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Quantum field theory (QFT) describes nature using continuous fields, but physical properties of QFT are
usually revealed in terms of measurements of observables at a finite resolution. We describe a multiscale
representation of free scalar bosonic and Ising model fermionic QFTs using wavelets. Making use of the
orthogonality and self-similarity of the wavelet basis functions, we demonstrate some well-known relations
such as scale-dependent subsystem entanglement entropy and renormalization of correlations in the ground
state. We also find some new applications of the wavelet transform as a compressed representation of
ground states of QFTs which can be used to illustrate quantum phase transitions via fidelity overlap and

holographic entanglement of purification.
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I. INTRODUCTION

Quantum information has provided new perspectives into
quantum field theories (QFT), such as using entanglement as
a way to characterize quantum phases [1], and quantum
algorithms for simulating scattering cross sections in QFTs
that are exponentially faster than classical algorithms [2].
Other insights include the study of coarse-graining and
renormalization from a quantum information perspective
[3], and the harvesting of entanglement from vacuum states
of QFTs [4,5]. Recently, it was shown that quantum field
theories can be represented in a way that organizes proper-
ties at multiple scales using a wavelet functional basis,
referred to as a multiscale representation [6,7]. Wavelet-
based multiscale representations of QFT have proved
particularly well suited for studying the holographic prin-
ciple [8—11] and renormalization physics [12,13].

Several recent works have demonstrated a connection
between wavelets and tensor-network- or quantum-circuit-
based representations of quantum states. For example,
Evenbly and White [12] used a Daubechies wavelet basis
to analytically construct the tensors in a multiscale
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entanglement renormalization ansatz (MERA) description
of a ground state of massless (critical) fermions on a 1D
lattice. Haegeman et al. [14] showed how to rigorously
construct quantum circuits that approximate metallic states
of massless fermions on 1D and 2D lattices based on a
discrete wavelet transform using an approximate Hilbert
pair. For quadratic bosonic systems on a lattice, Witteveen
and Walter [15] developed a scale-invariant entanglement
renormalization procedure based on biorthogonal wavelets
that disentangles the wavelet output at each step. Finally,
Witteveen et al. [16] found a procedure for constructing
MERA-based quantum circuits that rigorously approximate
the continuum correlation functions for the massless Dirac
conformal field theory.

In this paper we derive the wavelet-based multiscale
representations of two types of QFT: the one-dimensional
Ising fermionic QFT and free scalar bosonic QFT,
both introduced in Sec. II. Wavelet-based multiscale
representations can be understood as a more nuanced form
of discretization, in which the continuum Hamiltonian is
expressed as an infinite number of terms corresponding to
ever-finer length scales. A minimum length scale is then
enforced by the truncation of terms at finer length scales.
We demonstrate that a number of established results remain
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valid when using these representations, and suggest some
advantages of such representations for identifying phase
transitions. We present a brief introduction to the relevant
aspects of the wavelet formalism in Sec. IIL

The main results of our paper are contained in Sec. I'V.
We show that wavelet-based multiscale representations
provide natural access to entanglement renormalization
physics. In Sec. IVA we show numerically that the two-
point correlators of a coarse-grained QFT decay algebrai-
cally in a scale-invariant manner at the critical point and
with an exponential decay with correlation length given by
the inverse renormalized mass in the massive phase. In
Sec. IV B we reproduce using a wavelet-based discretiza-
tion the results of Calabrese and Cardy [1] for subsystem
entanglement in noninteracting bosonic and fermionic
QFTs. Calabrese and Cardy [1] model the QFT with a
lattice spin system that is treated as a discrete approxima-
tion to the true continuum theory, justifiable by computing
a continuum limit (see, e.g., Sec. II in [17]). We demon-
strate that the discretization of these field theories using
wavelet scale modes reproduces the correct scaling of
entanglement in both gapped and gapless phases of the
theories and we connect the phenomenological cutoff
length to the scale of our scale modes.

In Sec. IVD we consider a multiscale wavelet repre-
sentation of the ground state for a fermionic Ising QFT, and
show that selection of a subsystem consisting of a small
number of coarse-grained modes amounts to a form of
lossy compression, capturing the physics of the global pure
state up to some error. We demonstrate the utility of this
approach for approximating the fidelity overlap between
ground states adjacent in some parameter, and therefore as a
witness for quantum phase transitions, where the direct
calculation or measurement of fidelity over the global state
may be computationally or experimentally infeasible. In
Sec. IV E we show that the entanglement of purification for
a reduced quantum state, the calculation of which quickly
becomes unwieldy for large numbers of modes, can be well
approximated by a coarse-grained state. This is significant
in the context of the work by Umemoto and Takayanagi
[18], in which the authors conjecture that the entanglement
of purification in conformal field theories (CFTs) is equal
to the minimal-area cross section of the entanglement
wedge. Finally, in Secs. V and VI we summarize our
results and conclude with an outlook for further applica-
tions of our methodology.

II. BACKGROUND

We focus here on noninteracting one-dimensional fer-
mionic and bosonic quantum field theories, due to their
mathematical simplicity and frequent use as a starting point
for perturbative models, especially in quantum algorithms
[2,7]. They are exactly solvable and therefore allow for
direct comparison of wavelet-based results to known
continuum physics.

A. Ising fermionic continuum QFT

The Hamiltonian density for the free Ising model
fermionic quantum field theory in one dimension is (see
Eq. (11a) in [17])

A

Flo(x, 1) = %(—i@T(x, 0Z0b(x. 1) + mob (x, ) ¥b(x. 1)),

(1)
where b(x,1) = [Z(]’gi;] is the spinor of Majorana mode

101
0-1
and Y = [?] are the usual Pauli matrices. Note that the
spinor components satisfy the equal-time Majorana anti-

commutation relation

operators at location x, my is the bare mass, and Z = |

~

{bo(x), by (')} = 285,45(x = x') (2)

for 0,6’ € {0, 1}. The Majorana mode operators have units
of inverse square root of length. In the massless phase, the
theory is described by the Ising model CFT with central
charge ¢ = 1/2.

B. Free scalar bosonic continuum QFT

The Hamiltonian density for the free scalar bosonic
quantum field theory in d spatial dimensions is (see
Eq. (11) in [7])

Hy(x, 1) = % (I (x, 1) + (VO(x,1))* + mdd*(x,1)), (3)

where the field operator q3(x, t) and its conjugate momen-
tum TI(x, 1) := 0,®(x, 1) satisfy the canonical equal-time
commutation relations

[@(x, ). 1I(x', 1)] = 6@ (x —x)1, and (4)

A

[D(x, 1), B, )] = [l(x, 1), A 1)] =0.  (5)

Most of the results below are for the d = 1 case where the
field operator is dimensionless. In the massless phase, the
theory is described by the free bosonic CFT with central
charge ¢ = 1.

C. Entanglement entropy scaling

An important physical characterization of QFT is given
by subsystem entanglement of ground states. The entan-
glement entropy of a bipartite pure state |w),z is given
by the von Neumann entropy: S, = —Tr(p, log p,), where
the subsystem state with support on region A is p, =
Trp[|y)ap(w|sp)- For most of the work here, the QFT is
assumed to be in one spatial dimension over the compact
interval [0,X) with specified boundary conditions. A
subsystem A consists of a single subinterval [0,X,) of
the compact interval [0, X). The relevant results are given in
Calabrese and Cardy [1] and Holzhey et al. [19]:
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Szﬁtical.periodic (x) _ g IOg <Sin75ﬂx)

) + constant, (6)

Szritical,open (x) _ glog (SlIl]EZ’X)) -+ constant, (7)

groneritieal () — (boundary points) x glog(mos), (8)

which correspond to entropy scaling in the massless
(critical) case, for periodic (see Eq. (1) in [1]) and open
boundary conditions (see Eq. (2) in [1]), and in the massive
(noncritical) case (see Eq. (1) in [1]). Here ¢ is the
ultraviolet cutoff length, c the central charge of the relevant
CFT, and m, the mass. Note also that (8) is valid only for
the subsystem length X, > 1/m,.

III. WAVELET-BASED DISCRETIZATION OF
QUANTUM FIELD THEORY

A. Definition

Here we use the Daubechies family of wavelets, a family
indexed by a positive integer I (with K = 1 corresponding
to the well-known Haar wavelet), which has additional
beneficial properties such as compactness, allowing study
of spatially separated operators and zero-valued moments.
The Daubechies family of compactly supported wavelets
can be defined as follows. For an alternative introduction,
see Sec. Il in [20], or for a more thorough treatment, see
Chap. 7 in [21] or Chap. 5 in [22].

The wavelet basis is defined in terms of a pair of
functions, the scale and wavelet functions, here denoted
by s and w respectively. Elsewhere these are sometimes
referred to as the father and mother wavelets and denoted ¢
and vy, respectively.

A function s € £2(R) is called a scale function if it
satisfies the orthonormality condition

Veelz: A{s(x)s(x —£)dx =6y, 9)

and if, for any other function f € £?(R),

FE1im S V27 s @rx - £). with  (10)

ez
=2 A F(x)s(27x — £)dx. (11)

where the symbol == means “equal almost everywhere,”
which is to say that f(x) is equal to the right-hand side for
all x except for a measure-zero set. For notational conven-
ience, we denote the scale function at scale (or resolution) »
and position £ by

VrleZ: s,(x)=s(x=7), s,(;)(x)::\/?sf(Z’x). (12)

The scale and wavelet functions at scale r are defined
recursively as a linear combination of scale functions at
scale r 4 1, with weights given by the set of scale filter
coefficients {h,}, ¢ € Z:

sV = hest D (), (13)

ez

r ! r+l1
w0 = (=) s ) (14)

ez

where A is the number of nonzero filter coefficients such
that 7, =0 if £ <0 or £ > A, and a similar notational
convention has been adopted for the wavelet functions as in
(12). Specification of these coefficients uniquely deter-
mines the wavelet basis.

For the Daubechies-KC (db KC) wavelet, the scale filter
coefficients {h,} are uniquely determined for IC = 1, and
up to reflection for any integer K > 1, by requiring
simultaneously that the first  moments vanish:

/dxwf)’)(x)xl’:o, p=01,...K=1, (15

and that the number of nonzero coefficients, A, is mini-
mized. It turns out that this occurs for A = 2K filter
coefficients. Additionally, it can be shown that the scale
and wavelet functions at scale 0 are supported on the
interval [0,2K — 1], and that the first differentiable scale
function is the scale function of the db3 wavelet (see page
239 in [22]), hence its predominant use in this paper.

In addition to Eq. (9), the scale and wavelet functions
further obey the orthonormality properties

r r
Ve, roreZstr > As(f)(x)w(f,)(x)dxzo,

(16)
r v
Vel rr eZ: Aw;)(x)w;,>(x)dx =08,p6, 0. (17)

The fixed-resolution subspace S, at resolution r € Z,
along with the associated wavelet subspace W,,
can be defined in terms of scale and wavelet functions
at resolution r:

S,::span{s;r)MEZ}, W,::span{w)(fr)MEZ} (18)

where S, W, C L?(R). Equation (14) implies that
S, W, CS,.1, and from this and the orthogonality con-
ditions in Eq. (17), it follows that the space W, is precisely
the orthogonal complement of S, in S, |, and therefore
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S=8_1O&W, . (19)

The wavelet transform in one dimension at scale r is
defined as the isomorphism

WS -S._,eW, (20)
which functions as the basis transform

sy = syl ez (1)

The d-level wavelet transform for d > 1 is defined by the
recursive application of W) resulting in

W) S, S @W @ 0w, (22)

which functions as the basis transform

(s = U o w0 u Y
u---uwi™My, ez (23)

In this paper we identify r = 0 with the coarsest scale
modes and consider scales 0 < r < n, and therefore make
use of the n-level wavelet transform acting at scale n:

WS, »Se@We@---@W,_.  (24)

The numeric construction of the single-level and multi-
level discrete wavelet transform from wavelet coefficients
is discussed in detail in Bagherimehrab et al (see
Appendix A in [23]).

B. Fixed-resolution and multiresolution representations

It is useful to define a fixed-scale representation in terms
of the action of an idempotent projection operator. Define
for each scale r the projection operator mapping from the
vector space £?(R) to the subspace S, defined in Eq. (18):

R)—S,: fHZ Sf |f Sf _Zcf Sf

re? re?

proj,: £*(R

where |s£pr)> are the scale functions in Eq. (14) with £ € Z

and the inner product corresponds to the coefficients cf,r)

defined in Eq. (11). This projection operator is discussed in
more depth by Daubechies [22].

Both fermionic and bosonic Hamiltonians include the
action of a derivative operator, the projection of which
requires some care since the derivative is not strictly in
L2(R). Specifically, the a-order derivative = acts only
upon a proper vector (but not Hilbert) subspace of £?(R)
corresponding to the set of functions whose derivatives up
to a order also belong to £?(R). The projected derivative
operator is

d¢ d“
| = PrOI —— OprOj,, (26)
subject to the requirement that f is a square-integrable
function with a continuous and square-integrable deriva-
tives. Wavelet analysis of these Hamiltonians is therefore
restricted to scale functions with the requisite properties.
The a-order derivative of an arbitrary a-order differentiable
function f is then

dof Z< () (n] 4
Tl — Sy f><sf/ T
20 dx

dx*|,
and the action of
coefficients

(9] &

s;’>>s<;) (27)

42|, is entirely determined by the

)= [aslwnsiw o)

Tost) 29)

d
g

=20 Al (30)

henceforth referred to as the derivative overlap coefficients.

Beylkin [20] showed how to compute the derivative
overlap coefficients for any scale functions specified by
filter coefficients h,,¢ € {0,...,2K — 1} (all other coef-
ficients are set to zero) by first defining the autocorrelation
coefficients (see Eq. (3.19) in [20])

ar=2Y hehp. (31)
f/

Subject to a condition on the number of vanishing moments
of the resulting wavelet function, Beylkin proved (see
Egs. (4.3)~(4.4) in [20]) that the derivative overlap coef-
ficients A"
equations

constitute the unique solution to the system of

o o 1 ]C a a
A;) = zaAng’) + Eza%—l(AéK)—szrl + Aéf)+2k—1); (32)
=1
22
A —( 1)%a! (33)
=22k 42

and for a Daubechies wavelet it can be shown that (see
Egs. (3.51)—(3.52) in [20])

B (_l)n—l
Arp—1 = (IC— n)!(]C +n - 1>!<27’l - 1)
(o) (34)
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Note that these autocorrelation coefficients are rational,
from which it follows that the derivative overlap coeffi-
(a)

cients A" are also rational.

C. One-dimensional Ising fermionic QFT

A wavelet-based multiscale representation of a con-
tinuum Hamiltonian over a length interval [0, X) consists
of a (countably) infinite sum of terms. Initial terms
correspond to the scale modes at the coarsest length scale
(scale r =0, length of order 27" = 1), and progress to
wavelet modes at finer and finer length scales (down to
scale r = 00). A minimum scale n (length of order 27") is
applied by truncating terms corresponding to scales r > n,
and is equivalent to projecting the Hamiltonian onto the
scale subspace S,,. The number of modes V in the system is
then

V= 20X, (35)

Equivalently, the Hamiltonian of a system can be directly
expressed in terms of V scale modes at scale n and the
multiscale representation from scales 0 to n is then
recovered via the application of the n-level wavelet trans-
form. This latter process is superficially similar to discre-
tization, and it is often easier to use the language of
discretization (e.g., “wavelet-discretized modes”); how-
ever, it should be remembered that the underlying concepts
are distinct.

The scale Majorana modes spanning the scale subspace
S, are defined in terms of the continuum modes like so:

(r:s) f,;’og) (r:s
) L;“’”)}’ Bu / ar s (b, (x).  (36)
[

In the fermionic case we consider antiperiodic boundary
conditions, which correspond to the even parity sector. The

discretized Majorana modes B(frf;) satisfy anticommutation
relations analogous to those of Eq. (2) but with the Dirac delta
replaced with a Kronecker delta. Also note that our restriction
to a finite-sized subspace of £?(R) ensures that only finitely
many of these discretized Majorana operators are nonzero.
The wavelet Majorana modes are defined analogously by

BU™) o / " dewl (0)b, (x), (37)
‘o o 4
and complement the scale-discretized Majorana modes
2~ (r;s)
b, .

To project the Hamiltonian from Eq. (1) to the subspace
S, defined in Eq. (18) corresponding to the coarse-graining
scale n, conjugate ’Hf with the canonical projection
operator proj(n) from Eq. (25). This results in the discrete
Hamiltonian

LS 2l
ff’eZ
+= mOZb ) Tyh () (38)
re?

where the symbol Ag’) refers to the Zth derivative overlap

coefficient of order a as defined in Eq. (30), and m, is the
bare (unrenormalized) mass at scale n and should be chosen
accordingly.

The quadratic structure of the Hamiltonian can be made
explicit by reexpressing I:IE") as

A = ZQM,,, 2pUE), (39)

N’ez
6,0'€{0.,1}

n on 1
oV . = (=1)722 AW 5, + myd, o (= 5).  (40)

Note that Q b = —Q(;(),f,’a, because A(_lé)) = —A,(fl).

The coefficients QI(/,"‘)y . » are effectively the entries of a

2V x 2V matrix Q") acting on a vector space with basis
vectors indexed by (#,6). The matrix Q) is real and
antisymmetric and hence has pure imaginary eigenvalues
+io\" k€ {1.3,....V =1} where a),((") € R. To find these
eigenvalues, observe that due to the applied antiperiodic
boundary conditions, the submatrix consisting of entries

(f’fo'

(0] ;0; oo 18 the antiperiodic analog of a circulant matrix,
with a negative sign applied to the entries below the main
diagonal. Hence it can be diagonalized using a half-integer-
indexed discrete Fourier transform, resulting in submatrix

eigenvalues

ﬂk_22"

2602
2mkf/v7122n+1A 1 . <27§ff> (1)

for k€ {3.3.....V =1}, where the second equality is
obtained by using the antisymmetry and periodicity of

(1)

the derivative overlap coefficients A,’ and noting that

A(()l) = 0. Similarly the eigenvalues of the submatrix

Qp.1.01 are —A;. Therefore QW is unitarily equivalent to
the direct sum of V 2 x 2 matrices:

VST A, —m
@] 0} . 42
0"~ @ e )

The eigenvalues of each 2 x 2 matrix are then +iw; :=

+1/—m§ + A7 and so
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ol =

L= o (ke
m3 -+ 2T A sin< >> ) 43
o (X 2an (% (@3)
In the continuum limit as n — oo,
(n) >, (47 A%
a)k e \/mo + <7 ;bﬂAf )
2rk\ 2
= 2 - 44
i+ (25 (44)

where the first simplification uses the small-angle approxi-
mation for sine and the second the antisymmetry of the

derivative overlap coefficients AS) together with Eq. (33).
This recovers the well-known dispersion relation for the
continuum Ising model.

The projected Hamiltonian in Eq. (39) is quadratic in the
fermionic operators. Therefore, its ground state is a
Gaussian state. Any Gaussian state is fully characterized
by its covariance matrix. For a fermionic system, this
matrix is obtained from a two-point correlation of the
system’s fermionic operators [24].

The entries of the covariance matrix I for the ground
state of the projected Hamiltonian are defined so that

= (U, B (45)

where (-) := Tr(-p). T can be calculated by first observ-
ing that entries of the covariance matrix I for the uncoupled

Majorana operators b are

ff,a;f’.zr' = i<[l_)f,w Bf’,a’D = 5f,)f”<0- - OJ)’ (46)

which follows from the definition of the ground state and
from the anticommutation relations for Majorana fermions.
Let O™ be the orthogonal transformation matrix that

uncouples Majorana operators at scale n: Ij = QWH"s),

Then
r™ = omirom. (47)

Calculation of O is via symplectic diagonalization1 of the
coupling matrix Q) which takes the analogous form

'In the case that the eigenvalues of Q) are all nonzero,
numeric construction of O") is simple: of the eigenvectors of Q"
having eigenvalues +iwy, let {w,} be all the eigenvectors
corresponding to eigenvalues of either +iw; or —iw;. The rows
of O are then the normalized real and imaginary components of
wy, that is, Rew, /||Rew,|| followed by Imw,/|[Imw]|.

o = 0(")T[ 0 Q}o@)’ (48)

-Q 0

where € is the diagonal matrix with diagonal entries w.
Our next step is to approximate the fine-scale correlator

<l§g_f)l;(;ﬁ,) ). As this is an expectation value of anti-
commuting operators, its value is zero whenever ¢ = ¢'.
Translational symmetry requires that <IA)%S) @;’ffls)) =
<l§%s)l;<f'ff; ), and together with anticommutation it further
follows that (lA)g’(;f) 138’;1)) = —(@éﬁ'&”@gﬁ”). We derive

expressions for the correlators in the Appendix.

D. One-dimensional bosonic QFT

To obtain a multiscale representation of the bosonic
continuum field theory, we again first define the projection
of the bosonic field and conjugate momentum operators
onto the scale subspace S,. Let

S0(1) = /O " e s (x)(x, 1) (49)
and
f[b(f)(t) = Ax dx sgf) (x)II(x, 1) (50)

be the canonical position and momentum field operators
projected onto the scale subspace S,. The scale field and
conjugate momentum operators satisfy commutation rela-
tions analogous to those of Eq. (4) but with the Dirac delta
replaced with the Kronecker delta. The wavelet field and
conjugate momentum operators are defined analogously to
Egs. (36) and (37).

Projecting the bosonic Hamiltonian 7, (x,7) from
Eq. (3) to a scale subspace S, with the projection operator
from Eq. (25) results in

A (n 1 A (1:8) A (10 1 2 (n:s n) 2.(n;s
Y= NG L S G, o)
‘ez tr'ez

where, for notational simplicity, dependence on time has
been dropped, and

n n 2 2
KE”.;’ = m(z)éff’ -4 (A;’if + Az(f”)—(zf’+1v)) (52)

corresponding to periodic boundary conditions. The spec-
trum of the projected periodic Hamiltonian is then

2kt
FNS cos( ’; > (53)

In the continuum limit as n — oo,

2K-2

=-2K+2

036025-6
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- g ()

[+ (%) (55)

using the cosine small-angle approximation, Eq. (33) and

5=, A% = 0 (see Eq. (3.35) in [20]). In the thermodynamic
limit X — oo, 27k/X becomes a continuum parameter that
is the momentum of the continuum theory, recovering the
well-known dispersion relation for the continuum bosonic
field theory.

The covariance matrix for a bosonic state is defined
as [24,25]

Y, = (0 09, (56)
where #9) = (&0 U AU A s the

vector of canonical scale operators at scale n. For the
ground state of the Hamiltonian in Eq. (51), the covariance

matrix is simply T'") = I‘g’) @ I‘g) where Fgl )= VK™
and T == (TU)~1 [24].

IV. RESULTS

A. Renormalization in multiscale correlators

As described in Eq. (24), the Hilbert space spanned by
scale modes at scale n is equivalent to the Hilbert space
spanned by coarser scale modes at scale 0 completed by
wavelet modes from scales 0 < r < n. This allows us to
express correlations between wavelet modes at some scales
r < n in terms of a linear combination of finer scale modes
at scale n. This constitutes the so-called bulk/boundary
correspondence where the wavelet modes (and coarse scale
modes) comprise the bulk with two dimensions indexed by
position and scale, while the finer scale modes comprise
the one-dimensional boundary with one position index.
The general expression for the correlators of wavelet mode
operators A™ and B™) at scales r and  and positions £
and ¢’ in terms of equivalent scale mode operators at scale
n>ris [11]

2 (4 2KC=1) 2 (£1+2K-1)

—-n)(r+r)/2 Z Z

JETE gt

(AU BU)

W(O)(zr—n (j_zn—rf_F 1))

) (27 (=27 £ 4 1)) (A By,
(57)

1. Fermionic case

For a theory with bare mass m defined at the scale n, the
fine-scale correlators are (see the Appendix for derivation)

(ZA)(()'};)‘Y)I;; Ze—llé‘;\e—lszk/v (58)
keS

where ), = arctan_—qk, (59)

my -+ \/ m% + q%

262
2 k
and g, =2 Z A ) sin = (60)
In the massless case this simplifies to
-2

A(nes) A~ (nss Vsin (22/V) 4 Odd,
(b By) = { ) (61)

0 ¢ even.

As per Singh and Brennen [11] the correlator between
wavelet modes at different scales r, ¥ < n is

V-1
(bop b ™) m Y (s B VS (62)
J.J'=0
nro_ d (.n) (r) 63
Fir X (xX)wy (x), (63)

with other expressions given by translational symmetry and
anticommutation. Correlations at the same scale r = 7’ can
be approximated in the continuum limit for r sufficiently
far from the boundary. Assuming r < n, let 2"7""¢ — x,
treating x as a continuous variable so that 6 = 2"~"dx, and

replacing sums by integrals Z _ém h — Qner fOZK—l dx,
results in
S (rw 26— 1 2K—14¢
(B / / dx' w (x)
x wi (=€) (bo(x)by (x'). (64)

In the massless phase, for large n, the continuous
correlator can be replaced by the discrete correlator from
Eq. (61). Assuming r > 0 leads to sin(z27"(x — x')/V)~
727"(x — x')/V. Restrict attention to correlations longer
range than the size of the wavelet modes, i.e., £ > 2K — 1,
so that the integrals satisfy [ZX~! dxw(x)wd(x = £) = 0.
Define the new variable x” = x' — #, then
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i 1 &
=R

Here (f(x)),, = [ f(x)w)(x)dx and for general functions
must be computed numerically. However the wavelet
moments (x%),, = [x*w](x)dx can be computed recur-
sively in closed form (see e.g., [6]). The dominant term in
the correlation is determined by the lowest nontrivial
wavelet moment:

2 (ksw) 7 (kyw 1(_1)K 2K
(oo By~ )R- (66)

Figure 1 (top) shows this expression plotted with direct
calculation of the multiscale correlators by application of
the wavelet transform to the covariance matrix.

For the massive phase, analytic expressions for the
correlators are more difficult to obtain; however, the
numerical results, plotted in Fig. 1 (bottom), demonstrate
exponential falloff with separation with an inverse corre-
lation length given by renormalized mass

= 2""my. (67)

2. Bosonic case

Singh and Brennen [11] (Egs. BS and B8 there) show
that in the massless phase, the same-scale field-field and
momenta-momenta correlations for separations > 2 — 1
and r < n are

B (riw) 27 (N ey
O, D R ———— , (68
@) s e (o )R (@
A(rw)py(rw)y 27" (2K +1) 2K
Iy 1, 7) ~ oz X\ ()2 (69)

Figure 2 shows these approximations plotted against direct
calculation of the multiscale correlators from the covari-
ance matrix.

In the massive phase, the bulk correlations are exponen-
tially decaying in all directions. For 72 > 1 and separations
¢ > 2K — 1, the coarse-grained (r < n) field-field and
momenta-momenta correlations are (see Eqs. B15 and B16
in [11])

k
), (03
[

o ) & (o n=r o=tm i, -

(B0 = A (0)

m

AW A (W Ar—n —¢m
<H() Hf > ~2 e 87[7

(€7, (™),

(71)

Figure 3 shows these expressions plotted with numerical
calculations of the multiscale covariance matrix.

10-6 Wavelet index
F e £=3
= 107 - k=4
Z= i K=5
ga“ 10710¢ AK=6
£3 r v K=7
< 1012t L
10—14 L
10—16 L R L " N P
5 10 20 50
| i Bulk radius
° [ ]
1070F~08 @ or=4
N
— “\\ '\\.\ o =r=3
7~ nyomTse r=2
ZEQN | \\ N S N} =1
o 10777 A “u \*‘\, ar=
53 o . ~a vr=0
\ N ~
~— | \v W w -
! \\ “m, ®~a
10712 v N ~
[ n .
\ \ \. '\&
' N .
10 15 20
Separation
FIG. 1. Bulk same-scale wavelet-wavelet correlations

[(BSa YY) at scale r < n as a function of spatial separation
¢ for X =16, n=6, V=2"X = 1024. Top: the critical fer-
mionic Ising model field theory I:IE”), correlations at radius r = 4
plotted for various Daubechies wavelet indices K. Solid lines are
plots of Eq. (66). Bottom: the massive fermionic field theory with
mq = 0.2, correlations at various radii for K = 3. Dotted lines are
a joint linear regression assuming 2("~") dependence. The
correlations fall off exponentially as e~!13 indicating scale-
dependent mass renormalization, Eq. (67).
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FIG. 2. Bulk same-scale wavelet-wavelet correlations for the FIG. 3. Bulk same-scale wavelet-wavelet correlations for the

massless bosonic field theory ﬁl()") at scale r < n as a function of
spatial separation £ for X = 16, n = 8, V = 2"X = 4096 modes
with periodic boundary conditions. Daubechies K =3 wavelets

were used. Top: field-field correlations \((I)(()’;W)Cb(;w)ﬂ with
lines from Eq. (68). Bottom: momenta-momenta correlations

| AY™) | with lines from Eq. (69).

B. Entanglement entropy of subsystems in 1D

1. Subsystem specification

In the wavelet scale basis, as in the canonical basis, the
covariance matrix I'* of a subsystem A is obtained by
selecting a subset of the rows and columns of the system’s
covariance matrix I'. Suppose that the subsystem A of a
system containing V scale modes at scale n over the interval
[0,X) is an interval of the form [xyn, Xma) =
[Cmin/2", €max/2")  for integers 0 < &pin < Cmax < V.

The subset of modes s(f") retained belong to the interval
 Cmax — 1}

[Xmin> Xmax) and correspond to & € {Zpips -
Setting V4 = € 1nax — Cmin» the resulting covariance matrix
I'* is of size V, x V,. The total length of the interval
[Xmin> Xmax )» OF length of the subsystem A, is X, = V4 /2".
In these calculations a subsystem A with V, < V/2
modes is selected to be an interval of the form [0, X,). The
subsystem’s modes are taken to be less than V/2 as the
entropy of two subsystems with V/2 -V, and V/2 +V,
modes are the same. Figure 4 shows the entropy plots for

massive bosonic field theory ﬁ];ﬁ at scale r < n as a function of
spatial separation Z for X = 16, n = 8, V = 2"X = 4096 modes
with periodic boundary conditions. Mass is my = 0.2 and
Daubechies K = 3 wavelets were used. Top: field-field correla-
tions |<<i>(()';w><i)glw))| with lines from Eq. (70). Bottom: momenta-

momenta correlations |(T{™"'17*")| with lines from Eq. (71).

the massless bosonic and fermionic theories with different
boundary conditions.

2. Fermionic case

The covariance matrix I' for a fermionic state is real and
antisymmetric, and satisfies I" 2> —1([26], p- 2). Therefore
its eigenvalues are all purely imaginary and come in
positive and negative pairs; i.e., the set of eigenvalues is
{+io,}. Moreover, |6,| < 1. Note that {+0,} is the set of
singular values of I' which is equal to the set of eigenvalues
of il". The entanglement entropy of an N-mode fermionic
Gaussian state p* can then be expressed in terms of the
singular values {62} of its covariance matrix I'* as (see

[26], page 2)
1+o}
> u(-5%)

o4€0.1]

S(pt) =

(72)

where H(x) := —xlogy(x) — (I —x)log,(1 —x) is the
binary entropy function.
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FIG. 4. Plots of the critical subsystem entropy for the fermionic
and bosonic theories with (anti)periodic and open boundaries.
Each of the data points correspond to a subinterval of the
indicated fractional length. A boundary point of the subinterval
always coincides with a boundary point of the whole interval.
Each curve depicts the system at a different resolution with
number of modes V = 500 (orange circles, bottom), V = 1000
(blue squares), V = 2000 (yellow diamonds), or V = 4000
(purple triangles, top). Entropy increases with resolution. In
the (anti)periodic case, we encounter a singularity in the zero-
mass limit and therefore set m, = 107% for the fermionic system
and m(, = 10~ for the bosonic system. The solid lines are used to
indicate the central charge, and have slope 1/6 in the antiperiodic
fermionic case, 1/12 in the open fermionic case, 1/3 in the
periodic bosonic case, and 1/6 for the open bosonic cases. These
slopes correspond to the expected central charges of ¢ = 1/2 for
the Ising model CFT and ¢ = 1 for the free bosonic CFT in the
context of Egs. (6) and (7). The leftmost point of each line is
chosen to match the leftmost data point.

For the massive fermionic theory, we observe that the
entanglement entropy of a subsystem is constant as a
function of the subsystem’s length in different scales, and
this constant increases with the scale r. This is expected
from the entanglement area law. For the massless theory,
we observe that the functional form of the Calabrese-Cardy
relations are correct as given in Sec. II C, and the central
charge is correct by means of a line with slope equal to ¢/3

and ¢/6, for periodic and open boundary conditions
respectively. Figure 4 shows the entropy plots for the
massless theory with different boundary conditions.

3. Bosonic case

The covariance matrix I' for a bosonic state is a real
and positive-definite symmetric matrix, and satisfies
' +iQ/2 > 0 ([25], page 2) where

Q= <—(11)N H(;V>' (73)

Williamson’s theorem states that any symmetric and
positive-definite matrix, such as the covariance matrix T,
can be decomposed as I = ST(A @ A)S ([25], p. 18),
where § is a symplectic matrix and A is a diagonal matrix
whose spectrum {A,} is equal to the set of positive
eigenvalues of iQI' ([24], page 28). The eigenvalues of
A are called the symplectic eigenvalues of the covariance
matrix I'. I +1Q/2 > 0 further implies that 4, > 1/2.
The entanglement entropy of an N-mode bosonic
Gaussian state p* can then be expressed in terms of the
symplectic eigenvalues of its covariance matrix I'* as [27]

2N
S(ph) = ; f2), (74)
where
f(A) = (A + %) log, </1 + %) - <,1 - %) log, <1 - %) .

(75)

Similar to the fermionic case, we again observe that the
functional form of the Calabrese-Cardy relations are correct
as given in Sec. I C.

4. Cutoff scaling behavior

For a massless bosonic field theory in one spatial
dimension with periodic boundary conditions the subsys-
tem entanglement is related to the ultraviolet cutoff
parameter € as per Eq. (6) with ¢ = 1. We computed the
half-chain entropy in a wavelet basis (C = 3) for resolu-
tions V = 2"X with X = 32 and forn = 0, ..., 7 (mass was
technically mq = 10™* to avoid a singularity in the zero-
mass limit). The numerical results demonstrate linear
scaling in n with a least-squares fit of § = 6.23 4 0.333n,

in agreement with the expected scaling law & « ; = 5.

C. Entanglement entropy in 2D

Since there is no direct analog for the fermionic Ising
model in two dimensions, we consider only bosonic
systems here. The scaling of subsystem entanglement
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FIG. 5. Entropy of entanglement for a V x %—mode subsystem
of a V x V two-dimensional system as a function of the number
of modes V = 2"X, with X = 8. The one-dimensional area of the
boundary is V. Left: entropy of entanglement against number of
modes for n € {0, 1,2,3}, with mass my = 1, demonstrating
expected linear scaling of S with V (dashed line is the least-
squares fit corresponding to ¢ = 3.88). Right: same as left but as a
function of mass with n = 1. The solid line is Eq. (76), with a
slope of —A | /12 = —4/3 and the interceptis A | /e = 4.12 using
e from the fit on the left (note the values coincide at my = 1 as
expected). While the slope is reasonably accurate over this mass
range, it is apparent higher order terms contribute.

entropy depends on the number of spatial dimensions. For
two spatial dimensions, to first order in A |, the scaling for a
free bosonic QFT is [28]

A 1
~odl g
Sw . AL (76)

where A, is the area of the one-dimensional subsystem
boundary and e is the ultraviolet cutoff of the field theory.
The scaling behavior of the massive bosonic field theory in
two dimensions in a wavelet basis is demonstrated in Fig. 5.

D. Discriminating quantum phases via fidelity overlap

One witness of a quantum phase transition (QPT) is a
sudden drop in the overlap fidelity between ground states of
Hamiltonians straddling a critical point [29]. Specifically,
for a Hamiltonian which experiences a QPT as a function of
one parameter g, the witness is

F=[{¥(g;)[¥(9-))

, (77)

where g, = g+ 6/2, and |¥(g)) is the ground state of the
Hamiltonian with parameter g. Here § is some increment
small enough to resolve the change in F.

As in the Appendix, the ground state of the fermionic
Ising model, where the relevant parameter is g = my, is
specified by the condition

| ¥) = 0, (78)

where the normal fermionic modes are defined in terms of
the momenta annihilation and creation operators py, i),t as

ﬁk — COS ekf)k —|— iSiIl ekﬁik» (79)

_(mO +wk) :| , (80)

0, = cos™! {
(mo + wi)* + g3

2K-2
2kt
qkzzzAQ>sin( ﬂv > (81)

=1

Negative momenta modes are defined by positive indexing
via —k =V — k. For antiperiodic boundary conditions
the set of allowable positive momenta k is k€ S; =
{4.3,....%1}. Using the inverse Jordan-Wigner trans-
formation and ordering qubits in pairs {(k,—k)};cs,
results in expressions py = [[[;4Z;Z_;]o} and pro=
1;<xZ,Z_;]Zi6,;, where 67 = 5 (X +iY) are the usual
raising and lowering operators acting on mode k. The

ground state can then be written as a tensor product of
entangled qubit pairs

[¥) = @ (cosOyf1)[1) +1isin6,]0),]0) ). (82)
L
The fidelity is then
F = 1] cos(@u(m,) = 6x(m.)), (83)

=

where 0)(m..) is the value 8) with mass m, + §/2. Most of
the terms in the product formula for the fidelity are equal to
one up to numerical precision for any mass, but near my =
0 there are deviations which are most prominent at the
longest wavelength, namely |k| = 1/2. Approximating the
fidelity at criticality by the overlap on this single pair of
modes and assuming 1/8,V > 1 results in

A%

Frx1——Ff,
872

my =0, (84)

where the derivative coefficients have been summed
as in Eq. (33). By contrast, away from criticality, letting
6=1/V,

7252

Frl-——s,
8mgV?

|mg| > 1/V, (85)

which quickly approaches 1.

Rather than computing the fidelity overlap of the global
ground states, an approximation can be obtained in a
multiresolution wavelet basis by computing the fidelity
overlap between reduced states of a few coarse modes. This
reduced state effectively acts as a compressed representa-
tion of the global state. Specifically, the fidelity between
reduced states is given by
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FIG. 6. Fidelity of a 2-mode subsystem of scale modes at scale
r =0 in a multiscale representation of the ground state of the
fermionic QFT as a function of wavelet transform level n. Here
we keep V = 1024 and § = 1/V constant. Daubechies I =3
wavelets were used. The dashed grey line is the analytic
expression for the fidelity overlap of the global state from
Eq. (83). The phase transition at m, = 0 is increasingly evident
for higher compression levels.

Flps(9+).p5(9-)) = Tr[\/Vps(gﬁps(g_)\/px(gﬁ},
(86)

where p,(g) is the reduced state on subsystem s of the
global pure state |¥(g)). For the fermionic Ising model
field theory, the fidelity between two mixed fermionic
Gaussian states with covariance matrices I'y(g.,),(g_)
(expressed as covariances in the Majorana representation)
is given by [30]

det[ﬂ + \/etanh" Fly(g+)e2tanh’] Fs(g,)etanh’] l"s(ng)] 1/2
- det[]] + 2 tanh™! Fx(g+)}l/4 det[ﬂ + 2 tanh™! Fs(g_)}l/él :
(87)

In Fig. 6 the signature of a QPT is evident in the fidelity
overlap calculated between two-mode subsystems of coarse
modes. As expected, the minimum occurs at m, = 0 and is
considerably more significant for subsystems of coarser
modes (corresponding to higher wavelet transform levels)
compared to finer modes.

We note also a dependence on the Daubechies wavelet
index /C, such that higher wavelet indices provide a better
approximation to the whole-state/analytic behavior with only
a few coarse modes (i.e., a lower fidelity minimum).
However in the case of calculating the fidelity overlap the
effect is weak, of order 107, and becomes weaker for
higher .

E. Holographic entanglement of purification

Recently there has been progress in connecting entan-
glement in a boundary quantum field theory to geometric

quantities in the bulk dual [10,18,31]. A particularly
compelling idea inspired by holographic duality is the
conjectured equality [18]

Ep(PAB) < EW(pAB)v (88)

where E,(psp) is the entanglement of purification of a
subsystem p,p of a boundary CFT, and Ey(pyp) is the
entanglement wedge cross section, a geometric quantity
defined in the bulk. The entanglement of purification is
defined as

E,(pap) = ming, oo wll=pasS(Paa),  (89)

where A, B are auxiliary systems to A, B and the minimum
is taken over all purifications |y) of the state p,z. The
entanglement wedge cross section is

_ 1%l

_ [Zanl. 90
4Gy (90)

Ey (PAB)

where |X, ;| is the area of the minimal cross section of the
entanglement wedge in the bulk dual that connects the
boundary subsystem A with B. We use units where
4Gy = 1. In the case of a (1 + 1)D boundary CFT, X},
is a one-dimensional surface.

An appealing feature of the entanglement wedge cross
section is that it is blind to cutoff-dependent features of the
entanglement entropy due to cancellation of such terms.
The motivation for the conjectured equivalence in Eq. (88)
is that—assuming that the global state is pure—the entan-
glement wedge satisfies several inequalities shared by the
entanglement of purification (EoP) including

(1) 1(A:B)/2 < Ew(pap) < min(S(pa). S(ps))

(2) Ew(pas) < Ew(pac)) < Ew(pas) + Ew(psc)

() Ew(paayss)) = Ew(pas) + Ew(pas)

The first statement refers to the mutual information

I(A:B) = S(pa) + S(pB) — S(pan)- (91)

The left-hand side of the second statement follows from the
extensiveness of the entanglement of mutual information
and the right-hand side is a polygamy inequality. Both these
inequalities are shared by EoP. The third inequality is a
statement of strong superadditivity [18]. EoP in fact
satisfies subadditivity: Ep(p ® ¢) < Ep(p) + Ep(o) with
equality only if the optimal purification of the joint state
p ® o is the product of optimal purifications of p and o
separately, which is expected in holographic CFTs [18], in
which case EoP becomes additive like Eyy.

In order to better understand holographic entanglement
of purification from a wavelet perspective, consider the
case of a ground state (1 4+ 1)D CFT of overall length / and
with periodic boundaries. The entanglement wedge cross
section has an analytic formula, whereas the entanglement
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FIG. 7. Illustration of the holographic entanglement features
studied in this paper for a ground state of a (1 4+ 1)D CFT with
periodic boundaries. The physical degrees of freedom at the finest
scale r = n are represented by scale modes (black). Coarser
wavelet modes at scale r = n — 1, ...,0 are shown (blue) as are
the coarse scale modes at scale r = 0 (orange). The representa-
tion of the ground state using all the wavelet and coarse scale
modes is referred to as the bulk description, and is related by a
unitary wavelet transformation to the boundary description using
scale modes at scale n. Top: size ¢ of the regions A, B is too small
relative to their separation d so that I(A:B) = 0. There is no
entanglement wedge and Ey(psz) = 0. Bottom: here d/Z >
v/2 =1 and there is an entanglement wedge with minimal cross
section || = Ey(pap) = £log(l +2d/¢). Shown in the
smallest ellipse is a bulk subsystem involving only coarse scale
modes at scale r = 0, a larger ellipse involving scale and wavelet
modes at scale r = 0, and so forth. If the subsystems in these
smaller sized ellipses accurately capture the mutual information
I(A:B) with only a few scales, then we speak of a compressed
representation of p,p.

of purification does not, rather it involves a complex
minimization. To see the former, consider two regions A
and B, ordered left to right, separated by a distance d and
with equal lengths |[A| = |B| = ¢ < L, and with boundary
points {0A;,dAg, 0B, ,0Bg}. The entropy (up to an addi-
tive constant) of the joint region A U B is given by the
minimal length curve in AdS space that separates it from its
complement. This will either be the sum of the geodesic
connecting boundary points {dA;, 0Ag} and that connect-
ing {0B;.0Bg} (see Fig. 7, top), ie., Xlog(¢), or the
sum of the geodesic which connects {0A;,dBg} and that
connecting {0Ag,0B;} (see Fig. 7, bottom). i.e.,
§log(d(d +2¢)). These two lengths become degenerate

at d/¢ = v/2 — 1. The mutual information is then

I(A:B)=

{0 d/t>\2-1 ©2)

~log((d/¢)?+2d/¢) dft <v/2-1

For regions A, B satisfying /(A:B) > 0, the entanglement
wedge W is the region in the bulk bounded by A U B and

the minimal length geodesics separating A U B from its
complement (Fig. 7, bottom). The entanglement wedge
cross section |X7 ;| is the length of the shortest curve X, in
AdS space that divides the wedge into two pieces: one
containing A, the other B. Because the AdS distance from
the midpoint of a geodesic to the boundary point bisecting
the boundary curve is one half the length of the geodesic,
the entanglement wedge cross section is therefore (for the
example above)

Ev(pan) = glog(1 +2¢/d). (93)

In terms of the bulk modes, we seek to compute the
entanglement of purification E,(psp) via a compressed
representation of p,p only involving a few coarse scale and
wavelet modes. As illustrated in Fig. 7 (bottom), if small
bulk subsystems accurately capture the mutual information
I(A:B) then it will suffice to restrict to this small com-
pressed subsystem to calculate the entanglement of puri-
fication. Ideally, if the state p,p is represented only in terms
of two coarse scale modes and two coarse wavelet modes
both at scale [;, then it may be possible to analytically
compute Ep(pap)-

Following the scheme in Fig. 7 (bottom) we study some
examples of subsystem sizes ¢ and separations d that have
nonzero mutual information calculated using the boundary
scale modes at scale n, under the assumption 7, d < L. By
computing a wavelet transform on the covariance matrix we
find cases where /(A B) is accurately represented by a few
coarse scale and wavelet modes, as demonstrated in Fig. 8.

Assume there exists a state for which /(A:B) is well
approximated up to some small additive error by a
compression to two coarse scale modes (one for A and
one for B), and let the reduced two-mode state be

3
< 0.100} Mo
~
>~ —— 107°
“a 0010}
<
b —— 107°
T 0001}
—4
~ 10
§ 10—4 L
= - 107
L2 3 4 5 6 T _o o
Compression level
FIG. 8. Relative error of approximating the mutual information

I(A:B) by the wavelet compressed representation 45 of the
reduced state p,p, where A and B are subsystems of the ground
state of a (1 4+ 1)-dimensional scalar bosonic field theory with a
total system size of V = 4096. The subsystems are chosen to
have a separation of inner boundaries by a length d = 512 and are
of equal size # = |A| = |B| = 256. For each additional com-
pression the number of degrees of freedom is halved.
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FIG.9. Top: entanglement of purification E, (¢ ,45) as a function
of the ratio d/¢ as captured by wavelet compression of the
ground state as in Fig. 8. Here 0, is the reduced state represented
by two coarse grained scale modes obtained by the wavelet
transformation on the covariance matrix representation of p,p.
The separation between subsystems d = 512 is fixed, and £ =
|A| = |B| is varied from 512 to 2. The compressed state allows for
a calculation of entanglement of purification in terms of a one
parameter minimization. Bottom: same as top but on a log scale.
Compare with Bhattacharyya et al. [31] (Fig. 6 there).

denoted o,p. Calculating Ep(c,p) following the method
of Bhattacharyya et al. (Sec. 4.1 in [31]) requires minimiz-
ing the entropy S(c,;) over a single real parameter. The
corresponding minimization for a state compressed to two
coarse scale modes and two coarse wavelet mode (see
Sec. 4.3 in [31]) requires minimizing the entropy S(o43)
over four real parameters. Both these methods assume the
minimizing pure state is also Gaussian. This greatly
simplifies the analysis, as we can continue to represent
states with covariance matrices. The results, plotted in
Fig. 9, appear to validate this assumption. The behavior of
Ep(c,p) is comparable to Eq. (93), the analytic formula for
the entanglement wedge cross section Ey(pap).

A phase transition also becomes apparent in the value of
the single minimization parameter x during the process of
minimizing for the entropy S(p,z)- Following the approach
in Bhattacharyya et al. [31], consider a pure state on a total
system AABB with covariance matrices

1/J K 1/D E
. (OTOJ
FABAB _5 (KT L > ’ FABAB _5 <ET F) (94)

such that

A A

The matrices are written in the basis (®45, ®j ), where the

known reduced state covariance matrices are I'J} =1 J and

'Sy =3 D. Now it follows from Eq. (95) that

JD +KE" =K'TE+LF =1,
JE+ KF =K'D+ LET =0, (96)

which implies L = —KTD(1 — JD)~'K. Hence given the
covariance matrix I'4p the purified state covariance matrix
is completely specified by K. The dimensions of K will
depend on the size of the auxiliary spaces A B.
Bhattacharyya et al. [31] show that for the case where
|A| = |B| = 1, an accurate value of the entanglement of
purification can be obtained by choosing |A| = |B| = 1,
meaning that the value obtained is negligibly changed by
choosing larger auxiliary systems. Furthermore, by invok-
ing exchange symmetry of A and B, K can be chosen to
have the canonical form

K= CC ’;) (97)

where x € (—1,1). The value of x should be selected in
order to minimize the entropy of the reduced state of AA
described from the reduced covariance matrix I'y; which is
found by tracing out rows and columns of I'4z7 5.

A plot of the value of the parameter x that minimizes the
entropy of the reduced state AA is shown in Fig. 10 for
several decades of mass. There is a notable peak in the
value of x at the subregion size to separation distance ratio
d/¢ = 2, indicative of a phase transition near that value.

0.5F
04f Mo

—— 107°
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= — 10_5
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1074
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—— 1073

0.0
- 1072

d/¢

FIG. 10. Minimizing value x for the entanglement of purifica-
tion of a compressed ground state as in Fig. 9 plotted as a function
of d/¢, focusing on the region d/# < 30. The peak in the value at
d/¢ = 2 is indicative of a phase transition near that ratio.
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V. DISCUSSION

We show in result IV A that the same-scale correlators in
the multiscale representation of the ground states for the
bosonic and fermionic theories demonstrate the expected
power-law decay in the massless case, with an exponent
that depends on the Daubechies index K, and exponential
decay in the massive cases. Mass renormalization is
naturally emergent as a function of scale. We also consider
in result IV B the entanglement features of the ground states
of the two QFTs in a scale field representation and verified
that the Calabrese-Cardy relations are obeyed. For the
massive bosonic theory in 1D and 2D, we observe that the
entanglement entropy of a subsystem is constant as a
function of the subsystem’s length in different scales. The
constant value increases as we increase the scale parameter
k as is to be expected from the entanglement area law. For
the massless bosonic and fermionic CFTs, we obtain the
correct central charges and also the cutoff dependence of
the entropy as a function of scale.

Results IV D and IV E demonstrate two potential appli-
cations of using a wavelet-based multiscale representation
as a form of compression, where some function on a system
with 2"X modes can be approximated by applying that
function to a reduced state of X coarse scale modes
obtained from an n-level wavelet transform.

In the case of result IV D, we show that in a fermionic
QFT this wavelet compression technique can be used to
identify a phase transition, evident in a decrease in
fidelity overlap between ground states adjacent in some
parameter space (here, mass). Given that the fast wavelet
transform (FWT) has an efficient classical implementa-
tion that scales with O(Nlog(N)), where N is the
dimension of the vector space, this technique holds
promise for approximating the value of a many-body
observable that might otherwise be prohibitively difficult
to observe directly due to experimental, computational, or
other constraints.

Finally, result IV E demonstrates that, for a bosonic QFT,
wavelet compression qualitatively captures the physics of
the mutual information between isolated subsystems,
including identification of a phase transition.

The use of higher-order wavelet basis functions results in
more desirable mathematical properties, such as increased
accuracy of approximations using a small number of
modes, and well-defined higher-order derivatives, at the
cost of moderately increased computational complexity. As
noted in Beylkin and Keiser [32] (page 179), the error
incurred by the wavelet discretization method on a second-
order differential equation described by a Laplacian is
O((Ax)*) where Ax = 27 and k is the number of scales
in the multiresolution analysis. We can extrapolate this
point to the bosonic field theory for an O(272%) error
scaling, and to the fermionic field theory (arises from a
first-order equation) to find an error scaling of O(27%%).
This suggests that we have a strategy for reducing error in

the discretization that is not simply increasing the number
of scales k, i.e., reducing the size of the length cutoff. We
may also reduce error by increasing the value of K. Note
however that increasing K results in a corresponding
computational cost since the number of nonzero bands
in the associated wavelet transform scales as 2/C.

In this paper we have mostly used a uniform wavelet
basis with either periodic or antiperiodic boundary con-
ditions. This conforms to the usual application of the
discrete wavelet transform with periodic/antiperiodic
signal extension modes in numerical signal processing.
In the case of Sec. IV B, the application of open boundaries
corresponds to the absence of a signal extension, which is
sufficient for the calculation of bulk entanglement since this
property is sensitive primarily to the underlying topology of
the space. However, when studying open or nonperiodic
systems with essential physics at the boundaries, for
example, symmetry-protected topological phases [33],
then a careful consideration of the wavelet representation
of that theory at the boundaries is necessary. For an
overview of boundary wavelet construction, see Mallat
[21] (pages 322-328).

VI. CONCLUSION

We have demonstrated the utility of wavelet analysis
when describing quantities such as entanglement in
fermionic and bosonic QFTs. Specifically, the scale
dependence of various quantities such as subsystem
entropy and correlations emerge simply by fixing a
wavelet basis, unlike, for example, tensor network repre-
sentations, where generally the elements of the tensors
must be obtained by numerical optimization. We have
additionally shown that wavelets provide a way to com-
press quantum states in a way that enables the calculation
of quantum informational quantities on a very few number
of modes. Such a result could be useful in experimental
probes of quantum simulations of QFTs where measuring
observables over an extensive number of modes is costly
Or error prone.

Wavelet analyses have potential in more general QFT
simulation algorithms, and are already showing promise in
algorithms for ground state generation with spatial inho-
mogeneities [23]. By showing that cutoff-dependent results
like those of Calabrese and Cardy [1] appear directly as a
function of an input scale parameter in wavelet-based
representations of QFT, we bolster the case for wavelet-
based representations as a key tool of analysis for the
physics of quantum fields.
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APPENDIX: EXPRESSIONS FOR FERMIONIC
CONVARIANCE MATRIX

1. General solution in wavelet scale basis

The Hamiltonian for the Ising model field theory in the
continuous case is

N 1 N 3
=3 / dx[ET ()iY 0.8 (x) + modT (VZe(x)], (A1)
where 1Y = (), Z=(}") and the fermionic field

operators are &(x) = (5()), &(x) = (¢ (x) &(x)), with
the anticommutation relation {&(x),¢"(x)} = 8(x — x').
Discretising the continuous Hamiltonian into 2"X 1%
=/ dxsf x)¢(x)
and {7, 7 f,} = 8, gives the discrete Hamiltonian in the
scale-n basis

scale modes 7, = (” ) where 7, = rf

IV 1 2K-2 . ~ .
0335 s milz]. a0
0 Li=—2K+2

where I is the Daubechies wavelet index and A;l)

AE)} +; 1s the first derivative operator in the base scale
[scale-0 as per Eq. (12)] and is
when —2K +2 <j<2K -2.

Note that A commutes with the total fermionic parity

nonzero only

operator J = [, (1 —2#}#,), and in order to have trans-
lational invariance on the even parity sector, application of
antiperiodic boundary conditions requires 7y, = —7,. In
practice this means that the upper-right and lower-left
corner terms in the matrix A(l) will be the negative of
those along the corresponding main diagonals.

This Hamiltonian can be expressed in terms of
uncoupled modes 7}; in the usual diagonal form as follows:

b (io-)

keS

(A3)

where § = {1,3,...,V — 1} due to the antiperiodic boun-
dary conditions. The ground state |G) is defined by
fix|G) = 0, from which follow the uncoupled correlations

(i) = <’A7/Tﬁz/> = (ﬁZﬁk/> =0, and <7A7kﬁ]t/> = O

The uncoupled modes 7, are related to the original
fermionic modes 7, via a pair of transforms. The original
modes are related to the momenta modes by the usual
Fourier transform p, = \/—ZV ! #,e27K/V_The momenta
modes are related to the uncoupled modes by way

of the Bogoliubov transform ﬁk:ukf)k—i—ika)ik,

where = —(mg + wi)/y/ (mo + @)* + 43,

g/ (mo+ @)* + ¢, @ = /m3+q3 (w, are the

eigenvalues of the Hamiltonian) and ¢, =2 2-5'2

Vi =

AEI) sin == 2”’k The combined transform can be expressed

in the form.
u, V-1 ) i’Uk V-1 )
A Tk ?.feaﬂkf/V 4k ?.T elZﬂ.’kf/V. (A4)
> i

Introduce the Majorana scale modes b, = (Z;‘l)) with

bro= ZA’%S) = o+ by = l;z(f”?;lS) = —i(#, — #}), such

that {8f’5,gf/ﬁ/} =264 00,,. The Hamiltonian trans-

forms to

A | y=lr 2K ()3

A = 32 O[ 22; 2bf1XAj beyj+mobsYbe|. (AS)
=0 Lji=—2K+

That u, = u_; and v, = —v_; follows from the proper-
ties of the Bogoliubov transform. Furthermore introduce 6,
such that u;, = cos,, v, = sin0;, and so

el V-1
;Ik + f]ik _ Z bf 0612ﬂkf/V
—16& V-1
A=Al Z b eIV, (A6)
l;f,O _ i e~i0k ('//k 4 '7 ) —iZﬂkf/V’
14 keS
~ 1 .
bey = Vi —ie % (7 — ﬁik)eﬂz”kf/ V. (A7)
keS

Noting that §_; = arctan (v_; /u_;) = arctan (—vy/uy) =
—0;, the correlations can now be computed directly:

( l;f_o l;f,'0> _ 1 Z e-i(01+0,) g=i2m(ke+K ¢") |V

kk'eS
x (A + 20 (e +774)
=0y _y
= 0,0 (A8)
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<l;f Ol;f” _ E o= (0:=0y) g=i2n(kE+K'¢') /V

k KeS
< (e + 75 ) (e = 7))
==b;

— E e—219Ae—12ﬂ(f—t")k/V
kES

(A9)

Similarly <1;f,1[;f',1> =6y, and <1;f,11;f’,0> :—<1;f,01;f’,1>-
The covariance matrix I' defined as (b, by ) =
8005 +1l5rpp in the basis |0)|f),0 €{0,1}
therefore

I = { 0 Fm] (A10)
o t0 0 — _(FOI)T 0 s
Fglﬂ —— Ze—Zlﬁke—ﬁn(f rf”)k/V (Al 1)
Vis
with 6 = arctan—F— and ¢, =2) 47
mo+\/m +qk
(1) s 27jk
A7 sin =
2. Zero-mass limit
Consider the zero-mass limit mg — 0:
hmOQk = lim0 arctan— 2k
"o " mo + \/mg + q;
— —Zsen
~ T2 gngy
z  kes
- {4 ] L (A12)
-4 kesSy

where S; is the lower half of momenta modes

Sp:{3.3....% and S, is the wupper half
Sy:{%L. 53, ... 251} The covariance matrix is then
n}nll Fglﬂ - __ {Ze—lzn (=) V
0 kes,
B Ze‘iz”(f—f’)k/v}. (A13)
keSy
Let { = e—i”(f—f/)/V, then
i
Jim 0l = =548+

i
hm (CZFI/”// _ l—glﬂ) — _V [_Z_: + CV+1 + CV—H _ CZV-H]»
(A15)
o1 _ _i 1 —in(t—¢") _
nll(l]lllol"f A (2e 2) (Al6)
-2 !
_ {Vsin(n(f—f’)/v) £ —¢" odd . (A17)
0 ¢ — ¢ even

3. Finite mass

For finite mass, define s, = q;/mq. Then for mg > | g,/

0, = arctan <—sk/(1 +4/1+ s%)) ~—s5;/2+ O(s}), and

SO
l—*Olf, _ _Zemke—ﬁﬂ(f f’)k/\/ (Alg)
kesS

In the special case of Haar wavelets (IC = 1), Asl) = —%,

A(flil =0, and so s, = —mlosin (27k/V):
F(;lf/ _ 1 e—ﬁsm (27k/ V) —12;r(f—f’)k/V’ (Alg)

=
01 2T (L sink—(£—¢")k)

VITJOFN’ =5 | e " dk  (A20)

(A21)

1
=Jep|l——),
my

where J is the Bessel function of the first kind. Note also
that J_a(ﬁlo) = (—1)"‘]0,("%0).

For L« /| -¢'|+1,
0

AV I\« 1/ 1\
“\my)  Tla+1)\2my) — a' \2m,

1
~ a(1-In2mgya) A22
~ e
V2o ( )
And so
lim 9, ~ L ce-ertmzmer), (A23)
V=00 2z(¢ = 1¢")

Alternatively, in the limit as the number of modes
V — o0, Eq. (A11) becomes
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1

2n
: b —i(20,+(£-£")k)
limrgl, =~ A el dk (A24)
:L</”e—i(zek+<f—ﬂ)k)dk+/”ei(zek+(f—ﬂ)k)dk>
2w 0 0
(A25)
1 T
= —/ cos (20, + (¢ — £ )k)dk, (A26)
7 Jo

where, as before, 0, = arctan (—qk/ (mo +\/m3 + qﬁ))

and g, has been redefined to g, =2 Z]Zfl_z Aﬁ.l) sin (jk).

Letting 6 = arctan(Ay), Ay = —q;/ (mo +\/mg + CI%>,

this can be further simplified to
. 2 o Ak
‘}glor(}_'ﬂ = _;/o TA%(AI{ cos((¢ = ¢")k)

+sin (£ = £)k))dk (A27)

—4 [52 Bysin (¢ — £)k)dk, ¢ — ¢ odd
-2 0”/2 Cicos ((¢ =k)dk, ¢—1¢ even
A A2
Bi=—"ts.  Ci= (A28)
1+ Ay 1+ A2

In the special case of Haar wavelets (K = 1), Agl) = — %

A(flgl =0, and so g, = —sin (27k/V). The above then
simplifies to

g, S k(mg + \/m} + sin® k) (A29)
T sin k + (mgy + /m3 + sin? k)?’

sin? k

T sin ke + (mg + /m3 + sin® k)%

C (A30)
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