH with the mass of
an asteroid (∼1017–1022 g) is extensively discussed as a
candidate of the dominant component of the dark matter
in our universe (see, e.g., [46]). The primordial curvature
perturbations as a seed for the PBH formation can also
generate the stochastic gravitational wave background
(denoted as PBH-GW) [47], and the central frequency of
such a PBH-GW is related to the mass of formed PBH as

fGW ¼ 1 Hz

�
MPBH

1017 g

�
−1=2

�
g�

106.75

�
−1=12

; ð16Þ

in whichMPBH is the mass of PBH and g� is the relativistic
degree of freedom at the time of PBH formation. Thus, the
observation of the gravitational wave background in the
∼1 Hz band is very important as an indirect probe of
primordial black holes as dark matter.
PBH would be basically formed at a high and rare peak

of the primordial perturbations and then the abundance of
PBHs is roughly proportional to exp½−ζ2th=A2

ζ � in which
ζth represents the threshold for the PBH formation and the
Aζ is the typical amplitude of the primordial curvature
perturbations. The value of the threshold, ζth, is typically
Oð0.1Þ, and in order for PBH to be dark matter the
amplitude A2

ζ needs to be roughly ∼10−2–10−3 (see, e.g.,
[48]). On the other hand, the PBH-GW is sourced
from the second order of the primordial curvature
perturbations and the density parameter of GWB, ΩGW,
is proportional to A4

ζ .
Here, for simplicity, following Refs. [47,49], the energy

density of the PBH-GW is calculated by

ΩGWðkÞh2 ¼ Ωr;0h2
3A2

ζ

64

�
4 − k̃2

4

�
2

k̃2ð3k̃2 − 2Þ2

×

�
π2ð3k̃2 − 2Þ2Θð2

ffiffiffi
3

p
− 3k̃Þ

þ
�
4þ ð3k̃2 − 2Þ log

����1 − 4

3k̃2

����
�

2
�
Θð2 − k̃Þ;

ð17Þ
under the assumption that the primordial curvature pertur-
bations have the monochromatic power spectrum with a
delta function peak at the wave number of k�. Here, Ωr;0 h2

is the current radiation density parameter with the Hubble
constant, h. And the dimensionless wave number k̃≡ k=k�,

where k is the wave number of the gravitational wave
signal. Then the amplitude spectrum density (ASD) of the
PBH-GW, ShðfÞ, can be derived by [50]:

ShðfÞ ¼ ΩGW
3H2

0

2π2f3
; ð18Þ

where H0 is the Hubble expansion rate. Figure 9 shows the
ASD of a PBH-GW peaked at (1) Hz with the amplitude
A2
ζ ¼ 5 × 10−3. From this figure, the PBH-GW is detect-

able by the JIFO with a time correlation of (1) year and the
detection SNR reaches 19. Note that this result relies on the
shape of the spectrum of PBH-GWand strongly depends on
the assumption for the primordial curvature perturbations.
Nevertheless, the JIFO, the implement of free-falling test
masses into an ET-like interferometer, will provide us with
important insights into cosmology.

V. SUMMARY AND OUTLOOK

To improve the sensitivity of the Earth-based GW
detectors, JIFO removes the seismic noise and suspension
thermal noise with the juggled test masses. There are two
methods to obtain mirror motion signal from a JIFO. One is
the fringe-locking method, and it obtains the mirror motion
information from the control signal. The other method is to
modulate and demodulate the laser beam and reconstruct
the mirror motion information from interfered power
and modulation-demodulation signal. The SNR of the
latter is proved to be fringe-independent and is half of
that at a dark fringe.
Based on the noise budget of ET, the implementation of

juggled test masses will improve the sensitivity signifi-
cantly below 2.5 Hz. A short free-falling distance would
be enough for the desired noise level. This sensitivity
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improvement will provide promising detection cases such
as QNMs from massive black holes, GWs from NS-BH
inspirals, and GWs related to PBH-DMs. These detections
will provide a new method for testing the gravitational
theories and cosmology.
There are still some technical difficulties, though. First,

the free-falling system plays high demands on the accuracy
of mirror control. Second, locking the juggled test masses
will be challenging if we decide to adopt the fringe-locking
method, while the ACD resolution could be a problem if we
adopt the modulation-demodulation method. We plan to
build a prototype of JIFO based on the conceptual design in
this paper.
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APPENDIX: CONSTRAINT BRANS-DICKE
PARAMETER

Here we elaborate on the method we adopted to constrain
Brans-Dicke parameter [39,40]. The Fourier component of
the waveform under stationary phase approximation is
given by:

h̃ðfÞ ¼
ffiffiffi
3

p

2
Af−7=6eiΨðfÞ; ðA1Þ

with the amplitude

A ¼ 1ffiffiffiffiffi
30

p
π2=3

M5=6

DL
; ðA2Þ

and the phase expanded to the second post-Newtonian (PN)
order:

ΨðfÞ ¼ 2πftc − ϕc þ
3

128
ðπMfÞ−5=3

�
1 −

5

84
S2ω̄x−1

þ
�
3715

756
þ 55

9
η

�
x − 4ð4π − βÞx3=2

þ
�
15293365

508032
þ 27145

504
ηþ 3085

72
η2 − 10σ

�
x2
�
;

ðA3Þ

where f is the gravitational wave frequency, M is the chirp
mass, DL is the luminosity distance from the source to the
detector, tc and ϕc are the time and phase of the coalescence
and β and σ indicates the spin-orbit and spin-spin con-
tributions to the phase, respectively.
The other parameters in the waveform are defined as

following: S≡ s2 − s1 with si the sensitivity of the ith
body of the binary system which is roughly the binding
energy of the body per unit mass, ω̄≡ 1=ωBD is the
inverse of the Brans-Dicke parameter, η≡ m1m2

ðm1þm2Þ2 withmi

the mass of the ith body and x ¼ ½πðm1 þm2Þf�2=3. Note
that a relatively large S can be obtained from two different
types of bodies. For example, BH-NS system gives
S ∼ 0.3 while BH-BH/NS-NS system gives S ∼ 0. The
gravitational wave signal from a BH-NS system is usually
used to estimate the Brans-Dicke parameter because the
larger S resulted in the lager contribution form the ω̄ to the
waveform.
The standard parameter estimation method in matched

filtering is adopted here to constrain the Brans-Dicke
parameter. For a waveform defined by a set of parameters
θ ¼ ðθi; θj;…Þ, the Fisher matrix is derived by

Γij ≡
�
∂h
∂θi

���� ∂h
∂θj

�
: ðA4Þ

The inner product here is defined as

ðAjBÞ ¼ 4Re
Z

∞

0

df
Ã�ðfÞB̃ðfÞ

SnðfÞ
; ðA5Þ

where SnðfÞ is the noise power spectral density of the
detector. Thus the diagonal elements of the Fisher matrix
indicate the accuracy of the estimation of the corresponding
parameters and the rms error of the estimation can be
calculated by taking the square root of the diagonal
elements of the inverse of the Fisher matrix. Since the
expected value of ω̄ is 0, the rms error is then its upper
limit. Therefore the lower limit of ωBD can be obtained
from the inverse of the rms error.
Here we consider the detection of a ð1.4; 10Þ M⊙ NS-BH

binary below 2.5 Hz at 78 Mpc. The sensitivity of the
JIFO shown in Fig. 6 gives SNR ¼ 10 with the assumption
of tc ¼ 0;ϕc ¼ 0;S ¼ 0.3; ω̄ ¼ 0; β ¼ 0; σ ¼ 0. And the
diagonal element of the inverse Fisher matrix correspond-
ing to ω̄ is 1.14 × 105, showing that the lower bound of
ωBD is 8.8 × 104.
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