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We present a directed search for continuous gravitational wave (CW) signals emitted by spinning
neutron stars located in the inner parsecs of the Galactic Center (GC). Compelling evidence for the presence
of a numerous population of neutron stars has been reported in the literature, turning this region into a very
interesting place to look for CWs. In this search, data from the full O3 LIGO-Virgo run in the detector
frequency band ½10; 2000� Hz have been used. No significant detection was found and 95% confidence
level upper limits on the signal strain amplitude were computed, over the full search band, with the deepest
limit of about 7.6 × 10−26 at ≃142 Hz. These results are significantly more constraining than those reported
in previous searches. We use these limits to put constraints on the fiducial neutron star ellipticity and
r-mode amplitude. These limits can be also translated into constraints in the black hole mass–boson mass
plane for a hypothetical population of boson clouds around spinning black holes located in the GC.
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I. INTRODUCTION

The Milky Way’s center is one of the most interesting
sky regions and is well suited to investigations with
multiple messengers, ranging from electromagnetic radia-
tion and cosmic rays to gravitational waves (GWs). A
significant population of up to hundreds or even thousands
of neutron stars is expected to exist in this region, based on
the observation of high-mass progenitor stars and of several
supernova remnants [1,2]. Moreover, an extended gamma-
ray emission from the central region of the Galaxy has been
detected by the Fermi Large Area Telescope [3,4] and
H. E. S. S. [5]. The true nature of this emission is still under
debate, with two main competing explanations: annihila-
tion of dark matter in the form of weakly interacting
massive particles, with masses of the order of a few tens of
GeV [6–10], or an unresolved population of millisecond
pulsars [11–17]. This diffuse emission may also actually be
due to a combined contribution from both a population of
millisecond pulsars and heavy dark matter [18].
The possibility that the Galactic Center (GC) region

hosts a large population of neutron stars calls for the search
for continuous gravitational waves (CWs) that neutron stars
would emit if their shape deviated from axial symmetry.
Although previous searches have not reported any detection
(see the reviews [19–22] and references therein plus the last
results in [23–29]), improvements in detectors and data
analysis pipelines [30] can increase the search sensitivity to
a level at which detections can take place.

In this work we present the results of a search, using the
latest data from the third observing run (O3) of the
Advanced Virgo [31] and Advanced LIGO [32] detectors,
for CWs emitted by nonaxisymmetric rotating neutron stars
located in the GC region. This work, based on the band-
sampled-data (BSD) directed search pipeline [33,34],
improves over a previous search in O2 data [34].
O3 data have been already used to make a lower

sensitivity search for stochastic GW emission from the
same region [35].
Potentially detectable CW emission is expected from

Galactic, fast-spinning neutron stars with a certain degree
of asymmetry in their mass distribution [22,36]. As the
star spins, it releases energy in the form of GWs, which
are almost monochromatic and characterized by an
emitted frequency proportional to the star’s spin fre-
quency. The frequency received at a detector evolves in
time due to two main contributions. One comes from the
intrinsic frequency decrease (spin down) caused by
energy loss of the star. The other is due to the Doppler
modulation of the received signal, caused by the motion
of the detector with respect to the source. Other smaller
effects are also considered, namely the Einstein and the
Shapiro delays.
The asymmetry in the neutron star’s shape can be due to

different reasons. They include the presence of a residual
crustal deformation (e.g., after a fast cooling of the neutron
star crust causing its breaking), the presence of a strong
internal magnetic field not aligned with the star’s rotation
axis, or the presence of magnetic or thermal “mountains.”
The maximum ellipticity (i.e., degree of deformation) a
neutron star can sustain depends on both its equation of*Full author list given at the end of the article.
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state (EOS) and the breaking strain of the crust [37].
On the other hand, the typical degree of asymmetry is
difficult to estimate. The detection of a CW signal would
help to shed light on the internal structure of neutron
stars, hence on the EOS, given the relation of the GW
amplitude to the star’s moment of inertia and the star’s
ellipticity. GWs are then unique probes of the fundamental
interactions happening inside a neutron star, making
them ideal laboratories to test fundamental physics and
high-energy astrophysics in the strong-gravity regime
[38]. A different emission channel for CW radiation is
given by the Rossby (r-)modes oscillations in rotating
stars [39–41].
The emission of CWs is also expected from other

sources, not involving neutron stars. For instance, it has
been predicted [42–50] that if ultralight boson particles (a
dark matter candidate) exist in nature, they may sponta-
neously form macroscopic “clouds” around spinning black
holes through a superradiance process (provided that the
black hole initial spin is high enough). Once formed such
clouds dissipate through the emission of a CW signal, with
a frequency mainly depending on the boson mass. In this
work we also use the CW search results to constrain a
possible boson cloud population in the GC.
The paper is organized as follows. In Sec. II, the data

used for the analysis are described. Section III is devoted to
discussing the explored parameter space and the main
search method. Postprocessing is presented in Sec. IV,
including all the vetoes used to discard instrumental
artifacts. In Sec. V, we present the search results and their
astrophysical implications, for spinning neutron stars and
for boson clouds around spinning black holes. In Sec. VI,
conclusions are drawn. Some details on the upper limits
computation are given in the Appendix.

II. THE DATA

For this search we have used the full O3 data of the two
Advanced LIGO detectors in Hanford (H) and Livingston
(L) in the United States [32] and of Advanced Virgo (V) in
Cascina, Italy [31]. The O3 observing run started on April
1, 2019 at 15∶00 UTC and ended on March 27, 2020 at
17∶00 UTC. During data taking there was a one-month
break, from October 1, 2019 to November 1, 2019. The
duty factors for O3 were 76%, 71%, and 76% for L, H, and
V, respectively. The sensitivities of the three detectors are
comparable at lower frequencies, while Virgo sensitivity
above ∼100 Hz is smaller than the other two LIGO
detectors. The last version of the high-latency calibrated
data (C01 frames) [51] has been used for H and L, while for
Virgo the “online” calibration version has been used.
Moreover, only science segments, i.e., time intervals when
the detector is operating in a nominal state and the noise
level is considered as acceptable, have been selected. The
maximum calibration amplitude uncertainties for LIGO are
7% during the first half of O3 (O3a) [51] and 11% during

the second half of O3 (O3b) [52]. For Virgo the calibration
uncertainty is 5% in amplitude for the full frequency band
except for regions around 50 Hz where larger uncertainties
appear [53]. A gating procedure has been applied to LIGO
data as described in [54] to remove larger transient artifacts.
Furthermore, for all the detectors, short-duration noise
transients have been removed during the construction of
the short Fourier transform database (SFDB) [55]. The
search is based on the BSD framework [33], which works
with time series sampled at 10 Hz and spanning a 10-Hz
frequency band, computed from the SFDB. Indeed in the
BSD framework, the parameter space investigated, as well
as the choice of the grid steps and the coherence time used,
change every 10 Hz. Given the limited computational
power available, the parameter space investigated has been
chosen satisfying some constraints described in Sec. III A.
Spectral noise artifacts, known as lines, are also present in
detector data. Lists of narrow lines with identified instru-
mental origin are given in [56,57]. These lists will be used
in the postprocessing stage, to veto candidates near
instrumental lines (see Sec. IVA).

III. THE SEARCH

The search is conducted with a semicoherent method
[34] in which the data are divided into segments of given
duration Tcoh. These segments are properly processed, as
will be clarified in Sec. III B, and then incoherently
combined, i.e., not taking into account the signal phase.
In this way we can explore a large parameter space at a
fixed computing cost, with only a relatively small sensi-
tivity loss with respect to an optimal, fully coherent
procedure when applied in an all-sky search (see, e.g.,
Sec. XII D in [58]). In this search we do not explicitly
search for CW signals from neutron stars with a binary
companion. However, as discussed in [59], the results
presented in this work are valid to some extent also for
accreting binaries.

A. Parameter space

We look for persistent signals from sources emitting in
the detector frequency band ½10; 2000� Hz and located in
the GC, with a maximum spin-down range of ½−1.8×10−8;
10−10�Hz=s. The actual minimum value of the spin down is
a function of the search frequency, as we will clarify below;
see also Fig. 1.
The parameter-space volume is discretized in several

cells. The key quantity governing the discretization is the
segment duration Tcoh. Its value is chosen as a function of
the frequency to keep the signal frequency at the detector,
which varies due to the spin down and Doppler effect,
within one frequency bin, given by δf ¼ 1=Tcoh. In each
10-Hz band, the smallest Tcoh is adopted for the whole
band. The corresponding number of frequency bins is
10 Hz × Tcoh. The spin-down bin size is given by
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δḟ ¼ 1

2TobsTcoh
; ð1Þ

where Tobs is the total observing time. This is computed by
imposing that the associated frequency variation over the
observation time Tobs is at most half a bin. This choice is
more conservative than the one in [58], where the maxi-
mum frequency variation is of one bin.
The bin width for the second order spin down is

δf̈ ¼ 1

4T2
obsTcoh

: ð2Þ

To minimize the computational load of the analysis, we
consider a single value for the second order spin down, i.e.,
Nf̈ ¼ 1. The number of second order spin-down bins
depends on the parameter space investigated and the search
setup, Nf̈ ¼ 2NfðTobsjḟj=fÞ2, which always satisfies the
condition Nf̈ ≤ 1 for this search. For balancing the com-
putational cost among the available resources, and taking
into account the available CPU memory, a different range
of spin-down values is computed for every 10-Hz band,
resulting in a smaller minimum value at low frequencies.
The number of spin-down/spin-up bins Nḟ is then given by

the ḟ range covered in each 10-Hz band divided by the
corresponding δḟ. The minimum spin down goes from
−5.6 × 10−10 Hz=s in the band 10–20 Hz to −1.8 ×
10−8 Hz=s in the band 1990–2000 Hz band. This choice
corresponds to a value of a characteristic spin-down age1

τ ¼ f=jḟj that goes from ≃570 yr at 10 Hz to ≃3520 yr at

2000 Hz. The small range of positive ḟ, from 0 to
10−10 Hz=s in the full frequency band, allows us to take
into account a possible spin up, as expected for the signal
emitted by boson clouds around spinning black holes. The
frequency/spin-down ranges covered by the search are
shown in Fig. 1. The estimated computing cost per detector
is ∼500 core hours for jobs running on a Intel ES-
2640V4 CPU.
Concerning the sky, only one bin centered at the position

of SgrA* [60]with right ascensionαGC ¼ 17 h 45m40.04 s
and declination δGC ¼ −29°000 28.1” is taken into account.
With the values of Tcoh we are using, one sky bin covers
30–300 pc, depending on the frequency [34], which is wide
enough to include the most interesting region around
the GC.

B. Method

For this work we use the hierarchical semicoherent BSD
directed search pipeline [34] based on the FrequencyHough
(FH) transform [58,61], recently used in the search for CW
signals from supernova remnants in our Galaxy [27] and
previously used for a GC search in Advanced LIGO O2
data [34].
In this search, we first partially correct the time series,

separately for each detector, removing the Doppler modu-
lation in each 1-Hz frequency subband, using its central
frequency as a reference (see [34] for more details). This is
achieved by a “heterodyne” correction, i.e., multiplying the
time series by a complex exponential factor eiΔϕ, where Δϕ
is the signal phase variation associated with the Doppler
effect and referring to the central frequency of each 1-Hz
band within a 10-Hz band.
The second step of the search consists of the selection of

themost significant peaks (collectively called “peakmap”) in
the time-frequency plane. In order to do this, first equalized
spectra [55] are evaluated. They are obtained as the ratio
among the periodogram, given by the square modulus of the
Fourier transform of each data segment with duration Tcoh
and an average spectrum estimation.On the ratio, all the local
maxima above a given threshold are selected. Each of these
“peaks” is defined by a frequency and by the initial time of
the corresponding data segment of length Tcoh. Each peak
map covers 10 Hz in frequency and one month in time.
The peak map is then passed to the third step of the

analysis, which consists of the FH transform. The FH
transform maps each time-frequency peak to the intrinsic
source frequency and spin-down ðf0; ḟ0Þ plane at a given
reference time t0. As described in [58] each time-frequency
peak in the peak map becomes a line in the FH plane.
Hence, each pixel of the FH map has an associated number
count n, corresponding to the number of lines intersecting
in that point. The resolution of a single FH map is related to
the coherence time Tcoh used for the construction of the
peak maps. The resolutions in frequency and spin down are
given by

FIG. 1. Parameter space investigated in this search (see
Sec. III A). The sky position is that of Sgr A*, while frequency
and spin down span the ranges given on the axes.

1This is a rough measure of the star’s age, which assumes the
initial spin frequency is much higher than the current one.
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δfFH ¼ 1

TcohKf
; ð3Þ

δḟFH ¼ 1

TcohTobsK _f

: ð4Þ

The parameters Kf and Kḟ are the over-resolution factors
as described in [58], here chosen as Kf ¼ 10 and Kḟ ¼ 2.
Given the low computing cost of this search, we use
Kḟ ¼ 2, while in the all-sky search setup of [58], there
is no over-resolution factor used for the spin-down grid.
With this choice the FH spin-down bin is equivalent to the
one defined in Eq. (1).
For each 10-Hz band, this process is repeated for each

month of data and the single FHmaps are summed up into a
final map. On this we select outliers, i.e., pairs ðf0; ḟ0Þwith
high significance. More specifically, for each 0.01-Hz
subband and for each spin-down subband,2 we take the
two strongest outliers. In this way a maximum of ∼2000
outliers are selected in each map and for each spin-down
subband. The total number of outliers in the search is
3410398 for L, 3409029 for H, and 3408485 for V. The
strength of an outlier is expressed through the critical ratio
(CR) defined as

ρCRðnÞ ¼
n − μn
σn

; ð5Þ

where μn and σn are the mean and the standard deviation of
the FH number count n, respectively. The CR of an outlier
corresponds to a significance, expressed, e.g., in terms of
p-values, compared to the expected CR distribution under
the hypothesis that the data do not contain any signal and
assuming a Gaussian noise distribution.
Coincidences among pairs and triplets of outliers

found in the data of the three detectors are computed.
Coincidences among two outliers are defined on the base of
a dimensionless distance defined as [58]

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

Δf
δfFH

�
2

þ
�

Δḟ
δḟFH

�
2

s
; ð6Þ

where Δf and Δḟ are the differences between the outlier
parameters. All the pairs of outliers from two different
detectors [i.e., Hanford-Livingston (HL), Hanford-Virgo
(HV), and Livingston-Virgo (LV)] with a distance smaller
than dthr ¼ 4 pass to the postprocessing stage [27,34].
Moreover, mean parameters of coincident HL outliers are
used to compute the distance from V outliers, using the

same criterion as before, selecting in this way triple
coincidences, which are subject to a similar postprocessing.
A total of 2142 triple HLV coincidences have been

found, mostly from candidates with spin up. Double
coincidences are 37570 for HL, 36988 for HV, and
37455 for LV. Given the lower sensitivity of the Virgo
detector compared to Hanford and Livingston at higher
frequencies, we only keep those double-coincident candi-
dates below 100 Hz, reducing the number of HV and LV
coincidences to 381 and 458, respectively. This choice is
justified by the fact that a real signal showing a significant
result in the Virgo detector above 100 Hz should neces-
sarily be evident also in the HL coincidence set.
To screen out insignificant outliers, we select only the

double coincidences with a ρCRðnÞ > ρCR;thr. The threshold
is chosen considering the probability of picking, on average
over each 10-Hz band, 500 false single-detector candidates
over the total number of spin-down bins, under the
assumption of Gaussian noise. The threshold used is
ρCR;thr ≃ 4.78 and it is the same for each dataset. This
threshold is also very close to the mean ρCR plus 1 standard
deviation of the CR distribution across the single-detector
candidates excluding those due to known instrumental
lines. This step is described in Sec. IVA. From a computa-
tional point of view, using a higher threshold would have
certainly reduced the number of potential candidates for
further investigation. However, this would also increase the
false-dismissal probability. For the triple HLV coincidence
set we focused on those candidates above ρCR;thr, including
those with a frequency below 100 Hz, independent of
their CR.

IV. POSTPROCESSING

Before passing to the follow-up stage, the outliers
selected during the coincidence step undergo a series of
vetoes. The set of vetoes is applied on all the coincident
outliers discarding those having at least one of the follow-
ing features: they overlap in frequency with known spectral
lines (in at least one of the detectors); they are not
consistent with the expected significance in each detector
(higher significance is expected to arise from the most
sensitive detector). These vetoes are described in more
detail in the following sections.

A. Lines veto and consistency check

Due to the presence of instrumental artifacts [62]
(typically spectral lines [63]), which affect the data quality,
outliers lying in a frequency band polluted by a known
noise line [56,57] are vetoed. A candidate is then vetoed if
during the run its frequency intersects with the frequency
region affected by the spectral line. This veto step is applied
before coincidences. At this stage, ∼8.0% of the outliers are
removed from the H dataset, while ∼4.6% and ∼4.9% are
removed from L and V, respectively.

2To minimize the computational load of each analysis job, the
full spin-down range has been divided into a few subbands,
going from 9 for all the bands above 20 Hz to 16 jobs for the band
10–20 Hz.
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The list of instrumental artifacts for which the source is
not completely understood (e.g., unknown lines) are not
used to veto candidates at this stage of the search.
For the consistency veto [34,64] we have discarded all

coincident candidates that show a weighted CR in the less
sensitive detector more than 3 times higher than the one in
the more sensitive detector. At this stage the CR we are
considering is the one computed from the FH number
count. At a later stage, a second consistency veto will be
applied using the 5n-vector S-statistic [65,66] (see
Sec. IV B). In practice, assuming that the noise spectral
density in the first detector is worse, i.e., Sn1ðfÞ > Sn2ðfÞ,
only the outliers with ρCR1

=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Sn1ðfÞ

p
< 3ρCR2

=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Sn2ðfÞ

p
survive to the next postprocessing step. In this search,
however, this veto only had a very minor effect, removing
only one candidate in the HL pair when applied after the
lines veto.
About 37000 outliers survived after the cuts for the

double coincidences HL, LV, and HV, while only ∼2000
coincident outliers did pass this first selection for the triple
coincidence case (HLV). Exact numbers are reported in
Table I. As discussed at the end of Sec. III B, we further
reduce the number of candidates to pass to the next veto/
follow-up stages according to their significance ρCR and/or
if their frequencies are below 100 Hz (see Table I).

B. Semicoherent 5n-vector follow-up

On the double- and triple-coincident outliers passing the
previous vetoes, we have applied a semicoherent follow-up
method, based on the so-called “5n-vectors,” already used
in [27], which will be briefly summarized here. The method
is based on the expected increase of the significance of a

given outlier after the frequency modulations are removed
from the data, e.g., by applying the heterodyne correction.
For searches of CW signals from known pulsars, after
removing the effects that modulate the frequency, an
amplitude modulation—due to the sidereal pattern—still
remains. The sidereal modulation pattern, that arises
when the signal is integrated for a chunk of data at least
equal to the sidereal day, is the key ingredient used to
distinguish between an astrophysical signal or a noise
outlier. This modulation produces a splitting of the
intrinsic signal angular frequency ω0 into five frequencies
ω0;ω0 � Ωsid;ω0 � 2Ωsid, where Ωsid is Earth’s sidereal
angular frequency.
The 5n-vector template is then built assuming as known

the frequency, spin down, and sky position of the source. In
our case we apply a matched filter using the 5n-vector
shape to chunks of data with duration Tsid ¼ 2π=Ωsid equal
to one sidereal day, and a final detection statistic S is
computed summing all the detection statistics computed in
each chunk. The same calculation is done in the off-source
region, i.e., away from the frequency of the candidate.
Details on the S-statistic can be found in [27]. From the
S-statistic it is possible to compute the corresponding CR
and signal-to-noise ratio values.
We compute the significance of a given outlier using the

semicoherent method described above in two different
situations: (i) when we remove the Doppler and spin-down
modulations (in this case, if the outlier is of astrophysical
origin we expect to have a higher significance) and (ii) when
no demodulation is applied to the time series. We expect to
have an increase of the significance for the case of the
demodulated signal when compared to the case where no
demodulation is applied. We use these criteria to keep
interesting outliers and pass them to the final follow-up
stage. After this stage the number of remaining candidates
decrease to 62 for the HL pair, 13 and 10 for the HVand LV
pairs with frequencies below 100 Hz, respectively. Two out
of the three HLV candidates investigated in this stage have
been discarded, while the candidate below 100 Hz passed
to the next step.

C. Cumulative significance check

For this follow-up stage we rely on the consistency of the
significance of a CW signal during the observing time.
Specifically, we expect that the significance of a signal will
steadily increase as we integrate over more time and hence
accumulate more power, following a positive trend as more
data are used. On the other hand, a sudden increase or
decrease in the significance as more data are integrated is a
clue indicating the presence of nonstationary noise. We
compute the cumulative signal-to-noise ratio and CR on a
monthly basis using the 5n-vector statistic over a starting
time series (no Doppler or spin-down phase correction is
applied), and we compare this trend with the one using the
heterodyne-corrected time series. The heterodyne phase

TABLE I. Number of surviving candidates at each stage of the
veto chain. Double (HL, LV, HV) and triple (HLV) coincidences
are done among candidates surviving the known lines removal.
For the HL pairs all the candidates above the CR threshold are
followed up, while for the LV and HV pair we do not follow up
candidates above 100 Hz. For the HLV case there were only two
candidates with ρCRðnÞ > ρCR;thr, hence we also follow up the
only candidate present below 100 Hz even if its significance is
below the threshold. A total of 361 candidates passed to the next
step of the analysis described in Sec. IV B.

Single After lines removal

H 3409029 3135640
L 3410398 3250804
V 3408485 3240966

Double f0 < 100 Hz ρCRðnÞ > ρCR;thr
HL 37570 Selection not applied 274
LV 37455 458 40
HV 36988 381 44

Triple
HLV 2142 1 2
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correction applied in this latter case, eiϕðf0; _f0Þ, is fully
described by the parameters of the outlier investigated.
These curves are computed separately for each detector.
Many outliers presented inconsistencies between the cor-
rected vs the uncorrected case in the same detector
(e.g., the cumulative curve of the uncorrected case was
always above the corresponding corrected one) or incon-
sistencies between the two detectors (e.g., for the cor-
rected time series, the cumulative curve of the less
sensitive detector was always above the corresponding
curve of the most sensitive one). The inconsistencies
between the curves suggest that these outliers have been
produced by an artifact in only one detector. Indeed for the
HV and LV pairs and the HLV triplets, all of the outliers
have been discarded with this veto, while 15 candidates
for the HL pair were further investigated through visual
inspection. We describe these additional tests in the
following.

D. Spectra and peak maps inspection

To further investigate the remaining 15 outliers from HL,
we visually inspect the spectra and the peak maps using
different frequency resolutions. In this way eventually
hidden noise features can arise, e.g., narrower spectral
lines, and the true origin of the signal candidate can be
found. As a second check we have verified if some of the
remaining outliers had an evolving frequency that crossed
one of the lines of the unidentified set of spectral noise
artifacts found in the detectors [67], although none of the
candidates overlapped with this set of unidentified lines.
Concerning the spectra we have visually inspected
differences and similarities between (i) the spectra of the
heterodyned time series, corrected using the candidate’s
parameters ðf0; _f0Þ, and (ii) the original spectra, when no
correction is applied. If instrumental lines are present these
should be present also before correcting the time series. We
use three different frequency resolutions for these spectra of
3.2 × 10−8, 3.2 × 10−7, and 3.2 × 10−6 Hz, equivalent to
full resolution spectra (12 months, full run, no average) and
to averaging over chunks of duration Tobs=10, Tobs=100,
respectively. Concerning the peak maps, we have checked
if local maxima appear in the frequency histogram of the
peak maps (i.e., the peak map projected onto the frequency
axis) in the corrected and/or uncorrected case. Also in this
case, if an instrumental line is present, this should appear in
the peak map and peak map histogram before correction,
polluting the interested band. These peak maps have a
frequency resolution of 1=Tcoh while the histograms are
built using five different bin widths from 1=Tcoh to 5=Tcoh.
We use wider bins to be robust against signals which may
deviate from the model (or if the candidate’s parameters are
not accurate enough). Through this inspection we have
been able to discard 13 out of these 15 candidates, given the
presence of noise spectral artifacts likely consistent with
weak instrumental lines in the frequency band intersected

by the candidate, which clearly appear either in the
uncorrected spectra or in the peak map histograms.
Two out of these 15 visually inspected candidates did not

show a clear presence of a weak line nearby before
correction, although neither a strong feature suggesting
their astrophysical origin after the correction (e.g., a typical
5n-vector shape in the corrected spectra). We quantify the
significance associated with these candidates using the
peak map histogram counts over the frequency. We con-
sider the frequency subband originally used to select the
candidates in the FrequencyHough map. We divide this
0.01-Hz band into subbands of 5 bins each. Over each of
these smaller frequency subbands we pick the maximum
count of the peak map projection. We then compare the
position of the maximum peak map histogram count of
the candidate subband with all the maxima computed on
the remaining subbands.
We tag as interesting the candidates ranking first or

second among the subbands in both detectors. One of the
two surviving candidates ranked 59th in H and 30th in L,
hence we discard it.
The second candidate ranked 11th in H and first in L,

thus confirming its low significance in the Hanford
detector. We ran an additional complementary multistage
follow-up using the method described in [68] with the
PyFstat package [69,70] and with the same configuration as
in [64]. The resulting Bayes factor was significantly lower
than what would be expected for a signal within the probed
sensitivity range. The original parameters of the candidates
are reported in Table II. Also, the initial threshold used for
candidate selection was extremely low, opening the pos-
sibility to select such outliers compatible with noise
fluctuations. As there is no strong evidence for the presence
of an astrophysical signal, we can compute upper limits on
the signal strain and from them derive some astrophysical
constraints.

V. RESULTS

In this section we present the estimates of the upper
limits on the signal strain and the constraints we can place
in the absence of a detection. We use a quick method to
estimate the upper limits, i.e., the maximum h0 allowed by
this search, above which we can exclude the presence of a
CW signal with a given confidence level (CL). These limits
can be translated into some astrophysical constraints on the

TABLE II. Parameters of the surviving outlier. The sky position
is the one used for the search and coincident to that of Sgr A� with
αGC ¼ 17 h 45 m 40.04 s and δGC ¼ −29°000 28.1”. The
reference time for the parameters is 1238112018 GPS.

Detector f0 (Hz) _f0 (Hz=s) ρCRðnÞ
H 908.7708738 −2.511 × 10−9 5.17
L 908.7704061 −2.521 × 10−9 4.99
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ellipticity of neutron stars and the r-mode amplitude.
Furthermore, we present for the first time—for a directed
search toward the GC—“exclusion regions” for the boson
mass and black hole mass for boson clouds forming around
spinning black holes.

A. Upper limits

We provide an estimate of the upper limits using a
method based on the sensitivity estimates presented in [58].
The minimum detectable strain amplitude h0;min, with Γ ¼
0.95 corresponding to a 95% CL, can be written as

h0;min ≈
B

N1=4

ffiffiffiffiffiffiffiffiffiffiffi
SnðfÞ
Tcoh

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρCR;thr −

ffiffiffi
2

p
erfc−1ð2ΓÞ

q
; ð7Þ

where N ∼ Tobs=Tcoh is the effective number of fast Fourier
transforms used for the search. In this equation, B is a
parameter that depends on the threshold used for peak
selection in the peak map and on a factor dependent on the
sky position of the source and on the signal polarization,
which is averaged out. For this search we have computed
the value of B for the GC case. More details are provided
in the Appendix. The formula in Eq. (7) expresses the
minimum detectable strain by a search which selects
the candidate with a CR higher than ρCR;thr, i.e., it states
the best sensitivity a given search can achieve when the
minimum CR of our candidates coincides with ρCR;thr. On
the other hand, if we want to look for the maximum allowed
h0, above which we can exclude the presence of a CW
signal, i.e., provide an estimate of the upper limit, we can
substitute for ρCR;thr the value of the maximum CR
ðρCR;maxÞ found in a given frequency band. The width of
the 1-Hz frequency band determines the resolution of the
upper limits estimate.

We have verified that this estimate of the upper limits,
using ρCR;max in Eq. (7), already implemented in [64,71],
indeed yields conservative limits if compared to the results
obtained with the classical frequentist approach using
artificially injected signals. This check has been performed
on six frequency bands of 1 Hz each, randomly chosen over
the full frequency range investigated. We have also verified
that the 95% CL upper limits, obtained using software
injected signals, are always above the curve defined in
Eq. (7) when ρCR;thr is used. Furthermore, the difference
between the upper limits obtained using injections and
those computed using this method is still within the
calibration uncertainty errors, which are already affecting
the estimate of the noise power spectral density SnðfÞ (see
Sec. II [51–53]).
The curve shown in Fig. 2 represents the joint upper

limits estimate of the coincident pair HL. This is obtained
by computing the h95%0 ðρCR;max; SnÞ separately for each H
and L detector and keeping the worst of the two curves in
each Hz. For a given detector, the CR has been taken equal
to the maximum in each 1-Hz band, otherwise was set equal
to ρCR;thr if the maximum CR in that band was lower than
ρCR;thr. Given that for a given pair (or triplet) of detectors
the combined upper limits curves are dominated by the less
sensitive detector, we do not report the LV, HV, HLV
associated curves given the large difference between the
SnðfÞ of the Virgo detector compared to the power spectral
density of Hanford and Livingston. From the curve in Fig. 2
it is possible to see a minimum strain of ∼7.6 × 10−26 at
140 Hz. This result improves on the one in [34] using O2
data by a factor ≃1.9.

B. Astrophysical implications

We can exploit the relation between the GW strain
amplitude and some astrophysical parameters characterizing

FIG. 2. Estimates of the 95% CL strain upper limits, derived for the best combination HL in 1-Hz bands [72].
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the emitting system to derive some constraints. In particular,
for the isolated neutron star case, we canmap the h95%0 upper
limit curve to a constraint on the ellipticity of the star [37],
making some assumptions on the moment of inertia of the
spinning star. It is also possible to convert the upper limits on
the strain into constraints on the r-mode amplitude as
discussed in [73], assuming a coherent emission during
the observing time. In addition to these classic limits,
typically derived for CW searches from neutron stars, we
can derive some exclusion regions over the masses involved
in a superradiance process of boson particles around spin-
ning black holes as discussed in Sec. V B 2.

1. Neutron stars

Ellipticity.—For the prototypical case of a rotating neutron
star with nonaxisymmetric deformations misaligned with
the rotation axis, the strain amplitude is proportional to
twice its spin frequency, fGW ¼ 2fspin. This scenario
corresponds, e.g., to the presence of mountains on the
neutron star’s surface [74] and the strain amplitude can be
written as

h0 ¼
4π2G
c4

Izzf2GW
d

ϵ: ð8Þ

Assuming that the moment of inertia for a perpendicular
biaxial rotor spinning around z, Izz ¼ qIfid, can be amultiple
of the fiducial moment of inertia Ifid ¼ 1038 kgm2, where q
is a proportionality factor,3 the h0 can be used to express
the ellipticity of the neutron star as a function of the GW
signal frequency and the moment of inertia as

ϵ ¼ 7 × 10−4
�
Ifid
Izz

��
h0

10−24

��
100 Hz
fGW

�
2

: ð9Þ

Here a distance of the GC of d ¼ 8 kpc has been
assumed, although different estimates of d exist [75–78].
In Fig. 3 we report the estimated 95% CL upper limits
of the ellipticity, ϵ95%. The two curves indicate the two
extreme cases for Izz ¼ Ifid (upper curve), and Izz ¼ 5Ifid
(lower curve). The shaded region spans all the possibilities
between the q ¼ 1 and q ¼ 5 case. Moments of inertia 5
times larger than the fiducial value can possibly be
sustained by stars made up of more exotic components.
For the q ¼ 1 case the minimum ellipticity reached for the
highest frequency is ϵ ¼ 7.26 × 10−7, while a minimum of
ϵ ¼ 1.45 × 10−7 is obtained for the q ¼ 5 case. Given this
high uncertainty of the actual moment of inertia of the star
(dependent on both the mass and the radius of the star), it is
useful to quote the corresponding mass quadrupole Q22

component of the l ¼ m ¼ 2 mode, which is present in the
expression of the GW amplitudes in the mass quadrupole
formalism [79]

Q22 ¼
ffiffiffiffiffiffi
15

8π

r
ϵIzz: ð10Þ

This quantity is then independent of the actual moment
of inertia used and is directly connected with h0 [see
Eq. (8)]. A minimum value of Q22 ¼ 5.61 × 1031 kgm2 is
reached at the highest frequency.
In this simplest model we are not considering the

possible multiple harmonic emission mechanism active
in situations like a superfluid pinned to the crust, a triaxial
star not spinning around its principal axis, and more
[80,81], where additional radiation is expected at the star’s
spin frequency fspin as well at the 2fspin frequency. The
case of free precession would require including further
terms in addition to the dual harmonic components [82].

R-mode amplitude.—Changing the emission scenario but
still staying in the single harmonic emission model, the
limits on the strain can be parametrized for the case of
unstable oscillation modes, namely r-modes, happening at
fGW ¼ 4

3
fspin in the nonrelativistic case. The actual pro-

portionality factor between fspin and fGW is expected to
differ from 4

3
in the relativistic case and when the EOS

dependence is considered (see [83,84]).
Following the discussion in [73] it is possible to convert

upper limits from the “mountain” scenario to the equivalent

FIG. 3. Estimates of the 95% CL ellipticity upper limits
assuming a GC distance of 8 kpc. The shaded area between
the two curves covers the possible values of the moment of inertia
along z of the spinning star. The lower curve corresponds to a
moment of inertia 5 times larger than the fiducial value Ifid,
sustainable by exotic objects.

3The exact value of a neutron star’s moment of inertia is
unknown and it strongly depends on its EOS; for this reason we
will use a proportionality factor q ¼ 1 (normal matter) and q ¼ 5
(extreme matter) to cover these two extremes, see [37].
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r-mode expression, given that the latter can be obtained
from the standard expression in the ellipticity case through
the mapping ψ → ψ þ π=4 corresponding to a 45° rotation
of the polarization angle ψ . The amplitude of r-mode
emissions is then given by

α ≃ 0.028

�
h0

10−24

��
d

1 kpc

��
100 Hz
fGW

�
3

: ð11Þ

This equation has been obtained assuming the dimen-
sionless functional of the neutron star EOS J̃ ≈ 0.0164 and
a neutron star with mass M ¼ 1.4 M⊙ and radius R ¼
11.7 km as in [73]. We report the converted 95% CL upper
limits on the r-mode amplitude α in Fig. 4, assuming a GC
distance of 8 kpc as done for Fig. 3. Minimum values of
α ∼ 10−5 are reached for the highest frequencies.

2. Boson clouds

A population of thousands of stellar-mass black holes is
expected to exist near the GC [85] and observational
evidence is accumulating, see, e.g., [86,87]. A fraction
of these black holes may have developed a boson cloud
[42–45,48] which is currently depleting by emitting CWs.
In order to put constraints on the boson cloud systems we

have first derived the upper limits curve in Fig. 2, using
only candidates with a positive spin down (e.g., with spin
up). This is a necessary step to have a more accurate
estimate to use for our constraints, since the signal
produced by boson clouds around spinning black holes
is characterized by a spin up [42] and no spin down is
expected as for the case of spinning neutron stars.
Given an upper limits curve, we can translate it into

constraints in the black hole/boson mass parameter space.
Following what was done in previous all-sky searches
[71,88], we compute exclusion regions in the parameter

space for a given value of the black hole spin before the
superradiant cloud growth χi and for different boson cloud
ages, tage. The distance is fixed to 8 kpc. Specifically, Fig. 5
shows the constraints for χi ¼ 0.5 and tage ¼ 103; 105, and
107 yr. Going from these constraints, valid for specific
parameter choices, to the actual exclusion of given combi-
nations of black hole and boson masses is not trivial, as it
depends on the uncertain characteristics of the black hole
population in the GC. In particular, it is expected that many
black holes now residing in the GC region may have ages of
gigayears [89] and then would not be relevant anymore
from the CW emission point of view. On the other hand, a
non-negligible number of black holes should have formed
more recently, both by core collapse of a progenitor
massive star or by the coalescence of black hole binary
systems, formed, e.g., by tidal capture in the dense GC
environment [90]. These systems could have developed a
boson cloud which is still in the CW emission phase. A
quantitative study of this subject is clearly important but
outside the scope of the current paper.

VI. CONCLUSION

We have presented a search for continuous GWs from
sources in the GC using LIGO and Virgo data from the third
observing run. Although the core of this search is the same
as the one presented in [34], a more sensitive, longer dataset
has been used, and several novelties have been introduced
in this version. First of all the parameter space investigated
is much wider, allowing for high-frequency emitters to be
searched for. In addition, data from the Virgo detector has
been used for the first time, providing an increased number
of potential candidates. Along with these extensions, new
techniques have been applied in the follow-up part and for

FIG. 4. Estimates of the 95% CL r-mode amplitude upper limits
for neutron stars in the GC region assuming d ¼ 8 kpc.

FIG. 5. Constraints on the black hole mass–boson mass plane,
assuming CWemission from boson clouds around spinning black
holes located in the GC. An initial black hole dimensionless spin
χi ¼ 0.5 and cloud ages of tage ¼ 103; 105; 107 yr are considered.
The reported exclusion regions have been derived from the upper
limits in [72].
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the computation of upper limits. The enormous reduction of
the computational load of this last step of the analysis
allows for a better use of the resources in the follow-up part.
Indeed this makes possible the use of a lower threshold in
the first pass selection of candidates, increasing the final
number of outliers, the chance of detection, and the overall
search sensitivity. One marginal outlier near 909 Hz (see
Table II) could not be decisively ruled out, but is more
consistent with a single-detector noise fluctuation.
The deepest strain limit is 7.6 × 10−26 at 142 Hz,

corresponding to levels of ellipticity well below the
maximum value expected for a neutron star composed of
standard matter [37,91,92], solid strange stars, or hybrid
and meson-condensate stars [79] for most of the frequency
band investigated. The most stringent constraints on the
r-mode amplitude are obtained at the highest frequencies
well below expected quantities for the nonlinear saturation
mechanisms [93]. Finally we provide new constraints on
the mass distribution of boson cloud masses in addition to
those presented in [71].
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APPENDIX: DETAILS ON UPPER LIMITS
FORMULA

Following the computation of Eq. (67) in [58] we want to
compute the average prefactor B in Eq. (7) of this paper.
The corresponding expression for B for the all-sky case
described in [58] is equal to

Ball−sky ¼
4.02

θ1=2thr

�
p0ð1 − p0Þ

p2
1

�
1=4

; ðA1Þ
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where the number 4.02 results from the average of all
the varying quantities α, δ, and ψ [see Eq. (B19) in [58]].
All the remaining quantities, i.e., the peak selection thresh-
old θthr ¼ 2.5, the probability to select a noise peak
p0 ¼ 0.0755, as well p1 ¼ 0.0692, a function depending
on θthr, remain unchanged from [58] in this search. For our
problem we need to evaluate the expression for a particular
sky position and no averaging over α and δ is needed. On
the other hand, we do need to average over time and the
polarization parameter ψ, which is uniformly distributed
over ½−π=4; π=4�. Let us now consider the expressions for
the beam pattern functions Fþ and F× [94]

Fþðψ ; tÞ ¼ aðtÞ cos 2ψ þ bðtÞ sin 2ψ ;
F×ðψ ; tÞ ¼ bðtÞ cos 2ψ − aðtÞ sin 2ψ : ðA2Þ

It is easy to check that the squared average over the
polarization angle ψ is equal to 0.5. Hence we can write the
squared average of Fþ and F× as

hF2þiψ ;t ¼ hF2þiψ ;t ¼
1

2
ðha2it þ hb2itÞ: ðA3Þ

Removing also the dependency over time and consid-
ering the following average expressions for a2ðtÞ and b2ðtÞ
evaluated for the case Tobs ¼ n2π=Ωsid, i.e., an integer
number of sidereal days [95]:

ha2it ¼
1

16
sin22γ

�
9cos4ϕcos4δþ 1

2
sin22ϕ

× sin22δþ 1

32
ð3 − cos 2ϕÞ2ð3 − cos 2δÞ2

�

þ 1

32
cos22γ½4cos2ϕsin22δþ sin2ϕð3 − cos 2δÞ2�;

hb2it ¼
1

32
sin22γ½ð3 − cos 2ϕÞ2sin2δþ 4sin22ϕcos2δ�

þ 1

4
cos22γð1þ cos 2ϕ cos 2δÞ: ðA4Þ

Evaluating them for the specific sky location δ ¼ δGC
and for each ðγ;ϕÞ of a given detector, where ϕ is the
latitude of the detector’s site and γ is the orientation of
the detector’s arms, we can obtain different values for the
antenna pattern functions per detector (i-det),

hF2þiψ ;tjδGC;i−det ¼ hF2
×iψ ;tjδGC;i−det

¼ 1

2
ðha2itjδGC;i−det þ hb2itjδGC;i−detÞ: ðA5Þ

The exact numbers entering as a prefactor of Eq. (67) of
[58] for this search differ from the value used for the all-sky
search in [58], where an average over the sky position is
considered, by no more than the 3%. To be more accurate,
the actual prefactors to be used in the calculation of our
upper limits will be 4.06, 4.05, and 4.12 for H, L, and V,
respectively, while for the all-sky case it is equal to 4.02.
This means that B in Eq. (7) is equal to 5.06, 4.93, and 5.08
for H, L, and V, respectively, while it is equal to 4.97 for the
all-sky case.
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S. M. Vermeulen,17 D. Veske,51 F. Vetrano,55 A. Viceré,55,56 S. Vidyant,68 A. D. Viets,286 A. Vijaykumar,19

V. Villa-Ortega,115 J.-Y. Vinet,37 A. Virtuoso,236,35 S. Vitale,75 H. Vocca,80,40 E. R. G. von Reis,73 J. S. A. von Wrangel,9,10

C. Vorvick,73 S. P. Vyatchanin,98 L. E. Wade,234 M. Wade,234 K. J. Wagner,129 R. C. Walet,60 M. Walker,64 G. S. Wallace,33

L. Wallace,1 J. Wang,177 J. Z. Wang,183 W. H. Wang,90 R. L. Ward,8 J. Warner,73 M.Was,30 T. Washimi,20 N. Y. Washington,1

J. Watchi,144 B. Weaver,73 C. R. Weaving,52 S. A. Webster,24 M. Weinert,9,10 A. J. Weinstein,1 R. Weiss,75 C. M. Weller,255

R. A. Weller,176 F. Wellmann,9,10 L. Wen,94 P. Weßels,9,10 K. Wette,8 J. T. Whelan,129 D. D. White,44 B. F. Whiting,77

C. Whittle,75 D. Wilken,9,10 D. Williams,24 M. J. Williams,24 A. R. Williamson,52 J. L. Willis,1 B. Willke,9,10 D. J. Wilson,252

C. C. Wipf,1 T. Wlodarczyk,112 G. Woan,24 J. Woehler,9,10 J. K. Wofford,129 D. Wong,180 I. C. F. Wong,131 M. Wright,24

C. Wu,130 D. S. Wu,9,10 H. Wu,130 D. M. Wysocki,6 L. Xiao,1 T. Yamada,263 H. Yamamoto,1 K. Yamamoto,188

T. Yamamoto,189 K. Yamashita,199 R. Yamazaki,196 F. W. Yang,158 K. Z. Yang,147 L. Yang,166 Y.-C. Yang,130 Y. Yang,287

Yang Yang,77 M. J. Yap,8 D.W. Yeeles,17 S.-W. Yeh,130 A. B. Yelikar,129 M. Ying,130 J. Yokoyama,28,27 T. Yokozawa,189

J. Yoo,179 T. Yoshioka,199 Hang Yu,136 Haocun Yu,75 H. Yuzurihara,187 A. Zadrożny,218 M. Zanolin,36 S. Zeidler,288

T. Zelenova,47 J.-P. Zendri,82 M. Zevin,164 M. Zhan,177 H. Zhang,230 J. Zhang,94 L. Zhang,1 R. Zhang,77 T. Zhang,14

Y. Zhang,184 C. Zhao,94 G. Zhao,144 Y. Zhao,187,20 Yue Zhao,158 R. Zhou,190 Z. Zhou,15 X. J. Zhu,5 Z.-H. Zhu,120,228

M. E. Zucker,1,75 and J. Zweizig1

(LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration)

1LIGO Laboratory, California Institute of Technology, Pasadena, California 91125, USA
2Graduate School of Science, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
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41Università di Camerino, Dipartimento di Fisica, I-62032 Camerino, Italy
42American University, Washington, D.C. 20016, USA

43Earthquake Research Institute, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
44California State University Fullerton, Fullerton, California 92831, USA
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46Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France

47European Gravitational Observatory (EGO), I-56021 Cascina, Pisa, Italy
48Georgia Institute of Technology, Atlanta, Georgia 30332, USA

49Chennai Mathematical Institute, Chennai 603103, India
50Department of Mathematics and Physics, Hirosaki University,

036-8560 Aomori, Hirosaki, Bunkyocho, 1, Japan
51Columbia University, New York, New York 10027, USA

52University of Portsmouth, Portsmouth PO1 3FX, United Kingdom
53Kamioka Branch, National Astronomical Observatory of Japan (NAOJ),

Kamioka-cho, Hida City, Gifu 506-1205, Japan
54The Graduate University for Advanced Studies (SOKENDAI), Mitaka City, Tokyo 181-8588, Japan
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70Università degli Studi di Milano-Bicocca, I-20126 Milano, Italy

71INFN, Sezione di Milano-Bicocca, I-20126 Milano, Italy
72INAF, Osservatorio Astronomico di Brera sede di Merate, I-23807 Merate, Lecco, Italy

73LIGO Hanford Observatory, Richland, Washington 99352, USA
74Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana,”
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