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Clustering is one of the most frequent problems in many domains, in particular, in particle physics where
jet reconstruction is central in experimental analyses. Jet clustering at the CERN’s Large Hadron Collider
(LHC) is computationally expensive and the difficulty of this task will increase with the upcoming High-
Luminosity LHC (HL-LHC). In this paper, we study the case in which quantum computing algorithms
might improve jet clustering by considering two novel quantum algorithms which may speed up the
classical jet clustering algorithms. The first one is a quantum subroutine to compute a Minkowski-based
distance between two data points, whereas the second one consists of a quantum circuit to track the
maximum into a list of unsorted data. The latter algorithm could be of value beyond particle physics, for
instance in statistics. When one or both of these algorithms are implemented into the classical versions of
well-known clustering algorithms (K-means, affinity propagation, and kT -jet) we obtain efficiencies
comparable to those of their classical counterparts. Even more, exponential speed-up could be achieved, in
the first two algorithms, in data dimensionality and data length when the distance algorithm or the
maximum searching algorithm are applied.
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I. INTRODUCTION

Quantum computing devices, which are based on the
laws of quantum mechanics, offer the possibility to effi-
ciently solve specific problems that become very complex
or even unreachable for classical computers since they scale
either exponentially or superpolynomially. Algorithms
used in quantum computers [1] exploit the quantum
principles of superposition and entanglement to clearly
manifest a speed-up advantage over the classical counter-
part algorithms. Two examples of these quantum algo-
rithms are the well-known cases of Grover’s database
querying [2] and Shor’s factoring of integers into primes
[3]. These two quantum methods shown, for first time in
the 1990s, a clear potential advantage over their corre-
sponding classical analogs. In the past recent years, we
have witnessed an impressively fast development of quan-
tum computing algorithms going from optimization prob-
lems such as portfolios in fintech [4], applications in
quantum chemistry [5], nuclear physics and Monte Carlo
simulation [6–8], combinatorial optimization [9], to state
diagonalization [10,11].

Very recently, quantum algorithms have started to be
applied in solving problems which appear in high-energy
particle physics1 (HEP). The data already taken at the
CERN’s Large Hadron Collider (LHC) and its upcoming
Run 3 (which is scheduled to start in the spring of 2022)
demand intense data analysis routines and very precise
theoretical predictions [13] which are computationally very
expensive. This situation will be even more challenging in
the posterior high-luminosity phase of the LHC (HL-LHC)
[14] and the planned future colliders [15–17]. Recent
applications of quantum algorithms to HEP cover diverse
subareas such as jet clustering [18–20], jet quenching [21],
determination of parton densities [22], simulation of par-
ton showers [23–25], heavy-ion collisions [26], quantum
machine learning [27–34], lattice gauge theories [35–38]
and multiloop Feynman integrals [39,40].
In the present paper we address the problem of clustering

and jet reconstruction from collision data, which is a non-
trivial and computationally expensive task, as it often
involves performing optimizations over potentially large
numbers of final-state particles. To give a rough idea of
how demanding this activity is, the state-of-the-art algo-
rithm in jet clustering needs few months to clusterize all
the particles generated in the data of interest that is pro-
duced at the LHC in just one year [41]. Moreover, with the
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1For a recent review on the applications of quantum computing
to data analysis in HEP we refer the reader to Ref. [12] and
references therein.
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upcoming HL-LHC, the number of events will be up to
an order of magnitude more than in earlier runs [42] and
also the pile-up (simultaneous proton-proton collisions
per bunch crossing) will increase by a factor of 5 [43].
Therefore, the state-of-the-art algorithm will require
roughly 50 times the computational time needed now.
So we would be talking about a few tens of years for
processing the data of interest generated in just a year. This
evidences the necessity of developing fast and effective jet
clustering algorithms.
With this in mind, we consider the possibility of using

quantum algorithms to improve the velocity in jet identi-
fication. Here we focus on three well-known classical
algorithms: the K-means clustering [44,45], the affinity
propagation (AP) algorithm [46], and the kT-jet clustering
method in all its variants [47–51]. We propose the corre-
sponding quantum versions of the precedents algorithms:
quantum K-means clustering, quantum AP-algorithm and
quantum kT-based algorithms.
Clustering is one of the most frequent classic problems

in machine learning and computational geometry. It is a
major data analysis tool used in such domains as marketing
research, data mining, bioinformatics, image processing,
pattern recognition and also in HEP. The popular K-means
formulation [44,45], which is a method of vector quantiza-
tion originally proposed for signal processing, involves the
partition of n observations into K clusters in which each
observation belongs to the cluster with the nearest mean
(cluster center or cluster centroid), serving as a prototype of
the cluster. Solving this problem exactly is NP-hard2 (non-
deterministic polynomial-time hardness), even with just two
clusters [52]. Forty years ago, Lloyd [53] proposed a local
search solution that is still very widely used today. Usually
referred to simply as K-means, Lloyd’s algorithm begins
with K arbitrary centers, typically chosen uniformly at
random from the data points. Each point is then assigned
to the nearest center, and each center is recomputed as the
center of all points assigned to it. These two steps (assign-
ment and center calculation) are repeated until the process
stabilizes.
The improved version of the K-means method, the

K-means++ algorithm [54], initializes the K-means
algorithm by choosing random starting centers with very
specific probabilities. This strategy outperforms K-means
in terms of both accuracy and speed, often by a substantial
margin [54]. K-means is a method of cluster analysis
using a prespecified number of clusters. It requires an
advance (a priori) knowledge of K and belongs to the
group of the so-called partitional clustering algorithms.
The classical K-means algorithm has already been used in
high-energy physics in Refs. [55–58]. For example, in
Ref. [55], the use of K-means led to 25% and 40%

improvement of the top quark and W boson mass reso-
lution, respectively, compared to the kT (Durham) algo-
rithm, and reduced the systematic uncertainty in the
measured peak positions. As a drawback, K-means was
roughly three times slower than the Durham algorithm,
therefore the interest to explore potential speed ups. In
Ref. [56], the tagging performance of N-subjetiness for
boosted top quarks was improved through minimization
using a variant of K-means. The XCone jet algorithm
introduced in Ref. [57] is closely related to the traditional
K-means and its variants. Finally, K-means has been
used in Ref. [58] to identify minijets at low pT.
The AP algorithm, is a clustering method that identifies

representative examples (exemplars) within a given dataset
by exchanging messages between all data points. Points are
then grouped with their most representative exemplar to
give the final set of clusters. The AP algorithm has been
successfully applied to a wide range of problems including
face recognition, gene identification, putative exons using
microarray data [59–61] and astrophysics [62]. In high-
energy physics, it has been used to cluster replicas of parton
densities [63]. In Ref. [46], it was shown that AP might be
faster and more accurate than the K-means [44,45]
clustering algorithm in solving certain problems. The AP
algorithm is solid and well understood and the number of
clusters is not needed to be prespecified. Among its
disadvantages, the high time complexity turns out to make
it not suitable for very large datasets, and the clustering
result is typically sensitive to the parameters involved in the
AP algorithm. Our motivation in using it for jet clustering
comes from the fact that it does not need the number of
clusters to be defined beforehand.
Hierarchical clustering also known as hierarchical cluster

analysis (HCA) is also a method of cluster analysis that
seeks to build a hierarchy of clusters without having an
a priori fixed number of clusters. The kT-based algorithms
[64] belong to the hierarchical category, which needs a
linkage function that defines the distance between any two
subsets (and relies on the base distance between elements).
It is the most widely used jet clustering algorithm in the
LHC experiments.
The quantum K-means clustering algorithm was pre-

sented in Refs. [19,65] for HEP. An earlier study of the
quantum K-means can be found in Ref. [66]. Both
implementations make use of the Euclidean distance to
perform the clustering of particles. In this paper, we present
a version of the quantum K-means clustering algorithm
which is based on the definition of a Minkowskian distance
at the quantum level for the first time. Considering the case
of the quantum version of the AP algorithm, it uses the
invariant sum squared as a metric in the similarity matrix
and calculates it through a quantum subroutine with a
similar procedure as in the quantum K-means implemen-
tation. Regarding the quantum kT-based algorithms, to our
knowledge, it is the first time it has been presented in the

2NP-hard problems are not solvable in polynomial time but can
be verified in polynomial time.
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literature. In addition, the search for the maximum distance
used in our implementation is performed with a new
quantum algorithm. This new quantum method is presented
in a general way, and we comment on its reach regarding
other areas of interest. Beyond the specific application to jet
clustering, the quantum algorithms presented in this paper
are of interest to the particle physics and quantum comput-
ing communities.
This paper is organized as follows. In Sec. II we

introduce our notation and we define the Euclidean and
Minkowskian quantum distances. In Sec. III we present our
new quantum algorithm in order to search the maximum
in a set of a given number of elements. We consider
the quantum version of the K-means clustering, AP and
kT-based algorithms in Sec. IV. In Sec. V we present our
results considering the quantum simulations of these
algorithms and a proof-of-concept implementation with
Gaussian datasets as well as with simulated LHC physical
events. We also compare their performance in detail. We
discuss their differences and conceptual similarities and we
compare them with their classical counterparts. A brief
summary of our results is presented in Sec. VI.

II. QUANTUM DISTANCES

In quantum computing, it is essential to have the ability
to measure quantum entanglement between two states, as in
many cases it determines the possibility of obtaining a
quantum advantage [67]. We rely on the SwapTest method
[68] (see the Appendix for more details) in order to probe
the entanglement between two given states. The definition
of quantum distances (Euclidean distance or Minkowski
invariant sum squared) presented in this section, makes use
of the SwapTest procedure.

A. Euclidean quantum distance

We start by considering N data points or vectors in an
Euclidean d-dimensional space, fxigi¼1;…;N , which are
encoded as quantum states of the form

jxii ¼ jxij−1
Xd
μ¼1

xi;μjμi; ð1Þ

where jxij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

d
μ¼1ðxi;μÞ2

q
is the modulus of the vector

xi, and xi;μ are its components. Each vector requires n ≥
log2 d qubits to be encoded, i.e., for d ¼ 3 we need two
entangled qubits where one of its states remains free and is
not used. The Euclidean distance between two vectors xi
and xj is defined classically as

dðCÞE ðxi;xjÞ ¼ jxi − xjj; ð2Þ

where the subscript E stands for Euclidean and the super-
script C denotes that it corresponds to the classical version.

The quantum analog of Eq. (2) is obtained by using
the controlled SwapTest method. In order to define the
Euclidean quantum distance between the d-dimensional
vectors xi and xj, we entangle the corresponding associated
quantum states jxii and jxji, and define the following
subsidiary states

jψ1i ¼
1ffiffiffi
2

p ðj0; xii þ j1; xjiÞ;

jψ2i ¼
1ffiffiffiffiffiffi
Zij

p ðjxijj0i − jxjjj1iÞ; ð3Þ

where Zij ¼ jxij2 þ jxjj2 is a normalization factor and j0i
and j1i are the states of an ancillary qubit. It is also
convenient to define the swapped state jψ 0

1i

jψ 0
1i ¼

1ffiffiffi
2

p ðjxi; 0i þ jxj; 1iÞ: ð4Þ

The inner products between the quantum states defined in
Eqs. (3) and (4) are written as follows

hψ 0
1jψ2i ¼

1ffiffiffiffiffiffiffiffiffi
2Zij

p ðjxijhxij − jxjjhxjjÞ;

hψ2jψ1i ¼
1ffiffiffiffiffiffiffiffiffi
2Zij

p ðjxijjxii − jxjjjxjiÞ: ð5Þ

From where

hψ 0
1jψ2ihψ2jψ1i ¼

1

2Zij
jxi − xjj2: ð6Þ

Therefore (see Eq. (A5) in the Appendix), the Euclidean
quantum distance is

dðQÞE ðxi;xjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Zijð2PΨ3

ðj0iÞ − 1Þ
q

; ð7Þ

where the superscriptQ refers to the quantum version of the
distance dE and the subscriptΨ3 in the probability P, means
that it is considered the resulting probability of measuring
the ancillary qubit in the state j0i in the last of the three
steps in the SwapTest procedure.

B. Quantum invariant sum squared
in Minkowski space

Vectors in high-energy physics are defined in a four-
dimensional space-time with Minkowski metric. They have
the form xi ¼ ðxi;0;xiÞ, where xi;0 is the temporal compo-
nent and xi represent the three spatial components. In the
following, we assume that the dimension of the space-time
is d, where d − 1 is the number of spatial components. We
shall define the analog of the Euclidean classical distance in
the Minkowski space corresponding to the invariant sum
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squared sðCÞij , which is commonly called invariant mass
squared when vectors are particle four-momenta,

sðCÞij ¼ ðx0;i þ x0;jÞ2 − jxi þ xjj2: ð8Þ

This quantity, which is Lorentz invariant, can be used
as test distance to measure similarity between particle
momenta. It is also equivalent to the distance used in
some of the traditional jet-clustering algorithms at eþe−
colliders [69–71]. It is necessary to apply twice the
SwapTest subroutine (presented in the Appendix) for
computing the Minkowski-type distance through a quan-
tum algorithm. Once for the spatial and once for the
temporal components.
The spatial distance is computed through the procedure

explained in the previous section with a slight modification
with respect to Eq. (5) (change of sign in the term
proportional to qubit j1i)

jψ2i → jψ2i ¼
1ffiffiffiffiffiffi
Zij

p ðjxijj0i þ jxjjj1iÞ; ð9Þ

whereas the temporal distance is computed as a result of the
overlap of the following states:

jφ1i ¼ Hj0i ¼ 1ffiffiffi
2

p ðj0i þ j1iÞ;

jφ2i ¼
1ffiffiffiffiffi
Z0

p ðx0;ij0i þ x0;jj1iÞ; ð10Þ

where Z0 ¼ x20;i þ x20;j. Then, applying the SwapTest to
these states one gets the relation:

Pðj0ijtimeÞ ¼
1

2
þ 1

2
jhφ1jφ2ij2; ð11Þ

where the overlap jhφ1jφ2ij2 is trivially given by

jhφ1jφ2ij2 ¼
1

2Z0

ðx0;i þ x0;jÞ2: ð12Þ

Therefore:

ðx0;i þ x0;jÞ2 ¼ 2Z0ð2PΨ3
ðj0ijtimeÞ − 1Þ: ð13Þ

At this point, the quantum version of the invariant sum
squared follows from the combination of results from
Eq. (7) and Eq. (13):

sðQÞij ¼ 2ðZ0ð2PΨ3
ðj0ijtimeÞ− 1Þ−Zijð2PΨ3

ðj0ijspatialÞ− 1ÞÞ:
ð14Þ

The quantum circuit used to implement the invariant
sum-squared distance is shown in Fig. 1.

In the first three wires, the SwapTest is applied to the
spatial components, where we assume that the states ψ1, ψ2

have been loaded from a quantum random access memory
(qRAM) in Oðlogðd − 1ÞÞ, since the state ψ1 is encoded
in log2ðd − 1Þ qubits. On the other hand, from the fourth
wire onward, the SwapTest is applied to the temporal
components. In this case, it takes Oð1Þ, since we only have
1-dimensional qubit states.

III. QUANTUM MAXIMUM SEARCH
BY AMPLITUDE ENCODING

Finding a particular member belonging to a dataset is a
recurring problem in data analysis. This is a computationally
very expensive task. However, quantum computing offers
suitable tools to solve data query in a shorter computational
time. In particular, it is well known the quadratic speed up
exhibited byGrover’s algorithm [2]. In this paper, we present
a considerably simpler algorithm that is used exclusively to
find themaximum in a list of values. This algorithm, although
very elementary, is sufficiently accurate for the applications
that wewill present in Secs. VA andVC. To our knowledge,
it is the first time presented in the literature.
Let L½0;…; N − 1� be an unsorted list of N items.

Solving the maximum searching problem is to find the
index y such that L½y� is the maximum. The quantum
algorithm to solve that problem using amplitude encoding
proceeds in two steps:
(1) The list of N elements is encoded into a log2ðNÞ

qubits state as follows:

jΨi ¼ 1ffiffiffiffiffiffiffiffiffi
Lsum

p
XN−1

j¼0

L½j�jji; ð15Þ

whereLsum¼P
N−1
j¼0 L½j�2 is a normalization constant.

This amplitude encoding is achieved using qRAM.
(2) The final state is measured. This step is rerun several

times to reduce the statistical uncertainty. Once
done, the most repeated state gives us the maximum.

FIG. 1. Quantum circuit to obtain the invariant sum squared
between two d-dimensional vectors in Minkowski space.
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The graphical representation of the algorithm is shown in
Fig. 2, where n ¼ log2ðNÞ qubits are needed to encode a
list of N (real) elements.
The bottleneck of this procedure underlies in encoding

data into a quantum state. Assuming data is stored in a
qRAM, as would be the case on a true universal quantum
computer, encoding takes Oðlog2ðNÞÞ steps [72–79]. The
corresponding classical algorithms typically used to obtain
the minimum of an unsorted list of N items are of order
OðNÞ. Therefore, with the assumptions considered, the
improvement introduced by this quantum algorithm is
exponential.
The well-known quantum minimum searching algorithm

proposed by Dürr and Høyer [80] is Oð ffiffiffiffi
N

p Þ. After their
theoretical paper [80] the algorithm was studied and
implemented in a quantum simulator (see Ref. [81]). In
summary, previous implementations [81] of the Dürr and
Høyer algorithm suggests that it could be improved, given
the excessive number of qubits needed to implement the
method, the unviability to hard code a different oracle for
each element, the large number of shots required and (in
some cases) the poor performance obtained. This is the aim
of the new quantum maximum searching algorithm by
amplitude encoding through qRAM presented here: the
improvement of the previous enumerated challenges.
Nevertheless, the new algorithm presented in this paper

and the corresponding Dürr and Høyer quantum method
share common features that could lead to misidentification
of the respective absolute maximum and minimum. These
cases, in which the list typically presents a very low
standard deviation (or the largest/minimum values are very
close to each other) could manifest difficulties related to the

fact that the probability of measuring several candidates
would be almost identical.
Regarding the practical implementation of the quantum

algorithm presented in this paper, the results shown in
Sec. V reveal that these potential difficulties do not
manifest strongly in the context of jet clustering.
Beyond the jet clustering procedure in HEP, there are

other fields where our quantum algorithm could be of
value. For instance, in the so-called extreme value theory
(EVT) [82]. According to Gumbell 1958 [83], this par-
ticular field studies the probability distribution of the
desired data by focusing on the outliers with the ultimate
goal of being able to predict them in the future. It is
precisely in this estimation of the extreme values where our
algorithm could be useful. Since for the predictive models
historical data has to be analyzed and therefore extreme
values have to be searched in large data lists. This would
mean that our algorithm could be implemented successfully
in statistical analysis of extreme data, including actuarial
and financial sciences, meteorology, material sciences,
engineering and environmental sciences climatology, geol-
ogy, hydrology, and highway traffic analysis [84–86].

IV. QUANTUM CLUSTERING ALGORITHMS

A. K-means algorithm

K-means is an unsupervised machine learning algo-
rithm that classifies the elements of a dataset into K groups
called clusters [44,45]. The data points within each cluster
have to be as similar (near) as possible whereas the clusters
themselves have to be as different (far) as possible from
each other. The input for this algorithm is a set of N data

FIG. 2. Quantum circuit for quantum maximum searching by qRAM amplitude encoding.
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points or vectors, in d dimensions as well as the number of
clusters K, with K ≤ N, and its output is a set of K
centroids, calculated by averaging the position of the data
points corresponding to each group, thus defining K
clusters The flow chart of this algorithm is the following:
(1) K initial centroids within the data points are gen-

erated. They can be generated randomly or through a
specific method such as K-means++ [54].

(2) Each data point is assigned to its closest centroid
according to a distance that has been defined in
advance, thus the K clusters are defined. The most
commonly used distance is the Euclidean distance.

(3) Each centroid is recalculated by averaging the
associated data points.

(4) Steps 2 and 3 are repeated until all centroids stabilize
and convergence is achieved.

This K-means algorithm has a sophisticated quantum
version that differs from its classical counterpart in two
points [87]. First, the quantum K-means introduces a
quantum method to calculate the distance between data
points. Second, the quantum version also includes a
procedure for obtaining the minimum distance of each
data point with respect to the K centroids, which is
achieved by Dürr and Høyer’s algorithm [80].
In this paper, we focus on a new quantum version of the

K-means algorithm, where the calculation of distances is
made quantumly and the minimum distance of each data
point to the centroids is obtainedwith the quantummaximum
searching algorithm3 explained in Sec. III. Other quantum
versions of the K-means algorithm have been studied in
Refs. [19,65,66], where an Euclidean distance was used to
separate the particles from each other. In this paper, we
analyze for the first time an implementation of theK-means
algorithm with a Minkowski-type quantum distance, as
defined in Sec. II B.
The time complexity of this algorithm is estimated by

analyzing the time complexity of its components. The
distances that have to be calculated are OðNÞ, the search
of aminimumdistance for every data pointwith respect to the
centroids would be Oðlog KÞ, and the calculation of each
distance itself would requireOðlogðd − 1ÞÞ qubits assuming
the data is stored in a qRAM. This results in a speedup from
OðNKdÞ in the classical version toOðN log K logðd − 1ÞÞ
in our quantum version. Therefore an exponential speed-up
in the number of clusters and in the vector dimensionality
would be achieved. A quantum simulation of the quantum
K-means algorithm is presented in Sec. VA.

B. Affinity propagation algorithm

Although K-means is a successful algorithm capable of
clustering data in a satisfactory manner, it needs the number

of clusters K to be defined beforehand, which is not
typically the case in HEP applications. The affinity propa-
gation (AP) algorithm [46], which is an unsupervised
machine learning algorithm, does not need the number
of clusters as an input. AP only takes as input the data
points that have to be classified. So, let x1;…; xN be a set of
data points. Then, a function s to quantify the similarity
between points is computed. In such a way that sði; jÞ ≥
sði; kÞ if and only if xi is more similar to xj than to xk.
The most common metrics to measure the similarity is the
negative squared distance of the two points we are
comparing: sði; jÞ ¼ −jxi − xjj. The diagonal sði; iÞ of
the matrix s is especially relevant since it stores values
referred as “preferences” that are related to how likely
a particular instance is to become an exemplar, i.e., a
cluster. Most of the metrics make the diagonal sði; iÞ be
sði; iÞ ¼ 0; ∀ i ≤ N, although it can be different from 0.
Hence, on the first iteration, every element sði; iÞ is set to
the same certain value, which is typically the median
similarity of all pairs of inputs. Next, two matrices are
calculated that are related to the concept of message
exchanging between data points [46]. First, there is the
responsibility matrix R. This matrix contains the values
rði; kÞ that quantify the suitability of point k to serve as the
exemplar for point i, compared to other candidate exem-
plars for i. Then comes the availability matrix A, whose
elements aði; kÞ reflect how appropriate it would be for
point i to select point k as its exemplar, relative to the
preferences of other points for k as an exemplar. As they
have been described, both matrices could be viewed as log-
probability ratios. Then, the AP flow chart reads:
(1) The matrices R and A are initialized to zero.
(2) The responsibility matrix is computed:

rði; kÞ ¼ sði; kÞ −max
q≠k

faði; qÞ þ sði; qÞg: ð16Þ

(3) The availability matrix is computed:

aði; kÞ ¼ min

�
0; rðk; kÞ þ

X
q∉fi;kg

maxð0; rðq; iÞÞ
�

for i ≠ k; and ð17Þ

aðk; kÞ ¼
X
q≠k

maxð0; rðq; kÞ: ð18Þ

(4) Steps 2 and 3 are repeated until either the cluster
boundaries remain unchanged for several iterations,
or a predetermined number (of iterations) is reached.

Once convergence has been reached, the exemplars i.e.,
the clusters, are obtained from the final matrices as those
whose rði; iÞ þ aði; iÞ > 0. This algorithm takes OðN2Þ
steps to fill the similarity matrix, and also computing
each element takes OðdÞ, since a distance between two
d-dimensional points has to be calculated. Moreover, steps

3We may apply this algorithm for finding the minimum since
obtaining the minimum among the distances is equivalent to
obtaining the maximum of their inverses: s−1ij .
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2 and 3 are repeated a number T of times, so the final time
complexity of this algorithm is OðN2TdÞ.
Here, a quantum (hybrid) algorithm is presented which

uses the invariant sum squared as a metric in the similarity
matrix and calculates it through a quantum subroutine, as
the K-means algorithm described in the Sec. IVA. Then, a
speedup would be achieved, since computing the distances
only requires Oðlogðd − 1ÞÞ qubits. So, the quantum AP
algorithm, which is as far as we know completely original,
would have a time complexity of OðN2T logðd − 1ÞÞ.

C. Generalized kT-jet algorithm

The inclusive variant of the generalised kT-jet algorithm
is formulated as follows [64]:
(1) For each pair of partons i, j the following distance is

computed:

dij ¼ minðp2p
T;i; p

2p
T;jÞΔR2

ij=R
2; ð19Þ

with ΔR2
ij ¼ ðyi − yjÞ2 þ ðϕi − ϕjÞ2, where pT;i, yi

and ϕi are the transverse momentum (with respect to
the beam direction), rapidity and azimuth of particle
i. R is a jet-radius parameter usually taken of order 1.
For each particle i the beam distance is diB ¼ p2p

T;i.
(2) Find the minimum dmin among all the distances dij,

diB. If dmin is a dij, the particles i and j are merged
into a single particle summing their four-momenta
(this is the E-scheme recombination); if dmin is a diB
then the particle i is declared as a final jet and it is
removed from the list.

(3) Repeat from step 1 until there are no particles left.
It is noticeable that for specific values of p in Eq. (19),

the generalized kT algorithm is reduced to the algorithms:
kT (p ¼ 1), Cambridge/Aachen (p ¼ 0) and anti-kT
(p ¼ −1). As it is claimed in Ref. [88], this classical
version of the kT-jet algorithm is OðN3Þ, since the
bottleneck of the algorithm is scanning the OðN2Þ table
with all the distances dij, diB, and it has to be done N times.
Nevertheless, the FastJet algorithm is able to reduce the
complexity to OðN2Þ. It is achieved by identifying each
particle’s geometrical nearest neighbor, thereby it is not
necessary to construct a size-N2 table of dij, but only the
size-N array, diGi

, where Gi is i’s geometrical nearest
neighbor. Furthermore, this FastJet algorithm can be opti-
mized further using the so-called Voronoi diagrams achiev-
ing a reduction in the time complexity from OðN2Þ
to OðN log NÞ.
Regarding the quantum version of this algorithm, the

distance ΔR2
ij will be computed classically whereas the

minimum will be obtained through a quantum algorithm.
This is due to the fact that the speed up achieved by
obtaining the minimum here with a quantum subroutine
will be dominant. Thereby, what is to be used here is

the new algorithm to obtain the maximum of a list of
values (see Sec. III). So obtaining the minimum among
all the distances dij, diB will turn out to be obtaining
the maximum of its inverses: d−1ij , d−1iB . Actually, these
inverse distances are what will be computed directly for
each pair i, j. Since computing the distances and there-
after computing its inverses would require traversing a
vector of size N, so it would have a complexity OðN2Þ.
With that in mind one may also directly compute d−aij ,
d−aiB , with a ∈ N, to increase the separation among the
data, which makes the maximum more likely when
measuring. And this will not increase the overall time
complexity of the algorithm either. In Sec. V we compare
the results obtained when applying the algorithm with
different a values.
The quantum maximum searching algorithm presented

above could be applied to the kT-jet algorithm success-
fully because accuracy is not critical. Even if our quantum
algorithm fails to obtain the absolute maximum in one of
the multiples iterations, this could end up not affecting the
overall jet clustering process. Since an error in finding the
maximum will provoke a flip in the order in which two
particles merge, and the final result will in many cases be
independent of this permutation.
As a final remark, notice that the kT-jet quantum

algorithm would be OðN2 logðNÞÞ, since computing all
the distances takes OðN2Þ and finding the minimum
would be OðlogðNÞÞ, in comparison with the OðN3Þ that
requires its classical analog [88]. Furthermore, the quan-
tum minimum searching could also be implemented in
the FastJet algorithm of complexity OðN2Þ. In this case,
the resulting quantum algorithm would be OðN logðNÞÞ,
which is of the same order as the FastJet algorithm version
with Voronoi diagrams, which is the most efficient
clustering algorithm known to date. This quantum
FastJet algorithm has been tested in Sec. IV C with
LHC physical datasets.

V. QUANTUM SIMULATIONS

The implementation of the quantum algorithms has
been performed through the open-source IBMQ software.
In particular, the Python module Qiskit developed by
IBMQ has been used to build the quantum circuit to
calculate the invariant sum squared as described in
Sec. II B for the K-means and the AP algorithm, as
well as to build the quantum circuit for finding the
minimum distance in the K-means and the kT-jet
algorithm. Afterward, these quantum subroutines have
been introduced into their respective classical algorithm
substituting the classical part they are speeding up. The
Qiskit module serves for executing circuits on real
quantum devices. Nevertheless, in previous studies such
as [66,89], it has been found that the experimental error
associated with the quantum devices provided by IBMQ
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is not yet sufficiently small to extract significant results.
Hence, the algorithms presented here have been executed
on a quantum simulator that offers an unrestricted and
noise-free environment. A quantum implementation in an
existing quantum device taking advantage of the claimed
maximum speed-up is also not possible, as a qRAM
architecture does not exist yet. Nonetheless, the quantum
simulations in IBMQ presented in this section show a
satisfactory performance and clustering efficiencies com-
parable to those of their classical counterparts.

A. Quantum K-means with Minkowski-type distance

At this point we present our implementation of the
K-means algorithm with the invariant sum squared as a
distance as well as a maximum searching algorithm, and
compare its performance with its classical analog. To this
end, we have generated 15 Gaussian clustered datasets
of N ¼ 300 three-dimensional vectors4 with different
levels of noise and clustering using the Scikit-learn
function make_blobs, which gives us the true labels5

of the generated data. These true labels of the data
points are used to calculate the true efficiencies, εt, of the
algorithms when analyzing Gaussian datasets. The effi-
ciency εt is obtained as the ratio of the number of
particles classified by the algorithm in the same way as
the true labels to the total number of particles. We then
applied the hybrid and classical versions of the K-means
algorithm to each dataset. Note that the data we are
analyzing represent the particle four-momenta in such a
way that the three-dimensional vectors correspond to the
spatial components, while the temporal components are
calculated assuming that all particles are massless and on
shell. Results are shown in Figs. 3 and 4.
Regarding Fig. 3 one can see at a glance that both

classical and quantum versions perform the clustering in
the same way in the three-dimensional space of transverse
momentum (pT), rapidity (y), and azimuth (ϕ).
Figure 4 shows the efficiency in the reconstruction of

the clusters as a function of the standard deviations used
to generate the data, namely we check whether clustering
occurs as expected. It is evident that for small values of
the standard deviation both algorithms perform really
well, with efficiencies close to one, while for larger
values of the standard deviation (i.e., highly noisy data)
both efficiencies drop. Furthermore, we can compare the
performances of the K-means algorithm when the seed
of the centroids is chosen randomly [see Fig. 4(a)], with

(a) (b)

FIG. 3. In different colors, clusters identified after 5 iterations by the classical and quantum versions of the K-means
algorithm in a Gaussian dataset generated with a random seed and a standard deviation of 2.0 from the cluster centroids. Note
that clusterization has been performed using a Minkowski-type distance assuming that all particles are massless and on shell
and the efficiencies of both algorithms are εt ¼ 1.00. (a) Classical K-means clustering, εt ¼ 1.00. (b) Quantum K-means clustering,
εt ¼ 1.00.

4In general, it is possible to relate this generated set of three-
dimensional vectors, to a physical event at the LHC. It is enough
to consider the set of n three-dimensional vectors as massless
partons recoiling against a small number of tagged particles.

5The data generator function preassigns each data point to a
particular cluster, so by analyzing these true labels one may know
which is the correct way to cluster the data.
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respect to the case when the seed centroids are carefully
selected to be as far as possible from each other, accor-
ding to the K-means++ prescription [see Fig. 4(b)].
The random seed variant in Fig. 4(a), has a linear
decrease with respect to the standard deviation, and
the performances of classical and quantum versions are
very similar. On the other hand, the K-meansþþ
variant, Fig. 4(b), presents a different behavior. The
quantum version outperforms, in the majority of the
cases, the classical one from a standard deviation of 4
onward. Furthermore, in this variant both performances
show a dropoff from 4 standard deviations to 7, and then
a slight rise from 7 to 8. Finally, comparing both variants
it is observed that the K-meansþþ method outperforms
the random seed case for small values of the standard
deviation (< 4). However, for larger values of the
standard deviation the random seed prescription presents
higher efficiencies.
In the following, we will apply our quantum K-means

method to LHC physical events. To do so we first have
processed the data to avoid the following problem: a
negative vector −x represents the same quantum state jxi
as its positive analog x up to a global phase. This data
processing consists of rescaling the data to be analyzed in
the interval f1; 10g.6 This means every component of
every data point will be rescaled in the desired interval.
Thus, all the data points are positive now. Moreover,
when analyzing LHC physical events, we no longer have
the true labels, so we cannot calculate εt. Instead, we
define the efficiency εc, which is defined as the quotient

of the number of particles clustered in the same way
as their classical counterpart and the total number of
particles to be classified.
We consider the generation of a physical n-particle

event produced at the LHC. We use a private implemen-
tation of an n-particle (n can be of the order of tens of
thousands) phase-space event generator. This C++ code,
which is based on ROOT [90], generates n-particle events,
in which the final-state particles can be massive or
massless in any combination of each other (combination
chosen by the user). This allows the user to generate final
states in which all the particles are massless QCD partons,
massless QCD partons associated with photons, massive
vector bosons, top-quarks, etc.
The precision in the generation of the final-state event

is verified on an event-by-event basis by computing
the kinematical constraint between the initial and the
n-particle final state. The required precision7 is always
better than 10−2. Each generated event is then analyzed
with the classical versions of the kT-jet algorithms (as
implemented in FastJet [64]) and with our quantum version
of the corresponding jet algorithms.
In this paper we consider the n-particle massless

final-state production in proton-proton8 collisions at a

(a) (b) 

FIG. 4. Cluster efficiency of the K-means algorithm versus standard deviations of the data with respect to centroids. Both the
classical and quantum versions have been run on 15 datasets with standard deviations ranging from 0.5 to 7.5.(a) Random seed.
(b) K-means++ seed.

6Note that the value 0 is not included to avoid numerical and
statistical fluctuations

7If we consider all momenta of the event outgoing, the
kinematical constraint is evaluated over the resulting three-
momentum space vector. The test in the accuracy of the
kinematical constraint is performed at the highest multiplicity
in the final state. This constitutes the lowest limit for the
precision, since reducing the particle number in the final state,
the precision improves.

8Since we are considering unweighted events, our study
is not only valid for proton-proton colliders, but also for eþe−
colliders.
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centre-of-mass energy of
ffiffiffi
s

p ¼ 14 TeV. We apply the
following final-state selection cuts. We select jets with
the kT-jet algorithms according to the following parame-
ters: the minimum transverse momentum of the resulting
jets is required to be pTmin ≥ 10 GeV and with a radius
R ¼ 1. For our study, we consider n massless particles in
the final state with n ¼ 128.
The application of the quantum K-means++ method

to LHC physical events is displayed in Fig. 5. Notice that
even if we choose K ¼ 8 beforehand, one may see in
Fig. 5 that the algorithms clearly distinguish only 3 or 4
clusters (jets). There is actually a simple explanation.
Although the algorithm starts with K centroids, the
algorithm may converge to a local minimum when the
number of clusters is less than K, leaving the remaining
clusters completely empty.

In Fig. 5 one can observe graphically that both algo-
rithms classify the data in much the same way, and also the
efficiency shown by the quantum algorithm is close to one.
Therefore, the results of this quantum version using
physical data may be considered satisfactory.

B. Quantum affinity propagation algorithm

In this subsection, a simulation of the quantum AP
algorithm is presented. First, we apply this algorithm to
Gaussian datasets with different numbers of clusters,
generated with a standard deviation of 0.6. That value of
the standard deviation has been chosen arbitrarily by
convenience. The efficiencies resulted for the classical
and the quantum versions are shown in Table I. Table I
depicts that the AP classical algorithm and its quantum
counterpart clustered the low-noise Gaussian datasets
successfully.
In the following, we apply this algorithm to the

physical dataset described in Section VA, which was
preprocessed for the reasons explained in the same
section. The results obtained are shown in Fig. 6. In
Fig. 6(b) exactly the same clustering is performed as in
Fig. 6(a) (notice that the efficiency of the quantum
version is εc ¼ 1.00). Nonetheless, this algorithm only
finds 2 clusters, which differs with respect to the 3 or 4
clusters found by the K-means algorithm (see Fig. 5).
Even more, both algorithms identify correctly the most
energetic jets of the event (the blue and the orange ones)

(a) (b)

FIG. 5. A sample parton-level event generated as described in the text and clustered with the classical and the quantum version of the
K-means++ algorithm, takingK ¼ 8. (a) Classical K-means applied to LHC physical events. (b) Quantum K-means applied to LHC
physical events, εc ¼ 0.94.

TABLE I. Efficiencies of AP algorithms for Gaussian datasets
with different number of clusters.

Number of
clusters K

Efficiency
classical AP (εt)

Efficiency
quantum AP (εt)

4 1.00 0.99
5 1.00 1.00
6 0.99 0.98
7 1.00 0.98
8 0.98 0.94
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while the majority of the remaining particles are not
classified in the same way, probably because they are soft
particles.

C. Quantum kT jet algorithm

In this section, we apply the quantum version of the
kT-jet algorithm to the same LHC physical events as
described in Sec. VA in order to compare the three
clustering algorithms.
In Fig. 7 we show the performance of classical and

quantum kT jet algorithms. It depicts the jet clustering
process carried out by each one of the kT algorithm
versions, i.e., anti-kT , kT and Cambridge/Aachen. The
classical and quantum versions perform the same jet
clustering. When comparing Figs. 5, 6, and 7, one can
observe that the latter performs a cleaner clusterization with
a larger number of jets. This is a visual effect because jet
clusterization is represented graphically in 3-dimensions,
which coincides with the dimensionality of the kT metrics,
while the K-means and AP use a 4-dimensional
Minkowski distance.
To conclude this section we also analyze the efficiencies

and the number of shots required for all the quantum
versions as a function of the a parameter (see Sec. IV C).
These are shown in Table II. Table II displays that the
efficiencies of the quantum algorithms are close to one,

i.e., they classify particles almost identically to their
classical counterparts. Furthermore, it may be observed
that the larger the parameter a, the smaller the number of
shots required to achieve a successful efficiency. In this
case, we only need to increase the parameter a to the
number 5 to achieve the desired efficiencies with at most
10 shots. However, in other problems (with a larger dataset)
a parameter greater than a ¼ 5 can be used to separate the
data points and achieve the highest possible efficiency with
the smallest number of shots.

VI. CONCLUSIONS

In this paper, we have considered the quantum versions
of the well-known K-means, affinity propagation, and
kT-jet clustering algorithms. These quantum versions are
based on two novel quantum procedures. The first one is a
quantum subroutine which serves to compute distances
satisfying Minkowski metric, whereas the second one
consists of a quantum circuit to track the maximum into
a list of unsorted data.
In the case of the K-means clustering algorithm, the

quantum version is based on the standard classical
algorithm with a quantum procedure to compute dis-
tances in Minkowski space and an additional quantum
procedure to assign each particle to the nearest centroid.
We found that the K-means quantum algorithm has a

(a) (b)

FIG. 6. A sample parton-level event generated as described in the text and clustered in K ¼ 2 different clusters with the classical and
the quantum version of the AP algorithm. (a) Classical AP algorithm applied to LHC physical events. (b) Quantum AP algorithm applied
to LHC physical events, εc ¼ 1.00.
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(a) (b)

(c) (d)

(e) (f)

FIG. 7. A sample parton-level event generated as described in the text and clustered with three different kT-jets algorithms as well as its
quantum versions. (a) Classical anti-kT , p ¼ −1, R ¼ 1. (b) Quantum anti-kT , p ¼ −1, R ¼ 1, εc ¼ 0.99. (c) Classical kT , p ¼ 1, R ¼ 1.
(d) Quantum kT ,p ¼ 1,R ¼ 1, εc ¼ 0.98. (e) Classical Cam/Aachen,p ¼ 0,R ¼ 1. (f) QuantumCam/Aachen,p ¼ 0,R ¼ 1, εc ¼ 0.98.
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clustering efficiency as good as its classical counterpart
while it would show an exponential speed-up in com-
putational time in the vector dimensionality d, as well as
in the number of clusters K on a quantum device
with qRAM.
In the second place, we have considered a quantum

version of the affinity propagation method, which is an
unsupervised machine learning algorithm, where the sim-
ilarity is computed with the same quantum procedure as
in the K-means case. Thus, it would lead to an exponen-
tial speed-up regarding its classical counterpart in the
vector dimensionality d while maintaining the clustering
efficiency.
Finally, we have presented the quantum versions of the

well-known kT-jet clustering algorithms. On a true univer-
sal quantum device, the implementation of these algorithms
would exhibit an exponential speed-up in finding the
minimum distance. Therefore, while the classical version
requires OðN3Þ in computational cost, where N is the
number of particles to cluster, the quantum counterpart
would only require OðN2 logðNÞÞ. Notice that this com-
parison is performed between the classical nonoptimal
and not optimized version and its quantum analog.
Further improvements can be obtained by applying to
the quantum algorithm the geometrical nearest neighbor
optimization procedure that is also applied to FastJet. In this
way, we would obtain a quantum version of order
OðN logðNÞÞ, which is of the same order as the fully
optimal version of FastJet.
For all the clustering algorithms considered, the quantum

simulations presented in this paper show an excellent
performance and clustering efficiencies. Furthermore, the
comparison with their classical counterparts displays that
both classifications of the LHC simulated data are quite in
agreement.
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APPENDIX: CONTROLLED SwapTest

A well-known procedure for determining the entan-
glement between two quantum states is the controlled
SwapTest [68] method. This method allows us to
quantify the overlap between jψ1i and jψ2i, which
are two input general quantum states of n and m qubits
respectively such that n ≥ m (otherwise we exchange the
labels 1 and 2), by measuring an ancillary qubit. The
controlled SwapTest proceeds in three steeps starting
from the initial state

jΨ0i ¼ j0;ψ1;ψ2i; ðA1Þ

where the ancillary qubit has been initialized to j0i. In
the first step, a Hadamard (H) gate is applied to the
ancillary qubit, while the states to be probed are left
unchanged, resulting in the new state

jΨ1i ¼ ðH⊗ I⊗nþmÞjΨ0i ¼
1ffiffiffi
2

p ðj0;ψ1;ψ2iþ j1;ψ1;ψ2iÞ;

ðA2Þ

where the identity I⊗nþm acts over the jψ1i and jψ2i
states and the tensor product ⊗ is omitted in the
composed states (e.g., j0i ⊗ jψ1i ⊗ jψ2i ¼ j0;ψ1;ψ2i).
A controlled swap gate (CSWAP) is then applied to jΨ1i
where all the m qubits of jψ2i are swapped with the m
first qubits of jψ1i, leading to

jΨ2i ¼ CSWAPjΨ1i ¼
1ffiffiffi
2

p ðj0;ψ1;ψ2i þ j1;ψ2;ψ 0
1iÞ;

ðA3Þ

where ψ 0
i, is the swapped state of ψ i, i.e., a state where

the m first qubits of ψ1 have been swapped with the rest
n −m qubits. The final step consist of applying again a
Hadamard gate to the ancillary qubit

jΨ3i ¼ ðH ⊗ I⊗nþmÞjΨ2i

¼ 1

2
ðj0i ⊗ ðjψ1;ψ2i þ jψ2;ψ 0

1iÞ þ j1i
⊗ ðjψ1;ψ2i − jψ2;ψ 0

1iÞÞ: ðA4Þ

The resulting probability of measuring the ancillary
qubit in the state j0i is given by

TABLE II. Efficiencies and number of shots of the different
quantum kT-jet algorithms as a function of parameter a.

a
Efficiency
anti-kT

Shots
anti-kT

Efficiency
kT

Shots
kT

Efficiency
Cam/Aachen

Shots
Cam/Aachen

1 0.96 50 0.98 50 0.96 70
2 0.99 40 0.99 45 0.98 60
3 1.00 25 0.98 20 0.97 40
4 1.00 15 0.95 15 1.00 20
5 0.99 5 1.00 8 0.98 10
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PΨ3
ðj0iÞ ¼ jh0jΨ3ij2 ¼

1

4
jjψ1;ψ2i þ jψ2;ψ1

0ij2

¼ 1

2
þ 1

2
Re½hψ2;ψ1

0jψ1;ψ2i�

¼ 1

2
þ 1

2
hψ1

0jψ2ihψ2jψ1i; ðA5Þ

which turns out to be as follows if m ¼ n, thus
jψ 0

1i ¼ jψ1i

PΨ3
ðj0iÞ ¼ 1

2
þ 1

2
jhψ1jψ2ij2; ðA6Þ

and this provides the squared inner product between the
two states with an uncertainty of OðϵÞ after Oðϵ−2Þ
shots. The corresponding quantum circuit associated to
the SwapTest method is shown in Fig. 8.
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