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We demonstrate that measurements of the neutral-current Drell-Yan transverse momentum distribution
binned in invariant mass are sensitive to unexplored dimension-eight parameters of the Standard Model
effective field theory (SMEFT). These distributions are sensitive to four-fermion operators with additional
QCD field strength tensors. The determination of the Wilson coefficients of these operators provides a
useful diagnostic tool that distinguishes possible ultraviolet completions of the SMEFT. We study how well
these effects can be probed by current LHC data, and explore the sensitivity of the future high-luminosity
LHC (HL-LHC) to these operators. We find that the HL-LHC data has the potential to strongly probe this
sector of the SMEFT.
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I. INTRODUCTION

The Standard Model (SM) of particle physics success-
fully describes phenomena ranging from low-energy
nuclear physics to high-energy collisions. However, since
it does not contain neutrino masses nor dark matter, and
cannot explain certain observations such as the matter-
antimatter asymmetry in the Universe, undiscovered phys-
ics beyond the SM that explains these mysteries must exist.
Experiments at the Large Hadron Collider (LHC) and
elsewhere are probing the SM at the TeV scale, searching
for solutions to these outstanding problems. Since no
conclusive deviation from SM predictions has yet been
found, a major theme of current research is to understand
how heavy new physics can be indirectly probed and
constrained by available and upcoming data. This effort
helps guide searches for new physics by suggesting in what
channels measurable deviations from SM predictions may
occur given the current bounds. In the event of a discovery
it would also indicate what measurements can serve as
diagnostic tools to distinguish between different models of
new physics.
A convenient theoretical framework for investigating

indirect signatures of heavy new physics is the SM effective
field theory (SMEFT). The SMEFT is formed by adding
higher-dimensional operators to the SM Lagrangian that are
consistent with the SM gauge symmetries and formed only

from SM fields. The higher-dimensional operators in the
SMEFT are suppressed by appropriate powers of a char-
acteristic energy scale Λ below which heavy new fields are
integrated out. The SMEFT encapsulates a broad swath of
new physics models, making it easier to simultaneously
study numerous theories without focusing on details of
their ultraviolet completions that do not matter at low
energies. The use of the SMEFT framework to analyze
LHC data is similar in spirit to the use of the S and T
parameters at LEP to bound entire classes of new physics
models, and the global fitting of SMEFT parameters at the
LHC promises to provide as powerful probe of beyond the
SM theories as the global electroweak precision fit did at
LEP. Complete, nonredundant bases for the dimension-six
[1–3] and dimension-eight operators [4,5] have been
constructed. Odd-dimensional operators violate lepton
number and are not considered here. It is an ongoing
effort to analyze the numerous available data within the
SMEFT framework, primarily in partial analyses of indi-
vidual SMEFT sectors [6–29]. Recent work has been
devoted to performing a global, simultaneous fit of all
data available [30–41], and to study the interplay between
SMEFT fits and the extraction of parton distributions
from data [40,42].
Our focus in this manuscript is on semileptonic four-

fermion operators in the SMEFT. These coefficients are not
constrained by current global fits of top quark, Higgs boson
and electroweak data [38,41]. While they can be probed
by low-energy data [15], the strongest bounds come from
Drell-Yan data at the LHC. Previous results have shown
that existing Drell-Yan data is precise enough to probe
dimension-eight operators in the SMEFT [43–45]. These
works focused on measurements of the invariant mass
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distribution of the lepton pair in the Drell-Yan process.
A motivation of our paper is to demonstrate that LHC
datasets not originally intended as new physics searches
can be sensitive to unprobed regions of the SMEFT
parameter space, and therefore have unexpected sensitiv-
ity to physics beyond the SM. In particular, we focus on
the recent CMS measurement of the doubly differential
distribution of invariant mass and transverse momentum
in the Drell-Yan process [46], intended as a probe of QCD
dynamics. The measurement of transverse momentum
makes this dataset sensitive to partonic processes con-
taining emission of gluons. These gluons can either be
radiated from external legs, or directly from some heavy
state that carries QCD color. In this second case they
match to semileptonic four-fermion operators with an
additional QCD field-strength tensor. Such operators first
appear at dimension eight in the SMEFT and are uncon-
strained by other datasets.
To illustrate our results we focus on a representative

example in which only operators containing right-handed
fields have nonzeroWilson coefficients. In this scenario our
parameter space consists of three categories of operators:
a dimension-six four-fermion operator, two momentum-
dependent dimension-eight operators that grow with energy
and that have been considered in previous work [43,44],
and a single CP-even semileptonic four-fermion operator
with a gluon field-strength tensor that we henceforth label
a gluonic operator. We show that a joint measurement
of invariant mass and transverse momentum allows the
gluonic operator to be probed independently of the other
operators, as it has a distinct dependence on transverse
momentum. We stress that the determination of Wilson
coefficients for all three operator categories provides a
useful diagnostic tool that distinguishes possible ultraviolet
(UV) completions of the SMEFT. Although our primary
interest is in the bottom-up analysis of the possible SMEFT
parameter space, we consider the matching of example Z0
and vector leptoquark states to this sector of the SMEFT,
and show that they lead to very different patterns of Wilson
coefficients for these three operator categories. Although
current LHC data provides only weak constraints on the
gluonic operator, we study the potential of the high-
luminosity LHC (HL-LHC) to probe these effects, and
find that significant bounds on all three categories of effects
can be obtained. We encourage this measurement to be
performed again as larger LHC datasets become available.
Our paper is organized as follows. We review in Sec. II

details of the SMEFT needed for our analysis. In Sec. III we
study the matching of example UV states onto the four-
fermion sector of the SMEFT. Our emphasis in this section
is to show that very different patterns of Wilson coefficients
can be obtained from different UV states, motivating the
measurement of all possible operator types. In Sec. IV we
show that the doubly differential distribution in invariant
mass and transverse momentum can simultaneously probe

both the regular and gluonic semileptonic four-fermion
operators. We perform fits to the current data in Sec. V,
and to simulated HL-LHC data in Sec. VI. We conclude
in Sec. VII.

II. REVIEW OF THE SMEFT

We review in this section aspects of the SMEFT relevant
for our analysis of the Drell-Yan process. The SMEFT is an
effective field theory extension of the SM that includes
terms suppressed by an energy scale Λ. Beyond this scale
the ultraviolet completion of the EFT becomes important,
and new particles beyond the SM appear. In our study we
keep terms through dimension eight in the 1=Λ expansion,
and ignore operators of odd dimension which violate lepton
number. Our Lagrangian becomes

L ¼ LSM þ 1

Λ2

X
i

Cð6Þ
i Oð6Þ

i þ 1

Λ4

X
i

Cð8Þ
i Oð8Þ

i þ � � � ; ð1Þ

where the ellipsis denotes operators of higher dimensions.
The Wilson coefficients defined above are dimensionless.
Cross sections computed through Oð1=Λ4Þ will have
contributions from the square of dimension-six operators,
as well as interferences between dimension-eight operators
and the SM.
The categories of operators contributing to the Drell-Yan

process through dimension eight were extensively cata-
loged in Ref. [44]. At the dimension-six level three
categories of operators contribute: corrections to the
three-point vertices of gauge bosons with fermions, four-
fermion operators, and dipole operators coupling fermions
to gauge bosons. The vertex corrections lead to effects that
scale with energy as Oðv2=Λ2Þ, where v denotes the Higgs
vacuum expectation value. These are subleading at high
energies compared to the four-fermion operators that
scale as Oðs=Λ2Þ, and are strongly constrained by Z-pole
observables [47]. We therefore neglect these terms in our
analysis. We additionally assume minimal flavor violation
for the structure of our Wilson coefficients. This
assumption makes all dipole operators, as well as all scalar
and tensor four-fermion operators, proportional to SM
Yukawa couplings. These couplings are small for the
processes considered here, and can be safely neglected.
This leaves us with only vectorlike four-fermion operators
contributing at dimension six. The contributing terms are
summarized below in Table I. q and l denote left-handed
quark and lepton doublets, while u, d and e denote right-
handed singlets for the up quarks, down quarks and leptons,
respectively. τI denote the SU(2) Pauli matrices.
Several classes of operators contribute at the dimension-

eight level. Considering first the leading-order four-fermion
process, we again have corrections to the ff̄V vertices,
four-fermion operators with Higgs insertions, and four-
fermion operators with derivative insertions. The first two
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categories of operators were shown in Ref. [44] to be
negligible for reasonable values of the Wilson coefficients,
consistent with their energy scaling: Oðv4=Λ4Þ for the first
category and Oðsv2=Λ4Þ for the second. The four-fermion
operators with derivative insertions scale as Oðs=Λ4Þ and
are non-negligible. They are shown in Table II. We note that
the type-II operators lead to novel angular dependence [43],
but vanish upon integration over angles up to small
corrections due to acceptance cuts [44]. While we discuss
them when matching specific UVexamples to the SMEFT,
we do not consider them in our numerical analysis since the
distributions considered here show little sensitivity to these
effects. A proposal for a series of angular measurements to
probe these terms was given in [43,48].
In our study we will consider the transverse momentum

spectrum in Drell-Yan. In this case we also need to consider
dimension-eight operators with a gluon field strength
inserted. The possible operators of this form were enu-
merated in Refs. [4,5]. We organize them according to their
CP transformation properties in Table III. These trans-
formation rules can be obtained using results from any
standard QFT text, or from studying the structure of an
explicit amplitude calculation. Since the CP-odd operators

do not interfere with the tree-level SM amplitudes we do
not consider them in this study.

III. EXAMPLE UV MODELS

Our primary interest in this paper is the study of the
SMEFT from the bottom up, without reference to explicit
UV models. Without further experimental guidance as to
the form of new physics it is important to fully explore the
possible parameter space without the introduction of
theoretical biases. Another motivation of our work is to
determine what particular experimental datasets, in this
case the measurement of the Drell-Yan transverse momen-
tum spectrum at high invariant mass, can teach us about
different sectors of the SMEFT. However, we do wish to
demonstrate how the operators enumerated in Sec. II can be
obtained from explicit UVexamples. In particular this study
will show that the dimension-eight effects can serve as a
useful diagnostic tool to distinguish between different UV
states. We will study only example heavy particles here,
and briefly mention how they can be embedded into full
UV models. More detailed examples of the matching of full
UV models to the dimension-eight level are discussed in
the literature [49,50]. In our numerical studies wewill focus
on the example of all-singlet fermion operators. We
consider two UV examples that can lead the operators of
interest here: a Z0 and a vector leptoquark.

A. Right-handed Z0 model

We first study a Z0 boson coupled to SM singlets. The
Lagrangian for this state is given by

LZ0 ¼ −
1

4
Z0μνZ0

μν þ
M2

Z0

2
− gZ0

X
f

gfRψ̄fγ
μPRψfZ0

μ: ð2Þ

Here, gfR denotes the charge of fermion f under the U(1)
gauge group, while gZ0 is an overall coupling strength of the
Z0 that is extracted from the charges. Although it is not our

TABLE II. Dimension-eight two-derivative four-fermion oper-
ators that contribute to the Drell-Yan process. The type-I
operators affect inclusive invariant mass and transverse momen-
tum distributions, while the type-II operators affect only angular
distributions and vanish when integrated inclusively over angles.
The parentheses in the superscripts denote symmetrization over

the enclosed indices, while Dν

↔ ¼ D⃗ν − D⃖ν.

Type I Type II

Oð1Þ
l2q2D2

Dνðl̄γμlÞDνðq̄γμqÞ Oð2Þ
l2q2D2 ðl̄γðμDνÞ

↔

lÞðq̄γμðDνÞ
↔

qÞ
Oð3Þ

l2q2D2
Dνðl̄γμτIlÞDνðq̄γμτIqÞ Oð4Þ

l2q2D2 ðl̄τIγðμDνÞ
↔

lÞðq̄τIγμðDνÞ
↔

qÞ
Oð1Þ

e2u2D2
DνðēγμeÞDνðūγμuÞ Oð2Þ

e2u2D2 ðēγðμDνÞ
↔

eÞðūγμðDνÞ
↔

uÞ
Oð1Þ

e2d2D2
DνðēγμeÞDνðd̄γμdÞ Oð2Þ

e2d2D2 ðēγðμDνÞ
↔

eÞðd̄γμðDνÞ
↔

dÞ
Oð1Þ

l2u2D2
Dνðl̄γμlÞDνðūγμuÞ Oð2Þ

l2u2D2 ðl̄γðμDνÞ
↔

lÞðūγμðDνÞ
↔

uÞ
Oð1Þ

l2d2D2
Dνðl̄γμlÞDνðd̄γμdÞ Oð2Þ

l2d2D2 ðl̄γðμDνÞ
↔

lÞðd̄γμðDνÞ
↔

dÞ
Oð1Þ

q2e2D2
Dνðq̄γμqÞDνðēγμeÞ Oð2Þ

q2e2D2 ðēγðμDνÞ
↔

eÞðq̄γμðDνÞ
↔

qÞ

TABLE I. Dimension-six four-fermion operators contributing
to Drell-Yan at leading order in the coupling constants.

Oð1Þ
lq

ðl̄γμlÞðq̄γμqÞ Olu ðl̄γμlÞðūγμuÞ
Oð3Þ

lq
ðl̄γμτIlÞðq̄γμτIlqÞ Old ðl̄γμlÞðd̄γμdÞ

Oeu ðēγμeÞðūγμuÞ Oqe ðq̄γμqÞðēγμeÞ
Oed ðēγμeÞðd̄γμdÞ

TABLE III. Dimension-eight four-fermion operators with a
gluon field that contribute to the Drell-Yan transverse momentum
spectrum, organized according to their CP transformation proper-
ties. G̃ denotes the dual field-strength tensor.

CP even CP odd

Oð1Þ
l2q2G̃

ðl̄γμlÞðq̄γνTAqÞG̃A
μν Oð1Þ

l2q2G
ðl̄γμlÞðq̄γνTAqÞGA

μν

Oð2Þ
l2q2G̃

ðl̄τIγμlÞðq̄τIγνTAqÞG̃A
μν Oð2Þ

l2q2G
ðl̄τIγμlÞðq̄τIγνTAqÞGA

μν

Oe2u2G̃ ðēγμeÞðūγνTAuÞG̃A
μν Oe2u2G ðēγμeÞðūγνTAuÞGA

μν

Oe2d2G̃ ðēγμeÞðd̄γνTAdÞG̃A
μν Oe2d2G ðēγμeÞðd̄γνTAdÞGA

μν

Ol2u2G̃ ðl̄γμlÞðūγνTAuÞG̃A
μν Ol2u2G ðl̄γμlÞðūγνTAuÞGA

μν

Ol2d2G̃ ðl̄γμlÞðd̄γνTAdÞG̃A
μν Ol2d2G ðl̄γμlÞðd̄γνTAdÞGA

μν

Oq2e2G̃ ðēγμeÞðq̄γνTAqÞG̃A
μν Oq2e2G ðēγμeÞðq̄γνTAqÞGA

μν
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intent here to discuss full UV models we note that this state
can be embedded into an anomaly-free U(1) gauge theory
with additional fermionic matter that can be taken heavy, in
which cases the charges gfR are fixed [51]. To determine
the Wilson coefficients this Lagrangian leads to for the
operators introduced in Sec. II we compute the process

u1ū2 → l3l̄4, to fix Ceu and Cð1Þ
e2u2D2 . We also compute

u1ū2 → l3l̄4g5 to fix Ce2u2G̃. A straightforward calculation
of the amplitude expanded in the limit s ≪ M2

Z0 , where
s ¼ ðp1 þ p2Þ2 is the usual partonic Mandelstam invariant,
leads to

MZ0 ðu1ū2 → l3 l̄4Þ

¼ −g2Z0g
q
Rg

e
R

�
1

M2
Z0
þ s
M4

Z0
þ � � �

�
ū3γμPRv4v̄2γμPRu1:

ð3Þ

From this we can read off the Wilson coefficients:

Ceu

Λ2
¼ −

g2Z0guRg
e
R

M2
Z0

;

Cð1Þ
e2u2D2

Λ4
¼ −

g2Z0guRg
e
R

M4
Z0

: ð4Þ

An identical matching calculation for the down-quark

channel fixes Ced and Cð1Þ
e2d2D2 . For simplicity, in the rest

of this work we neglect these down-quark Wilson coef-
ficients, and focus on the up-quark sector. We note that
upon factoring out the dependence on the dimensionful
scale MZ0 the Wilson coefficients at dimension six and
dimension eight are identical in magnitude; there is no
suppression of the dimension-eight coefficient.
We now consider the process u1ū2 → l3 l̄4g5. At tree

level two diagrams contribute, with the additional gluon
radiated from either initial-state quark. In both cases there is
no hard scale in the virtual quark propagator, and the only
expansion possible is for the Z0 propagator. This indicates
that this process is completely determined by the emission
of a gluon after the insertion of either Oeu or Oe2u2D2, and
consequently

Ce2u2G̃

Λ4
¼ 0: ð5Þ

B. Vector leptoquark model

We now consider a vector leptoquark coupled to right-
handed leptons and quarks. The general Lagrangian for
such a state is given in Refs. [52,53]. We assume a
leptoquark coupled to QCD, and coupled to right-handed
up quarks and leptons, for which the Lagrangian takes
the form

LU ¼ −
1

2
Gi†

μνG
μν
i þM2

UU
i†
μ U

μ
i þ hUðψ̄ i

uγ
μPRlÞUi

μ

− igsð1 − κUÞU†
μTaUνGaμν: ð6Þ

Here, the Roman indices i, j denote color indices in the
fundamental representation. The quantity G denotes the
field strength tensor of the SM gluon field. The field
strength tensor and covariant derivatives of the leptoquark
are given by

Dik
μ ¼ ∂μδ

ij − igsT
ij
AG

A
μ ;

Gi
μν ¼ Dik

μ Uνk −Dik
ν Uμk: ð7Þ

The coupling κU is related to the magnetic moment of the
leptoquark. We note that it has been argued that complete
leptoquark models generically contain Z0 bosons as well
[54]. These lead to Wilson coefficient contributions similar
to those discussed in Sec. III A, and are not explicitly
considered here since we focus instead on the unique aspects
of the vector leptoquark. We also note that leptoquarks have
received renewed interest recently due to their possible role
in resolving outstanding flavor anomalies [54].
We compute the same partonic processes as before to

determine the Wilson coefficients. A straightforward cal-
culation of u1ū2 → l3l̄4 leads, after a Fierz rearrangement,
to the amplitude

MU ¼ h2U
M2

U
ū3γμPRv4v̄2γμPRu1

�
1þ t

M2
U
þ � � �

�
: ð8Þ

In order to match this amplitude to the operators considered
previously we have to decompose the t in the numerator

according to the contributions to the operators Oð1Þ
e2u2D2 and

Oð2Þ
e2u2D2 . Doing so we arrive at the Wilson coefficients for

the operators considered here:

Ceu

Λ2
¼ h2U

M2
U
;

Cð1Þ
e2u2D2

Λ4
¼ −

h2U
4M4

U
: ð9Þ

We note that the leptoquark also contributes to Cð2Þ
e2u2D2 ,

unlike the Z0. This is the first example of how dimension-
eight coefficients can help distinguish between models. A

nonzero Cð2Þ
e2u2D2 , which can be determined from an analysis

of the type considered in [43], would disfavor a Z0
UV model.
Another difference between the Z0 and leptoquark comes

when we consider the gluonic process u1ū2 → l3 l̄4g5.
There is a trilinear coupling UUg which means that
the gluon can be emitted from the t-channel leptoquark.
Upon expanding around large MU, this leads to a local
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contribution described by the operator Oe2u2G̃. We relegate
details of the matching calculation to Appendix A, and
simply note the result here:

Ce2u2G̃

Λ4
¼ −

h2Ugsð1 − κUÞ
2M4

U
: ð10Þ

This again illustrates our point that measurement of the
complete sector of four-fermion operators can discriminate
between UV models. Ce2u2G̃ is not induced in Z0 models,
but it is in vector leptoquark models. We note as well the
following points regarding the Wilson coefficients found in
this calculation: upon removal of the dimensionful quantity
MU the dimension-six and dimension-eight Wilson coef-
ficients are similar in size, and the coupling Ce2u2G̃ can be

larger than Cð1Þ
e2u2D2 for negative κU. We will refer to both of

these points during discussions in later sections. It has been
pointed out that positivity bounds on dimension-eight
Wilson coefficients can be derived from the underlying
principles of quantum field theory [55,56]. We note that the
simplest elastic positivity constraints do not restrict the

parameter space of the Cð1Þ
e2u2D2 and Ce2u2G̃ coefficients [48].

IV. MOTIVATION FOR THE DOUBLY
DIFFERENTIAL DRELL-YAN DISTRIBUTION

A main motivation of our work is to demonstrate that
LHC datasets not originally intended as new physics
searches can be sensitive, sometimes in novel ways, to
the SMEFT parameter space, and therefore have unex-
pected sensitivity to physics beyond the SM. As an
example, the CMS experiment has measured the lepton-
pair transverse momentum spectrum in several invariant
bins ranging up to 1 TeV [46]. Results are normalized to the
Z-peak region in order to reduce the dependence of the
measurement on systematic errors. The measurement was

performed at 13 TeV with 36.3 fb−1 of integrated lumi-
nosity. Before performing fits of this data to the SMEFT
framework to demonstrate its sensitivity we describe why
this dataset is particularly interesting to probe the set of
operators described in the previous sections. We show
below in Figs. 1–3 the ratio of SMEFT corrections to the
SM result as a function of transverse momentum for the two
highest invariant mass bins available in the measurement of
Ref. [46], turning on the three Wilson coefficients Ceu,
Ce2u2D2 , and Ce2u2G̃ separately (we drop the superscript on

Ce2u2D2 henceforth, since we do not considerCð2Þ
e2u2D2 further

in this work). The SM has been computed at next-to-
leading order (NLO) in QCD using the program MCFM [57].
We have set each Wilson coefficient to unity when making
these plots. Since the coefficient Ceu contributes first at
dimension six it shows the largest deviations from the SM
result. However, the deviation does not vary significantly
with pT . This is consistent with the structure of the
dimension-six EFT correction, which does not depend
on the momentum flow into the effective vertex. The
deviations for both Ce2u2D2 and Ce2u2G̃ increase with pT ,
consistent with the fact that the effective vertex depends on
the momentum flow. While the Ce2u2D2 deviation increases
moderately with transverse momentum, Ce2u2G̃ increases
rapidly. The EFT vertex for this operator is directly
proportional to the gluon momentum, and therefore the
pT of the lepton pair by momentum conservation. This is
the motivation for the analysis of this dataset within the
SMEFT framework: the pT distribution offers additional
sensitivity to gluonic operators not present with invariant
mass distributions alone.

V. CALCULATIONAL FRAMEWORK AND FITS
TO THE CURRENT DATA

We begin by performing a fit of the current CMS
measurement to the SMEFT framework. Although we will

FIG. 1. Ratio of the SMEFT correction assuming nonzero Ceu to the SM result as a function of pT for the upper two invariant mass
bins of the CMS measurement [46]. The results have been normalized to the Z-peak region. The a term corresponds to the linear 1=Λ2

correction while the b term corresponds to the quadratic 1=Λ4 correction.
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find that there is limited sensitivity to the gluonic
operators at this point, we find it useful to quantify the
current sensitivity and to also establish our notation for
later sections. We will for simplicity focus on operators
that contain right-handed fermions only. Possible UV
models leading to such operators were discussed in
Sec. III, where we introduced the possibility of using
Ce2u2G̃ to distinguish between them. We focus on invariant
mass bins above the Z peak, since the SMEFT-induced
corrections grow with energy. We also focus on transverse
momentum bins above 50 GeV, following the same logic
as for invariant mass, and also to avoid phase space
regions where pT resummation may play a role. This
leaves us with the eight bins shown below in Table IV. We
note that these bins are normalized by the experiment to
the Z-peak region 76 ≤ mll ≤ 106 GeV.
We now give the details of our calculational framework.

We compute the SM cross section at NLO in QCD using
the MCFM program [57]. We use the NNPDF 3.1 NLO
parton distribution functions (PDF) [58]. To compute the

PDF errors we follow the standard procedure for
Monte Carlo replica sets [58]. To estimate the error arising
from higher-order QCD corrections we set the renormal-
ization and factorization scales to the central value

μ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ll þ pTðllÞ2
q

ð11Þ

and vary them around this value in an uncorrelated way
according to

1

2
≤ μR;F=μ0 ≤ 2;

1

2
≤ μR=μF ≤ 2: ð12Þ

We find the largest variation within this range, and form a
symmetric scale uncertainty using this largest variation. We
note that this technique leads to slightly more conservative
errors than the usual approach, in which the width of the
scale variation band without symmetrization is used. We
note that the PDF uncertainties are strongly correlated

FIG. 2. Ratio of the SMEFT correction assuming nonzero Ce2u2D2 to the SM result as a function of pT for the upper two invariant mass
bins of the CMS measurement [46]. The results have been normalized to the Z-peak region.

FIG. 3. Ratio of the SMEFT correction assuming nonzero Ce2u2G̃ to the SM result as a function of pT for the upper two invariant mass
bins of the CMS measurement [46]. The results have been normalized to the Z-peak region.
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between different bins. We assume that the scale uncer-
tainties are uncorrelated between bins.
Since this data involves bins at high energies, it is

important to quantify the effect of electroweak Sudakov
corrections. We are unaware of a publicly available code
that computes the electroweak Sudakov logarithms as a
function of pT off the Z peak. To estimate the impact
of these corrections we compute the next-to-leading-
logarithmic electroweak Sudakov corrections [59] for
each invariant mass bin integrated inclusively over pT,
apply this correction to each of the pT bins for that
invariant mass, and assign half of this correction as an
additional theoretical error. The lower bin boundaries in
pT , which provide the largest contributions to each bin, do
not go above 160 GeV. For the higher two invariant mass
bins in our analysis this pT value is less than the invariant
mass. Since the Sudakov logarithms grow with the
Mandelstam variable s that enters the process, and s is
dominated by the lepton invariant mass for the reason
stated above, we believe that this is a reasonable estimate.
We note that their effect ranges from 1% to 4% as we
increase the invariant mass bin, and has little effect on the
quality of the fit to data. For the SMEFT cross section, we
work at leading order in QCD.
We use the experimental uncertainties as provided by the

CMS collaboration. These uncertainties range from 1.5% to
8.9%, increasing with both invariant mass and transverse
momentum, and contain a mix of both correlated and
uncorrelated errors. The systematic uncertainties are dom-
inant in the high invariant mass bins. We define a χ2 test

to quantify the deviation of the SMEFT cross sections
from the SM:

χ2 ¼
X# of bins

i;j

ðσSMi − σSMEFT
i ÞðσSMj − σSMEFT

j Þ
Δσ2ij

; ð13Þ

where Δσ2ij signifies the error matrix composed of both
theoretical and experimental uncertainties. We then extract
the 95% C.L. bounds of the Wilson coefficients based on χ2

fits. Before studying the SMEFT we note that the SM
furnishes an acceptable fit to the data, with a χ2 per degree
of freedom of 1.4.
We consider turning on only a single operator at a time,

turning on pairs of operators, and turning on all three.
Figure 4 shows the 95% C.L. ellipses of Ceu together with
eitherCe2u2G̃ orCe2u2D2, as well as the bounds with only one
Wilson coefficient enabled. Although the data is less
sensitive to Ce2u2G̃ than to Ce2u2D2 , the circular nature
of the ellipse in Fig. 4 indicates that Ce2u2G̃ has little
correlation with Ceu. The stretched narrow ellipse of Ceu
and Ce2u2D2 shows a strong correlation between these two
operators, with the effects of the two coefficients indis-
tinguishable with the current data.
A potential issue that must be addressed when studying

these constraints is the convergence of the EFT expansion.
As can be seen from the examples in Sec. III we have the
following rough relations between parameters in UV
models and those appearing the SMEFT:

C
Λ2

∼
g2

M2
for dimension six;

C
Λ4

∼
g2

M4
for dimension eight: ð14Þ

We want any potential resonance to lie above the scales
probed experimentally. We take this constraint to be

TABLE IV. Bins in invariant mass and transverse momentum
used in Ref. [46]. The pT values refer to bin boundaries. There is
an upper cut of 1 TeV on pT in all bins.

mll ¼ ½106; 170� GeV pT ¼ ½52; 85; 160; 250� GeV
mll ¼ ½170; 350� GeV pT ¼ ½52; 160� GeV
mll ¼ ½350; 1000� GeV pT ¼ ½52; 160� GeV

FIG. 4. 95% C.L. ellipses for the Wilson coefficients Ceu, Ce2u2G̃ and Ce2u2D2 using current CMS data. For each diagram, one
dimension-six operator and one dimension-eight operator are enabled. The blue lines denote the bounds with only one of the operators
enabled. The energy scale Λ is set to 2 TeV.
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M > 1 TeV, the highest scale probed in this data, which
translates to the bounds

ΛffiffiffiffiffiffijCjp >
1 TeV

g
for dimension six;

ΛffiffiffiffiffiffijCj4
p >

1 TeVffiffiffi
g

p for dimension eight: ð15Þ

The exact numerical value of this constraint depends on the
coupling g, and therefore on the details of the UV model.
We take the strong coupling limit g ¼ ffiffiffiffiffiffi

4π
p

, leading to the
least stringent constraint, in order to avoid ruling out
allowed parameter space. This slightly restricts the allowed
parameter space in the jointCeu; Ce2u2G̃ in Fig. 4. It does not
affect the joint Ceu; Ce2u2D2 result.
We list the 95% C.L. bounds with only one operator

enabled in Table V. We also calculate the bounds with
multiple operators by marginalizing over the couplings.
We further impose the effective scale constraint on the
marginalized bounds in the final column of this table. The
results are also listed inTableV.We observe thatCe2u2D2 has a
strong impact to the bounds onCeu, whileCe2u2G̃ onlymildly
changes this limit. Turning on Ce2u2D2 significantly weakens
theboundsonCeu, an effect alsoobservedwithLHC invariant
mass distributions in [44]. In general there is limited sensi-
tivity of this dataset to the dimension-eight coefficients with
Wilson coefficients reaching Oð100Þ still allowed.

VI. FITS TO SIMULATED HL-LHC DATA

We found in the previous section that the current data
shows little sensitivity to Ce2u2G̃. We consider next the

potential the high-luminosity LHC to probe this SMEFT
parameter space through a similar analysis. Since no data
is yet available we resort to pseudodata generated with the
NLO SM cross section. The HL-LHC pseudodata is
generated under similar conditions as the CMS measure-
ment [46]. We assume the center-of-mass energyffiffiffi
s

p ¼ 14 TeV, an integrated luminosity 3 ab−1 and a
dilepton transverse momentum cut pT ≥ 100 GeV. Since
the eventual HL-LHC binning is unknown, we consider
two possible sets of bins in the dilepton invariant mass and
transverse momentum. The binning for the dilepton invari-
ant mass mll is motivated by the simulation in [60]. For the
binning of the dilepton transverse momentum pTðllÞ, we
enforce that the relative statistical uncertainty of each bin
cannot exceed 10%. As such, we discard the highestmll bin
in [60] where 2600 ≤ mll ≤ 14000 GeV. Next, two differ-
ent binning strategies are applied: a coarse binning where
the relative statistical uncertainty of each bin should be
smaller than 5% if possible1; a fine binning where the
relative statistical uncertainty of each bin must be smaller
than 10%. We show the explicit bins used in Appendix B,
with the coarse binning shown in Table VI and the fine
binning in Table VII.
We assume that the pseudodata is affected by three

sources of experimental uncertainties: the statistical uncer-
tainty Δσstat, the uncorrelated systematic uncertainty
Δσuncorr and the fully correlated systematic uncertainty
Δσcorr. We construct the cross section of bin b using

σpseudob ¼ σSMb þ rb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δσ2stat;b þ Δσ2uncorr;b

q
þ r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δσ2corr;b

q
;

ð16Þ

where rb and r0 are random numbers generated with a
normal distribution of mean 0 and standard deviation 1.
For uncorrelated uncertainties, a separate random number
is chosen for each bin. For the correlated uncertainty,
a single random number r0 is used across all bins. We
assume the relative uncorrelated systematic uncertainty
Δσuncorr;b=σSMb ¼ 1% and the relative correlated systematic
uncertainty Δσcorr;b=σSMb ¼ 2%. These choices are consis-
tent with the current values found in the CMS measurement
[46]. We normalize the cross section to the Z-peak region
76 ≤ mll ≤ 106 GeV. We emphasize that the relative
uncorrelated uncertainty of the Z-peak region is still
assumed as 1%, but any correlated uncertainties in this
region are disregarded. The error matrix contains the
experimental uncertainties, the theoretical PDF uncertain-
ties and the scale uncertainties. The experimental part is
constructed with Δσstat, Δσuncorr and Δσcorr. The PDF and

TABLE V. 95% C.L. bounds for the Wilson coefficients Ceu,
Ce2u2G̃ and Ce2u2D2 from current CMS data. The first column
shows the bounds assuming one operator is enabled at a time. The
second column shows the bounds on a given coefficient with the
other enabled operators allowed to vary as well. The third column
shows these bounds with the dimension-eight coefficients re-
stricted according to the discussion in the main text.

Wilson
coefficient

Single
coupling Marginalized Marginalized*

Ceu and Ce2u2D2

Ceu ½−0.252; 1.61� ½−3.44; 2.37� ½−3.34; 2.33�
Cð1Þ
e2u2D2

½−6.65; 2.64� ½−90.9; 47.1� ½−83.7; 41.9�

Ceu and Ce2u2G̃
Ceu ½−0.252; 1.61� ½−0.062; 1.45� ½−0.071; 1.45�
Ce2u2G̃ ½−39.4; 177� ½−16.9; 220� ½−8.95; 197�

All three operators
Ceu ½−0.252; 1.61� ½−3.75; 2.60� ½−3.49; 2.46�
Ce2u2D2 ½−6.65; 2.64� ½−113; 57.2� ½−92.7; 42.9�
Ce2u2G̃ ½−39.4; 177� ½−6.35; 251� [3.94, 201]

1The only exception is when 2000 ≤ mll ≤ 2600 GeV, where
the largest possible pT bin is 100 ≤ pT ≤ 7000 GeV. The relative
statistical uncertainty of this bin is larger than 5%, but still smaller
than 10%.

BOUGHEZAL, HUANG, and PETRIELLO PHYS. REV. D 106, 036020 (2022)

036020-8



scale uncertainties only contain SM contributions. For each
set of random numbers rb and r0 generated, we perform a χ2

fit as described in Sec. V. Each set of random numbers
signifies one pseudoexperiment, and for each pseudoex-
periment e, a set of best-fit Wilson coefficients fCi;eg is
obtained. A total number of 1000 pseudoexperiments are
evaluated, and the average best-fit values are obtained by

0
BB@

C̄1

C̄2

..

.

1
CCA ¼

"XNexp

e¼1

ðV−1Þe
#−1

2
664X

Nexp

e¼1

ðV−1Þe

0
BB@

C̄1;e

C̄2;e

..

.

1
CCA
3
775: ð17Þ

The covariance matrix for each pseudoexperiment is
given by

ðV−1Þij ¼
1

2

∂χ2

∂Ci∂Cj
: ð18Þ

The 95% C.L. bounds on the Wilson coefficients are
extracted by0

BBBBB@

C1 − C̄1

C2 − C̄2

..

.

CN − C̄N

1
CCCCCA

T

V−1

0
BBBBB@

C1 − C̄1

C2 − C̄2

..

.

CN − C̄N

1
CCCCCA ¼ Δχ2; ð19Þ

where N is the number of Wilson coefficients. For N ¼ 1,
2, 3, Δχ2 ¼ 3.841, 5.991, 7.815, respectively. The average
inverse covariance matrix is defined as

V−1 ¼ 1

Nexp

XNexp

e¼1

ðV−1Þe: ð20Þ

We now consider fits to the pseudodata with one, two or
three Wilson coefficients enabled. Figure 5 shows the
95% C.L. bounds on Ceu and Ce2u2G̃ with either one,
two or all three operators enabled. Figure 6 shows the
95% C.L. bounds on Ceu and Ce2u2D2 . The round shape of
the ellipse in Fig. 5 and the narrow shape in Fig. 6 confirm
what we learned from the existing CMS data: there is little
correlation between Ceu and Ce2u2G̃, and a stronger corre-
lation between Ceu and Ce2u2D2 . We observe that the
inclusion of Ce2u2D2 loosens the bounds on Ceu, while
the inclusion of Ce2u2G̃ has much less impact on Ceu. This is
consistent with the previous observation that the inclusion
of transverse momentum data provides a separate handle on
the gluonic operators. We also observe that the fine binning
leads to tighter bounds than the coarse binning. The gray
area in Fig. 5 shows the region where the effective scale
constraint of the dimension-eight operator is violated, and
the EFT expansion is no longer valid. We demand the
constraint M > 3 TeV, consistent with the upper limit of
our invariant mass binning, so that the dimension-eight
Wilson coefficients must satisfy Λffiffiffiffiffi

jCj4
p > 3 TeVffiffi

g
p . We use dark

gray to indicate g ¼ ffiffiffiffiffiffi
4π

p
, a choice discussed in the

previous section.
We observe that the HL-LHC data has the potential to

measure these three couplings separately. Although some
correlation between Ceu and Ce2u2D2 remains, it is weaker
than found with the current data, and only weakens the Ceu
bounds by a factor of 2. Referring to the fine binning

FIG. 5. 95% C.L. ellipses for the Wilson coefficients Ceu and Ce2u2G̃ at the HL-LHC. The left diagram shows the bounds with the
coarse binning, while the right one shows the bounds with the fine binning. The blue lines denote the bounds with only one of the
operators enabled, the green line denotes the bounds with two operators enabled, and the orange line denotes the bounds with Ce2u2D2

also enabled. The energy scale Λ is set to 4 TeV, and the effective scale constraint is set to 3 TeV. The dark gray area shows the effective
scale constraint with g ¼ ffiffiffiffiffi

4π
p

.
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results, we observe that there is a hierarchy in the
sensitivities to these three coefficients: Ceu values of
Oð0.1Þ can be probed, Ce2u2D2 values of Oð1Þ can be
probed, while the sensitivity to Ce2u2G̃ drops to Oð10Þ.
Considering that the EFT expansion parameter is chosen as
Λ ¼ 4 TeV, these results indicate sensitivity reaching into
the multi-TeV region for all three operators. We recall that
Ce2u2G̃ can be enhanced in certain regions of leptoquark
parameter space, as discussed in Sec. III B. This indicates
that the HL-LHC doubly differential Drell-Yan data can
serve as a useful diagnostic tool for realistic UV states. We
summarize the potential of the HL-LHC by showing in
Fig. 7 the effective UV scales that can be probed for each
parameter when only a single coupling is turned on, and
when all three are turned on. We recall from Eq. (14) that
the effective scale is related to the heavy resonance mass in
the UV theory scaled by either g (for dimension six) or

ffiffiffi
g

p

(for dimension eight) as shown in Sec. V. Effective scales
approaching 10 TeV can be probed for Ceu, while sensi-
tivities reaching several TeVare possible for the dimension-
eight coefficients.

VII. CONCLUSIONS

In this paper we have studied probes of the semileptonic
four-fermion sector of the SMEFT that are possible with
neutral-current Drell-Yan measurements at the LHC. We
have extended previous studies by including dimension-
eight operators with additional gluon field-strength tensors.
These operators directly modify the high transverse
momentum region in Drell-Yan production. A motivation
for this work is a recent CMS measurement of the trans-
verse momentum distribution for the Drell-Yan process
further binned in invariant mass. Although this work was

FIG. 6. 95% C.L. ellipses for the Wilson coefficients Ceu and Ce2u2D2 at the HL-LHC. The left diagram shows the bounds with the
coarse binning, while the right one shows the bounds with the fine binning. The blue lines denote the bounds with only one of the
operators enabled, the green line denotes the bounds with two operators enabled, and the orange line denotes the bounds withCe2u2G̃ also
enabled. The energy scale Λ is set to 4 TeV, and the effective scale constraint is set to 3 TeV.

FIG. 7. 95% C.L. bounds on the effective scale of all three operators when only a single one is enabled, and when all three are
simultaneously enabled, at the HL-LHC. We recall that the effective scale is defined as Λ=

ffiffiffiffi
C

p
for dimension six and Λ=

ffiffiffiffi
C4

p
for

dimension eight.
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intended primarily as a QCD study, it has novel beyond
standard model (BSM) sensitivity as well, and provides
direct access to this previously unexplored sector of
the SMEFT.
To motivate our study we have demonstrated that

example UV models can lead to very different patterns
of Wilson coefficients for these gluonic operators; some
states generate potentially sizable Wilson coefficients for
this dimension-eight operator, while others do not generate
these operators. This ability to discriminate between differ-
ent UV completions of the SMEFT would be missed if the
SMEFT expansion was truncated at the dimension-six
level; the example models considered here would only
match to a single dimension-six operator. Measurement of
the entire suite of semileptonic four-fermion coefficients
through dimension eight can therefore help distinguish
between different models of new physics. We have con-
sidered fits of the SMEFT framework to both the current
CMS measurement and to simulated future HL-LHC data.
While the current data shows little sensitivity to the gluonic

operator, there are good prospects for probing this effect
with future data. We encourage this measurement to be
performed with future data and its BSM potential to be
further explored.
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APPENDIX A: LEPTOQUARK MATCHING

In this Appendix we study the matching of a vector
leptoquark to the SMEFT in the process u1ū2 → l3l̄4g5 in
order to determine the Wilson coefficient Ce2u2G̃. There are
three contributing diagrams, two where the gluon is emitted
from an initial quark, and one where it is emitted from the
leptoquark. The amplitudes for each diagram take the form

iM1 ¼
ih2UgsT

a
ij

t15ðt24 −M2
UÞ

�
v̄i2γμPRv4ū3γμPRu

j
1

2p1 · ϵa5
t15

− v̄i2γμPRv4ū3γμ=p5=ϵa5PRu
j
1

�

iM2 ¼ −
ih2UgsT

a
ij

t25ðt13 −M2
UÞ

�
v̄i2γμPRv4ū3γμPRu

j
1

2p2 · ϵa5
t25

− v̄i2γ
μ=ϵa5=p5PRv4ū3γμPRu

j
1

�

iM3 ¼
ih2UgsT

a
ij

ðt13 −M2
UÞðt24 −M2

UÞ
fv̄i2γμPRv4ū3γμPRu

j
1ðp1 − p2 − p3 þ p4Þ · ϵa5

þ ð1 − κUÞv̄i2γνPRv4ū3γμPRu
j
1½p5μϵ

a
5ν − p5νϵ

a
5μ�g ðA1Þ

using the Lagrangian presented in Sec. III. We note that t15 ¼ ðp1 − p5Þ2, etc. We can expand these expressions in the
large MU. The dimension-six contribution comes from the first two diagrams; the t15, t25 in the denominator make it clear
that these match to the emission of a gluon off of a dimension-six four-fermion operator. We focus here on the expansion to
dimension eight. The contribution from each diagram is

iMð8Þ
1 ¼ −

ih2UgsT
a
ij

M4
U

�
2p1 · ϵa5t24

t15
v̄i2γμPRv4ū3γμPRu

j
1 −

t24
t15

v̄i2γμPRv4ū3γμ=p5=ϵa5PRu
j
1

�

iMð8Þ
2 ¼ ih2UgsT

a
ij

M4
U

�
2p2 · ϵa5t13

t25
v̄i2γμPRv4ū3γμPRu

j
1 −

t13
t25

v̄i2γ
μ=ϵa5=p5PRv4ū3γμPRu

j
1

�

iMð8Þ
3 ¼ ih2UgsT

a
ij

M4
U

fv̄i2γμPRv4ū3γμPRu
j
1ðp1 − p2 − p3 þ p4Þ · ϵa5 þ ð1 − κUÞv̄i2γνPRv4ū3γμPRu

j
1½p5μϵ

a
5ν − p5νϵ

a
5μ�g: ðA2Þ

It is clear that the first two diagrams come from emitting a
gluon from dimension-eight four-fermion operators, and do
not match to a local operator with a gluon. This can be seen
from the t15, t25 in the denominator. The same is true for the

first term of Mð8Þ
3 . This can be determined most simply by

demanding gauge invariance: the amplitude must vanish
upon replacing ϵ5 → p5. The first two diagrams are not

invariant themselves. Only upon adding the first term of
diagram three is gauge invariance satisfied. The last term of

Mð8Þ
3 is separately gauge invariant.

This leaves the last term of Mð8Þ
3 to match to a local

dimension-eight operator qq̄ll̄g. To simplify this we apply
the following Fierz identity:
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v̄i2γ
νPRv4ū3γμPRu

j
1

¼ 1

2
f−gμνgρσ þ gμρgνσ þ gμσgνρ − iϵμνρσg

× v̄i2γ
σPRu

j
1ū3γ

ρPRv4: ðA3Þ

Only the antisymmetric term survives when we plug this

into the amplitude, leaving us with

iMð8Þ
local ¼

h2Uð1 − κUÞgsTa
ij

M4
U

p5μϵ
a
5νϵ

μνρσv̄i2γ
σPRu

j
1ū3γ

ρPRv4:

ðA4Þ

This matches to the local dimension-eight operator

ēγμeūγνTauG̃a
μν ðA5Þ

with the Wilson coefficient:

Ce2u2G̃ ¼ −
h2Uð1 − κUÞgs

2M4
U

: ðA6Þ

APPENDIX B: HL-LHC BINNING

We present in this Appendix the two choices for HL-
LHC binning used in our analysis: a coarse binning where
the relative statistical uncertainty of each bin is smaller
than 5%, and a fine binning where the relative statistical
uncertainty of each bin must be smaller than 10%. The
coarse binning is shown in Table VI, while the fine binning
is shown in Table VII.

TABLE VI. The coarse binning where the relative statistical uncertainty of each bin should be smaller than 5% if possible. The first
column shows the ranges of the mll bins, and the second column shows the boundaries of the pT bins.

mll [GeV] pT [GeV]

300–360 [100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 250, 270, 290, 310, 330, 360, 380,
410, 440, 490, 570, 7000]

360–450 [100, 110, 120, 130, 140, 150, 160, 170, 180, 200, 230, 250, 270, 290, 310, 330, 350, 370, 400, 440, 490,
580, 7000]

450–600 [100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 210, 230, 250, 270, 290, 320, 340, 360, 390, 430, 480,
580, 7000]

600–800 [100, 110, 120, 130, 150, 170, 200, 220, 250, 290, 320, 360, 420, 520, 7000]
800–1100 [100, 110, 120, 150, 170, 200, 230, 270, 330, 430, 7000]
1100–1500 [100, 200, 290, 7000]
1500–2000 [100, 7000]
2000–2600 [100, 7000]

TABLE VII. The fine binning where the relative statistical uncertainty of each bin must be smaller than 10%. The first column shows
the ranges of the mll bins, and the second column shows the boundaries of the pT bins.

mll [GeV] pT [GeV]

300–360 [100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 250, 270, 290, 310, 330, 350, 370, 400, 420,
440, 470, 500, 530, 560, 600, 660, 760, 7000]

360–450 [100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 240, 260, 290, 310, 330, 350, 370, 390, 410, 440,
470, 500, 530, 560, 610, 670, 770, 7000]

450–600 [100, 110, 120, 130, 140, 150, 160, 190, 210, 230, 250, 270, 290, 320, 340, 370, 390, 420, 460, 490, 520, 550, 580,
620, 680, 780, 7000]

600–800 [100, 110, 120, 130, 150, 170, 200, 220, 240, 260, 280, 310, 340, 380, 410, 440, 470, 510, 550, 620, 730, 7000]
800–1100 [100, 110, 120, 140, 160, 180, 200, 220, 250, 270, 300, 330, 360, 410, 460, 540, 660, 7000]
1100–1500 [100, 130, 160, 190, 230, 270, 320, 400, 520, 7000]
1500–2000 [100, 210, 330, 7000]
2000–2600 [100, 7000]
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