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Quantum field theory (QFT) describes nature using continuous fields, but physical properties of QFTare
usually revealed in terms of measurements of observables at a finite resolution. We describe a multiscale
representation of free scalar bosonic and Ising model fermionic QFTs using wavelets. Making use of the
orthogonality and self-similarity of the wavelet basis functions, we demonstrate some well-known relations
such as scale-dependent subsystem entanglement entropy and renormalization of correlations in the ground
state. We also find some new applications of the wavelet transform as a compressed representation of
ground states of QFTs which can be used to illustrate quantum phase transitions via fidelity overlap and
holographic entanglement of purification.
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I. INTRODUCTION

Quantum information has provided new perspectives into
quantum field theories (QFT), such as using entanglement as
a way to characterize quantum phases [1], and quantum
algorithms for simulating scattering cross sections in QFTs
that are exponentially faster than classical algorithms [2].
Other insights include the study of coarse-graining and
renormalization from a quantum information perspective
[3], and the harvesting of entanglement from vacuum states
of QFTs [4,5]. Recently, it was shown that quantum field
theories can be represented in a way that organizes proper-
ties at multiple scales using a wavelet functional basis,
referred to as a multiscale representation [6,7]. Wavelet-
based multiscale representations of QFT have proved
particularly well suited for studying the holographic prin-
ciple [8–11] and renormalization physics [12,13].
Several recent works have demonstrated a connection

between wavelets and tensor-network- or quantum-circuit-
based representations of quantum states. For example,
Evenbly and White [12] used a Daubechies wavelet basis
to analytically construct the tensors in a multiscale

entanglement renormalization ansatz (MERA) description
of a ground state of massless (critical) fermions on a 1D
lattice. Haegeman et al. [14] showed how to rigorously
construct quantum circuits that approximate metallic states
of massless fermions on 1D and 2D lattices based on a
discrete wavelet transform using an approximate Hilbert
pair. For quadratic bosonic systems on a lattice, Witteveen
and Walter [15] developed a scale-invariant entanglement
renormalization procedure based on biorthogonal wavelets
that disentangles the wavelet output at each step. Finally,
Witteveen et al. [16] found a procedure for constructing
MERA-based quantum circuits that rigorously approximate
the continuum correlation functions for the massless Dirac
conformal field theory.
In this paper we derive the wavelet-based multiscale

representations of two types of QFT: the one-dimensional
Ising fermionic QFT and free scalar bosonic QFT,
both introduced in Sec. II. Wavelet-based multiscale
representations can be understood as a more nuanced form
of discretization, in which the continuum Hamiltonian is
expressed as an infinite number of terms corresponding to
ever-finer length scales. A minimum length scale is then
enforced by the truncation of terms at finer length scales.
We demonstrate that a number of established results remain*Corresponding author. dan.george@hdr.mq.edu.au
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valid when using these representations, and suggest some
advantages of such representations for identifying phase
transitions. We present a brief introduction to the relevant
aspects of the wavelet formalism in Sec. III.
The main results of our paper are contained in Sec. IV.

We show that wavelet-based multiscale representations
provide natural access to entanglement renormalization
physics. In Sec. IVA we show numerically that the two-
point correlators of a coarse-grained QFT decay algebrai-
cally in a scale-invariant manner at the critical point and
with an exponential decay with correlation length given by
the inverse renormalized mass in the massive phase. In
Sec. IV B we reproduce using a wavelet-based discretiza-
tion the results of Calabrese and Cardy [1] for subsystem
entanglement in noninteracting bosonic and fermionic
QFTs. Calabrese and Cardy [1] model the QFT with a
lattice spin system that is treated as a discrete approxima-
tion to the true continuum theory, justifiable by computing
a continuum limit (see, e.g., Sec. II in [17]). We demon-
strate that the discretization of these field theories using
wavelet scale modes reproduces the correct scaling of
entanglement in both gapped and gapless phases of the
theories and we connect the phenomenological cutoff
length to the scale of our scale modes.
In Sec. IV D we consider a multiscale wavelet repre-

sentation of the ground state for a fermionic Ising QFT, and
show that selection of a subsystem consisting of a small
number of coarse-grained modes amounts to a form of
lossy compression, capturing the physics of the global pure
state up to some error. We demonstrate the utility of this
approach for approximating the fidelity overlap between
ground states adjacent in some parameter, and therefore as a
witness for quantum phase transitions, where the direct
calculation or measurement of fidelity over the global state
may be computationally or experimentally infeasible. In
Sec. IV E we show that the entanglement of purification for
a reduced quantum state, the calculation of which quickly
becomes unwieldy for large numbers of modes, can be well
approximated by a coarse-grained state. This is significant
in the context of the work by Umemoto and Takayanagi
[18], in which the authors conjecture that the entanglement
of purification in conformal field theories (CFTs) is equal
to the minimal-area cross section of the entanglement
wedge. Finally, in Secs. V and VI we summarize our
results and conclude with an outlook for further applica-
tions of our methodology.

II. BACKGROUND

We focus here on noninteracting one-dimensional fer-
mionic and bosonic quantum field theories, due to their
mathematical simplicity and frequent use as a starting point
for perturbative models, especially in quantum algorithms
[2,7]. They are exactly solvable and therefore allow for
direct comparison of wavelet-based results to known
continuum physics.

A. Ising fermionic continuum QFT

The Hamiltonian density for the free Ising model
fermionic quantum field theory in one dimension is (see
Eq. (11a) in [17])

Ĥfðx; tÞ ≔
1

2
ð−ib̂Tðx; tÞZ∂xb̂ðx; tÞ þm0b̂

Tðx; tÞYb̂ðx; tÞÞ;
ð1Þ

where b̂ðx; tÞ≡ ½b̂0ðx;tÞb̂1ðx;tÞ� is the spinor of Majorana mode

operators at location x, m0 is the bare mass, and Z ¼ ½1
0

0
−1�

and Y ¼ ½0i −i0 � are the usual Pauli matrices. Note that the
spinor components satisfy the equal-time Majorana anti-
commutation relation

fb̂σðxÞ; b̂σ0 ðx0Þg ¼ 2δσ;σ0δðx − x0Þ ð2Þ

for σ; σ0 ∈ f0; 1g. The Majorana mode operators have units
of inverse square root of length. In the massless phase, the
theory is described by the Ising model CFT with central
charge c ¼ 1=2.

B. Free scalar bosonic continuum QFT

The Hamiltonian density for the free scalar bosonic
quantum field theory in d spatial dimensions is (see
Eq. (11) in [7])

Ĥbðx; tÞ ¼
1

2
ðΠ̂2ðx; tÞ þ ð∇Φ̂ðx; tÞÞ2 þm2

0Φ̂
2ðx; tÞÞ; ð3Þ

where the field operator Φ̂ðx; tÞ and its conjugate momen-
tum Π̂ðx; tÞ ≔ ∂tΦ̂ðx; tÞ satisfy the canonical equal-time
commutation relations

½Φ̂ðx; tÞ; Π̂ðx0; tÞ� ¼ iδðdÞðx − x0Þ1; and ð4Þ

½Φ̂ðx; tÞ; Φ̂ðx0; tÞ� ¼ ½Π̂ðx; tÞ; Π̂ðx0; tÞ� ¼ 0: ð5Þ

Most of the results below are for the d ¼ 1 case where the
field operator is dimensionless. In the massless phase, the
theory is described by the free bosonic CFT with central
charge c ¼ 1.

C. Entanglement entropy scaling

An important physical characterization of QFT is given
by subsystem entanglement of ground states. The entan-
glement entropy of a bipartite pure state jψiAB is given
by the von Neumann entropy: SA ¼ −TrðρA log ρAÞ, where
the subsystem state with support on region A is ρA ¼
TrB½jψiABhψ jAB�. For most of the work here, the QFT is
assumed to be in one spatial dimension over the compact
interval ½0; XÞ with specified boundary conditions. A
subsystem A consists of a single subinterval ½0; XAÞ of
the compact interval ½0; XÞ. The relevant results are given in
Calabrese and Cardy [1] and Holzhey et al. [19]:
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Scritical;periodicA ðxÞ ¼ c
3
log

�
sinðπxÞ
πε

�
þ constant; ð6Þ

Scritical;openA ðxÞ ¼ c
6
log

�
sinðπxÞ
πε

�
þ constant; ð7Þ

SnoncriticalA ðxÞ ¼ ð boundary pointsÞ × c
6
logðm0εÞ; ð8Þ

which correspond to entropy scaling in the massless
(critical) case, for periodic (see Eq. (1) in [1]) and open
boundary conditions (see Eq. (2) in [1]), and in the massive
(noncritical) case (see Eq. (1) in [1]). Here ε is the
ultraviolet cutoff length, c the central charge of the relevant
CFT, and m0 the mass. Note also that (8) is valid only for
the subsystem length XA ≫ 1=m0.

III. WAVELET-BASED DISCRETIZATION OF
QUANTUM FIELD THEORY

A. Definition

Here we use the Daubechies family of wavelets, a family
indexed by a positive integer K (with K ¼ 1 corresponding
to the well-known Haar wavelet), which has additional
beneficial properties such as compactness, allowing study
of spatially separated operators and zero-valued moments.
The Daubechies family of compactly supported wavelets
can be defined as follows. For an alternative introduction,
see Sec. II in [20], or for a more thorough treatment, see
Chap. 7 in [21] or Chap. 5 in [22].
The wavelet basis is defined in terms of a pair of

functions, the scale and wavelet functions, here denoted
by s and w respectively. Elsewhere these are sometimes
referred to as the father and mother wavelets and denoted ϕ
and ψ , respectively.
A function s ∈ L2ðRÞ is called a scale function if it

satisfies the orthonormality condition

∀l ∈ Z∶
Z
R
sðxÞsðx − lÞdx ¼ δ0;l ð9Þ

and if, for any other function f ∈ L2ðRÞ,

fðxÞ¼a:e: lim
r→∞

X
l∈Z

ffiffiffiffiffi
2r

p
cðrÞl sð2rx − lÞ; with ð10Þ

cðrÞl ≔
ffiffiffiffiffi
2r

p Z
R
fðxÞsð2rx − lÞdx; ð11Þ

where the symbol ¼a:e: means “equal almost everywhere,”
which is to say that fðxÞ is equal to the right-hand side for
all x except for a measure-zero set. For notational conven-
ience, we denote the scale function at scale (or resolution) r
and position l by

∀r;l∈Z∶ slðxÞ≔ sðx−lÞ; sðrÞl ðxÞ≔
ffiffiffiffiffi
2r

p
slð2rxÞ: ð12Þ

The scale and wavelet functions at scale r are defined
recursively as a linear combination of scale functions at
scale rþ 1, with weights given by the set of scale filter
coefficients fhlg, l ∈ Z:

sðrÞl ðxÞ ¼
X
l0∈Z

hl0s
ðrþ1Þ
lþl0 ðxÞ; ð13Þ

wðrÞ
l ðxÞ ≔

X
l0∈Z

ð−1Þl0hΛ−l0−1sðrþ1Þ
lþl0 ðxÞ ð14Þ

where Λ is the number of nonzero filter coefficients such
that hl ¼ 0 if l < 0 or l ≥ Λ, and a similar notational
convention has been adopted for the wavelet functions as in
(12). Specification of these coefficients uniquely deter-
mines the wavelet basis.
For the Daubechies-K (dbK) wavelet, the scale filter

coefficients fhlg are uniquely determined for K ¼ 1, and
up to reflection for any integer K > 1, by requiring
simultaneously that the first K moments vanish:Z

dxwðrÞ
0 ðxÞxp ¼ 0; p ¼ 0; 1;…;K − 1; ð15Þ

and that the number of nonzero coefficients, Λ, is mini-
mized. It turns out that this occurs for Λ ¼ 2K filter
coefficients. Additionally, it can be shown that the scale
and wavelet functions at scale 0 are supported on the
interval ½0; 2K − 1�, and that the first differentiable scale
function is the scale function of the db3 wavelet (see page
239 in [22]), hence its predominant use in this paper.
In addition to Eq. (9), the scale and wavelet functions

further obey the orthonormality properties

∀l;l0; r; r0 ∈ Z s:t: r0 ≥ r∶
Z
R
sðrÞl ðxÞwðr0Þ

l0 ðxÞdx ¼ 0;

ð16Þ

∀l;l0; r; r0 ∈ Z∶
Z
R
wðrÞ
l ðxÞwðr0Þ

l0 ðxÞdx ¼ δl;l0δr;r0 : ð17Þ

The fixed-resolution subspace Sr at resolution r ∈ Z,
along with the associated wavelet subspace Wr,
can be defined in terms of scale and wavelet functions
at resolution r:

Sr≔ spanfsðrÞl jl∈Zg; Wr≔ spanfwðrÞ
l jl∈Zg ð18Þ

where Sr;Wr ⊂ L2ðRÞ. Equation (14) implies that
Sr;Wr ⊂ Srþ1, and from this and the orthogonality con-
ditions in Eq. (17), it follows that the spaceWr is precisely
the orthogonal complement of Sr in Srþ1, and therefore
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Sr ¼ Sr−1 ⊕ Wr−1: ð19Þ

The wavelet transform in one dimension at scale r is
defined as the isomorphism

WðrÞ∶ Sr → Sr−1 ⊕ Wr−1 ð20Þ

which functions as the basis transform

fsðrÞl g → fsðr−1Þl g ∪ fwðr−1Þ
l g; l ∈ Z: ð21Þ

The d-level wavelet transform for d > 1 is defined by the
recursive application of WðrÞ resulting in

WðrÞ
d ∶ Sr → Sr−d ⊕ Wr−d ⊕ � � � ⊕ Wr−1 ð22Þ

which functions as the basis transform

fsðrÞl g → fsðr−dÞl g ∪ fwðr−dÞ
l g ∪ fwðr−dþ1Þ

l g
∪ � � � ∪ fwðr−1Þ

l g; l ∈ Z: ð23Þ

In this paper we identify r ¼ 0 with the coarsest scale
modes and consider scales 0 ≤ r < n, and therefore make
use of the n-level wavelet transform acting at scale n:

WðnÞ
n ∶ Sn → S0 ⊕ W0 ⊕ � � � ⊕ Wn−1: ð24Þ

The numeric construction of the single-level and multi-
level discrete wavelet transform from wavelet coefficients
is discussed in detail in Bagherimehrab et al. (see
Appendix A in [23]).

B. Fixed-resolution and multiresolution representations

It is useful to define a fixed-scale representation in terms
of the action of an idempotent projection operator. Define
for each scale r the projection operator mapping from the
vector space L2ðRÞ to the subspace Sr defined in Eq. (18):

projr∶L2ðRÞ→Sr∶f↦
X
l∈Z

hsðrÞl jfisðrÞl ¼
X
l∈Z

cðrÞl sðrÞl ð25Þ

where jsðrÞl i are the scale functions in Eq. (14) with l ∈ Z

and the inner product corresponds to the coefficients cðrÞl
defined in Eq. (11). This projection operator is discussed in
more depth by Daubechies [22].
Both fermionic and bosonic Hamiltonians include the

action of a derivative operator, the projection of which
requires some care since the derivative is not strictly in
L2ðRÞ. Specifically, the α-order derivative dα

dxα acts only
upon a proper vector (but not Hilbert) subspace of L2ðRÞ
corresponding to the set of functions whose derivatives up
to α order also belong to L2ðRÞ. The projected derivative
operator is

dα

dxα

����
r
≔ projr∘ dα

dxα
∘projr; ð26Þ

subject to the requirement that f is a square-integrable
function with α continuous and square-integrable deriva-
tives. Wavelet analysis of these Hamiltonians is therefore
restricted to scale functions with the requisite properties.
The α-order derivative of an arbitrary α-order differentiable
function f is then

dαf
dxα

����
r
¼

X
l;l0

D
sðrÞl

���fEDsðrÞl0

��� dα
dxα

���sðrÞl

E
sðrÞl0 ð27Þ

and the action of dα
dxα jr is entirely determined by the

coefficients

D
sðrÞl0

��� dα
dxα

���sðrÞl

E
¼

Z
dx sðrÞl0 ðxÞ

dα

dxα
sðrÞl ðxÞ ð28Þ

¼ 2αr
Z

dx sl0−lðxÞ
dα

dxα
sðxÞ ð29Þ

≕ 2αrΔðαÞ
l0−l ð30Þ

henceforth referred to as the derivative overlap coefficients.
Beylkin [20] showed how to compute the derivative

overlap coefficients for any scale functions specified by
filter coefficients hl;l ∈ f0;…; 2K − 1g (all other coef-
ficients are set to zero) by first defining the autocorrelation
coefficients (see Eq. (3.19) in [20])

al ≔ 2
X
l0

hlhl0 : ð31Þ

Subject to a condition on the number of vanishing moments
of the resulting wavelet function, Beylkin proved (see
Eqs. (4.3)–(4.4) in [20]) that the derivative overlap coef-

ficients ΔðαÞ
l constitute the unique solution to the system of

equations

ΔðαÞ
l ¼ 2αΔðαÞ

2l þ 1

2

XK
k¼1

a2k−1ðΔðαÞ
2l−2kþ1 þ ΔðαÞ

2lþ2k−1Þ; ð32Þ

X2K−2

l¼−2Kþ2

lαΔðαÞ
l ¼ ð−1Þαα! ð33Þ

and for a Daubechies wavelet it can be shown that (see
Eqs. (3.51)–(3.52) in [20])

a2n−1 ¼
ð−1Þn−1

ðK − nÞ!ðKþ n − 1Þ!ð2n − 1Þ

×

�ð2K − 1Þ!
4K−1 ðK − 1Þ!

�
2

: ð34Þ
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Note that these autocorrelation coefficients are rational,
from which it follows that the derivative overlap coeffi-

cients ΔðαÞ
l are also rational.

C. One-dimensional Ising fermionic QFT

A wavelet-based multiscale representation of a con-
tinuum Hamiltonian over a length interval ½0; XÞ consists
of a (countably) infinite sum of terms. Initial terms
correspond to the scale modes at the coarsest length scale
(scale r ¼ 0, length of order 2−r ¼ 1), and progress to
wavelet modes at finer and finer length scales (down to
scale r ¼ ∞). A minimum scale n (length of order 2−n) is
applied by truncating terms corresponding to scales r > n,
and is equivalent to projecting the Hamiltonian onto the
scale subspace Sn. The number of modes V in the system is
then

V ≔ 2nX: ð35Þ

Equivalently, the Hamiltonian of a system can be directly
expressed in terms of V scale modes at scale n and the
multiscale representation from scales 0 to n is then
recovered via the application of the n-level wavelet trans-
form. This latter process is superficially similar to discre-
tization, and it is often easier to use the language of
discretization (e.g., “wavelet-discretized modes”); how-
ever, it should be remembered that the underlying concepts
are distinct.
The scale Majorana modes spanning the scale subspace

Sr are defined in terms of the continuum modes like so:

b̂ðr;sÞl ≔
� b̂ðr;sÞl;0

b̂ðr;sÞl;1

�
; b̂ðr;sÞl;σ ≔

Z
X

0

dx sðrÞl ðxÞb̂σðxÞ: ð36Þ

In the fermionic case we consider antiperiodic boundary
conditions, which correspond to the even parity sector. The

discretized Majorana modes b̂ðr;sÞl;σ satisfy anticommutation
relations analogous to those of Eq. (2) but with theDirac delta
replacedwith a Kronecker delta. Also note that our restriction
to a finite-sized subspace of L2ðRÞ ensures that only finitely
many of these discretized Majorana operators are nonzero.
The wavelet Majorana modes are defined analogously by

b̂ðr;wÞl;σ ≔
Z

X

0

dxwðrÞ
l ðxÞb̂σðxÞ; ð37Þ

and complement the scale-discretized Majorana modes

b̂ðr;sÞl;σ .
To project the Hamiltonian from Eq. (1) to the subspace

Sn defined in Eq. (18) corresponding to the coarse-graining
scale n, conjugate Ĥf with the canonical projection
operator projðnÞ from Eq. (25). This results in the discrete
Hamiltonian

ĤðnÞ
f ¼ −

i
2

X
l;l0∈Z

2nΔð1Þ
l0 b̂

ðn;sÞ
l

⊺Zb̂ðn;sÞlþl0

þ 1

2
m0

X
l∈Z

b̂ðn;sÞl
⊺Yb̂ðn;sÞl ; ð38Þ

where the symbol ΔðαÞ
l refers to the lth derivative overlap

coefficient of order α as defined in Eq. (30), and m0 is the
bare (unrenormalized) mass at scale n and should be chosen
accordingly.
The quadratic structure of the Hamiltonian can be made

explicit by reexpressing ĤðnÞ
f as

ĤðnÞ
f ¼ −

i
2

X
l;l0∈Z

σ;σ0∈f0;1g

QðnÞ
l;σ;l0;σ0 b̂

ðn;sÞ
l;σ b̂ðn;sÞl0;σ0 ; ð39Þ

QðnÞ
l;σ;l0;σ0 ≔ ð−1Þσ2nΔð1Þ

l0−lδσ;σ0 þm0δl;l0 ðσ0 − σÞ: ð40Þ

Note that QðnÞ
l0;σ0;l;σ ¼ −QðnÞ

l;σ;l0;σ0 because Δð1Þ
−l ¼ −Δð1Þ

l .

The coefficients QðnÞ
l;σ;l0;σ0 are effectively the entries of a

2V × 2V matrix QðnÞ acting on a vector space with basis
vectors indexed by ðl; σÞ. The matrix QðnÞ is real and
antisymmetric and hence has pure imaginary eigenvalues

�iωðnÞ
k ; k ∈ f1

2
; 3
2
;…; V − 1

2
gwhere ωðnÞ

k ∈ R. To find these
eigenvalues, observe that due to the applied antiperiodic
boundary conditions, the submatrix consisting of entries

QðnÞ
l;0;l0;0 is the antiperiodic analog of a circulant matrix,

with a negative sign applied to the entries below the main
diagonal. Hence it can be diagonalized using a half-integer-
indexed discrete Fourier transform, resulting in submatrix
eigenvalues

λk ¼
XV−1
l¼0

2nΔð1Þ
l e2iπkl=V ¼ i

X2K−2

l¼1

2nþ1Δð1Þ
l sin

�
2πkl
V

�
ð41Þ

for k ∈ f1
2
; 3
2
;…; V − 1

2
g, where the second equality is

obtained by using the antisymmetry and periodicity of

the derivative overlap coefficients Δð1Þ
l and noting that

Δð1Þ
0 ¼ 0. Similarly the eigenvalues of the submatrix

Ql;1;l0;1 are −λk. Therefore QðkÞ is unitarily equivalent to
the direct sum of V 2 × 2 matrices:

QðnÞ ∼ ⨁
V−1

2

k¼1
2

�
λk −m0

m0 −λk

�
: ð42Þ

The eigenvalues of each 2 × 2 matrix are then �iωk ≔

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−m2

0 þ λ2k

q
and so
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ωðnÞ
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ
�X2K−2

l¼1

2nþ1Δð1Þ
l sin

�
2πkl
V

��2

vuut : ð43Þ

In the continuum limit as n → ∞,

ωðnÞ
k →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ
�
4πk
X

X
l

lΔð1Þ
l

�
2

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ
�
2πk
X

�
2

s
; ð44Þ

where the first simplification uses the small-angle approxi-
mation for sine and the second the antisymmetry of the

derivative overlap coefficients Δð1Þ
l together with Eq. (33).

This recovers the well-known dispersion relation for the
continuum Ising model.
The projected Hamiltonian in Eq. (39) is quadratic in the

fermionic operators. Therefore, its ground state is a
Gaussian state. Any Gaussian state is fully characterized
by its covariance matrix. For a fermionic system, this
matrix is obtained from a two-point correlation of the
system’s fermionic operators [24].
The entries of the covariance matrix ΓðnÞ for the ground

state of the projected Hamiltonian are defined so that

ΓðnÞ
l;σ;l0;σ0 ≔ ih½b̂ðn;sÞl;σ ; b̂ðn;sÞl0;σ0 �i ð45Þ

where h·i ≔ Trð·ρÞ. ΓðnÞ can be calculated by first observ-
ing that entries of the covariance matrix Γ̄ for the uncoupled

Majorana operators ˆ̄b are

Γ̄l;σ;l0;σ0 ¼ ih½ ˆ̄bl;σ; ˆ̄bl0;σ0 �i ¼ δl;l0 ðσ − σ0Þ; ð46Þ

which follows from the definition of the ground state and
from the anticommutation relations for Majorana fermions.
Let OðnÞ be the orthogonal transformation matrix that

uncouples Majorana operators at scale n: ˆ̄b ≔ OðnÞb̂ðn;sÞ.
Then

ΓðnÞ ¼ OðnÞ⊺Γ̄OðnÞ: ð47Þ

Calculation of O is via symplectic diagonalization1 of the
coupling matrix QðnÞ which takes the analogous form

QðnÞ ¼ OðnÞ⊺
�

0 Ω
−Ω 0

�
OðnÞ; ð48Þ

where Ω is the diagonal matrix with diagonal entries ωk.
Our next step is to approximate the fine-scale correlator

hb̂ðn;sÞl;σ b̂ðn;sÞl0;σ0 i. As this is an expectation value of anti-
commuting operators, its value is zero whenever σ ¼ σ0.
Translational symmetry requires that hb̂ðn;sÞl;0 b̂ðn;sÞl0;1 i ¼
hb̂ðn;sÞ0;0 b̂ðn;sÞl0−l;1i, and together with anticommutation it further

follows that hb̂ðn;sÞ0;0 b̂ðn;sÞ−l;1i ¼ −hb̂ðn;sÞ0;0 b̂ðn;sÞl;1 i. We derive
expressions for the correlators in the Appendix.

D. One-dimensional bosonic QFT

To obtain a multiscale representation of the bosonic
continuum field theory, we again first define the projection
of the bosonic field and conjugate momentum operators
onto the scale subspace Sr. Let

Φ̂ðrÞ
l ðtÞ ≔

Z
X

0

dx sðrÞl ðxÞΦ̂ðx; tÞ ð49Þ

and

Π̂ðrÞ
l ðtÞ ≔

Z
X

0

dx sðrÞl ðxÞΠ̂ðx; tÞ ð50Þ

be the canonical position and momentum field operators
projected onto the scale subspace Sr. The scale field and
conjugate momentum operators satisfy commutation rela-
tions analogous to those of Eq. (4) but with the Dirac delta
replaced with the Kronecker delta. The wavelet field and
conjugate momentum operators are defined analogously to
Eqs. (36) and (37).
Projecting the bosonic Hamiltonian Ĥbðx; tÞ from

Eq. (3) to a scale subspace Sn with the projection operator
from Eq. (25) results in

ĤðnÞ
b ≔

1

2

X
l∈Z

Π̂ðn;sÞ
l Π̂ðn;sÞ

l þ 1

2

X
l;l0∈Z

Φ̂ðn;sÞ
l KðnÞ

ll0Φ̂ðn;sÞ
l0 ; ð51Þ

where, for notational simplicity, dependence on time has
been dropped, and

KðnÞ
l;l0 ≔ m2

0δl;l0 − 4nðΔð2Þ
l0−l þ Δð2Þ

l0−ðlþNÞÞ ð52Þ

corresponding to periodic boundary conditions. The spec-
trum of the projected periodic Hamiltonian is then

ωðnÞ
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 −
X2K−2

l¼−2Kþ2

4nΔð2Þ
l cos

�
2πkl
V

�vuut : ð53Þ

In the continuum limit as n → ∞,

1In the case that the eigenvalues of QðnÞ are all nonzero,
numeric construction ofOðnÞ is simple: of the eigenvectors ofQðnÞ
having eigenvalues �iωk, let fwkg be all the eigenvectors
corresponding to eigenvalues of either þiωk or −iωk. The rows
of OðnÞ are then the normalized real and imaginary components of
wk, that is, Rewk=kRewkk followed by Imwk=kImwkk.
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ωðnÞ
k →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 −
X
l

4nΔð2Þ
l

�
1 −

1

2

�
2πkl
V

�
2
�s

ð54Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ
�
2πk
X

�
2

s
ð55Þ

using the cosine small-angle approximation, Eq. (33) andP
l Δ

ð2Þ
l ¼ 0 (see Eq. (3.35) in [20]). In the thermodynamic

limit X → ∞, 2πk=X becomes a continuum parameter that
is the momentum of the continuum theory, recovering the
well-known dispersion relation for the continuum bosonic
field theory.
The covariance matrix for a bosonic state is defined

as [24,25]

ΓðnÞ
l;l0 ≔ hfr̂ðn;sÞl ; r̂ðn;sÞl0 gi; ð56Þ

where r̂ðn;sÞ ≔ ðΦ̂ðn;sÞ
0 ;…; Φ̂ðn;sÞ

N−1; Π̂
ðn;sÞ
0 ;…; Π̂ðn;sÞ

N−1Þ is the
vector of canonical scale operators at scale n. For the
ground state of the Hamiltonian in Eq. (51), the covariance

matrix is simply ΓðnÞ ¼ ΓðnÞ
Φ ⊕ ΓðnÞ

Π where ΓðnÞ
Π ≔

ffiffiffiffiffiffiffiffiffi
KðnÞp

and ΓðnÞ
Φ ≔ ðΓðnÞ

Π Þ−1 [24].

IV. RESULTS

A. Renormalization in multiscale correlators

As described in Eq. (24), the Hilbert space spanned by
scale modes at scale n is equivalent to the Hilbert space
spanned by coarser scale modes at scale 0 completed by
wavelet modes from scales 0 ≤ r < n. This allows us to
express correlations between wavelet modes at some scales
r < n in terms of a linear combination of finer scale modes
at scale n. This constitutes the so-called bulk/boundary
correspondence where the wavelet modes (and coarse scale
modes) comprise the bulk with two dimensions indexed by
position and scale, while the finer scale modes comprise
the one-dimensional boundary with one position index.
The general expression for the correlators of wavelet mode
operators ÂðwÞ and B̂ðwÞ at scales r and r0 and positions l
and l0 in terms of equivalent scale mode operators at scale
n ≫ r is [11]

hÂðr;wÞ
l B̂ðr0;wÞ

l0 i¼2−n2ðrþr0Þ=2 X2n−rðlþ2K−1Þ

j¼2n−rl

X2n−r
0 ðl0þ2K−1Þ

j0¼2n−r
0
l0

×wð0Þ
0 ð2r−nðj−2n−rlþ1ÞÞ

×wð0Þ
0 ð2r0−nðj0−2n−r

0
l0 þ1ÞÞhÂðn;sÞ

j B̂ðn;sÞ
j0 i:
ð57Þ

1. Fermionic case

For a theory with bare massm0 defined at the scale n, the
fine-scale correlators are (see the Appendix for derivation)

hb̂ðn;sÞ0;0 b̂ðn;sÞl;1 i ¼ i
V

X
k∈S

e−2iθke−i2πlk=V; ð58Þ

where θk ¼ arctan
−qk

m0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ q2k

q ; ð59Þ

and qk ¼ 2
X2K−2

j¼1

Δð1Þ
j sin

2πjk
V

: ð60Þ

In the massless case this simplifies to

hb̂ðn;sÞ0;0 b̂ðn;sÞl;1 i ¼
� −2

V sin ðπl=VÞ l odd;

0 l even:
ð61Þ

As per Singh and Brennen [11] the correlator between
wavelet modes at different scales r; r0 < n is

hb̂ðr;wÞ0;0 b̂ðr
0;wÞ

l;1 i ≈
XV−1
j;j0¼0

hb̂ðn;sÞ0;0 b̂ðn;sÞj−j0;1ifn;rj;0f
n;r0
j0;l; ð62Þ

fn;rj;l ¼
Z

dx sðnÞj ðxÞwðrÞ
l ðxÞ; ð63Þ

with other expressions given by translational symmetry and
anticommutation. Correlations at the same scale r ¼ r0 can
be approximated in the continuum limit for r sufficiently
far from the boundary. Assuming r ≪ n, let 2r−nl → x,
treating x as a continuous variable so that δl ¼ 2n−rdx, and

replacing sums by integrals
P2n−rð2K−1Þ

m¼0 → 2n−r
R
2K−1
0 dx,

results in

hb̂ðr;wÞ0;0 b̂ðr;wÞl;1 i ¼ i2−r
Z

2K−1

0

dx
Z

2K−1þl

l
dx0 wð0Þ

0 ðxÞ

× wð0Þ
0 ðx0 − lÞhb̂0ðxÞb̂1ðx0Þi: ð64Þ

In the massless phase, for large n, the continuous
correlator can be replaced by the discrete correlator from
Eq. (61). Assuming r ≫ 0 leads to sinðπ2−rðx − x0Þ=VÞ≈
π2−rðx − x0Þ=V. Restrict attention to correlations longer
range than the size of the wavelet modes, i.e., l > 2K − 1,
so that the integrals satisfy

R
2K−1
0 dxw0

0ðxÞw0
0ðx − lÞ ¼ 0.

Define the new variable x00 ¼ x0 − l, then
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hb̂ðr;wÞ0;0 b̂ðr;wÞl;1 i ¼ i
Z

dx
Z

dx00
wð0Þ
0 ðxÞwð0Þ

0 ðx00Þ
πððx − x00Þ − lÞ

¼ −
i
πl

Z
dx

Z
dx00 wð0Þ

0 ðxÞwð0Þ
0 ðx00Þ

X∞
k¼0

ðx − x00Þk
lk

¼ −
i
π

X∞
k¼0

1

lkþ1

Xk
t¼0

�
k

t

�
ð−1Þthxtiwhxk−tiw: ð65Þ

Here hfðxÞiw ≡ R
fðxÞw0

0ðxÞdx and for general functions
must be computed numerically. However the wavelet
moments hxaiw ¼ R

xaw0
0ðxÞdx can be computed recur-

sively in closed form (see e.g., [6]). The dominant term in
the correlation is determined by the lowest nontrivial
wavelet moment:

hb̂ðk;wÞ0;0 b̂ðk;wÞl;1 i ≈ ið−1ÞK
πl2Kþ1

×

�
2K

K

�
hxKi2w: ð66Þ

Figure 1 (top) shows this expression plotted with direct
calculation of the multiscale correlators by application of
the wavelet transform to the covariance matrix.
For the massive phase, analytic expressions for the

correlators are more difficult to obtain; however, the
numerical results, plotted in Fig. 1 (bottom), demonstrate
exponential falloff with separation with an inverse corre-
lation length given by renormalized mass

m̃ ¼ 2n−rm0: ð67Þ

2. Bosonic case

Singh and Brennen [11] (Eqs. B5 and B8 there) show
that in the massless phase, the same-scale field-field and
momenta-momenta correlations for separations l≫2K−1
and r ≪ n are

hΦ̂ðr;wÞ
0 Φ̂ðr;wÞ

l i ≈ −
2n−r

4πl2KK
×
�
2K

K

�
hxKi2w; ð68Þ

hΠ̂ðr;wÞ
0 Π̂ðr;wÞ

l i ≈ 2r−nð2Kþ 1Þ
2πl2Kþ2

×

�
2K

K

�
hxKi2w: ð69Þ

Figure 2 shows these approximations plotted against direct
calculation of the multiscale correlators from the covari-
ance matrix.
In the massive phase, the bulk correlations are exponen-

tially decaying in all directions. For m̃ ≫ 1 and separations
l ≫ 2K − 1, the coarse-grained (r ≪ n) field-field and
momenta-momenta correlations are (see Eqs. B15 and B16
in [11])

hΦ̂ðr;wÞ
0 Φ̂ðr;wÞ

l i ≈ −
2n−re−lm̃ffiffiffiffiffiffiffiffiffiffiffiffi

8πlm̃
p he−m̃xiwhem̃xiw; ð70Þ

hΠ̂ðr;wÞ
0 Π̂ðr;wÞ

l i ≈ 2r−ne−lm̃
ffiffiffiffiffiffiffiffiffiffi
m̃

8πl3

r
he−m̃xiwhem̃xiw: ð71Þ

Figure 3 shows these expressions plotted with numerical
calculations of the multiscale covariance matrix.
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FIG. 1. Bulk same-scale wavelet-wavelet correlations

jhb̂ðr;wÞ0;0 b̂ðr;wÞl;1 ij at scale r < n as a function of spatial separation
l for X ¼ 16, n ¼ 6, V ¼ 2nX ¼ 1024. Top: the critical fer-

mionic Ising model field theory ĤðnÞ
f , correlations at radius r ¼ 4

plotted for various Daubechies wavelet indices K. Solid lines are
plots of Eq. (66). Bottom: the massive fermionic field theory with
m0 ¼ 0.2, correlations at various radii for K ¼ 3. Dotted lines are
a joint linear regression assuming 2ðn−rÞ dependence. The
correlations fall off exponentially as e−1.13lm̃, indicating scale-
dependent mass renormalization, Eq. (67).
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B. Entanglement entropy of subsystems in 1D

1. Subsystem specification

In the wavelet scale basis, as in the canonical basis, the
covariance matrix ΓA of a subsystem A is obtained by
selecting a subset of the rows and columns of the system’s
covariance matrix Γ. Suppose that the subsystem A of a
system containing V scale modes at scale n over the interval
½0; XÞ is an interval of the form ½xmin; xmaxÞ ≔
½lmin=2n;lmax=2nÞ for integers 0 ≤ lmin < lmax ≤ V.

The subset of modes sðnÞl retained belong to the interval
½xmin; xmaxÞ and correspond to l ∈ flmin;…;lmax − 1g.
Setting VA ≔ lmax − lmin, the resulting covariance matrix
ΓA is of size VA × VA. The total length of the interval
½xmin; xmaxÞ, or length of the subsystem A, is XA ¼ VA=2n.
In these calculations a subsystem A with VA ≤ V=2

modes is selected to be an interval of the form ½0; XAÞ. The
subsystem’s modes are taken to be less than V=2 as the
entropy of two subsystems with V=2 − VA and V=2þ VA
modes are the same. Figure 4 shows the entropy plots for

the massless bosonic and fermionic theories with different
boundary conditions.

2. Fermionic case

The covariance matrix Γ for a fermionic state is real and
antisymmetric, and satisfies Γ2 ≥ −1 ([26], p. 2). Therefore
its eigenvalues are all purely imaginary and come in
positive and negative pairs; i.e., the set of eigenvalues is
f�iσlg. Moreover, jσlj ≤ 1. Note that f�σlg is the set of
singular values of Γ which is equal to the set of eigenvalues
of iΓ. The entanglement entropy of an N-mode fermionic
Gaussian state ρA can then be expressed in terms of the
singular values fσAlg of its covariance matrix ΓA as (see
[26], page 2)

SðρAÞ ¼
X

σAl∈½0;1�
H

�
1þ σAl

2

�
; ð72Þ

where HðxÞ ≔ −x log2ðxÞ − ð1 − xÞ log2ð1 − xÞ is the
binary entropy function.
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FIG. 3. Bulk same-scale wavelet-wavelet correlations for the

massive bosonic field theory ĤðnÞ
b at scale r < n as a function of

spatial separation l for X ¼ 16, n ¼ 8, V ¼ 2nX ¼ 4096 modes
with periodic boundary conditions. Mass is m0 ¼ 0.2 and
Daubechies K ¼ 3 wavelets were used. Top: field-field correla-

tions jhΦ̂ðr;wÞ
0 Φ̂ðr;wÞ

l ij with lines from Eq. (70). Bottom: momenta-

momenta correlations jhΠ̂ðr;wÞ
0 Π̂ðr;wÞ

l ij with lines from Eq. (71).

5 10 50 100
10−14

10−12

10−10

10−8

10−6

10−4

5 10 20 50

10−12

10−9

10−6

FIG. 2. Bulk same-scale wavelet-wavelet correlations for the

massless bosonic field theory ĤðnÞ
b at scale r < n as a function of

spatial separation l for X ¼ 16, n ¼ 8, V ¼ 2nX ¼ 4096 modes
with periodic boundary conditions. Daubechies K¼3 wavelets

were used. Top: field-field correlations jhΦ̂ðr;wÞ
0 Φ̂ðr;wÞ

l ij with
lines from Eq. (68). Bottom: momenta-momenta correlations

jhΠ̂ðr;wÞ
0 Π̂ðr;wÞ

l ij with lines from Eq. (69).
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For the massive fermionic theory, we observe that the
entanglement entropy of a subsystem is constant as a
function of the subsystem’s length in different scales, and
this constant increases with the scale r. This is expected
from the entanglement area law. For the massless theory,
we observe that the functional form of the Calabrese-Cardy
relations are correct as given in Sec. II C, and the central
charge is correct by means of a line with slope equal to c=3

and c=6, for periodic and open boundary conditions
respectively. Figure 4 shows the entropy plots for the
massless theory with different boundary conditions.

3. Bosonic case

The covariance matrix Γ for a bosonic state is a real
and positive-definite symmetric matrix, and satisfies
Γþ iΩ=2 ≥ 0 ([25], page 2) where

Ω ≔
�

0 1N
−1N 0

�
: ð73Þ

Williamson’s theorem states that any symmetric and
positive-definite matrix, such as the covariance matrix Γ,
can be decomposed as Γ ¼ STðΛ ⊕ ΛÞS ([25], p. 18),
where S is a symplectic matrix and Λ is a diagonal matrix
whose spectrum fλlg is equal to the set of positive
eigenvalues of iΩΓ ([24], page 28). The eigenvalues of
Λ are called the symplectic eigenvalues of the covariance
matrix Γ. Γþ iΩ=2 ≥ 0 further implies that λl ≥ 1=2.
The entanglement entropy of an N-mode bosonic

Gaussian state ρA can then be expressed in terms of the
symplectic eigenvalues of its covariance matrix ΓA as [27]

SðρAÞ ¼
X2N
l¼1

fðλAlÞ; ð74Þ

where

fðλÞ ≔
�
λþ 1

2

�
log2

�
λþ 1

2

�
−
�
λ −

1

2

�
log2

�
λ −

1

2

�
:

ð75Þ

Similar to the fermionic case, we again observe that the
functional form of the Calabrese-Cardy relations are correct
as given in Sec. II C.

4. Cutoff scaling behavior

For a massless bosonic field theory in one spatial
dimension with periodic boundary conditions the subsys-
tem entanglement is related to the ultraviolet cutoff
parameter ε as per Eq. (6) with c ¼ 1. We computed the
half-chain entropy in a wavelet basis (K ¼ 3) for resolu-
tions V ¼ 2nX with X ¼ 32 and for n ¼ 0;…; 7 (mass was
technically m0 ¼ 10−4 to avoid a singularity in the zero-
mass limit). The numerical results demonstrate linear
scaling in n with a least-squares fit of S ¼ 6.23þ 0.333n,
in agreement with the expected scaling law ε ∝ 1

V ¼ 1
2nX.

C. Entanglement entropy in 2D

Since there is no direct analog for the fermionic Ising
model in two dimensions, we consider only bosonic
systems here. The scaling of subsystem entanglement

Su
bc
ha
in
en
tr
op
y

1

2

1

4

1

8

1

16

1

32

1.2

1.4

1.6

1.8

2.0

2.2

2.4
Fermionic, antiperiodic

1

2

1

4

1

8

1

16

1

32

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Fermionic, open

1

2

1

4

1

8

1

16

1

32

4.5

5.0

5.5

6.0

6.5

Bosonic, periodic

1

2

1

4

1

8

1

16

1

32

1.0

1.2

1.4

1.6

1.8

2.0

Bosonic, open

Subchain fractional length

FIG. 4. Plots of the critical subsystem entropy for the fermionic
and bosonic theories with (anti)periodic and open boundaries.
Each of the data points correspond to a subinterval of the
indicated fractional length. A boundary point of the subinterval
always coincides with a boundary point of the whole interval.
Each curve depicts the system at a different resolution with
number of modes V ¼ 500 (orange circles, bottom), V ¼ 1000
(blue squares), V ¼ 2000 (yellow diamonds), or V ¼ 4000
(purple triangles, top). Entropy increases with resolution. In
the (anti)periodic case, we encounter a singularity in the zero-
mass limit and therefore set m0 ¼ 10−8 for the fermionic system
andm0 ¼ 10−4 for the bosonic system. The solid lines are used to
indicate the central charge, and have slope 1=6 in the antiperiodic
fermionic case, 1=12 in the open fermionic case, 1=3 in the
periodic bosonic case, and 1=6 for the open bosonic cases. These
slopes correspond to the expected central charges of c ¼ 1=2 for
the Ising model CFT and c ¼ 1 for the free bosonic CFT in the
context of Eqs. (6) and (7). The leftmost point of each line is
chosen to match the leftmost data point.
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entropy depends on the number of spatial dimensions. For
two spatial dimensions, to first order in A⊥, the scaling for a
free bosonic QFT is [28]

S ≈
A⊥
ε

−
1

12
A⊥m0; ð76Þ

where A⊥ is the area of the one-dimensional subsystem
boundary and ε is the ultraviolet cutoff of the field theory.
The scaling behavior of the massive bosonic field theory in
two dimensions in a wavelet basis is demonstrated in Fig. 5.

D. Discriminating quantum phases via fidelity overlap

One witness of a quantum phase transition (QPT) is a
sudden drop in the overlap fidelity between ground states of
Hamiltonians straddling a critical point [29]. Specifically,
for a Hamiltonian which experiences a QPTas a function of
one parameter g, the witness is

F ¼ jhΨðgþÞjΨðg−Þij; ð77Þ

where g� ¼ g� δ=2, and jΨðgÞi is the ground state of the
Hamiltonian with parameter g. Here δ is some increment
small enough to resolve the change in F.
As in the Appendix, the ground state of the fermionic

Ising model, where the relevant parameter is g ¼ m0, is
specified by the condition

η̂kjΨi ¼ 0; ð78Þ

where the normal fermionic modes are defined in terms of
the momenta annihilation and creation operators p̂k; p̂

†
k as

η̂k ¼ cos θkp̂k þ i sin θkp̂
†
−k; ð79Þ

θk ¼ cos−1
�

−ðm0 þ ωkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm0 þ ωkÞ2 þ q2k

q �
; ð80Þ

qk ¼ 2
X2K−2

l¼1

Δð1Þ
l sin

�
2πkl
V

�
: ð81Þ

Negative momenta modes are defined by positive indexing
via −k≡ V − k. For antiperiodic boundary conditions
the set of allowable positive momenta k is k ∈ SL ¼
f1
2
; 3
2
;…; V−1

2
g. Using the inverse Jordan-Wigner trans-

formation and ordering qubits in pairs fðk;−kÞgk∈SL
results in expressions p̂k ¼ ½Qj<k ZjZ−j�σþk and p̂†

−k ¼
½Qj<k ZjZ−j�Zkσ

−
−k, where σ

�
k ≡ 1

2
ðXk � iYkÞ are the usual

raising and lowering operators acting on mode k. The
ground state can then be written as a tensor product of
entangled qubit pairs

jΨi ¼ ⊗
k∈SL

ðcos θkj1ikj1i−k þ i sin θkj0ikj0i−kÞ: ð82Þ

The fidelity is then

F ¼
Y
k∈SL

cosðθkðmþÞ − θkðm−ÞÞ; ð83Þ

where θkðm�Þ is the value θk with mass m0 � δ=2. Most of
the terms in the product formula for the fidelity are equal to
one up to numerical precision for any mass, but near m0 ¼
0 there are deviations which are most prominent at the
longest wavelength, namely jkj ¼ 1=2. Approximating the
fidelity at criticality by the overlap on this single pair of
modes and assuming 1=δ; V ≫ 1 results in

F ≈ 1 −
δ2V2

8π2
; m0 ¼ 0; ð84Þ

where the derivative coefficients have been summed
as in Eq. (33). By contrast, away from criticality, letting
δ ¼ 1=V,

F ≈ 1 −
π2δ2

8m4
0V

2
; jm0j ≫ 1=V; ð85Þ

which quickly approaches 1.
Rather than computing the fidelity overlap of the global

ground states, an approximation can be obtained in a
multiresolution wavelet basis by computing the fidelity
overlap between reduced states of a few coarse modes. This
reduced state effectively acts as a compressed representa-
tion of the global state. Specifically, the fidelity between
reduced states is given by
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FIG. 5. Entropy of entanglement for a V × V
2
-mode subsystem

of a V × V two-dimensional system as a function of the number
of modes V ¼ 2nX, with X ¼ 8. The one-dimensional area of the
boundary is V. Left: entropy of entanglement against number of
modes for n ∈ f0; 1; 2; 3g, with mass m0 ¼ 1, demonstrating
expected linear scaling of S with V (dashed line is the least-
squares fit corresponding to ε ¼ 3.88). Right: same as left but as a
function of mass with n ¼ 1. The solid line is Eq. (76), with a
slope of −A⊥=12 ¼ −4=3 and the intercept is A⊥=ε ¼ 4.12 using
ε from the fit on the left (note the values coincide at m0 ¼ 1 as
expected). While the slope is reasonably accurate over this mass
range, it is apparent higher order terms contribute.
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FðρsðgþÞ; ρsðg−ÞÞ ¼ Tr
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρsðgþÞ
p

ρsðg−Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρsðgþÞ

pq i
;

ð86Þ
where ρsðgÞ is the reduced state on subsystem s of the
global pure state jΨðgÞi. For the fermionic Ising model
field theory, the fidelity between two mixed fermionic
Gaussian states with covariance matrices ΓsðgþÞ;Γsðg−Þ
(expressed as covariances in the Majorana representation)
is given by [30]

F ¼ det½1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
etanh

−1 ΓsðgþÞe2 tanh−1 Γsðg−Þetanh−1 ΓsðgþÞ
p

�1=2
det½1þ e2 tanh

−1 ΓsðgþÞ�1=4 det½1þ e2 tanh
−1 Γsðg−Þ�1=4 :

ð87Þ
In Fig. 6 the signature of a QPT is evident in the fidelity

overlap calculated between two-mode subsystems of coarse
modes. As expected, the minimum occurs at m0 ¼ 0 and is
considerably more significant for subsystems of coarser
modes (corresponding to higher wavelet transform levels)
compared to finer modes.
We note also a dependence on the Daubechies wavelet

index K, such that higher wavelet indices provide a better
approximation to thewhole-state/analytic behaviorwith only
a few coarse modes (i.e., a lower fidelity minimum).
However in the case of calculating the fidelity overlap the
effect is weak, of order 10−5, and becomes weaker for
higher K.

E. Holographic entanglement of purification

Recently there has been progress in connecting entan-
glement in a boundary quantum field theory to geometric

quantities in the bulk dual [10,18,31]. A particularly
compelling idea inspired by holographic duality is the
conjectured equality [18]

EpðρABÞ ¼? EWðρABÞ; ð88Þ

where EpðρABÞ is the entanglement of purification of a
subsystem ρAB of a boundary CFT, and EWðρABÞ is the
entanglement wedge cross section, a geometric quantity
defined in the bulk. The entanglement of purification is
defined as

EpðρABÞ ¼ minjψiAĀBB̄;TrĀ B̄½jψihψ j�¼ρABSðρAĀÞ; ð89Þ

where Ā; B̄ are auxiliary systems to A, B and the minimum
is taken over all purifications jψi of the state ρAB. The
entanglement wedge cross section is

EWðρABÞ ¼
jΣ�

ABj
4GN

; ð90Þ

where jΣ�
ABj is the area of the minimal cross section of the

entanglement wedge in the bulk dual that connects the
boundary subsystem A with B. We use units where
4GN ¼ 1. In the case of a ð1þ 1ÞD boundary CFT, Σ�

AB
is a one-dimensional surface.
An appealing feature of the entanglement wedge cross

section is that it is blind to cutoff-dependent features of the
entanglement entropy due to cancellation of such terms.
The motivation for the conjectured equivalence in Eq. (88)
is that—assuming that the global state is pure—the entan-
glement wedge satisfies several inequalities shared by the
entanglement of purification (EoP) including
(1) IðA∶BÞ=2 ≤ EWðρABÞ ≤ minðSðρAÞ; SðρBÞÞ
(2) EWðρABÞ ≤ EWðρAðBCÞÞ ≤ EWðρABÞ þ EWðρBCÞ
(3) EWðρðAA0ÞðBB0ÞÞ ≥ EWðρABÞ þ EWðρA0B0 Þ

The first statement refers to the mutual information

IðA∶BÞ ¼ SðρAÞ þ SðρBÞ − SðρABÞ: ð91Þ

The left-hand side of the second statement follows from the
extensiveness of the entanglement of mutual information
and the right-hand side is a polygamy inequality. Both these
inequalities are shared by EoP. The third inequality is a
statement of strong superadditivity [18]. EoP in fact
satisfies subadditivity: EPðρ ⊗ σÞ ≤ EPðρÞ þ EPðσÞ with
equality only if the optimal purification of the joint state
ρ ⊗ σ is the product of optimal purifications of ρ and σ
separately, which is expected in holographic CFTs [18], in
which case EoP becomes additive like EW .
In order to better understand holographic entanglement

of purification from a wavelet perspective, consider the
case of a ground state ð1þ 1ÞD CFTof overall length l and
with periodic boundaries. The entanglement wedge cross
section has an analytic formula, whereas the entanglement
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FIG. 6. Fidelity of a 2-mode subsystem of scale modes at scale
r ¼ 0 in a multiscale representation of the ground state of the
fermionic QFT as a function of wavelet transform level n. Here
we keep V ¼ 1024 and δ ¼ 1=V constant. Daubechies K ¼ 3
wavelets were used. The dashed grey line is the analytic
expression for the fidelity overlap of the global state from
Eq. (83). The phase transition at m0 ¼ 0 is increasingly evident
for higher compression levels.
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of purification does not, rather it involves a complex
minimization. To see the former, consider two regions A
and B, ordered left to right, separated by a distance d and
with equal lengths jAj ¼ jBj ¼ l ≪ L, and with boundary
points f∂AL; ∂AR; ∂BL; ∂BRg. The entropy (up to an addi-
tive constant) of the joint region A ∪ B is given by the
minimal length curve in AdS space that separates it from its
complement. This will either be the sum of the geodesic
connecting boundary points f∂AL; ∂ARg and that connect-
ing f∂BL; ∂BRg (see Fig. 7, top), i.e., 2c

3
logðlÞ, or the

sum of the geodesic which connects f∂AL; ∂BRg and that
connecting f∂AR; ∂BLg (see Fig. 7, bottom). i.e.,
c
3
logðdðdþ 2lÞÞ. These two lengths become degenerate

at d=l ¼ ffiffiffi
2

p
− 1. The mutual information is then

IðA∶BÞ¼
�
0 d=l≥

ffiffiffi
2

p
−1

−c
3
logððd=lÞ2þ2d=lÞ d=l<

ffiffiffi
2

p
−1

: ð92Þ

For regions A, B satisfying IðA∶BÞ > 0, the entanglement
wedge W is the region in the bulk bounded by A ∪ B and

the minimal length geodesics separating A ∪ B from its
complement (Fig. 7, bottom). The entanglement wedge
cross section jΣ�

ABj is the length of the shortest curve ΣAB in
AdS space that divides the wedge into two pieces: one
containing A, the other B. Because the AdS distance from
the midpoint of a geodesic to the boundary point bisecting
the boundary curve is one half the length of the geodesic,
the entanglement wedge cross section is therefore (for the
example above)

EWðρABÞ ¼
c
6
logð1þ 2l=dÞ: ð93Þ

In terms of the bulk modes, we seek to compute the
entanglement of purification EpðρABÞ via a compressed
representation of ρAB only involving a few coarse scale and
wavelet modes. As illustrated in Fig. 7 (bottom), if small
bulk subsystems accurately capture the mutual information
IðA∶BÞ then it will suffice to restrict to this small com-
pressed subsystem to calculate the entanglement of puri-
fication. Ideally, if the state ρAB is represented only in terms
of two coarse scale modes and two coarse wavelet modes
both at scale lmin then it may be possible to analytically
compute EPðρABÞ.
Following the scheme in Fig. 7 (bottom) we study some

examples of subsystem sizes l and separations d that have
nonzero mutual information calculated using the boundary
scale modes at scale n, under the assumption l; d ≪ L. By
computing a wavelet transform on the covariance matrix we
find cases where IðA∶BÞ is accurately represented by a few
coarse scale and wavelet modes, as demonstrated in Fig. 8.
Assume there exists a state for which IðA∶BÞ is well

approximated up to some small additive error by a
compression to two coarse scale modes (one for A and
one for B), and let the reduced two-mode state be

Scale
0

Scale
0

FIG. 7. Illustration of the holographic entanglement features
studied in this paper for a ground state of a ð1þ 1ÞD CFT with
periodic boundaries. The physical degrees of freedom at the finest
scale r ¼ n are represented by scale modes (black). Coarser
wavelet modes at scale r ¼ n − 1;…; 0 are shown (blue) as are
the coarse scale modes at scale r ¼ 0 (orange). The representa-
tion of the ground state using all the wavelet and coarse scale
modes is referred to as the bulk description, and is related by a
unitary wavelet transformation to the boundary description using
scale modes at scale n. Top: size l of the regions A, B is too small
relative to their separation d so that IðA∶BÞ ¼ 0. There is no
entanglement wedge and EWðρABÞ ¼ 0. Bottom: here d=l >ffiffiffi
2

p
− 1 and there is an entanglement wedge with minimal cross

section jΣ�
ABj ¼ EWðρABÞ ¼ c

6
logð1þ 2d=lÞ. Shown in the

smallest ellipse is a bulk subsystem involving only coarse scale
modes at scale r ¼ 0, a larger ellipse involving scale and wavelet
modes at scale r ¼ 0, and so forth. If the subsystems in these
smaller sized ellipses accurately capture the mutual information
IðA∶BÞ with only a few scales, then we speak of a compressed
representation of ρAB.
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0.001
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FIG. 8. Relative error of approximating the mutual information
IðA∶BÞ by the wavelet compressed representation σAB of the
reduced state ρAB, where A and B are subsystems of the ground
state of a (1þ 1)-dimensional scalar bosonic field theory with a
total system size of V ¼ 4096. The subsystems are chosen to
have a separation of inner boundaries by a length d ¼ 512 and are
of equal size l ¼ jAj ¼ jBj ¼ 256. For each additional com-
pression the number of degrees of freedom is halved.
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denoted σAB. Calculating EPðσABÞ following the method
of Bhattacharyya et al. (Sec. 4.1 in [31]) requires minimiz-
ing the entropy SðσAĀÞ over a single real parameter. The
corresponding minimization for a state compressed to two
coarse scale modes and two coarse wavelet mode (see
Sec. 4.3 in [31]) requires minimizing the entropy SðσAĀÞ
over four real parameters. Both these methods assume the
minimizing pure state is also Gaussian. This greatly
simplifies the analysis, as we can continue to represent
states with covariance matrices. The results, plotted in
Fig. 9, appear to validate this assumption. The behavior of
EPðσABÞ is comparable to Eq. (93), the analytic formula for
the entanglement wedge cross section EWðρABÞ.
A phase transition also becomes apparent in the value of

the single minimization parameter x during the process of
minimizing for the entropy SðρAĀÞ. Following the approach
in Bhattacharyya et al. [31], consider a pure state on a total
system AĀBB̄ with covariance matrices

ΓΠΠ
ABĀB̄¼

1

2

�
J K

KT L

�
; ΓΦΦ

ABĀB̄¼
1

2

�
D E

ET F

�
ð94Þ

such that

�
J K

KT L

�−1
¼

�
D E

ET F

�
: ð95Þ

The matrices are written in the basis ðΦAB;ΦĀ B̄Þ, where the
known reduced state covariance matrices are ΓΠΠ

AB ¼ 1
2
J and

ΓΦΦ
AB ¼ 1

2
D. Now it follows from Eq. (95) that

JDþ KET ¼ KTEþ LF ¼ 1;

JEþ KF ¼ KTDþ LET ¼ 0; ð96Þ

which implies L ¼ −KTDð1 − JDÞ−1K. Hence given the
covariance matrix ΓAB the purified state covariance matrix
is completely specified by K. The dimensions of K will
depend on the size of the auxiliary spaces Ā B̄.
Bhattacharyya et al. [31] show that for the case where
jAj ¼ jBj ¼ 1, an accurate value of the entanglement of
purification can be obtained by choosing jĀj ¼ jB̄j ¼ 1,
meaning that the value obtained is negligibly changed by
choosing larger auxiliary systems. Furthermore, by invok-
ing exchange symmetry of A and B, K can be chosen to
have the canonical form

K ¼
�
1 x

x 1

�
ð97Þ

where x ∈ ð−1; 1Þ. The value of x should be selected in
order to minimize the entropy of the reduced state of AĀ
described from the reduced covariance matrix ΓAĀ which is
found by tracing out rows and columns of ΓABĀ B̄.
A plot of the value of the parameter x that minimizes the

entropy of the reduced state AĀ is shown in Fig. 10 for
several decades of mass. There is a notable peak in the
value of x at the subregion size to separation distance ratio
d=l ¼ 2, indicative of a phase transition near that value.
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FIG. 9. Top: entanglement of purification EpðσABÞ as a function
of the ratio d=l as captured by wavelet compression of the
ground state as in Fig. 8. Here σAB is the reduced state represented
by two coarse grained scale modes obtained by the wavelet
transformation on the covariance matrix representation of ρAB.
The separation between subsystems d ¼ 512 is fixed, and l ¼
jAj ¼ jBj is varied from 512 to 2. The compressed state allows for
a calculation of entanglement of purification in terms of a one
parameter minimization. Bottom: same as top but on a log scale.
Compare with Bhattacharyya et al. [31] (Fig. 6 there).
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FIG. 10. Minimizing value x for the entanglement of purifica-
tion of a compressed ground state as in Fig. 9 plotted as a function
of d=l, focusing on the region d=l ≤ 30. The peak in the value at
d=l ¼ 2 is indicative of a phase transition near that ratio.
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V. DISCUSSION

We show in result IVA that the same-scale correlators in
the multiscale representation of the ground states for the
bosonic and fermionic theories demonstrate the expected
power-law decay in the massless case, with an exponent
that depends on the Daubechies index K, and exponential
decay in the massive cases. Mass renormalization is
naturally emergent as a function of scale. We also consider
in result IV B the entanglement features of the ground states
of the two QFTs in a scale field representation and verified
that the Calabrese-Cardy relations are obeyed. For the
massive bosonic theory in 1D and 2D, we observe that the
entanglement entropy of a subsystem is constant as a
function of the subsystem’s length in different scales. The
constant value increases as we increase the scale parameter
k as is to be expected from the entanglement area law. For
the massless bosonic and fermionic CFTs, we obtain the
correct central charges and also the cutoff dependence of
the entropy as a function of scale.
Results IV D and IV E demonstrate two potential appli-

cations of using a wavelet-based multiscale representation
as a form of compression, where some function on a system
with 2nX modes can be approximated by applying that
function to a reduced state of X coarse scale modes
obtained from an n-level wavelet transform.
In the case of result IV D, we show that in a fermionic

QFT this wavelet compression technique can be used to
identify a phase transition, evident in a decrease in
fidelity overlap between ground states adjacent in some
parameter space (here, mass). Given that the fast wavelet
transform (FWT) has an efficient classical implementa-
tion that scales with OðN logðNÞÞ, where N is the
dimension of the vector space, this technique holds
promise for approximating the value of a many-body
observable that might otherwise be prohibitively difficult
to observe directly due to experimental, computational, or
other constraints.
Finally, result IV E demonstrates that, for a bosonic QFT,

wavelet compression qualitatively captures the physics of
the mutual information between isolated subsystems,
including identification of a phase transition.
The use of higher-order wavelet basis functions results in

more desirable mathematical properties, such as increased
accuracy of approximations using a small number of
modes, and well-defined higher-order derivatives, at the
cost of moderately increased computational complexity. As
noted in Beylkin and Keiser [32] (page 179), the error
incurred by the wavelet discretization method on a second-
order differential equation described by a Laplacian is
OððΔxÞ2KÞ where Δx ¼ 2−k and k is the number of scales
in the multiresolution analysis. We can extrapolate this
point to the bosonic field theory for an Oð2−2kKÞ error
scaling, and to the fermionic field theory (arises from a
first-order equation) to find an error scaling of Oð2−kKÞ.
This suggests that we have a strategy for reducing error in

the discretization that is not simply increasing the number
of scales k, i.e., reducing the size of the length cutoff. We
may also reduce error by increasing the value of K. Note
however that increasing K results in a corresponding
computational cost since the number of nonzero bands
in the associated wavelet transform scales as 2K.
In this paper we have mostly used a uniform wavelet

basis with either periodic or antiperiodic boundary con-
ditions. This conforms to the usual application of the
discrete wavelet transform with periodic/antiperiodic
signal extension modes in numerical signal processing.
In the case of Sec. IV B, the application of open boundaries
corresponds to the absence of a signal extension, which is
sufficient for the calculation of bulk entanglement since this
property is sensitive primarily to the underlying topology of
the space. However, when studying open or nonperiodic
systems with essential physics at the boundaries, for
example, symmetry-protected topological phases [33],
then a careful consideration of the wavelet representation
of that theory at the boundaries is necessary. For an
overview of boundary wavelet construction, see Mallat
[21] (pages 322–328).

VI. CONCLUSION

We have demonstrated the utility of wavelet analysis
when describing quantities such as entanglement in
fermionic and bosonic QFTs. Specifically, the scale
dependence of various quantities such as subsystem
entropy and correlations emerge simply by fixing a
wavelet basis, unlike, for example, tensor network repre-
sentations, where generally the elements of the tensors
must be obtained by numerical optimization. We have
additionally shown that wavelets provide a way to com-
press quantum states in a way that enables the calculation
of quantum informational quantities on a very few number
of modes. Such a result could be useful in experimental
probes of quantum simulations of QFTs where measuring
observables over an extensive number of modes is costly
or error prone.
Wavelet analyses have potential in more general QFT

simulation algorithms, and are already showing promise in
algorithms for ground state generation with spatial inho-
mogeneities [23]. By showing that cutoff-dependent results
like those of Calabrese and Cardy [1] appear directly as a
function of an input scale parameter in wavelet-based
representations of QFT, we bolster the case for wavelet-
based representations as a key tool of analysis for the
physics of quantum fields.
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APPENDIX: EXPRESSIONS FOR FERMIONIC
CONVARIANCE MATRIX

1. General solution in wavelet scale basis

The Hamiltonian for the Ising model field theory in the
continuous case is

Ĥ ¼ 1

2

Z
dx½ĉ†ðxÞiY∂xĉðxÞ þm0ĉ†ðxÞZĉðxÞ�; ðA1Þ

where iY ¼ ð 0
−1

1
0
Þ, Z ¼ ð1

0
0
−1Þ and the fermionic field

operators are ĉðxÞ ¼ ð ĉðxÞĉ†ðxÞÞ, ĉ†ðxÞ ¼ ðĉ†ðxÞ ĉðxÞÞ, with

the anticommutation relation fĉðxÞ; ĉ†ðx0Þg ¼ δðx − x0Þ.
Discretising the continuous Hamiltonian into 2nX ¼ V

scale modes r̂l ¼ ðr̂l
r̂†l
Þ where r̂l ¼ r̂ðn;sÞl ¼ R

dxsðnÞl ðxÞĉðxÞ
and fr̂l; r̂†l0g ¼ δl;l0 gives the discrete Hamiltonian in the
scale-n basis

ĤðnÞ ¼ 1

2

XV−1
l¼0

� X2K−2

j¼−2Kþ2

r̂†liYΔ
ð1Þ
j r̂lþj þm0r̂

†
lZr̂l

�
; ðA2Þ

where K is the Daubechies wavelet index and Δð1Þ
j ≡

Δð1Þ
l;lþj is the first derivative operator in the base scale

[scale-0 as per Eq. (12)] and is nonzero only
when −2Kþ 2 ≤ j ≤ 2K − 2.
Note that Ĥ commutes with the total fermionic parity

operator Ĵ ¼ Q
l ð1 − 2r̂†lr̂lÞ, and in order to have trans-

lational invariance on the even parity sector, application of
antiperiodic boundary conditions requires r̂Vþl ≡ −r̂l. In
practice this means that the upper-right and lower-left
corner terms in the matrix Δð1Þ will be the negative of
those along the corresponding main diagonals.
This Hamiltonian can be expressed in terms of

uncoupled modes η̂k in the usual diagonal form as follows:

Ĥ ¼
X
k∈S

ωk

�
η̂†kη̂k −

1

2

�
ðA3Þ

where S ¼ f1
2
; 3
2
;…; V − 1

2
g due to the antiperiodic boun-

dary conditions. The ground state jGi is defined by
η̂kjGi ¼ 0, from which follow the uncoupled correlations
hη̂kη̂k0 i ¼ hη̂†kη̂†k0 i ¼ hη̂†kη̂k0 i ¼ 0, and hη̂kη̂†k0 i ¼ δk;k0 .

The uncoupled modes η̂k are related to the original
fermionic modes r̂l via a pair of transforms. The original
modes are related to the momenta modes by the usual
Fourier transform p̂k ¼ 1ffiffiffi

V
p

P
V−1
l¼0 r̂le

i2πkl=V . The momenta

modes are related to the uncoupled modes by way
of the Bogoliubov transform η̂k ¼ ukp̂k þ ivkp̂

†
−k,

where uk ¼ −ðm0 þ ωkÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm0 þ ωkÞ2 þ q2k

q
, vk ¼

qk=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm0 þ ωkÞ2 þ q2k

q
, ωk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ q2k

q
(ωk are the

eigenvalues of the Hamiltonian) and qk ¼ 2
P

2K−2
j¼1

Δð1Þ
j sin 2πjk

V . The combined transform can be expressed
in the form:

η̂k ¼
ukffiffiffiffi
V

p
XV−1
l¼0

r̂lei2πkl=V þ ivkffiffiffiffi
V

p
XV−1
l¼0

r̂†le
i2πkl=V: ðA4Þ

Introduce the Majorana scale modes b̂l ¼ ðb̂l;0b̂l;1
Þ with

b̂l;0 ¼ b̂ðn;sÞl;0 ¼ r̂l þ r̂†l, b̂l;1 ¼ b̂ðn;sÞl;1 ¼ −iðr̂l − r̂†lÞ, such

that fb̂l;σ; b̂l0;σ0 g ¼ 2δl;l0δσ;σ0 . The Hamiltonian trans-
forms to

ĤðnÞ ¼ −
1

4

XV−1
l¼0

� X2K−2

j¼−2Kþ2

b̂Tl iXΔ
ð1Þ
j b̂lþj þm0b̂

T
lYb̂l

�
: ðA5Þ

That uk ¼ u−k and vk ¼ −v−k follows from the proper-
ties of the Bogoliubov transform. Furthermore introduce θk
such that uk ¼ cos θk, vk ¼ sin θk, and so

η̂k þ η̂†−k ¼
eiθkffiffiffiffi
V

p
XV−1
l¼0

b̂l;0ei2πkl=V;

η̂k − η̂†−k ¼
ie−iθkffiffiffiffi

V
p

XV−1
l¼0

b̂l;1ei2πkl=V; ðA6Þ

b̂l;0 ¼
1ffiffiffiffi
V

p
X
k∈S

e−iθkðη̂k þ η̂†−kÞe−i2πkl=V;

b̂l;1 ¼
1ffiffiffiffi
V

p
X
k∈S

− ie−iθkðη̂k − η̂†−kÞe−i2πkl=V: ðA7Þ

Noting that θ−k ¼ arctan ðv−k=u−kÞ ¼ arctan ð−vk=ukÞ ¼
−θk, the correlations can now be computed directly:

hb̂l;0b̂l0;0i ¼
1

V

X
k;k0∈S

e−iðθkþθk0 Þe−i2πðklþk0l0Þ=V

× hðη̂k þ η̂†−kÞðη̂k0 þ η̂†−k0 Þi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼δk;−k0

¼ δl;l0 ðA8Þ
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hb̂l;0b̂l0;1i ¼
i
V

X
k;k0∈S

e−iðθk−θk0 Þe−i2πðklþk0l0Þ=V

× hðη̂k þ η̂†−kÞðη̂k0 − η̂†−k0 Þi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼−δk;−k0

¼ i
V

X
k∈S

e−2iθke−i2πðl−l0Þk=V: ðA9Þ

Similarly hb̂l;1b̂l0;1i¼δl;l0 and hb̂l;1b̂l0;0i¼−hb̂l;0b̂l0;1i.
The covariance matrix Γ defined as hb̂l;σb̂l0;σ0 i ¼
δl;l0δσ;σ0 þ iΓσ;l;σ0l0 in the basis jσijli; σ ∈ f0; 1g is
therefore

Γσ;l;σ0;l0 ¼
�

0 Γ01

−ðΓ01ÞT 0

�
; ðA10Þ

Γ01
l;l0 ¼

1

V

X
k∈S

e−2iθke−i2πðl−l0Þk=V; ðA11Þ

with θk ¼ arctan −qk
m0þ

ffiffiffiffiffiffiffiffiffiffi
m2

0
þq2k

p and qk ¼ 2
P

2K−2
j¼1

Δð1Þ
j sin 2πjk

V .

2. Zero-mass limit

Consider the zero-mass limit m0 → 0:

lim
m0→0

θk ¼ lim
m0→0

arctan
−qk

m0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ q2k

q
¼ −

π

4
sgnqk

¼
� π

4
k ∈ SL

− π
4

k ∈ SU
ðA12Þ

where SL is the lower half of momenta modes

SL∶f12 ; 32 ;…; V−1
2
g and SU is the upper half

SU∶fVþ1
2

; Vþ3
2

;…; 2V−1
2

g. The covariance matrix is then

lim
m0→0

Γ01
l;l0 ¼ −

i
V

�X
k∈SL

e−i2πðl−l0Þk=V

−
X
k∈SU

e−i2πðl−l0Þk=V
�
: ðA13Þ

Let ζ ¼ e−iπðl−l0Þ=V , then

lim
m0→0

Γ01
l;l0 ¼ −

i
V
½ðζ þ ζ3 þ � � � þ ζV−1Þ

− ðζVþ1 þ ζVþ3 þ � � � þ ζ2V−1Þ�; ðA14Þ

lim
m0→0

ðζ2Γ01
l;l0 − Γ01

l;l0 Þ ¼ −
i
V
½−ζ þ ζVþ1 þ ζVþ1 − ζ2Vþ1�;

ðA15Þ

lim
m0→0

Γ01
l;l0 ¼ −

i
V

1

ζ − ζ−1
ð2e−iπðl−l0Þ − 2Þ ðA16Þ

¼
� −2

V sin ðπðl−l0Þ=VÞ l − l0 odd

0 l − l0 even
: ðA17Þ

3. Finite mass

For finite mass, define sk ¼ qk=m0. Then for m0 ≫ jqkj,
θk ¼ arctan



−sk=



1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2k

q ��
≈−sk=2þOðs3kÞ, and

so

Γ01
l;l0 ¼

1

V

X
k∈S

eiske−i2πðl−l0Þk=V: ðA18Þ

In the special case of Haar wavelets (K ¼ 1), Δð1Þ
1 ¼ − 1

2
,

Δð1Þ
l>1 ¼ 0, and so sk ¼ − 1

m0
sin ð2πk=VÞ:

Γ01
l;l0 ¼

1

V

X
k∈S

e−
i

m0
sin ð2πk=VÞe−i2πðl−l0Þk=V; ðA19Þ

lim
V→∞

Γ01
l;l0 ¼

1

2π

Z
2π

0

eið−
1
m0

sin k−ðl−l0ÞkÞdk ðA20Þ

¼ Jl−l0
�
−

1

m0

�
; ðA21Þ

where J is the Bessel function of the first kind. Note also
that J−αð 1

m0
Þ ¼ ð−1ÞαJαð 1

m0
Þ.

For 1
m0

≪
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijl − l0j þ 1

p
,

Jα

�
1

m0

�
≈

1

Γðαþ 1Þ
�

1

2m0

�
α

¼ 1

α!

�
1

2m0

�
α

≈
1ffiffiffiffiffiffiffiffi
2πα

p eαð1−ln 2m0αÞ ðA22Þ

And so,

lim
V→∞

Γ01
l;l0 ≈

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðl − l0Þp eðl−l0Þð1−ln 2m0ðl−l0ÞÞ: ðA23Þ

Alternatively, in the limit as the number of modes
V → ∞, Eq. (A11) becomes
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lim
V→∞

Γ01
l;l0 ¼

1

2π

Z
2π

0

e−ið2θkþðl−l0ÞkÞdk ðA24Þ

¼ 1

2π

�Z
π

0

e−ið2θkþðl−l0ÞkÞdkþ
Z

π

0

eið2θkþðl−l0ÞkÞdk
�

ðA25Þ

¼ 1

π

Z
π

0

cos ð2θk þ ðl − l0ÞkÞdk; ðA26Þ

where, as before, θk ¼ arctan


−qk=



m0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ q2k

q ��
and qk has been redefined to qk ¼ 2

P
2K−2
j¼1 Δð1Þ

j sin ðjkÞ.
Letting θk ¼ arctanðAkÞ, Ak ¼ −qk=



m0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ q2k

q �
,

this can be further simplified to

lim
V→∞

Γ01
l;l0 ¼ −

2

π

Z
π

0

Ak

1þ A2
k

ðAk cosððl − l0ÞkÞ

þ sin ððl − l0ÞkÞÞdk ðA27Þ

¼
(
− 4

π

R π=2
0 Bk sin ððl − l0ÞkÞdk; l − l0 odd

− 4
π

R π=2
0 Ck cos ððl − l0ÞkÞdk; l − l0 even

;

Bk ¼
Ak

1þ A2
k

; Ck ¼
A2
k

1þ A2
k

: ðA28Þ

In the special case of Haar wavelets (K ¼ 1), Δð1Þ
1 ¼ − 1

2
,

Δð1Þ
l>1 ¼ 0, and so qk ¼ − sin ð2πk=VÞ. The above then

simplifies to

Bk ¼
sin kðm0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ sin2 k
p

Þ
sin2 kþ ðm0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ sin2 k
p

Þ2 ; ðA29Þ

Ck ¼
sin2 k

sin2 kþ ðm0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ sin2 k
p

Þ2 : ðA30Þ
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