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We present here the latest development of a machine-learning pipeline for premerger alerts from
gravitational waves coming from binary neutron stars (BNSs). This work starts from the convolutional
neural networks introduced in [Baltus et al., Phys. Rev. D 103, 102003 (2021)] that searched for the early
inspirals in simulated Gaussian noise colored with the design-sensitivity power-spectral density of LIGO.
Our new network is able to search for any BNS with a chirp mass between 1 and 3 M⊙, it can take into
account all the detectors available, and it can see the events even earlier than the previous one. We study the
performance of our method in three different scenarios: colored Gaussian noise based on the O3 sensitivity,
real O3 noise, colored Gaussian noise based on the predicted O4 sensitivity. We show that our network
performs almost as well in non-Gaussian noise as in Gaussian noise: our method is robust with respect to
glitches and artifacts present in real noise. Although it would not have been able to trigger on the BNSs
detected during O3 because their signal-to-noise ratio was too weak, we expect our network to find around
3 BNSs during O4 with a time before the merger between 3 and 88 s in advance.
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I. INTRODUCTION

Multimessenger astrophysics (MMA) makes use of
messengers from different forces of the Universe to provide
a wealth of information about various astrophysical proc-
esses. From previous investigations it is well known that the
combination of at least two of these signals gives quali-
tatively different and complementary types of information,
capable of probing down to the densest and most energetic
regions of cosmic objects, which were hidden from
astronomers’ sight up until now [1–3].
In the context of gravitational waves (GW) combined

with other astrophysical signals, it has long been suggested
that short gamma ray burst (GRB) might be related to
binary neutron star mergers [4], which fall in the sensitivity
band of second generation ground based-detectors [5–7].
Several studies investigated the expectations of electro-
magnetic (EM) follow-up efforts during the Advanced
LIGO and Virgo era of compact binary coalescence
(CBC) [8,9]. On August 17, 2017 the Fermi γ-ray Burst

Monitor [10] announced the detection of a GRB, later
designated as GRB170817A [11].
Approximately 6 min later, a GW candidate, later

relabeled as GW170817, was registered in low latency
based on a single-detector analysis of the Advanced
Laser Interferometer Gravitational-wave Observatory
(LIGO) Hanford data and disseminated through a γ-ray
Coordinates Network (GCN) Notice. A rapid re-analysis of
data from Hanford, Livingston, and Virgo confirmed a
highly significant, coincident signal [12]. An extensive
observing campaign was launched across the electromag-
netic spectrum in response to the Fermi-GBM and LIGO–
Virgo triggers, which led to the detection of the kilonova
associated with GW170817, later called AT 2017gfo [13].
In recent times, there has been a sparkling interest in

early warning (or premerger) alerts of BNS in the field of
GW for EM and astroparticle follow-ups [14–24], since the
radiation emitted from these systems enters the sensitive
region of the interferometers during the inspiral phase
[25,26]. Assuming all BNS’s produce a short GRB with an
x-ray, optical and radio afterglow, an LVK network, and a
top-hat jet model, Ref. [27] predicts rates for the joint
detections of 0.02–27 per year for X-ray band, 0.01–19 per
year for optical band, and 0.02–25 per year for radio
band, respectively, at design sensitivity for a three detec-
tor network [27]. It is relevant to note that the large
uncertainty is due to the fact that BNS merger rate is
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not well constrained. The improving sensitivity of second-
generation detectors and the even better sensitivity for the
third-generation detectors, such as Cosmic Explorer and
the Einstein Telescope [28,29] will lead, via an increase
in the signal-to-noise ratio (SNR), to a major improvement
in the early-detection and sky-localization capabilities
[21,22,30]. Another key element to develop MMA further
is the design of low-latency pipelines for the production of
real-time GW alerts, or even premerger alerts. The current
state-of-the-art employs matched filtering techniques [8] to
perform online analyses via the pipelines GstLAL [31–34],
PyCBC [19,35–40], MBTAOnline [41,42], cWB [43–45],
and SPIIR [46]. We refer the reader to [47] and [48–50] for
a summary of the low-latency efforts carried out by the
LIGO-Virgo collaboration during the second and third
observing runs. Recent investigations in the GW field have
focused onMachine Learning (ML) algorithms, due to their
success in different tasks and domains. The main advantage
of ML techniques is their rapidity because most of the
computations are made during the training stage. A widely
used ML method for pattern recognition is based on
convolutional neural networks (CNNs) [51], in the context
of GW it has been applied to different tasks such as CBC
identification [52–56], burst detection [57–60], sky locali-
zation [61–63], glitch classification [64,65] and synthetic
data generation [66,67]. See [68] for a review on this topic.
ML methods have also emerged as a new tool in

the context of early warning [14,16], allowing us to flag
prompt triggers for GW candidates. The final goal of this
work is to detect BNS signals before the merger. To do that,
we have design a single CNN that takes as input the time-
series data from all the online detectors and returns a
classification between two classes: pure noise or noise plus
inspiral. In this paper, we build on our previous work [14],
improving on the techniques previously developed, and
testing them on more realistic scenarios: we use real O3
noise, as well as the data from all available detectors. In
addition, we retrained our network on predicted O4 noise
and give expected efficiencies for this run.
The details of the differences with [14] are as follows:
(i) the addition of the spin effect to the BNS waveforms;
(ii) a uniform sky location of the injections;
(iii) the injection of simulated BNS signals in simulated

O3 noise, real O3 noise, and simulated O4 noise;
(iv) a decrease of the minimal cutoff frequency from

20 Hz to 10–15 Hz;
(v) a fixed input-signal duration of 300 s with a sampling

frequency of 512 Hz that allows us to analyze any
BNS signal for all allowed neutron star masses;

(vi) the implementation of curriculum learning [69].
This paper is organized as follows: in Sec. II, the method

is explained. Section II A introduces the definition of
the SNR and the partial inspiral signal-to-noise ratio
(PISNR) used in this work, as well as the relation between
the frequency of a waveform and the time before the

merger. The description of the data generation and the
training strategy is made in Sec. II B. The last part of this
section, II C, describes the architecture of the CNN used in
this paper. Section III presents the results and the perfor-
mance of our method in the three types of noise, as well as
studying the number of BNS that are expected to be found
in advance by our network in O4. Finally, we give our
conclusions in Sec. IV.

II. METHOD

A. Loudness and frequency evolution of the signal

In GW-searches, the matched-filtering SNR (ρ) [19,70]
is used to verify how well a template matches the data. The
SNR definition follows that of the FINDCHIRP algorithm
[35] as implemented in PyCBC [71]. One first transforms the
signal sðtÞ and templates hðtÞ to frequency space:

h̃ðfÞ ¼
Z

∞

−∞
hðtÞe−2πiftdt ð1Þ

and similarly for s̃ðfÞ. One can define the matched filtering
output [70]

xðtÞ ¼ 4R
Z

∞

0

s̃ðfÞ�h̃ðfÞ
SnðfÞ

e2πiftdf ð2Þ

where SnðfÞ is the one-sided noise strain power spectral
density (PSD) of the detector and the * superscript denotes
complex conjugation. One can show that this matched
filtering output still depends on the phase at a reference
time of the signal, for instance at the time when it enters the
frequency band of the interferometer. It is possible to
minimize xðtÞ analytically with respect to that phase
[35,72] and express the result via the complex zðtÞ:

zðtÞ ¼ 4

Z
∞

0

s̃ðfÞ�h̃ðfÞ
SnðfÞ

e2πiftdf ð3Þ

as

minðxðtÞÞ ¼ jzðtÞj

The variance of jzðtÞj is given by:

σ2 ¼ 4

Z
∞

0

h̃ðfÞ�h̃ðfÞ
SnðfÞ

df: ð4Þ

The signal-to-noise ratio is then taken to be [72]

ρðtÞ ¼ jzðtÞj
σ

: ð5Þ

For a network of N detectors, identified by an index
i ¼ 1.::N, one defines the network SNR as
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ρnetðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
1

ρ2i ðtÞ
vuut : ð6Þ

The SNR is a key quantity for the searches based on
matched filtering, since it describes the amount of overlap
between a template and an unknown signal. In these
searches, the strategy is to create a template bank of
precomputed waveforms and use it to calculate the SNR
over all the data strain. As a first step, a trigger is created
when the SNR reaches a maximum value higher than a
given threshold. After that, it undergoes a statistical treat-
ment to be confirmed as a GW candidate [19]. As we are
interested in searching for the early inspiral, a more
meaningful indicator will be the partial-inspiral signal-to-
noise ratio. It is defined as the SNR in which the template h
is the partial template that contains only the fraction of the
inspiral part of the waveform that our network tries to
identify. For more details about the PISNR, and how it
evolves depending on the length of the template, we refer to
Sec. II. A. of Ref. [14].
At the lowest order in velocity, the frequency f at a time t

depends on the chirp mass Mc of the system and the
merger time tm:

fðtÞ ¼ 1

π

�
GMc

c3

�
−5=8

�
5

251

1

ðtm − tÞ
�

3=8
: ð7Þ

So for a given chirp mass, if we say that we can detect an
event ðtm − tÞ s before the merger, it is equivalent to say
that we detect the signal when the maximum frequency is
fðtÞ. Figure 1 represents the time and frequency evolution
for a GW.

B. Data and training strategies

In our previous work [14], we have shown the possibility
to detect the early inspiral of a BNS injected in Gaussian
noise. In this work, we want to turn to a more realistic

scenario, using real O3 noise. To investigate the difference
in performance between Gaussian and real noise, we also
inject the signals in colored Gaussian noise generated from
the O3 representative PSD. In addition, to assess the
performance of our network in future observation runs,
we consider colored Gaussian noise generated from the
predicted O4 PSD.
The corresponding PSDs are represented in Fig. 2. To

generate a frame of simulated O3 Gaussian noise, we use
the PSDs from [73], provided by PyCBC [71].1 To obtain
data of O3, we directly download the strain of the detectors
[48–50] using theGWpy package [74]. To be closer to a real
time search, these downloaded strains are the ones recorded
in low-latency, meaning that they are not filtered and
cleaned as extensively as the final noise.2 To generate
the O4 Gaussian noise, we use the predicted O4 PSD
coming from the observing scenarios [73,75].3

Since the problem at hand can be solved as a classi-
fication task, we need a dataset containing two classes:
noise and noise plus inspiral, also known as injections. For
the injections, we generate waveforms using the approx-
imant SpinTaylorT4 [76]. We choose the component
masses to be uniformly distributed between 1 and 3 solar
masses to cover all the possible BNS systems [77]. The
sources are uniformly distributed over the sky, and we also

FIG. 1. The top figure represents a GW signal corresponding to
two objects of mass 1.8 M⊙. The bottom figure represents the
evolution in frequency for this binary.

FIG. 2. Representation of the different PSDs, for the Livingston
detector, used to generate the different datasets. We also show the
design sensitivity PSD provided by PyCBC [71] used in [14].

1The PSD used for Gaussian O3 LIGO is aLIGOaLI-
GO140MpcT1800545, the one for Virgo is aLIGOAdVO3-
LowT1800545, both are provided by LIGO and Virgo
and implemented via PyCBC [71].

2To download the real O3 data, we use the channels
H1:GDS-CALIB_STRAIN, L1:GDS-CALIB_STRAIN, V1:
Hrec_hoft_16384 Hz, and the frame type: H1_llhoft, L1_llhoft,
V1Online in GWpy.

3The LIGO and Virgo PSDs used for O4 correspond to the
ones shown in Fig. 1 of [73], with the BNS detector horizon at
160 Mpc for the LIGO detectors and the horizon at 120 Mpc for
the Virgo detector.
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include the spin effects. With these parameters and a lower
frequency of 10 Hz, the simulated signal is always longer
than 300 s. In such a way, the inputs of the network contain
only the early inspiral part (see Fig. 3 for an illustration).
After injecting the simulated signal into the noise the
frames are whitened, and we apply a low-pass filter at
100 Hz and a high-pass filter at 10 Hz. For O3 real noise,
some significant peaks can appear in the whitened strain
due to non-Gaussian effects. In our approach, these effects
are vetoed by zeroing them out, see the Appendix.
Afterwards, the final frame is renormalized, making all
the values in the frame between −1 and 1. This will be the
input data of the network, and we refer to a single sample as
a frame.
For the training and testing, we choose a distribution in

distance such that the distribution in PISNR is an inverse
Gaussian with a mean of thirty-five and a scale of one
hundred.4 Despite having a large dataset containing one
million frames, we have observed a low performance when
we decrease the maximum frequency to ∼25 Hz. This is
because the CNN is good to detect a variation of frequency,
and for earlier inspiral phase, the signal becomes more
monochromatic.
To be able to detect events earlier, it is key to decrease the

maximum frequency seen by our model. For this aim, we
change the training strategy and use curriculum learning
[69] as a function of the maximal frequency seen by the
network, as it has shown an increase of the performance as
a function of the SNR in previous works [59]. The principle

of curriculum learning is to train the network first on easier
data (on data with a high maximum frequency), and then
gradually increasing the difficulty (on data with a lower
maximum frequency). The network is then iteratively
trained on each training set. To prevent the network from
forgetting what it has learned, we keep all the data of the
previous steps while adding the new ones. To that effect, we
generate five different training sets. The parameter distri-
butions for the injections stay the same, except for the
maximal frequency seen by the network. This parameter is
now chosen as a Gaussian distribution with a standard
deviation of 2.5 Hz, and different mean depending on the
datasets. More information about these datasets can be
found in Table I. Each training set contains 20000 frames
and half of them contain an injection. Note that 20% of
each training set was used for validation during the training.
For each step, we train for six epochs as it was enough to
make the loss converge without facing overfitting. The use
of curriculum learning allows to improve the performance
on dataset 3, 4, 5 with maximum frequency of, respectively,
30, 25, 20 Hz, while maintaining the performance at higher
frequencies.
The training on the real noise data was done in a similar

way. Note that we have done the training with noise coming
only from O3a, meaning the first half of O3 [48]. We have
vetoed the time of the real events from the GWTC-2.1
catalog [48] not to train on them, as most of them were
BBH. For all the testing, we used noise coming from O3b,
the second half of O3 [49,50]. During O3 there are times
when not all detectors are online. To take this fact into
account, when a certain detector is offline, we fill the CNN
entry corresponding to the detector with a vector of zeros.
In this way, our network is able to perform the search
regardless of the number of detectors available.
For the training parameters, we use a batch size of 50.

For each step of curriculum learning we train for 6 epochs,
it was enough to make the loss converge. The learning rate
is 8 × 10−5 and the optimizer is ADAMAX with a weight

FIG. 3. Representation of the different types of noises for the
Handford detector used together with an injection similar to
GW170817, i.e., with neutron star masses of 1.46 and 1.27 M⊙
[78]. Note that only the part in the rectangle is passed to the
network.

TABLE I. Each dataset corresponds to a value for the maximum
frequency seen by the networks, which in turn leads to a minimum
frequency and a time before the merger (TBM). The numbers
shown for the maximum and minimum frequency are the mean
value in each dataset. The maximum and minimum TBMs are the
TBM for two objects of respectively 3 M⊙ and 1 M⊙.

Dataset

Max
frequency

(Hz)

Min
frequency

(Hz)

Min
TBM
(s)

Max
TBM
(s)

Dataset 1 40 12.9 7 44
Dataset 2 35 12.8 10 63
Dataset 3 30 12.6 15 95
Dataset 4 25 12.3 24 115
Dataset 5 20 11.7 45 280

4We found that the inverse Gaussian (Wald) distribution fits
better our goal. Indeed, this distribution gives a few very high
PISNR events that enable the network to start its learning process.
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decay of 10−5. ADAMAX is a variant of ADAM, based on
the infinity norm [79]. In our previous work [14], we have
seen that using ADAMAX leads to a faster the convergence
of the training.
We use the weighted cross-entropy loss [80]. At first, we

employed the cross-entropy loss, which is standard for
classification problems. However, this led to a large number
of false positives. To remedy that we decided to weigh this
loss [59] by a factor 0.4 for the frames with an injection.
This reduces the chances that the network classifies a frame
containing only noise as an event, so it reduces the number
of false positives. We tried multiple values for the weight
and found that for the task at hand a factor of 0.4 translates
into a reduction of the number of false positive while
maintaining the number of true positive. The duration of the
training is about one day on a NVIDIA Tesla V100-PCIE-
16Gb GPU.

C. Description of the network

The architecture of the network is similar to the one in
Ref. [14], where multiple trial and errors were made to end
up with the architecture. A representation of the neural
network is given in Fig. 4, we use the PyTorch package to
create the architecture [81]. The network takes 300 s of data
for each available detector. In other words, it has three input
channels, each corresponding to one of the three detectors
(Hanford, Livingston, and Virgo).5 It is composed of a
batch normalization layer, followed by 5 blocks composed
of a convolution layer, a ReLU activation, and a pool layer.
For the convolution, the kernel sizes are successively 16, 8,
4, 8, 16. For the pool layers, the kernel size is always set to
4. The stride is set to 1 for the convolution layers and 4 for
the pool layers. After these blocks, we add two linear layers
with sizes of respectively 128 and 2 interspersed by a ReLU
activation. The final layer is a softmax layer that returns a
probability vector.

III. RESULTS

A. Performance of the network

After the training, the testing sets come from the same
distribution as the training sets, see Table I. The other
parameter distributions are the same as for the training sets.
Each of the test sets contains 4400 frames, half of which are
pure noise and half noise plus injection. The total size of the
test sets for a type of noise is then 22000 frames.
The efficiency of our network for the different steps of

curriculum learning can be seen in Fig. 5. We define the
true alarm probability (TAP) and the false alarm probability
(FAP) as Eq. (7) in our previous work [14]. In Fig. 5, we
represent the three lowest maximum frequencies dataset of
curriculum learning, as the higher maximum frequencies
have performances similar to the 30 Hz dataset. For the
datasets with a maximum frequency> 25 Hz, an efficiency
of 50% is obtained at ∼15 PISNR, while the efficiency
reaches 100% at 30 PISNR. This is not the case for the
dataset with a maximum frequency of 20 Hz, where
the TAP is lower. This is expected since the sensitivity
of the detectors becomes worse at lower frequencies,
typically under 20 Hz, see Fig. 2. In all the figures shown
in this work, the FAP is fixed at 1%.

FIG. 4. Representation of the CNN architecture, the yellow layers are the convolutions, the blue ones are the ReLU activation, the red
ones are the pool layers, the purple ones are the dense layers, and the dark purple is the final softmax layer. The number under each layer
represents the number of channels.

FIG. 5. The True Alarm Probability as a function of the PISRN
for the O3 Gaussian noise case. Each curve represents a different
test set with a different maximum frequency seen by the CNN.

5The Conv1D layer as implemented in PyTorch allow us to give
as input any number of channels, see https://pytorch.org/docs/
stable/generated/torch.nn.Conv1d.html [81].
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Similarly, we have done the same test for the real O3
noise and the simulated O4 Gaussian noise. The different
tests are summarized in Fig. 6, where each curve represents
the results for the whole test set. In terms of PISNR, the
efficiencies for O3 Gaussian noise and O4 Gaussian noise
are very similar. However, since the noise floor is lower in
the O4 case, the network can probe higher distances in this
case. The performance for real noise is a bit worse than for
the two Gaussian cases. The network needs a slightly larger
PISRN to achieve the same performance. For example, the
network needs a PISNR of 20 to have an efficiency of 50%
in the case of real O3, whereas it only needs a PISNR of 17
to reach the same sensitivity in the two other cases. Even if
some glitches and non-Gaussian features are present in the
data, the network is still able to reach a high performance
provided that the PISNR is high enough. To be more
realistic with a real time search, the noise is downloaded
from strains recorded at the time of low-latency. Therefore,
it has a low quality, explaining the reduced performance.
After testing the network on independent 300 s-long

frames, we generate longer frames of 1000 s, and we inject
a complete GW signal into them. Then, we slide a 300 s
window over the frame, pass the data in the window to the
CNN for each step and make a prediction. From one step to
the next, the window is shifted by 5 s. This is repeated until
the full 1000 s are covered. Note that the step of 5 s is
arbitrary and can be reduced, since for a realistic early-alert
pipeline the length of the minimum step should be equal to
the time required to load 300 s of data, preprocess it, and
predict it with our network. The deep-learning algorithm is
fast and takes about 0.5 s on a CPU and 0.01 s on a
GeForce GTX 750 GPU, the preprocessing is also fast:
about 0.13 s to compute the PSD with PyCBC, 0.01 s to
perform the whitening and 1 s to remove the peaks and do
the renormalization. The limiting factor is to load 300 s
of data for 3 detectors with GWpy,6 which takes around 2 s

on an Intel Xeon E5-2650 v4 CPU. Note that the PSD used
for the whitening is computed each time we load the 300 s
frame. To reduce further this time, one can compute the PSD
at regular intervals and use the result for multiple steps.
Figure 7 illustrates the time left before merger when our

approach is able to detect the event for the different noise
types. Each point contains 1000 frames with a duration of
1000 s and each frame has a different noise realization. In
each frame, we inject a BNS signal with component masses
similar to those detected for GW170817 [78]. We choose
fixed masses to keep the total duration of the signal fixed.
The sky position of the signal is changed for each frame.
We then slide a 300 s window over the 1000 s as described
above. The process is then repeated for injections corre-
sponding to a larger distance. Figure 7 shows that, for a
given distance, the events are detected the earliest in O4
Gaussian noise. It is also interesting to note that the time
before merger for real O3 noise and Gaussian O3 noise are
similar, even if the Gaussian case is slightly better. An event
like GW170817 at a distance of 40 Mpc can be detected by
our method 25 s in advance in real O3 noise, 35 s in
advance in Gaussian O3 noise, and 50 s in advance for
Gaussian O4 noise, showing quite good trigger capabilities
in future observations runs.
For an online matched filtering search, the performance is

often evaluated by a false alarm rate (FAR). It represents the
probability that a trigger occurs because of the noise for a
given period of time [41]. The matched filtering FAR is
computed for each event and represents howoften the noise is
expected to produce a trigger with a ranking statistic value at
least as high as the one of the event.With ourmethod, we can
not compute such a FAR, but it is possible to compute, what
we call the false positive over time (FPt), which is defined as
the number of false positives by a given period of time.
To compute the FPt, we run our network over the entire

O3b data using the same setup as the one described
previously. We shift the observation windows by 5 s for
each step, and veto the times corresponding to events

FIG. 6. The true alarm probability as a function of the PISRN
for the O3 Gaussian noise, real O3 noise, and O4 Gaussian noise.

FIG. 7. The time before merger at which the event is detected as
a function of the distance. These curves are made for a BNS with
component masses similar to those of GW170817.

6Using the built-in function gwpy.timeseries.TimeSeries.get().
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reported in the GWTC-3 catalog [49] and assume that there
are no other detectable events in the data.7 The FPt is then
defined as the number of triggers divided by the total
observation time. For O3b, we obtain a FPt of 277.54 per
day, which is too high to be used for online searches. To
decrease its values, we can consider that an event is present
when our network gives multiple triggers in a row, as shown
in Fig. 8. If we keep detections with 5 consecutive triggers,
the FPt goes down to 12.31 per day, and it goes to 1.71 per
day if we consider 10 triggers in a row. The use of multiple
triggers implies larger waiting times before producing an
alert, and reduces the time before merger for the detection.
For example, considering 5 triggers leads to a delay of 20 s as
we consider steps of 5 s when sliding thewindow. In the end,
this shows that wewould need to find a trade-off between the
time before merger and the desired FPt.
Another way to decrease the FPt is to use coherent

triggers between two or more detectors. The training
strategy for the network does not make it favor coherent
triggers. Indeed, since it is trained for one, two, or three
detectors available, it learns to trigger even if only one
detector is online. Furthermore, even if more than one
detector is online, we do not use a minimum SNR in each
detector for the training set. Hence, the network learns to
trigger even if only one interferometer is picking up the
signal. In the end, this means that as soon as the CNN sees
something remotely close to a signal in one of the detectors,
it triggers, leading to a relatively high FPt.

B. Number of BNS inspirals detectable in O4

To estimate the number of BNSs that our network could
detect in O4, we simulate a population of BNSs. It is
generated using the method described in [82] and the
BNS merger rate is normalized so that the local rate is equal
to themedian rate given in [83]. The only differencewith [82]
is that we adapt the detection thresholds and the PSDs to our
O4 scenario. We keep the BNS events with a network SNR
higher than 13 and discard all the others. This threshold is
chosen as we expect our network to find only BNSs that are
clearly visible in the detector network and a global SNRof 13
corresponds approximately to an SNR of 8 in each detector.
To have more statistics, we compute the equivalent of

5 years of data, and we consider a duty cycle of 100% for
all the detectors. Our simulations predict that, on average,
around twenty BNSs per year will have a network SNR
over 13 for O4 sensitivity. Our network can detect around
three of those BNSs in advance. Figure 9 represents the
time before the merger of all the BNSs detected by our
network for the 5 years of generated data. Even if our
network is able to detected only three events out of
twenty, it is important to note that these events are seen
in advance and would therefore not be seen at that stage by
the unmodified matched filtering searches. Nevertheless,
matched filtering pipelines adapted to the early detection of
long inspirals are also being developed [18,20]. Those are
also able to detect BNS mergers in advance. Even if the
comparison between these works and ours is difficult
(partially because of the difference in noise, but also in
performance evalution), we can mention that times
before merger of these algorithms are comparable to those
obtained by our network, ranging from Oð10Þ to Oð100Þ
seconds. An advantage of these early-warning matched
filtering searches is that their FAR is lower than our FPt
(around one per month) but they require more computa-
tional resources during the search as the highest cost for
machine learning is moved to the training step. During the
search, our method can run on a single GPU or even on a

FIG. 8. Top: representation of a signal and the noise it is
injected in. Bottom: representation of the output of the CNN.
Each point represents the probability to have an inspiral in the
300 s of data. By convention, the time of a point represents the
end of the time window. The network does not trigger on the early
inspiral because the PISNR is too low. When it becomes high
enough, the networks produces a trigger until the injection leaves
the frame, giving multiple points with a high probability in a row.

FIG. 9. The number of BNSs detected in advance by our network
for a simulated population of BNSs in five years of O4 data.

7This assumption is reasonable since our network needs
relatively high SNRs to detect the inspiral, and the event would
therefore have been detected.
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single CPU, while most of the standard matched filtering
methods require parallelization on multiple CPUs.
Table II shows the different characteristics of the detected

BNSs. The network can see an event when the net PISNR is
between 10 and 25, which is expected according to Fig. 6.
The time before the merger at which the CNN can detect a
signal depends on two factors: (a) the network PISNR and
(b) the length of the signal. The PISNR can be seen as a
fraction of the SNRand its exact value depends onwhich part
of the signal we are considering (hence the maximum
frequency see by the CNN). Therefore, for a fixed signal
duration, if the network SNR is high, the network can detect
an event at a lower maximum frequency, corresponding to a
longer duration before the merger. However, if we fix the
SNR and the maximum frequency while increasing the
duration of the signal (for example by decreasing both
the chirp mass and the luminosity distance to compensate),
the event will be detected with a larger duration before the
merger. This behavior is well represented in Fig. 9, where
eventswith a light chirpmass and a highSNRaredetected the
earliest. It also explains why some events with a lower chirp
mass can be detected earlier, even if the network SNR is
smaller than for other events.

IV. CONCLUSION

This work builds upon the framework developed in [14].
We implement several upgrades and modifications to the
CNN-based pipeline designed to detect the early inspiral
phase of BNS events. A major upgrade is the increased
duration of the frames passed to the network. That allows us
to search for smaller frequencies and opens the door to earlier
detections. Another benefit of this increased duration is that
we can use a single network to look for all type of BNSs,
whichwas not the case in our previouswork. The detectionof

events for a smaller maximum frequency is not easy and
required an adapted trainingmethodology: curriculum learn-
ing.We consider realistic observation scenarios, including all
the detectors of the LIGO-Virgo network and use realistic
noise realizations: O3 andO4Gaussian noises, aswell as real
O3 noise.We have also demonstrated that even in the real O3
noise our network is able to detect GW signals in advance.
We expect our network to detect some BNSs in O4, up to
minutes in advance if the SNR of the event is high enough. In
future works, we will upgrade our method to search for
neutron-star-black-hole mergers as well. As discussed in
Sec. III, we will also develop methods to decrease the FPt.
Finally, we will investigate a way to infer the sky position
with only the early inspiral part.
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APPENDIX: DETAILS ON THE VETO
OF PEAKS FOR REAL NOISE

After the noise has been downloaded and whitened,
large peaks can still be present in the data (see Fig. 10).

TABLE II. The time before merger, the maximum frequency
seen by the network at detection, the chirp mass of the event, the
network SNR, and the PISNR at the moment of the detection for
all the detected BNSs in five years of simulated O4 data.

Time before
merger (s) Mc ðM⊙Þ

Network
SNR

Net PISNR
at detection

Maximum
frequency (Hz)

88 1.19 71.87 15.32 25.45
59 1.08 63.77 23.43 31.35
58 1.26 53.01 16.63 28.75
25 1.16 28.72 16.31 41.39
22 1.95 64.07 19.8 31.45
22 2.06 54.88 18.01 30.42
19 2.15 30.55 10.37 31.29
14 1.69 31.26 14.42 40.75
11 1.98 27.68 13.63 40.43
10 2.0 28.95 16.28 41.58
10 1.79 25.04 12.9 44.52
7 2.01 20.47 11.87 47.48
7 1.72 34.21 25.71 52.2
3 2.12 28.28 20.68 63.01

FIG. 10. The blue curve represents O3a noise after application
of the whitening, the low-pass filter, and the high-pass filter. The
orange curve shows the part which will be vetoed.
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This behavior only appears for real O3 noise, and leads to a
problem for the normalization. Indeed, before passing the
data to the network, we normalize them to be between −1
and 1. To do so, we find the maximum absolute value of the
strain and divided each point by that value. When a large
peak is present, the maximum absolute value is the value of
the peak and it makes the rest of the time series too small.
That confuses the neural network, and we decided to veto
these peaks. The vetoing is done according to the z-score,
which is defined as:

Zi ¼
xi − μ

σ
ðA1Þ

where xi is the value of a point i in the time series, μ and σ
are respectively the mean and the variance of the time
series. We then compute the standard deviation of the
z-score and put all the points with a z-score larger than 5
times the standard deviation to zero, allowing to remove
large peaks such as those seen in Fig. 10. The normalization
is then done on the vetoed frame.
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