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We introduce a freeze-out procedure to convert the critical fluctuations in a droplet of quark-gluon
plasma (QGP) that has, as it expanded and cooled, passed close to a posited critical point on the phase
diagram into cumulants of hadron multiplicities that can subsequently be measured. The procedure
connects the out-of-equilibrium critical fluctuations described in concert with the hydrodynamic evolution
of the droplet of QGP by extended hydrodynamics, known as Hydroþ, with the subsequent kinetic
description in terms of observable hadrons. We introduce a critical scalar isoscalar field sigma whose
fluctuations cause correlations between observed hadrons due to the couplings of the sigma field to the
hadrons via their masses. We match the QGP fluctuations obtained by solving the Hydroþ equations
describing the evolution of critical fluctuations before freeze-out to the correlations of the sigma field.
In turn, these are imprinted onto correlations and fluctuations in the multiplicity of hadrons, most
importantly protons, after freeze-out via the generalization of the familiar half-century-old Cooper-Frye
freeze-out prescription which we introduce. The proposed framework allows us to study the effects of
critical slowing down and the consequent deviation of the observable predictions from equilibrium
expectations quantitatively. We also quantify the suppression of cumulants due to conservation of baryon
number. We demonstrate the procedure in practice by freezing out a Hydroþ simulation in an azimuthally
symmetric and boost invariant background that includes radial flow discussed in Rajagopal et al. [Phys.
Rev. D 102, 094025 (2020)].
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I. INTRODUCTION

Understanding the physics of strongly interacting matter
in extreme conditions and mapping the phase diagram of
QCD has been a major goal of theoretical and experimental
efforts from high-energy heavy-ion collisions to neutron
star mergers [1–3]. One possible central feature of the
phase diagram of quantum chromodynamics (QCD)—a
QCD critical point at the baryon chemical potential μB
above which the crossover via which cooling quark-gluon
plasma (QGP) becomes ordinary hadronic matter becomes
a first order phase transition—still remains a theoretical
conjecture. The challenge of its discovery is being taken up
by the current Beam Energy Scan (BES) program at the
Relativistic Heavy Ion Collider (RHIC) at Brookhaven
National Laboratory as well as at planned facilities

worldwide. The intriguing hints observed in the first phase
of the BES [1,4], in particular the deviations of certain
measures of fluctuations from their noncritical baseline,
deviations that vary nonmonotonically as a function of

ffiffiffi
s

p
,

motivate the ongoing experimental efforts in its second,
higher statistics, phase (BES II). BES II data has been taken
by the STAR collaboration over the course of 2019-2021 in
AuAu collisions at a sequence of collision energies, which
corresponds to a scan in μB [5,6]. The data is currently
being analyzed and we look forward with considerable
anticipation to learning much from these measurements.
On the theory side, there have been many studies of the

observable consequences of critical fluctuations in heavy
ion collisions that produce a droplet of QGP that cool close
to a critical point upon making the (greatly simplifying, but
unrealistic) assumption that these fluctuations stay in
equilibrium [3,5–13]. A part of the essence of critical
fluctuations is that since their correlation length, ξ, grows
near the critical point, the typical timescale for their
evolution grows also—this is referred to as critical slowing
down. This means that in the rapidly cooling droplets of
QGP produced in heavy ion collisions critical fluctuations
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cannot be described by their equilibrium values slaved to
hydrodynamic fields. Fortunately, much progress has also
been achieved in describing the nonequilibrium evolution
of hydrodynamic fluctuations [14–43], whose distinctive
behavior at long wavelengths is governed by the univer-
sality of critical behavior and thus can serve as a signature
of the critical point. The challenge which still needs to be
addressed is establishing a connection between the hydro-
dynamic fluid—including its critical fluctuations—and the
observed particle yields—and their fluctuations. This work
is aimed at closing this gap.
Traditionally one thinks of hydrodynamics as a deter-

ministic theory of fluid evolution. The hydrodynamic
variables are the local fluid velocity uðxÞ as well as average
densities of conserved quantities like the energy density ε
and the baryon number density n, or, equivalently, the
corresponding conjugate variables such as the temperature
T and chemical potentials (like the chemical potential for
baryon number, μB) characterizing the local equilibrium
conditions. These variables evolve deterministically
according to hydrodynamic equations. Heavy ion collision
experiments, of course, do not measure these hydrody-
namic or thermodynamic quantities directly. The conver-
sion to experimentally observable hadron multiplicities
occurs at freeze-out—a point in the evolution of the
expanding cooling droplet of matter where the density
becomes low enough that the kinetic description in terms of
a hadron gas becomes applicable and the scattering rates for
processes that modify the particle species (i.e., chemical)
composition is negligible. At that point one can convert the
hydrodynamic variables into particle yields and momentum
distributions, i.e., spectra. The well-known procedure
known as Cooper-Frye freeze-out [44] maps the local fluid
velocity uðxÞ and hydrodynamic fields such as TðxÞ and
μBðxÞ on the freeze-out surface (a hypersurface in space-
time) to a simplified hadronic description in terms of
kinetic variables of an expanding ideal resonance gas of
hadrons, namely a gas of particles with momenta distrib-
uted according to boosted Fermi-Dirac or Bose-Einstein
distributions. The interactions are encoded in resonances,
which later decay, modifying the distributions ultimately
measured by experiment. The average densities of con-
served quantities such as energy or baryon number are
guaranteed to match as long as the hadron resonance gas
provides a good description of the equation of state,
including the relations between T and μB and ε and n in
that regime.
The Cooper-Frye freeze-out procedure [44] has been

successfully employed in the description of high energy
heavy-ion collision data for more than four decades to
describe average particle yields and spectra. The procedure
ensures that the event-averaged baryon number and energy-
momentum densities are matched between the hydrody-
namic and kinetic theory descriptions. At sufficiently high
collision energies
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p
, the data from many experiments are

in reasonable agreement with this description across a
broad kinematic regime. The Cooper-Frye framework,
however, does not describe fluctuations in either the
hydrodynamic fluid or the kinetic theory particles. Our
goal is to extend the Cooper-Frye procedure to the
description of critical fluctuations. Such a description is
crucial in the special case of heavy ion collisions that freeze
out in the vicinity of a critical point. In this case, fluctua-
tions are both enhanced and of considerable interest,
since it is via detecting critical fluctuations that we hope
to discern the presence of a critical point [5,6]. These
fluctuations are due to thermal noise and their magnitude,
or more importantly, their correlations are a sensitive
signature of the proximity of a thermodynamic singularity,
such as the critical point. Obviously, we cannot expect to
match these critical fluctuations using a free gas of hadrons.
The effect of the critical correlations can be captured by a
critical scalar field, which we call σ—a collective mode
which becomes “soft,” long-range correlated and slow, at
the critical point, justifying its treatment as a collective
field. One can then match the singular part of fluctuations
of hydrodynamic variables by the fluctuation of the field σ
which, via its coupling to the observed particles, causes
their masses to fluctuate at the time of freeze-out and
consequently yields observable fluctuations in particle
multiplicities.
In this paper we show how to implement such a

procedure and demonstrate its application in a model of
the hydrodynamic evolution near the critical point already
studied in Ref. [14].
Our paper is organized as follows. In the remainder of

this Introduction, in Sec. I A we review some foundational
aspects of critical fluctuations in equilibrium and of critical
slowing down. We also introduce the Hydroþ equations
that describe the dynamics of out-of-equilibrium fluctua-
tions near a critical point. In Sec. I B we review the standard
Cooper-Frye freeze-out procedure that neglects fluctua-
tions. With this groundwork in place, in Sec. II, we derive
and explain our freeze-out procedure that extends the
Cooper-Frye approach so as to match the critical fluctua-
tions just before freeze-out, as described by Hydroþ, to
observable fluctuations in particle multiplicities just after.
In Sec. III we apply our freeze-out procedure to the Bjorken
scenario: a fluid that is undergoing boost-invariant longi-
tudinal expansion, meaning that it is cooling, but that is
translation-invariant and at rest in the transverse directions.
In this simplified setting, we are able to push much of the
calculation through analytically and in so doing gain
intuition and elucidate general features that arise again
in the next section. In Sec. IV we illustrate the use of the
freeze-out procedure that we have introduced and fully
exercise its salient features by obtaining the two-point
correlations of particle multiplicities from the more realistic
Hydroþ simulation of Ref. [14] in which the fluid is
boost invariant and azimuthally symmetric but is finite in
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transverse extent and thus exhibits radial flow. We conclude
in Sec. V with a summary of the main qualitative lessons
that we draw from our results of Secs. III and IVas well as a
look ahead at important next steps.

A. Equilibrium fluctuations, critical slowing down,
and evolution equations for out-of-equilibrium

fluctuations near a critical point

Thermodynamic equilibrium systems near a critical
point are characterized by a certain singular behavior
of fluctuations. Due to the divergence of the correlation
length ξ the overall magnitude of fluctuations diverges in
the thermodynamic limit V ≫ ξ3, where V is the system
volume, as ξ → ∞. The universality of critical behavior
means that the leading singular behavior of the magnitude
of fluctuations with ξ is insensitive to microscopic details of
the physical system for different systems in the same
universality class. The QCD critical point falls in the static
universality class of the 3D Ising model [45–48], with a
single scalar field becoming soft and slow at the critical
point.1 In QCD, the critical field is a linear combination of
scalar operators such as the chiral condensate hq̄qi and the
baryon number density. This means, in particular, that, in
equilibrium near the critical point, the kth cumulants of the
baryon number density, which are related to the derivatives
of pressure P with respect to baryon chemical potential μB
at fixed temperature T, diverge as certain powers of ξ [8]:

hδnkBieq ¼
�
T
V

�
k−1 ∂kPðT; μBÞ

∂μkB
∼ ξ

kð5−ηÞ
2

−3; ð1Þ

where η ≈ 0.04 is the well-known Ising critical exponent
[47,48]. The smallness of this exponent makes it negligible
in practical applications we will be concerned with here. In
this paper we shall only be concerned with the variance of
particle multiplicities, which is to say we shall only need
Eq. (1) with k ¼ 2.
The singular behavior of fluctuations predicted by

Eq. (1) points the way toward finding signatures of the
presence of a critical point in the phase diagram of QCD in
heavy-ion collision experiments. As the location of the
freeze-out point on the QCD phase diagram, which moves
in response to experimentally varying a parameter such as
center of mass collision energy

ffiffiffi
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, approaches and then

passes the location of the QCD critical point, the magnitude
and higher cumulants of fluctuations should show a
characteristic nonmonotonic dependence. There are, how-
ever, two essential and quite nontrivial steps which must be
taken in order to connect the elegant scaling equation (1) to
experimental observables.

First, due to the fact that the droplet of matter produced
in a heavy-ion collision expands and cools rapidly it is far
from being a static thermodynamic system, meaning that
nonequilibrium effects on fluctuations must be considered
[15,16]; as the temperature of the fluid drops the fluctua-
tions in the fluid do not have time to develop in the way that
they would in equilibrium. Furthermore, critical slowing
down is an essential feature of physics near a critical point,
meaning that the time needed for fluctuations to grow
becomes longer the closer one gets to a critical point. This
means that nonequilibrium effects on fluctuations become
even more important near a critical point than elsewhere.
The description of such nonequilibrium effects is provided
by an extension of hydrodynamics known as Hydroþ [18]
that we shall review briefly in this section.
The second necessary advance arises due to the fact that

experimental measurements do not access hydrodynamic
variables, such as the densities of conserved quantities
arising in Eq. (1), directly. Therefore, a connection needs to
be made between such quantities, and their fluctuations,
and the experimentally observable multiplicities of protons,
pions, etc. In this paper we propose how this can be done
via introducing a scalar field σ in the kinetic theory
description of the observable hadrons whose fluctuations
can be determined via matching to the critical fluctuations
of hydrodynamic quantities, and illustrate it using simpli-
fied, but realistic, examples.
Hydroþ extends hydrodynamics by considering the

evolution of fluctuations of hydrodynamic variables toward
their local thermodynamic equilibrium distribution. These
fluctuations are characterized by correlation functions. In
this paper, both for simplicity and as a necessary first step,
we shall focus on the magnitude of fluctuations and defer
the discussion of non-Gaussianity measures to future work.
The magnitude of the fluctuations is characterized by a
two-point correlation function. Near the critical point
the slowest hydrodynamic mode is the entropy per baryon
ŝ≡ s=n and its fluctuations relax on the (parametrically)
longest times scale [18]. Thus the nonequilibrium dynamics
is most important in this mode. Furthermore, near the
critical point, we can imagine mapping the QCD energy
density ε and baryon number density n to the 3D Ising
entropy density S and Ising magnetization density M or,
equivalently, mapping the QCD phase diagram variables T
and μB to the 3D Ising variables r (reduced Ising model
temperature) and h (magnetic field) as set up explicitly in
Refs. [51,52], and then determining which combination of
ε and n corresponds to the most singular Ising model
fluctuations. In practice, though, any combination of S and
M has the same leading singular behavior in powers of the
correlation length ξ as long as it involves fluctuations ofM,
and a similar statement applies to any combination of ε and
n as long as it involves fluctuations of the entropy per
baryon ŝ≡ s=n [18,20]. It therefore suffices to use the
fluctuations of ŝ, which also happens to be the slowest

1In a world with massless up and down quarks and, con-
sequently, three massless pion fields, there would be four soft
fields at the critical point, which would then be in the Oð4Þ
universality class. See Refs. [45,46,49,50] for further discussion.
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hydrodynamic mode. We shall match these fluctuations to
the leading singular contribution to the fluctuations of the σ
field that we shall introduce in Sec. II.
In the local rest frame of the fluid, the equal-time

correlation function of ŝ can be expressed in terms of its
Wigner transform:

ϕQðxÞ≡
Z
Δx

hδŝðxþÞδŝðx−ÞieiQ·Δx: ð2Þ

Here x ¼ ðxþ þ x−Þ=2 and Δx ¼ xþ − x− ¼ ð0;ΔxÞ in the
local rest frame of the fluid at the point x. The relaxation of
this quantity to its local equilibrium value ϕ̄Q is governed
by the equation [18]:

uðxÞ · ∂ϕQðxÞ ¼ −ΓðQÞðϕQðxÞ − ϕ̄QðxÞÞ: ð3Þ

For the purposes of this paper, the equilibrium ϕ̄Q can be
adequately approximated by the Ornstein-Zernike ansatz2

ϕ̄Q ≈
cp=n2

1þ ðQξÞ2 ; ð4Þ

where Q≡ jQj and cp and n are the heat capacity at
constant pressure and the baryon number density.
The Q-dependent relaxation rate, Γ, controls how slowly

ϕQðxÞ evolves toward its equilibrium value ϕ̄Q via Eq. (3).
The leading critical behavior of Γ depends on the dynamic
universality class. For the QCD critical point [53], it is the
one of model H (liquid-gas critical point) in Halperin and
Hohenberg’s classification [54], where the linear combi-
nation of δε and δn given by δŝ ¼ ðδε − ðw=nÞδnÞ=ðTnÞ is
the slow, diffusive, scalar mode nonlinearly coupled to
diffusive (transverse) momentum modes. At the same level
of approximation as in Eq. (4), the leading critical behavior
of the relaxation rate in model H is given by [55]:

ΓðQÞ ¼ 2D0ξ0
ξ3

KðQξÞ; ð5Þ

where ξ0 is a typical value of the correlation length well
away from the critical point, D0 is a constant with the
dimensions of length that we shall take as a free parameter,
and

KðxÞ≡ 3

4
½1þ x2 þ ðx3 − x−1Þ arctan x�: ð6Þ

As we shall demonstrate, the most important property of the
critical mode relaxation rate given by Eqs. (5)–(6) is that it
vanishes as Q → 0:

ΓðQÞ ¼ 2D0ξ0
ξ

Q2 þOðQ4Þ: ð7Þ

This reflects the fact that ϕQ measures the fluctuation of
hydrodynamic variables, which are conserved. The relax-
ation rate of the 2-point correlator of fluctuations is twice
the rate of the relaxation of the corresponding mode,
whose relaxation is also diffusive with a diffusion coef-
ficient given by

D ¼ D0

ξ0
ξ

ð8Þ

which vanishes at the critical point, where ξ → ∞. We can
think of the parameter D0 which we introduced as the
diffusion constant at some reference point well away from
the critical point. A crude estimate forD0 could be obtained
by using [54,55]

D0 ≈
T

6πηξ0
≈

2T
3sðTÞξ0

; ð9Þ

where η and s are the shear viscosity and entropy density,
respectively, and where we have taken η ≈ s=ð4πÞ. Taking
sðTÞ ¼ s̃T3 with s̃ ≈ 6 as is reasonable around T ¼ Tc
[56,57] and choosing Tc ¼ 160 MeV and ξ0 ¼ 0.5 fm as
we shall throughout, we estimate a critical contribution
of D0 ≈ 0.3 fm. Assuming that the noncritical contribution
to D0 is not too large, we expect D0 > 0.3 fm but not
D0 ≫ 0.3 fm. To bracket the uncertainty in this estimate,
we shall typically illustrate our results by plotting the
results obtained from calculations employing D0¼ 0.25 fm
and D0 ¼ 1 fm.
To elucidate and emphasize the importance of the

conservation laws in the dynamics of fluctuations and,
consequently, in the experimental signatures of the critical
point we shall compare and contrast results obtained using
the model H universality class with those which one would
have obtained using model A universality class. In the
model A universality class, the critical order parameter is
not a conserved quantity and the relaxation rate of the
fluctuations does not vanish as Q → 0. To the same level of
approximation as we have been using so far we can utilize
the following ansatz for the relaxation rate in model A:

ΓðQÞ ¼ Γ0ξ
2
0

ξ2
ð1þ ðQξÞ2Þ; ðmodel AÞ; ð10Þ

where Γ0 is a constant with the dimensions of rate (1=time)
which we can think of as the relaxation rate at a point
well away from the critical point where the correlation
length is ξ0.
As the fireball expands, its temperature T drops and the

point characterizing the thermodynamic state of the system
on the QCD phase diagram moves past the critical point.

2While the value of ϕ̄Q at Q ¼ 0 in Eq. (3) is determined by
thermodynamics, the dependence on Q in this expression is an
often used approximation which takes into account the nonzero
correlation length. A more sophisticated form can be found in
Ref. [18].
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The correlation length ξ reaches the maximum value ξmax
(see Fig. 1) which depends on how close the trajectory is to
the critical point. The parameter ξmax is controlled exper-
imentally by varying the collision energy

ffiffiffi
s

p
[5,6] since

collisions with lower
ffiffiffi
s

p
produce droplets of matter

containing a greater excess in the number of quarks over
the number of antiquarks, meaning a higher baryon
chemical potential μB. Lowering the collision energy in
steps, as in the BES program at RHIC, moves the entire
expansion trajectory in Fig. 1, including the freeze-out
point, rightward in steps.
The fluctuation evolution equation (3) depends on

the correlation length ξ via the dependence of ϕ̄Q
and ΓðQÞ on ξ. In a realistic hydrodynamic simulation,
ξ will be determined upon solving the hydrodynamic
equations with a given equation of state. Since our
purpose in this paper is to describe how to freeze out
critical fluctuations in hydrodynamics and translate them
into observables based on particle multiplicity fluctua-
tions, we shall instead, for simplicity, choose a plausible
parametrization of ξ along the expansion trajectory in
terms of T.
Specifically, we shall adopt the parametrization of the

correlation length along the trajectory of the expanding
fireball on the QCD phase diagram in terms of temperature
used previously in Ref. [14]:�
ξ

ξ0

�
−4

¼ tanh2
�
T − Tc

ΔT

��
1 −

�
ξmax

ξ0

�
−4
�
þ
�
ξmax

ξ0

�
−4
;

ð11Þ

with ΔT ¼ Tc=5. We shall not attempt to refine this para-
metrization in this work. Alternate parametrizations for the
correlation length are discussed, e.g., in Refs. [10,30]. The
ansatz in Eq. (11) reflects themain features of ξðTÞ relevant
for this work—the correlation length reaches a maximum
value ξmax at a certain temperature Tc (close to the

crossover temperature) and then decreases as the system
continues to cool on its way to freeze-out—as shown in
Fig. 2 which is howwe imagine ξvarying along a trajectory
like that illustrated by the green dashed line in Fig. 1. In our
explicit calculations, we shall choose Tc ¼ 160 MeV
and ξ0 ¼ 0.5 fm.

B. Cooper-Frye freeze-out

Hydrodynamics describes hot and dense QCD matter
created in heavy-ion collisions in terms of densities of
conserved quantities such as energy or baryon charge, or
the corresponding thermodynamic variables such as tem-
perature T or baryochemical potential μB, as well as the
local fluid velocity. Heavy ion collision experiments, on the
other hand, measure multiplicities and momentum distri-
butions of particles which emerge from the expanding and
cooling droplet of fluid as it breaks up into hadrons. These
multiplicities and distributions are well described by a
procedure which we shall summarize below known as
Cooper-Frye freeze-out [44] which starts from the output of
a hydrodynamic simulation.
In the traditional Cooper-Frye procedure, the macro-

scopic evolution of the conserved charges and fluid
velocity field obtained from a hydrodynamic calculation
are converted into a microscopic description in terms of
particles in a hadron resonance gas model. The freeze-out
hypersurface where this switching is done is determined
based on some thermodynamic condition for e.g., fixed
temperature or energy density. The averages of the con-
served densities are equated to those of a hadron resonance
gas of particles via the Cooper-Frye formula. Let dSμ be the
differential element pointing along the normal vector to
the freeze-out surface. The mean multiplicity of particle
species A (hNAi) according to the Cooper-Frye formula is
given by,

critical point

FIG. 1. Schematic view of a trajectory followed by an expand-
ing cooling droplet of matter produced in a heavy ion collision on
the QCD phase diagram in the vicinity of the critical point. FIG. 2. The dependence of the correlation length ξ on temper-

ature for different trajectories of the fireball expansion (i.e.,
different ξmax).
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hNAi ¼ dA

Z
dSμ

Z
DpApμhfAðx; pÞi: ð12Þ

Here, dA is the degeneracy of particle species A and DpA is
the Lorentz invariant measure:

DpA ¼ 2
d4p
ð2πÞ3 δðp

2 −m2
AÞθðp0Þ: ð13Þ

hfAi is the momentum-dependent particle distribution
function which is either taken to be Fermi-Dirac or
Bose-Einstein based on the spin and statistics of hadron
species A. For simplicity, throughout this paper we shall
ignore the spin and statistics and consider hfAi to be the
Boltzmann distribution

hfAðx; pÞi ¼ exp

�
−p · uðxÞ þ μAðxÞ

TðxÞ
�
; ð14Þ

where TðxÞ, μAðxÞ and uðxÞ are the temperature, the
chemical potential of species A, and the local fluid velocity
at a point x on the freeze-out hypersurface. For mesons,
μA ¼ 0, while for baryons/antibaryons μA ¼ �μB, respec-
tively. In addition to ignoring the modification of the
distribution function due to spin and statistics, we also
ignore further modifications to hfAi due to viscous effects
[58–63] in this preliminary study.
In Sec. II we shall turn to describing our extension of the

Cooper-Frye procedure that will enable us to translate the
output of a Hydroþ simulation, with traditional hydro-
dynamic variables as well as fluctuations described by
ϕQðxÞ, into particles in a way that faithfully turns the
critical fluctuations in the fluid into fluctuations and
correlations of the hadrons. We are pursuing this goal
within what is often referred to as a deterministic frame-
work for describing the fluctuations: Hydroþ adds new
deterministic equations of motion to the equations of
hydrodynamics, equations that describe the evolution of
quantities that characterize the fluctuations starting with
ϕQðxÞ that describes their two-point correlation function.
Fluctuations can also be described stochastically, where
one evolves an ensemble of configurations each with its
own realization of the fluctuations [32–42]. It would be
natural in a stochastic description to analyze freeze-out via
extending the Cooper-Frye procedure in a manner that
follows an analogous logic to that we shall employ here, but
we leave this to future work.

II. COOPER-FRYE FREEZE-OUT FOR CRITICAL
FLUCTUATIONS

The Cooper-Frye freeze-out procedure described in
the previous section converted hydrodynamic variables
into (event) mean multiplicities. In order to describe the
signatures of the QCD critical point we need to be able to
describe also the fluctuations and correlations of these

multiplicities. We shall now describe a freeze-out pro-
cedure which extends Cooper-Frye freeze-out by connect-
ing the fluctuations of hydrodynamic variables to the
fluctuations of the particle multiplicities. We shall focus
on the fluctuations of the slowest, and thus most out of
equilibrium mode—ŝ. In Hydroþ the two point function of
this mode is given by (its Fourier transform) ϕQ. Our goal is
to connect it to the two-point correlation function of the
multiplicity fluctuation δf

fAðx; pÞ ¼ hfAðx; pÞi þ δfAðx; pÞ ð15Þ

where hfAðx; pÞi is given by Eq. (14). We shall use the
model of critical correlations which incorporates critical
fluctuations in the hadronic description via the interaction
of the hadrons with a critical σ field. Such a description of
critical fluctuations in a hadron gas has been used in
equilibrium [6,8,10–13,64–67] as well as with some out-of-
equilibrium effects included [68]. In this approach the
interaction with the σ field modifies the masses of the
hadrons, to linear order in σ, as follows:

δmA ¼ gAσ: ð16Þ

We define the value of σ as the deviation of the critical field
from its equilibrium value and thus, by definition, hσi ¼ 0.
The proportionality constant gA plays the role of the
coupling constant between the hadron species A and the
σ field. The critical contribution to the fluctuations of fA is
due to the dependence of the averaged particle distribution
function hfAi on the mass, and is given by

ðδfAðx; pÞÞσ ¼ gA
∂hfAðx; pÞi

∂mA
σðxÞ; ð17Þ

where hfAi is the Boltzmann distribution in Eq. (14). As a
result, fluctuations of the σ field translate into fluctuations
and correlations between particles, as in

hδfA1
ðx1;p1ÞδfA2

ðx2;p2Þi

¼ hfA1
ðx1;p1Þiδ1;2þgA1

gA2

∂hfA1
ðx1;p1Þi
∂mA1

∂hfA2
ðx2;p2Þi
∂mA2

× hσðx1Þσðx2Þi: ð18Þ

Since hydrodynamic variables, such as baryon density, are
expressed in terms of momentum space integrals of the
particle distribution functions, the correlation functions of
hydrodynamic variables are proportional to the correlation
functions of the σ field. This reproduces the essential
property of fluctuations at the critical point—the critical
(most singular at the critical point) contribution of all
correlation functions are proportional to the correlator of a
single critical scalar field.
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Our main focus is on the correlation functions of ŝ.
Universality of critical behavior dictates that in equilibrium
this critical contribution to this correlator should be also
proportional to the correlator of σ. In this paper we shall
also assume that this remains true out of equilibrium. This
allows us to connect the correlations of ŝ at the end of the
Hydroþ evolution to the fluctuations of σ in the kinetic
description at freeze-out and consequently to observable
fluctuations and correlations of hadron multiplicities.
The equilibrium fluctuations of the critical field are

dictated by the universality of critical behavior and are
controlled by the probability functional P ¼ expf−Ω=Tg,
where Ω½σ� the effective action (or free energy) which can
be written for small fluctuations at long wavelengths in an
expansion in powers of the field σ and its gradients around
its equilibrium value, hσi ¼ 0, as follows:

ΩðσÞ¼
Z

d3x

�ð∇σÞ2
2

þm2
σ

2
σ2þλ3

3
σ3þλ4

4
σ4þ…

�
: ð19Þ

The equilibrium two-point correlator can be then found
from Eq. (19) and is given by

hσðxþÞσðx−Þi ≈
T

4πjΔxj e
−jΔxj=ξ ð20Þ

where Δx ¼ xþ − x− and ξ≡ 1=mσ is the correlation
length of the σ-field fluctuations. As we shall only be
interested in the two-point correlator in this work and as we
are neglecting the (small) nonzero value of the critical
exponent η, we will be able to neglect the terms of order σ3

and higher in the expansion (19). The Fourier/Wigner
transform of the two-point correlator is then given by

χQ ≡
Z
Δx

e−iQ·ΔxhσðxþÞσðx−Þi ≈
Tξ2

1þ ðQξÞ2 : ð21Þ

In the approximate equalities in Eqs. (20) and (21) we
ignore loop corrections, which are known to be small in the
3D Ising universality class in which η is small.
We choose the units of length in Eq. (19) so that the value

of ξ introduced in Eqs. (19) and (20) matches the value of
the correlation length of the thermodynamic fluctuations
introduced above, in Sec. I A. The universality of the
critical behavior then dictates that the relationship between
the two-point correlators of the fluctuating soft mode in the
hydrodynamic description of the physics at the freeze-out
point and the fluctuating σ-field in the kinetic theory
description of the physics at the same point takes the
simple form

hδŝðxþÞδŝðx−Þi ¼ ZhσðxþÞσðx−Þi: ð22Þ

Equivalently, the Wigner transforms are related via the
same proportionality constant Z:

ϕ̄Q ¼ ZχQ: ð23Þ

Using Eqs. (4) and (21) we find

Z ≈
cp

Tn2ξ2
: ð24Þ

Note that, while both cp and ξ2 diverge at the critical point,
their ratio is finite in the approximation we are using.3

We shall apply the relationship in Eq. (22), or equiv-
alently in Eq. (23), to express the fluctuations of σ at freeze-
out also when these fluctuations are out of equilibrium.
Although not strictly justifiable by the universality of
critical phenomena in equilibrium, it does allow us to
match critical fluctuations at the kinetic and hydrodynamic
stage in a way which preserves the information about
important nonequilibrium effects, including the effects of
conservation laws.
We shall thus determine the correlation functions of σ at

freeze-out as follows:

hσðxÞi≡ 0 ð25aÞ

hσðxþÞσðx−Þi ¼ Z−1hδŝðxþÞδŝðx−Þi ð25bÞ

where Z is a normalization constant which can be
obtained by matching the fluctuations obtained in the
kinetic description to fluctuations (i.e., susceptibilities)
obtained from the QCD equation of state using Eq. (23).
Since in this paper our focus is entirely on developing and
exploring the implementation of the freeze-out prescription
that we introduce to describe fluctuations, we shall take the
constants Z in Eq. (25b) and gA in Eqs. (16)–(18) as given
and postpone their determination by matching a particular
QCD EoS to future work. We also note that we shall find
ways to express our results that are independent of those
unknown parameters. Note that there is a subtlety in
defining Eq. (25b) relating to the choice of frame in which
xþ and x− are at equal time; we shall discuss this in
Sec. II A.
Due to Eq. (25a), the mean number of particles is

unmodified by critical fluctuations and is given by Eq. (12).
Integrating the spatial correlations given by Eq. (18) over the
full freeze-out hypersurface and using Eq. (25b), we can
express the leading critical contribution to the correlator of
particle multiplicities NA and NB as:

3Our approximation sets the critical exponent to its mean-field
value η ¼ 0, which is a good approximation to make for a critical
point in the 3D Ising universality class where η ∼ 0.04. If one
uses a more sophisticated, non-mean-field equation of state as in,
e.g., Ref. [51], and/or more sophisticated form of ϕ̄Q and χQ as in
Ref. [18], the value of the normalization constant will never-
theless be determined by the matching equation (23), which is
more general than the approximation in which we have derived it.
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hδNAδNBiσ
¼
Z

dSμ;þ

Z
dSν;−J

μ
AðxþÞJνBðx−ÞZ−1hδŝðxþÞδŝðx−Þi

ð26Þ

JαAðx�Þ≡ gAdA

Z
DpApα ∂hfAðx�; pÞi

∂mA
ð27Þ

with dA the spin (and/or isospin) degeneracy of the particle
species A. The subscript σ in hδNAδNBiσ is there to remind
us that this is the contribution due to critical fluctuations. The
expressions (26) and (27) constitute the central result whose
consequences we shall explore over the course of the rest of
this paper by making them explicit in simplified settings.
Note that the field σ has now done its job and has now
disappeared; in (26) and (27)we have a relationship between
the critical fluctuations of hydrodynamic variable on the
right-hand side of (26) and the correlator of observable
particle multiplicities on the left-hand side.
Although we shall not go beyond two-point correlators

in our explicit explorations to come, we note with future
work in mind that a straightforward generalization of
Eq. (26) yields the form

hδNk
Aicσ ¼

Z
dSμ1…

×
Z

dSμkJ
μ1
A ðx1Þ…JμkA ðxkÞZ−k=2hŝðx1Þ…ŝðxkÞic

ð28Þ

for the critical contribution to the kth cumulant of the
multiplicity of particle species A. We have extended the
Cooper-Frye procedure in a way that will allow us to see
how the critical, i.e., most singular, contribution the two-
point correlations of ŝ translates into the variance of
observed particle multiplicities. We leave continuing
onward to higher-point correlations and non-Gaussian
cumulants for future work.
Finally, we note that the total variance of the particle

multiplicity has an additional noncritical contribution
which is usually taken as Poissonian:

hδN2
Ai ¼ hNAi þ hδN2

Aiσ: ð29Þ

There can certainly be corrections to the noncritical
contributions that we represent here by the Poisson dis-
tribution. These may arise from global charge conservation
[69,70] or initial fluctuations [71], for example, but we
shall not discuss them in this work. This work is intended
only as a prescription for freezing out the fluctuations near
the critical point that encode information about the leading
singularity.

A. Toward explicit evaluation

The extended Cooper-Frye procedure that we have
derived above involves expressions with a certain formality
to them. Noting that sometimes the devil turns out to be
found in the details, we shall now begin to take the steps
need to turn these expressions into tools that can be used in
explicit calculations.
The Wigner transform ϕQ, as defined in Eq. (2), involves

integration over the hyperplane orthogonal to the 4-vector
uðxÞ. That is, the points xþ and x− are equal-time points in
the rest frame of the fluid at point x, or Δx · uðxÞ ¼ 0
However, in general, the freeze-out surface over which the
integration in Eq. (26) is to be performed does not
necessarily have the property that the points xþ and x−
are simultaneous in the rest frame of the fluid at the point x.
While, for example, this property holds for boost-invariant
Bjorken flow, it does not hold for a flow with radial
component, such as the one considered in Ref. [14] that we
shall analyze in Sec. IV. In order to translate ϕQ into the
correlator hδŝðxþÞδŝðx−Þi in such a case one needs to be
able to evolve this correlator not only in time u · x [using
Eq. (3)] but also in time difference u · Δx. We shall show
below that because this evolution is slow (and especially
slow at the critical point) one can neglect the effect of such
evolution and can therefore nevertheless express the
unequal-time correlator of interest in terms of ϕQ.
Let us consider a small region of the freeze-out surface

around a point x that lies on the surface and let us assume
that the surface is not perpendicular to the 4-vector uðxÞ.
This means that freeze-out does not happen simultaneously
at all points in this region. Let us denote the velocity of the
frame in which this patch of the freeze-out surface is an
equal-time surface by β. (β ¼ 0 for Bjorken flow). If the
typical range of the correlator is of order l�, then the typical
value of the time difference uðxÞ · Δx ∼ βl�. The typical
scale l� can be determined by the condition that the
relaxation rate ΓðQ�Þ ∼DQ2� of the corresponding modes
Q� ¼ 1=l� is of order the expansion rate 1=τ, whereDwas
introduced in Eq. (8). That is, l� ∼

ffiffiffiffiffiffi
Dτ

p
.

The evolution of the correlator hδŝðxþÞδŝðx−Þi as a
function of the time separation u · Δx occurs with the same
rate, also of order ΓðQ�Þ. As a result, the correction to the
correlator is of order ΓðQ�Þu · Δx ∼ β

ffiffiffiffiffiffiffiffiffi
D=τ

p
. This quantity

is small already because τ is a macroscopic scale, while D
is microscopic, i.e., τ ≫ D. Furthermore, near the critical
point, D itself is vanishing: as seen in Eq. (8), it is smaller
than the microscopic scale by another factor of ξ0=ξ.
More formally, let us define a projection of the separa-

tion four-vector Δx onto the plane perpendicular to uðxÞ:

Δx⊥ ≡ Δx − ½uðxÞ · Δx�uðxÞ: ð30Þ

Then we can express the correlator hδŝðxþÞδŝðx−Þi in
Eq. (26) in terms of ϕQ defined in Eq. (2), obtaining
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hδŝðxþÞδŝðx−Þi ¼ ϕ̃ðx;Δx⊥Þ þOð
ffiffiffiffiffiffiffiffiffi
D=τ

p
Þ; ð31Þ

where the three-component vector Δx⊥ is the projection of
the four-vectorΔx onto the equal-time hyperplane orthogo-
nal to the vector uðxÞ as defined in Eq. (30) and illustrated
in Fig. 3, and ϕ̃ðx;Δx⊥Þ is the inverse Fourier (Wigner)
transform of ϕQðxÞ:

ϕ̃ðx;Δx⊥Þ≡
Z

d3Q
ð2πÞ3 e

iQ·Δx⊥ϕQðxÞ: ð32Þ

Equation (31) formalizes the qualitative argument from the
preceding paragraph.
We shall be comparing our results with what one would

obtain upon assuming the fluctuations are in equilibrium.
Up to corrections suppressed by ratios of microscopic (e.g.,
correlation length ξ) to macroscopic scales (such as hydro-
dynamic gradient scales, e.g., τ) we can replace the
correlation function in Eq. (20) with a delta function:

Z−1hδŝðxþÞδŝðx−Þi ¼ hσðxþÞσðx−Þi ¼ Tξ2δð3ÞðΔxÞ: ð33Þ
Substituting into Eq. (26) we find

hδNAδNBieqbmσ ¼
Z

dSμðxÞJμAðxÞn̂νðxÞJνBðxÞTðxÞξ2ðxÞ;

ð34Þ
where n̂ðxÞ is the unit vector along the normal on the
freeze-out hypersurface at x. This expression straightfor-
wardly generalizes existing results for equilibrium fluctua-
tions, see for example Ref. [10], to locally equilibrated
fluctuations in a (more realistic) inhomogeneous fireball.
We shall make comparisons between our full results and the
equilibrium fluctuation predictions (34) in order to high-
light the importance of nonequilibrium effects, especially
the effects due to conservation laws.

B. Ratios of observables

We shall calculate the contribution of critical fluctuations
to the variance of the particle multiplicity of species A

(we shall consider protons, A ¼ p, and pions, A ¼ π) in a
specified finite rapidity and transverse momentum accep-
tance window. To eliminate the dependence on the volume
(i.e., the transverse size) of the droplet of QGP we shall
introduce the intensive ratio

ωA ≡ hδN2
Aiσ

hNAi
; ð35Þ

which was referred to as ωA;σ in Ref. [10]. We note that ωA

depends on the choice of acceptance window. (See, e.g.,
Ref. [12].) Since this acceptance dependence is not the
main focus of the present study, while criticality and
nonequilibrium effects are, we shall often illustrate our
results by plotting the ratio

ω̃A ¼ ωA

ωnc
A
; ð36Þ

where ωnc
A is the ωA calculated upon assuming freeze-out

well away from the critical point, i.e., upon setting
ξmax ¼ ξ0. We have checked (for a few sets of parameters)
that the acceptance dependence of the numerator and
denominator in Eq. (36) is similar and, thus, largely
cancels. In contrast, the numerator ωA is strongly enhanced
by critical fluctuations (for example, in equilibrium
ω̃eqbm
A ¼ ξ2=ξ20) and is sensitive to the nonequilibrium

effects of critical slowing down, while the denominator
ωnc
A is, by construction, not affected by critical fluctuations.

Although ωA defined in Eq. (36) depends on the unknown
parameters gA and Z via the ratio gA=

ffiffiffiffi
Z

p
, all dependence

on these unknowns cancels in the ratio of ratios defined in
Eq. (36), within the approximations that we shall make.
This is a second significant benefit, and we suggest
employing ω̃A (and its generalizations to higher cumulants)
in the comparison between future theoretical calculations
and experimental measurements.
In subsequent sections, we shall compute ω̃A in two

different model hydrodynamic backgrounds. In Sec. III, we
study an analytically solvable scenario with longitudinal
boost invariance and no dependence on transverse coor-
dinates, which is to say Hydroþ in Bjorken flow. Then, in
Sec. IV we shall freeze out the numerical simulation of
Hydroþ with azimuthal symmetry, radial expansion, and
longitudinal boost invariance from Ref. [14]. Before we
conclude this section, though, we need to establish some
notation with which to describe two points on the freeze-
out hypersurface and the separation between them.

C. Establishing notation for azimuthally symmetric
boost invariant freeze-out

To specify the shape of an azimuthally symmetric boost-
invariant freeze-out surface, it is convenient to use Bjorken
coordinates defined in terms of the Cartesian coordinates
ðt; x1; x2; x3Þ in the lab frame via

FIG. 3. Geometric representation of Eq. (30). xþ and x− are on
the freeze-out surface; x is the midpoint between them. The four-
vector Δx⊥ (red) is perpendicular to the fluid four-velocity at the
point x, uðxÞ, meaning that in the local fluid rest frame it is a four-
vector with no time-component.
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t¼ τcoshη; x1 ¼ rcosφ; x2 ¼ rsinφ; x3 ¼ τ sinhη:

ð37Þ

The mutually orthogonal set of unit vectors corresponding
to each of the Bjorken coordinates can be expressed in
terms of the Cartesian coordinates as

τ̂ ¼ ðcosh η; 0; 0; sinh ηÞ ð38Þ
η̂ ¼ ðsinh η; 0; 0; cosh ηÞ ð39Þ
r̂ ¼ ð0; cosφ; sinφ; 0Þ ð40Þ
φ̂ ¼ ð0;− sinφ; cosφ; 0Þ: ð41Þ

The radial profile of a boost-invariant and azimuthally-
symmetric freeze-out surface can then be expressed in a
parametric form using an arbitrary parameter α as in
Ref. [72]

τ ¼ τfðαÞ; r ¼ rfðαÞ; ð42Þ
so that the point on the freeze-out hypersurface correspond-
ing to parameters α; η;φ is given by:

xðα; η;φÞ ¼ τfðαÞτ̂ðηÞ þ rfðαÞr̂ðφÞ: ð43Þ

Then, the volume vector normal to the freeze-out hyper-
surface can be written as d3S ¼ ndατdηrdφ where the
vector n is given by:

nðα; η;φÞ ¼ ∂x
∂α

∧ ∂x
τ∂η

∧ ∂x
r∂φ

¼ r0fðαÞτ̂ðηÞ þ τ0fðαÞr̂ðφÞ:

ð44Þ
The flow four-velocity on the freeze-out surface is given by

uðα; η;φÞ ¼ urðαÞr̂ðϕÞ þ uτðαÞτ̂ðηÞ ð45Þ
in the coordinates with which we are working.
In defining the two-point correlation function we shall

need to specify two points on the freeze-out hypersurface.
Let x� ≡ xðα�; η�;φ�Þ be any two such points on with
x≡ ðxþ þ x−Þ=2 being their midpoint and Δx≡ xþ − x−
being the separation vector between them. Let us denote
similarly τ¼ðτþþτ−Þ=2;r¼ðrþþr−Þ=2;η¼ðηþþη−Þ=2;
φ¼ðφþþφ−Þ=2 and Δτ ¼ τþ − τ−;Δr ¼ rþ − r−;Δη ¼
ηþ − η−;Δφ ¼ φþ − φ−. Then

x¼ τcosh
Δη
2
τ̂þ rcos

Δφ
2

r̂þΔτ
2
sinh

Δη
2
η̂þΔr

2
sin

Δφ
2

φ̂

ð46aÞ

Δx¼2τsinh
Δη
2
η̂þ2rsin

Δφ
2
φ̂þΔrcos

Δφ
2
r̂

þΔτcosh
Δη
2

τ̂ð46bÞ

u · Δx ¼ uτðxÞΔτ coshΔη
2

− urðxÞΔr cosΔφ
2

ð46cÞ

Δx⊥ ≡ 2τ sinh
Δη
2

η̂þ 2r sin
Δφ
2

φ̂

þ
�
−ΔτurðxÞ coshΔη

2
þ ΔruτðxÞ cosΔφ

2

�
× ðurðxÞτ̂ þ uτðxÞr̂Þ; ð46dÞ

where Δx⊥ was defined in Eq. (30). While the points xþ
and x− are on the freeze-out surface by construction, the
midpoint x, in general, is not. The displacement between
the midpoint and the freeze-out surface is, however, small
when the typical range of the correlator is much shorter
than the typical curvature radius of the freeze-out surface.
We can use an argument similar to the one preceding
Eq. (30) to simplify the calculation by neglecting the
difference between the correlator at the actual midpoint
and the correlator at the point on the freeze-out surface
given by

x≡ τfðαÞτ̂ðηÞ þ rfðαÞr̂ðφÞ ð47Þ

where α≡ ðαþ þ α−Þ=2. Henceforth, we shall use x to
denote the on-hypersurface approximation (47) to the
actual midpoint. Again, neglecting the effect of the curva-
ture and linearizing in Δη, Δφ and Δα ¼ αþ − α−, the
projection of the separation vectorΔx⊥ from Eq. (46d) onto
the hyperplane normal to the four-vector u can be approxi-
mated as

Δx⊥ ≈ n · uΔαα̂⊥ þ τfΔηη̂þ rfΔφφ̂; ð48Þ

where u is the 4-velocity of the fluid at the point x, the
vector n is defined in Eq. (44), and we have introduced a
spacelike unit vector

α̂⊥ ≡ urτ̂ þ uτr̂: ð49Þ

The vectors α̂⊥, η̂ and φ̂ form a basis in the hyperplane
perpendicular to the four-vector u given by Eq. (45) (the
equal-time hyperplane in the rest frame of the fluid at the
point x.)
With all of this notation established, we can now take a

step toward making the expression Eq. (26) for the squared
variance of themultiplicity of speciesA that we have derived
above as our central result more explicit, writing it as

hðδNAÞ2iσ ¼
Z

dαþτþdηþrþdφþ

×
Z

dα−τ−dη−r−dφ−ðn ·JAÞþðn ·JAÞ−
×Z−1ϕ̃ðx;Δx⊥Þ; ð50Þ
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whereΔx⊥ is a three-vector whose components in the α̂⊥, η̂,
φ basis are given by Eq. (48) and ðn ·JAÞ�≡nðx�Þ ·JAðx�Þ,
where n is given by Eq. (44).
The integral in Eq. (27) expressed in Bjorken coordinates

takes the form

JAðx�Þ ¼
dAmA

T

Z
ymax

ymin

dy
2π

Z
2π

0

dϕ

×
Z

pT;max

pT;min

pTdpT

ð2πÞ2 hfAðx�; pÞi
p

p · uðx�Þ
; ð51Þ

where we used Eq. (14). The Cartesian coordinates in the
lab frame of the particle four-momentum are given by

p ¼ ðmT cosh y; pT cosϕ; pT sinϕ; mT sinh yÞ ð52Þ

in terms of the particle rapidity y and transverse mass
mT ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
T þm2

p
.

III. FREEZING OUT A HYDRO+ SIMULATION
WITH BJORKEN FLOW

In this section, we apply our approach to the well-known
Bjorken scenario: a hot fluid that is undergoing idealized
boost-invariant longitudinal expansion, so that it cools as a
function of proper time, but that is translation-invariant and
at rest in the transverse directions [73]. We shall obtain
some results in this simplified scenario in analytic form,
thus allowing us to elucidate general features that we shall
observe again in a more realistic scenario with transverse
expansion in the next section.

A. Evolution of ϕQ

The Bjorken scenario implies that all thermodynamics
quantities such as the temperature, T, or the energy density,
ε, or net baryon number density, n, as well as quantities
describing the fluctuations of these conserved densities
depend only on the Bjorken proper time τ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 − z2
p

, and
are independent of the longitudinal spacetime-rapidity, η, as
well as of the transverse coordinates. Thus, the hydro-
dynamic equations reduce to ordinary differential equa-
tions for functions of τ which can be solved easily for a
given equation of state. Throughout this work, in the
Bjorken scenario of this section and in the semirealistic
scenario of the next section, we shall employ the simplified
equation of state from Ref. [14] that we summarize briefly
in Appendix A. Throughout this work, we shall further-
more assume that the dynamical backreaction of the
fluctuations on the equation of state and on the hydro-
dynamic solution is negligible. This assumption has been
tested quantitatively in different model calculations [14,30]
and is a good approximation: the effects of such back-
reaction are typically at the subpercent level. The hydro-
dynamic evolution sets in at τ ¼ τi where the temperature
TðτiÞ ¼ Ti and it continues until freeze-out at τ ¼ τf

where the temperature TðτfÞ ¼ Tf. In the Bjorken scenario
where there is no radial flow, Eq. (45) becomes the
statement that the flow velocity unit-four-vector is u ¼ τ̂
in Bjorken coordinates. The evolution equation (3) for the
fluctuation measure ϕQ then takes the form of an ordinary
differential equation:

∂τϕQ ¼ −ΓðQÞðϕQ − ϕ̄QÞ; ð53Þ

where ΓðQÞ depends on τ through ξðτÞ and is specified via
Eqs. (5), (6), and (11). Since our focus throughout is on the
effects caused by fluctuations near a critical point, for
simplicity we shall assume that the initial fluctuations are in
equilibrium, i.e.,

ϕQðτiÞ ¼ ϕ̄QjT¼Ti
: ð54Þ

This assumption could certainly be improved in the future,
but for our present purposes any choice in which the initial
fluctuations are small compared to those that develop later
will suffice. Since, in the Bjorken scenario, the temperature
depends only on τ, the unit four-vector normal to the
isothermal freeze-out hypersurface TðτfÞ ¼ Tf at a space-
time point x is given by n̂ðxÞ ¼ τ̂ðxÞ ¼ uðxÞ.
In Fig. 4 we plot ϕQ obtained by solving Eq. (53)

numerically at three values of τ. In order to highlight the
significance of the conservation laws, we compare and
contrast the results obtained with two choices of the
relaxation rate: model A where ΓðQÞ is as given in
Eq. (10) and model H (the universality class of the QCD
critical point) where ΓðQÞ is as given by Eq. (5). The most
important feature of the model H evolution of ϕQ is the
“stickiness” of the Q ¼ 0 mode: ϕ0 remains “stuck” at its
initial value, whatever that value is. If the time evolution
later takes the fluid along a trajectory that passes near a
critical point, ϕ0 remains stuck in model H whereas in
model A it evolves with time, “trying” to follow the
dynamics that would have been obtained in equilibrium.
The stickiness of ϕ0 is, obviously, a consequence of the
conservation laws in hydrodynamics, since the Q ¼ 0
mode corresponds to the fluctuations of conserved quan-
tities (volume integrals of hydrodynamic variables). This
important feature is absent in model A result which
describes the evolution of fluctuations of quantities which
are not conserved.
In Fig. 5 we show the effect of varying the parameter D0

in the model H relaxation rate (5) on the fluctuation
measure ϕQ and its inverse Fourier transform ϕ̃ðΔx⊥Þ
defined in Eq. (32) at freeze-out, after Hydroþ evolution
from τ ¼ τi to τ ¼ τf. The large Q, and correspondingly,
small Δx (defining Δx≡ jΔx⊥j) behavior of the fluctua-
tions is not affected at all, since the fluctuations at short
length scales equilibrate quickly. The characteristic Q
where the peak of ϕQ is situated shifts to smaller values
ofQ with increasingD0 because stronger diffusion tends to
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homogenize the system, including fluctuations. This can
also be seen in spatial correlator ϕ̃ becoming longer ranged.
In addition, stronger diffusion (larger D0) enhances the
effect of the critical point on the fluctuations since the
system is able to equilibrate more quickly toward the large
equilibrium fluctuation values as it passes the critical point
on its way to freeze-out. This effect results in a more
pronounced (higher) peak in ϕQ and, correspondingly, in an
enhancement of ϕ̃ at corresponding intermediate values of
Δx (of order 3 fm or so).
The conservation laws keep ϕQ stuck at Q ¼ 0, which

corresponds to keeping the integral of Δx2ϕ̃ constant. This
means that their effect in panel (b) of Fig. 5 is that if there

is a (large, critical) correlation at small Δx they produce a
corresponding compensating anticorrelation at longer Δx.
One can also show generally that a peak in ϕQ away from
Q ¼ 0 corresponds to the anticorrelation (i.e., negative
tail) in its Fourier transform ϕ̃ðΔx⊥Þ. Indeed, if there exist
a value of Q at which ϕQ > ϕ0, thenZ

d3Δxϕ̃ðΔxÞ <
Z

d3Δx cosðQ · ΔxÞϕ̃ðΔxÞ; ð55Þ

where we used the fact that ϕ̃ðΔxÞ is an even function.
Since jcosðQ · ΔxÞj ≤ 1, the inequality (55) cannot be
satisfied if ϕ̃ðΔxÞ is always positive.

(a) (b)

FIG. 4. Evolution of ϕQ as a function of Bjorken time τ, using model A and model H dynamics, corresponding to the relaxation rates
given by Eqs. (10) and (5), respectively. We have taken Γ0 ¼ 1 fm−1,D0 ¼ 1 fm and ξmax ¼ 3 fm in both panels. The three solid curves
in each figure correspond to different times τ as the boost-invariant, spatially homogeneous, Bjorken fluid is expanding and cooling in
the vicinity of a critical point. The temperatures are given by T ¼ 235, 160 and 140 MeV, for times τ ¼ 1, 4.6 and 8.8 fm, respectively.
The dashed curves represent the equilibrium values ϕ̄Q for the corresponding temperatures (times). We have initialized the
hydrodynamic solution and the fluctuations at τi ¼ 1 fm: at that time ϕQ ¼ ϕ̄Q at Ti ¼ 235 MeV. The dashed curves are highest
at τ ¼ 4.6 fm because that is when the evolution trajectory was closest to the critical point; the fluctuations would be largest at that time
if they were in equilibrium. We see that in model H the fluctuations (in our full, out-of-equilibrium, calculation) remain considerably
enhanced at τ ¼ 8.8 fm over a range of nonzero values of Q. It is evident from the right plot that ϕQ does not evolve at Q ¼ 0 in model
H. This is a consequence of conservation laws. In both plots, at all times shown, ϕQ and ϕ̄Q are both normalized by their noncritical
value (their value at a location far enough away from the critical point that ξ ¼ ξ0) at Q ¼ 0 in equilibrium, i.e., ϕ̄nc

0 ¼ ZTξ20.

(a) (b)

FIG. 5. Normalized ϕQ (a) and its inverse Fourier transform ϕ̃ (b) at freeze-out Tf ¼ 140 MeV after evolution according to model H
dynamics with two values of D0. In the text, we explain the dependence of the shapes of the curves in both panels on D0, and the
consequences of the conservation laws on the shapes of these curves.
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B. Multiplicity fluctuations and their
rapidity correlator

Upon substituting the solution to Eq. (53), or rather its
inverse Fourier transform ϕ̃, into Eq. (50), we can now
calculate the square variance of multiplicity fluctuations
hδN2

Ai. In the simplified setup that we are employing in this
section, we can go one step farther and exploit Bjorken
boost invariance to compute explicit results for the rapidity
correlator defined as

CAðyþ; y−Þ ¼
�
dNA

dy

�
−1
�
δ
dNA

dyþ
δ
dNA

dy−

�
σ

: ð56Þ

(In the next section where we employ a more realistic
hydrodynamic solution, we shall only compute hδN2

Ai, not
CA.) The correlator CA measures the correlations between
the multiplicity of particle species A at rapidities yþ and y−
and can be determined similarly to Eq. (50) in terms of ϕQ

or its inverse Fourier transform ϕ̃ðΔx⊥Þ. For the idealized
Bjorken scenario, some of the integrals in Eq. (50) (e.g.,
over transverse coordinates) can be taken analytically. In
order to make even further analytical progress we shall
consider the case of particles with mass much bigger than
the temperature, mA ≫ T. This is an adequate approxima-
tion for protons and will allow us to perform an additional
integral analytically in that case. We shall not use this
approximation in the next section, where we shall anyway
be doing the analogous integrals numerically, but it will be
helpful here to make the result and its general features more
explicit. As described in detail in Appendix B, upon doing
the integrals we obtain

�
δ
dNA

dyþ
δ
dNA

dy−

�
σ

≈
g2Ad

2
A

8π7=2Z
m7=2

A T1=2
f A⊥τ2f

Z
dη

cosh5=2η
e
−2mA cosh η

Tf

×
Z

dQη

2π
eiQητfΔye−

Q2
ητ

2
f
Tf

mA cosh ηϕQkðτfÞ ð57Þ

which is Eq. (B13), where Qk ≡Qηη̂, Δy≡ yþ − y−, and
A⊥ is the transverse area.
We see that in the simplified setup of this section

in which the fluid is translation invariant in the transverse
directions, the modes that contribute in Eq. (57) are
those whose Q is directed along the η̂ direction. Also,
the effect of the last Gaussian factor in the Qη integral in
Eq. (57) is to limit the range of that integral to values of
order

Qη ≲
0
B@τf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tf

mA cosh η

s 1
CA

−1

: ð58Þ

The fact that the characteristic wavenumber Q of the
fluctuations responsible for the correlations at freeze-out
is not zero (despite considering a volume of fluid that is
infinite in extent in rapidity η in this idealized scenario) is
ultimately due to the fact that in the laboratory frame the
fireball is not spatially homogeneous: the fluid velocity
varies over a longitudinal distance of order τf due to the
longitudinal expansion. One can check that taking τf → ∞
results in only Q ¼ 0 contributing. However, the character-
istic Qη is not just 1=τf, but rather depends on the mass of
the particle. This is due to the thermal smearing, or
“blurring,” which translates spatial Bjorken rapidity
η into kinematic particle rapidity y [12,74]. As we are
assuming that mA ≫ T, the factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tf=ðmA cosh ηÞ

p
in Eq. (58) is the typical thermal rapidity of the particles
at temperature Tf=cosh η, which can be understood
as the freeze-out temperature “redshifted” by longitudinal
expansion.
The final piece that we need in order to compute CA is

the denominator in Eq. (56). By explicit calculation starting
from Eq. (12), in the Bjorken scenario in which we are
working hdNA=dyi is given by:

�
dNA

dy

�
¼ dAA⊥τfð2πÞ−2

Z
∞

mA

m2
TdmT

Z
dηe

−mT coshη
Tf coshη:

ð59Þ

Substituting Eqs. (57) and (59) into Eq. (56), we
can evaluate CA which, because of boost invariance, is a
function of Δy only. In Fig. 6, we plot our results for CA,
normalized by the its noncritical value at Δy ¼ 0, Cnc

A ð0Þ,
which we estimate by substituting ϕQ ¼ ZTðQ2 þ ξ−20 Þ−1
into Eq. (57), where ξ0 is, as before, the correlation
length away from critical point defined in Eq. (11).
That is, we define the ratio that we have plotted in
Fig. 6 as

FIG. 6. Normalized proton multiplicity correlator C̃ðΔyÞ for
protons from Eq. (60) as a function of the rapidity gap Δy in the
Bjorken scenario for two choices of the diffusion parameter D0.
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C̃AðΔyÞ≡ CAðΔyÞ
Cnc
A ð0Þ

: ð60Þ

Since ξmax > ξ0, critical fluctuations make the ratio C̃Að0Þ
larger than unity.
In Fig. 6 we also illustrate the dependence of the rapidity

correlations on the value of the diffusion parameter D0.
Stronger diffusion (larger D0) enhances the effects of the
critical point in ϕQ, as we saw in Fig. 5. This enhancement
is reflected in the corresponding particle rapidity correla-
tions, as seen in Fig. 6 at small Δy. Due to conservation
laws, anticorrelations at large Δy are also enhanced. (For
any value ofD0, the consequence of conservation is that the
integral under the curve C̃A over all separations Δy is
independent of D0 and is determined by the initial
fluctuations. This means that when we increase D0 and
see C̃AðΔyÞ growing at small Δy, it must also become more
negative at large Δy.) However, unlike the direct effect
of diffusion on the range of the spatial correlator ϕ̃ in
Fig. 5(b), the effect on the range of CðΔyÞ in Fig. 6 is
minor. This is due to the fact that this range is mostly
determined by the effect of thermal rapidity smearing or
“blurring” [12].
Now, the variance of the particle multiplicity hδN2

Aiσ that
in the general case takes the form (50) can in this Bjorken
scenario be obtained from the rapidity correlator CðΔyÞ by
integration over the rapidity window y� ∈ ð−ymax; ymaxÞ,
i.e.,

hδN2
Aiσ

hNAi
¼

Z
2ymax

−2ymax

dΔy
�
1 −

jΔyj
2ymax

�
CðΔyÞ: ð61Þ

Upon using our expression for CðΔyÞ from Eqs. (56), (57),
and (59) and using the fact that boost invariance implies
that hNAi ¼ 2ymaxhdNA=dyi, we now obtain the result

hδN2
Aiσ ≈

1

2
Z−1m7=2

A T1=2
f π−7=2g2Ad

2
AA⊥τ2f

×
Z

dηsech5=2ηe
−2mA cosh η

Tf

×
Z

dQη

2π

sin2ðτfQηymaxÞ
τ2fQ

2
η

e−
Q2
ητ

2
f
T

mA cosh ηϕQk ðτfÞ ð62Þ

The Δy dependence of CðΔyÞ translates into the rapidity
acceptance window dependence of hδN2

Aiσ, which has been
discussed in the literature, e.g., in Ref. [12], and will not be
discussed here.

C. Dependence of fluctuations on dynamics and on
proximity of freeze-out to the critical point

In this paper we focus on the magnitude of fluctuations
and their dependence on the proximity of freeze-out to
the critical point as well as on the diffusion parameter D0.

The proximity of the freeze-out to the critical point is
controlled by two major factors. One is the proximity of the
trajectory to the critical point, which in our analysis is
quantified by ξmax—the maximum equilibrium correlation
length along the expansion trajectory on the phase diagram.
The larger the value ξmax, the closer the system has passed
to the critical point on its way to freeze-out. The smallest
values of ξmax ≈ ξ0 correspond to trajectories furthest away
from the critical point, on the edge of the critical region. In
Fig. 7, we plot the normalized critical contribution to the
squared variance of the proton multiplicity from Eq. (36) on
ξmax. One can see the effect of the critical point on the
fluctuations at freeze-out increases as the trajectory
approaches the critical point (as ξmax increases).
The other factor controlling the proximity of the critical

point to the freeze-out is the freeze-out temperature Tf. The
higher the freeze-out temperature is (while still below
critical temperature), i.e., the earlier the freeze-out occurs
and the closer the freeze-out is to the critical point.
Correspondingly, the fluctuations at freeze-out increase
with ξmax as well as with Tf in Fig. 7.
The results in Fig. 7 also demonstrate that the magnitude

of the critical point signatures crucially depends on
dynamics. As we already discussed in Figs. 5 and 6,
stronger diffusion (larger D0) leads to larger effects of the
critical point. We can see this in Fig. 7 by comparing the
plots for two different values of D0. In addition, as a result
of the conservation laws the magnitude of fluctuations is
significantly smaller than the equilibrium expectation at
freeze-out, as can be seen by comparing to panel (c) in
Fig. 7. It is also apparent from this comparison that, while
the equilibrium expectation in panel (c) depends very
strongly on the freeze-out temperature (the higher the
temperature the closer is the freeze-out to the critical point,
since Tc > Tf), the dynamical predictions in panels (a) and
(b) of Fig. 7 are much less sensitive to the freeze-out
temperature. This can be understood as a “memory” effect:
the fluctuations at freeze-out encode some information
about fluctuations at earlier times because they do not have
time to equilibrate, an effect which is enhanced by critical
slowing down. This has the consequence that even though
freeze-out happens at a temperature below that of the
critical point, effects of critical fluctuations persist until
freeze-out and yield signatures in observables. The magni-
tude of such memory effects depends on the value of D0.
We see that the results of our out-of-equilibrium calculation
at freeze-out illustrated in panels (a) and (b) of Fig. 7 arise
via an interplay between the suppression of fluctuations
relative to their magnitude in equilibrium due to conserva-
tion and the enhancement of fluctuations arising from
memory effects.
In panel (c) of Fig. 7, the equilibrium magnitude of

fluctuations saturates as ξmax increases and the trajectory
followed by the cooling plasma gets closer to the critical
point. This happens because the freeze-out occurs at a
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temperature Tf below the critical point, where ξðTfÞ<
ξmax, and as the trajectory approaches the critical point, ξmax
diverges while ξðTfÞ goes to some (large) constant value
which is independent of ξmax as ξmax → ∞. The saturation
is less pronounced in panels (a) and (b) because of
dynamical memory effects: the blue curve “remembers
where it was” at earlier times.
To summarize some central results of this section: (i) in

the Bjorken scenario considered here there is a clear
suppression in the normalized fluctuation measure ω̃A at
freeze-out for the values ofD0 considered, because the slow
modes are fluctuations of a conserved quantity; (ii) in
model H dynamics, ω̃A is less sensitive to the freeze-out
temperature than would be the case if the fluctuations
were in equilibrium throughout. In the next section, we
shall investigate how radial flow modifies these and other
observations.

IV. FREEZING OUT A SEMIREALISTIC
NUMERICAL HYDRO+ SIMULATION

In this section, we demonstrate the use of the freeze-out
procedure introduced in Sec. II and employed in a Bjorken
scenario in Sec. III to obtain the two-point correlations of

particle multiplicities from the Hydroþ simulation that was
introduced and analyzed, but not frozen out, in Ref. [14].
As in the previous section, the system under consideration
is boost invariant and has azimuthal symmetry. Unlike in
the previous section, the system we consider here is finite in
transverse extent and thus exhibits radial flow. We give a
brief description of the details of simulation here. For more
details the reader may refer to Ref. [14].
The evolution of the energy density, εðr; τÞ and the fluid

four-velocities uðr; τÞ in our simulation is determined using
the standard MIS second order hydrodynamic equations as
implemented in the publicly available VH1þ 1 hydro-
dynamic code [75–77]. The equation of state pðεÞ used in
the simulation was introduced in Ref. [14] and was already
employed in Sec. III and, for convenience, is reviewed
in Appendix A. We set the shear viscosity to entropy
density ratio to η=s ¼ 0.08 throughout, and solve the
equations numerically using a spatial (radial) lattice with
1024 points spaced by 0.0123 fm and a time step of
0.005 fm. In this section, we initialize the hydrodynamic
simulation at τi ¼ 1 fm, with an initial central temperature
of 330 MeV, following Ref. [75]. We set the radial flow vr
and the viscous part of the stress-energy tensor Πμν to
zero initially at τ ¼ τi. We employ the standard Glauber

(a) (b)

(c)

FIG. 7. The normalized fluctuation measure for protons, Eq. (36), as a function of ξmax, the maximum value of the equilibrium
correlation length achieved along the system trajectory. Panels (a) and (b) correspond to different diffusion strengths, quantified by D0,
while red and blue curves correspond to different freeze-out temperatures. Panel (c) shows the result that would have been obtained
under the assumption that fluctuations are in equilibrium at freeze-out.
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model radial profile corresponding to a central Au-Au
collision at

ffiffiffi
s

p ¼ 200 GeV for εðrÞ at τ ¼ τi, again
following Ref. [75].
As in Ref. [14], in our Hydroþ simulation the hydro-

dynamic densities εðr; τÞ and Πμνðr; τÞ and the four-
velocities uðr; τÞ provide the background for the evolution
of the fluctuations described by ϕQ according to Eq. (3).
Again following Ref. [14], we choose to initialize the
fluctuations ϕQ at τ ¼ τi by setting them to the correspond-
ing equilibrium values determined by the local temperature
at this initial time, i.e.,

ϕQðr; τiÞ ¼ ϕ̄QjTðr;τiÞ: ð63Þ
For the interested reader, the limitations of the various
assumptions made in setting up this Hydroþ simulation, as
well as possible future improvements to it, are detailed
in Ref. [14].
We calculate the evolution of ϕQ using the same code as

in Ref. [14], with two important changes. For simplicity, in
their pioneering calculation the authors of Ref. [14] chose
to simulate the evolution of ϕQ according to model A
relaxation dynamics, as if the fluctuations were those of a
quantity that is not conserved. In this work, as in Sec. III we
employ model H dynamics which takes into account
conservation laws. This gives us an opportunity to highlight
the effects of conservation laws on the dynamics of ϕQ and
on the resulting particle multiplicity fluctuations by com-
paring the results of this section to those obtained by
repeating the calculations of this section using model A
evolution. We perform this comparison in Appendix C. The
second change that we make relative to Ref. [14] is that
here we shall neglect the back-reaction of the fluctuations
on the hydrodynamic densities. The modifications to the
bulk dynamics of the hydrodynamic fluid, in particular its
entropy density sðr; τÞ, introduced by the presence of the
fluctuations was computed in Ref. [14,30] and in fact the
fluctuations and the hydrodynamic densities were com-
puted self-consistently. However, these authors showed that
including backreaction self-consistently introduces frac-
tional changes to εðr; τÞ and vrðr; τÞ that are small, rarely
comparable to 1% and typically much smaller. For this
reason we neglect these effects.
In the remainder of this section, we demonstrate the

implementation of the freeze-out prescription introduced in
Sec. II to freeze out the Hydroþ simulation with the
background described above for some reasonable values of
D0. After describing and illustrating the evolution of ϕQ in
Sec. IVA and the fluctuations on the freeze-out surface in
Sec. IV B, in Sec. IV C we describe the resulting fluctua-
tions in particle multiplicities.

A. Evolution of ϕQ

In this subsection, we present and discuss the space-time
dependence of the fluctuation measure ϕQ as it evolves

according to the relaxation equation given by Eq. (3) with
the model H relaxation rate given by Eq. (5). The radial
dependence of the flow and temperature profiles makes ϕQ

dependent on the radial variable r in addition to the Bjorken
time τ. Several representative characteristic curves, or flow
lines, determined by the flow velocity u, are shown
in Fig. 8.
In Fig. 9, we plot our results for the fluctuation measure

ϕQ in the hydrodynamic background illustrated in Fig. 8 at
three different times τ along two hydrodynamic flow lines,
one close to the center of the fireball (rðτiÞ ¼ 0.7 fm) and
one further out (rðτiÞ ¼ 5 fm). We display results from
simulations performed with D0 ¼ 0.25 fm (slower diffu-
sion) and D0 ¼ 1 fm (faster diffusion) and ξmax ¼ 1 fm
(trajectory further away from the critical point) and
ξmax ¼ 3 fm (trajectory closer to the critical point). In all
the panels, at τ ¼ 1 fm (black curve) ϕQ is given by its
equilibrium value. In the upper (lower) four panels, the red
curves at τ ¼ 9.19 fm (τ ¼ 5.14 fm) are drawn at the time
when the fluid cell moving along the flow line that started at
ri ¼ 0.7 fm (ri ¼ 5 fm) has cooled to the temperature T ¼
Tc ¼ 160 MeV and the blue curves at τ ¼ 11.36 fm
(τ ¼ 6.72 fm) are drawn at the time when these fluid cells
have cooled further to T ¼ 140 MeV. Increasing ξmax,
i.e., bringing the evolution trajectory closer to the critical
point, causes the magnitude of equilibrium fluctuations to
increase. However the relaxation to the equilibrium
value becomes slower since its rate ΓðQÞ ∝ DQ2 and

FIG. 8. The space-time dependence of the temperature (repre-
sented by color) and flow velocity in the hydrodynamic simu-
lation of the expanding cooling droplet of quark-gluon plasma.
The magnitude of the radial flow at each space-time point is
indicated by the tilt of the arrows. The dashed, dotted and solid
black curves are the isothermal curves at T ¼ 160 MeV,
156 MeV and 140 MeV, respectively. Examples of fluid cell
trajectories, or hydrodynamic flow lines, are illustrated by solid
black lines tangential to local flow vectors.
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D ¼ D0ξ0=ξ is proportional to 1=ξ. We find that the former
effect “wins” in the sense that ϕQ at the time the fluid cell
trajectory cools to T ¼ 140 MeV (i.e., the blue curves in
Fig. 9), which is well after the fluid cell trajectory passes
the point where ξ ¼ ξmax, see Fig. 1, increases with ξmax, at
least in the range of the parameters we have considered.
We see by comparing the left and right columns of Fig. 9

that increasing the diffusion parameter D0, which increases
the relaxation rate, has the consequence that ϕQ is closer to
its instantaneous equilibrium form ϕ̄Q during the course of
the evolution. The value of ϕQ at Q ¼ 0, however, remains
invariant during the evolution due to the conservation laws
inherent in model H: ΓðQ ¼ 0Þ ¼ 0.

The Q-dependence of ϕQ is shaped by two competing
effects. As a given hydrodynamic cell, represented by a
point on the phase diagram (see Fig. 1) moving along the
expansion trajectory, approaches the critical point, the
“desired” equilibrium values of ϕ̄Q, to which ϕQ is forced
to relax by Eq. (3), increases across all values of Q.
However, while at larger Q, the relaxation is fast enough
to effectively equilibrate ϕQ to these larger equilibrium
values, at lower Q conservation laws slow down the
evolution, making the ϕQ values lag behind ϕ̄Q more
significantly. This produces a peak in ϕQ at a characteristic
value of Q denoted by Qpeak in Ref. [30] which moves to
lower values of Q as D0 is increased. These features are

FIG. 9. Hydro+ fluctuation measure ϕQ along two hydrodynamic flow lines passing through r ¼ ri at initial time τ ¼ τi, with
ri ¼ 0.7 fm (top four panels) and 5 fm (bottom four panels). The four plots in the left (right) column are forD0 ¼ 0.25 fm (D0 ¼ 1 fm),
with ξmax ¼ 1 fm and ξmax ¼ 3 fm in alternating rows. The solid and dashed curves are, respectively, the ϕQ and ϕ̄Q (normalized to their
values atQ ¼ 0 away from the critical point, where ξ ¼ ξ0) at three times τ indicated in the plot legends; the choice of τ’s is explained in
the text.
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evident in Fig. 9 across the range of parameters we have
considered. It is also instructive to compare and contrast
Fig. 9 with the results that would be obtained if the
fluctuations followed model A dynamics where the relax-
ation rate of low-Q modes is not suppressed and, con-
sequently, Qpeak ¼ 0. We perform this comparison in
Appendix C; see Fig. 17 from that Appendix which is to
be compared with Fig. 9.
In the simpler Bjorken scenario of Sec. III, we described

“memory effects” and looked at their dependence onQ and
the diffusion parameter D0. We can do the same here, for

the ϕQ obtained in this more realistic r-dependent calcu-
lation, by displaying our results as in Fig. 10, where
suitably normalized ϕQ and ϕ̄Q are plotted as a function
of the local temperature along a fluid cell trajectory for
three different values ofQ. In accordance with Eq. (53), the
value of ϕQ increases when ϕQ < ϕ̄Q and decreases when
ϕQ > ϕ̄Q, as ϕQ “tries” to relax toward the rising, and later
falling, equilibrium value ϕ̄Q, as the critical point is
approached and later passed. For larger values of D0 (as
in the bottom half of Fig. 10) the rate of relaxation is

FIG. 10. The values of ϕQ (suitably normalized) for three representative values of Q (same for each column), and for values D0 (same
in top and bottom six panels) and ξmax (same in alternating rows) as in Fig. 9. The values of ϕQ are taken along a fluid cell trajectory and
plotted as a function of temperature, which is a monotonous function of time τ along the trajectory. The trajectory chosen for these plots
begins at ri ¼ rðτiÞ ¼ 1.8 fm. The dashed and solid curves represent the equilibrium ϕ̄Q and nonequilibrium ϕQ, respectively.
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greater, meaning that ϕQ rises more rapidly, and therefore
higher, in the critical region. Although it also drops more
rapidly as the temperature drops further, overall a larger D0

yields larger fluctuations, at least within the reasonable
range of values of D0 that we explore. For small Q (see the
left column in Fig. 10), the value of ϕQ grows very slowly,
and reaches values much lower that the equilibrium ϕ̄Q

before it starts decreasing. However, for low Q, the rate at
which ϕQ decreases after the critical point has been passed
is also slow, and as a result significant memory of the
fluctuation magnitude near the critical point (albeit itself
smaller than equilibrium magnitude) is retained at freeze-
out. This dynamics is qualitatively similar to the dynamics
first described in Ref. [15] in a very simplified model of the
out-of-equilibrium evolution of critical fluctuations with no
spatial- or Q-dependence.

B. Fluctuations on the freeze-out surface

As in the Bjorken scenario discussed in Sec. III, we
consider two isothermal freeze-out scenarios with Tf ¼
140 MeV and Tf ¼ 156 MeV. The main difference here
relative to Sec. III is that the temperature is now not only a
function of τ but also of the radial coordinate r. An

isothermal surface, therefore, is not simply τ ¼ const for
all r, as in the previous section. The surface Tðτ; rÞ ¼ Tf

can be parametrized according to the discussion in Sec. II C
and we use the notations and approximations discussed in
that section. For simplicity, we choose the parameter α
introduced in Eq. (42) according to α ¼ r.
The magnitude of fluctuations at T ¼ 156 MeV in

equilibrium is several times higher than that at Tf ¼
140 MeV, since T ¼ 156 MeV is closer to the critical
temperature Tc ¼ 160 MeV. However, the time that the
system spends in the critical region before freezing out is
shorter for Tf ¼ 156 MeV than for Tf ¼ 140 MeV. By
comparing these two freeze-out scenarios, we can under-
stand the sensitivity of out-of-equilibrium fluctuations
to the proximity of the freeze-out temperature to the critical
point.
In Fig. 11, suitably normalized plots of ϕQ are shown for

three points on the freeze-out hypersurface, characterized
by radial coordinate r ¼ 0, 3 and 6 fm, for two choices of
freeze-out temperature Tf and two values of the diffusion
parameterD0. These plots of ϕQ should be compared to the
equilibrium ϕ̄Q at three characteristic points: at T ¼ Tc, at
T ¼ Tf and at a point far away from critical, where ξ ¼ ξ0,
shown by the dashed and dotted curves. The left and right

FIG. 11. The Hydroþ variable ϕQ (normalized to its value at Q ¼ 0 away from the critical point, where ξ ¼ ξ0) at freeze-out evolved
with two different diffusion parameters D0 ¼ 0.25 fm (upper panels) and 1 fm (lower panels) and ξmax ¼ 3 fm. The left (right) panels
show results for evolution until the decreasing temperature has reached a higher (lower) freeze-out temperature. The blue, red and purple
curves show the values of ϕQ at different points on the freeze-out hypersurface, characterized by the radial coordinate r. The black
dashed and dotted curves are the equilibrium curves at T ¼ Tf and T ¼ Tc respectively. The dashed brown curve is the (noncritical)
equilibrium curves corresponding to ξ ¼ ξ0.
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plots differ by the choice of the freeze-out temperature,
Tf ¼ 156 MeV and 140 MeV, respectively. As expected,
Q ¼ 0 modes are “stuck” at their initial values and are not
affected by the critical point. (To see how different this
would be in the absence of conservation, Fig. 11 can be
compared with the results obtained in the case of model A
dynamics in Fig. 18 in Appendix C.) At moderate Q the
“memory” effect weakens and at large Q the modes closely
track their equilibrium values, which rises and then falls as
the critical point is approached and then passed. By
comparing the plots in Fig. 11 for different Tf, we can
also see that at smaller, but not too small, Q, the “memory”
causes the fluctuation measure ϕQ to be larger than its
equilibrium value ϕ̄Q. This effect is more pronounced for
lower Tf, due to the fact that the equilibrium fluctuations
are smaller there.
Having understood the effects of varying the parameter

D0 and the proximity to the critical point on the fluctuation
measure ϕQ, as in Sec. III the next step toward the
calculation of observable particle multiplicity fluctuations
is to compute ϕ̃ðΔx⊥Þ, the inverse Fourier transform of ϕQ

defined in Eq. (32). In Fig. 12, we plot Δx2ϕ̃ðΔx⊥Þ as a
function of the spatial separation Δx≡ jΔx⊥j between the

two points in the correlator hδŝðxþÞδŝðx−Þi, see Eq. (31).
By comparing to Fig. 5(b), we see that the D0-dependence
is qualitatively similar to that in the Bjorken scenario,
discussed at length in Sec. III. The small Δx (large Q)
behavior of the fluctuations is not affected by changingD0,
while at the same time the spatial correlator becomes longer
ranged as D0 is increased. The correlator goes negative at
larger values ofΔx; this is a consequence of conservation as
can be seen by comparing Figs. 12–19 in Appendix C and
as explained in the context of the Bjorken scenario in
Eq. (55). Finally, consistent with what we have already
seen in Fig. 11, with either value of D0 memory effects
are strong enough that the magnitudes of the fluctuations
are not much smaller if the freeze-out temperature is
Tf ¼ 140 MeV (well below the critical point) as compared
to their magnitudes if Tf ¼ 156 MeV (very close to Tc ¼
160 MeV) despite the fact that the equilibrium fluctuations
at these two temperatures differ substantially.

C. Variance of particle multiplicities

Because of the greater symmetry in the simpler Bjorken
scenario that we were employing there, in Sec. III we were
able to compute the rapidity correlator CðΔyÞ of the

FIG. 12. ϕ̃ × Δx2, the measure of fluctuations of ŝ described by the correlator hδŝðxþÞδŝðx−Þi, at freeze-out as a function of the spatial
separation between the points Δx≡ jΔx⊥j. In the calculations depicted in different panels, the ϕQ’s were evolved with two different
D0’s until freeze-out at two different Tf’s, with the inverse Fourier transform to obtain ϕ̃ðx⊥Þ performed at Tf. In all panels, we have
chosen a trajectory with ξmax ¼ 3 fm. The three r values depicted via the colored curves correspond to three r values on the freeze-out
surface in the lab frame. The black dashed and dotted curves are the equilibrium curves at T ¼ Tf and T ¼ Tc respectively. The dashed
brown curve is the (noncritical) equilibrium curve corresponding to ξ ¼ ξ0.
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multiplicity fluctuations, before integrating over a rapidity
window to obtain the variance of the particle multiplicity.
Here, with nontrivial radial dependence and radial flow we
shall instead obtain the variance of the multiplicity of
particles of species A directly from ϕ̃ by employing the
more general expressions in Eqs. (50) and (51). As we did
in Sec. III, we shall compute ωA, the ratio of the variance of
the multiplicity of species A to its mean, see Eq. (35). We
can obtain the mean multiplicity of protons and pions for a
rapidity acceptance window ½−ymax; ymax� and acceptance
cuts in pT using the Cooper-Frye formula

hNAi¼ dA

Z
dSμ

Z
ymax

−ymax

dy
2π

Z
pT;max

pT;min

pTdpT

2π

Z
2π

0

dϕ
2π

e
−p·u

Tf pμ;

ð64Þ

employing the flow velocity uðxÞ profile and freeze-out
hypersurface for the simulation from Ref. [14] illustrated in
Fig. 8. The fluctuation measure ωA is then obtained by
taking the ratio of Eqs. (50) and (64). In this subsection,
we present the results for the normalized fluctuation
measure ω̃A as defined in Eq. (36) as a function of ξmax

(which is to say as a function of how close the trajectory in
the phase diagram is to the critical point) for protons and
pions obtained with our two choices of D0 and with
our isothermal freeze-out scenario with two different
choices of the freeze-out temperature Tf, as discussed
above. In all calculations, we choose the acceptance cuts
pTϵð0.4 GeV; 2 GeVÞ and ymax ¼ 1. As already discussed
above, ω̃A, should not depend on the acceptance. This
is explicitly the case in equilibrium and we have verified
that this remains approximately the case in all of our
simulations.
We present our final results for the normalized fluc-

tuation measure for protons and pions, ω̃p and ω̃π , in
Figs. 13 and 14. These results demonstrate that for
trajectories passing closer to the critical point (i.e., for
trajectories with larger ξmax) the magnitude of fluctuations
is larger, as we have already seen in Fig. 7 for the Bjorken
expansion scenario. Again as in the Bjorken scenario, the
magnitude of the effect depends on the rate of the diffusive
relaxation of the fluctuations controlled by parameter D0.
The conservation laws (i.e., “memory”) lead to significant
suppression of the magnitude of fluctuations compared to
the prediction based on the assumption that fluctuations

(a) (b)

(c)

FIG. 13. Normalized measure of the fluctuations in proton multiplicity, ω̃p ¼ ωp

ωnc
p
, as a function of the maximum equilibrium

correlation length along the system trajectory, which is to say as a function of how closely the trajectory passes the critical point.
As D0 → ∞, the ω̃p’s approach their equilibrium values shown in panel (c).
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have enough time to equilibrate. [The equilibrium predic-
tions are shown in Figs. 13(c) and 14(c).] The smaller the
value of the diffusion parameter D0, i.e., the slower is the
diffusion, the stronger is the suppression.
It is also interesting to compare the magnitude of

fluctuations for the same value D0 and ξmax, but for
two different freeze-out temperatures. Naturally, the
equilibrium assumption leads to a prediction of larger
fluctuations at higher freeze-out temperature, since the
higher temperature is closer to the critical point. However,
nonequilibrium effects not only suppress the magnitude of
the fluctuations relative to the equilibrium prediction but
also introduce memory effects that substantially reduce
the decrease in the magnitude of the fluctuations that
occurs between T ¼ 156 MeV and the lower freeze-out
temperature Tf ¼ 140 MeV. This makes the fluctuations
obtained upon assuming a freeze-out temperature of Tf ¼
140 MeV much more similar in magnitude to those that
would be obtained if Tf ¼ 156 MeV than is the case in
equilibrium. So much so, in fact, that, depending on the
choice of the parameters such as D0, it is even possible to
find larger fluctuations at Tf ¼ 140 MeV than would
have been obtained at the higher freeze-out temperature

Tf ¼ 156 MeV, see Figs. 13(a) and 14(a). This effect
arises because, as we have already discussed, the fluctua-
tions continue to grow even after the system has passed
the critical point, as long as their value is below the
equilibrium, as can be seen in Fig. 10. This effect is not
seen in the Bjorken scenario in Sec. III because the drop of
the temperature during the one-dimensional longitudinal
expansion there is much slower than in our calculations in
this section which include radial expansion in addition. As
a result, in the Bjorken scenario the freeze-out temper-
atures are reached at somewhat later times, after the
nonequilibrium fluctuations have began to decrease. For
the same reason, in our more realistic calculations in this
section this effect disappears for larger values ofD0 which
yields faster relaxation of fluctuations toward equilibrium,
see Figs. 13(b) and 14(b).

V. SUMMARY AND OUTLOOK

In this work, we have introduced a novel approach
which connects hydrodynamic fluctuations, which fall out
of equilibrium during the hydrodynamic stage of the
expansion and cooling of the droplets of QGP produced in
heavy ion collisions, to subsequent fluctuations of particle

(a) (b)

(c)

FIG. 14. Normalized measure of the fluctuations in pion multiplicity, ω̃π ¼ ωπ
ωnc
π
, as a function of the maximum equilibrium correlation

length along the system trajectory, which is to say as a function of how closely the trajectory passes the critical point. As D0 → ∞, the
ω̃π’s approach their equilibrium values shown in panel (c). The definition of the normalized measure of fluctuations ω̃ is such that it is
species-independent in equilibrium, meaning that panel (c) here is identical to panel (c) in Fig. 13.
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multiplicities, observable in experiments. In this approach,
we treat the hydrodynamic fluctuations in the Hydroþ
formalism [18], focusing on the critical, which is to say
the most singular as well as the slowest—and thus the most
out-of-equilibrium—modes of fluctuations near the critical
point. On the kinetic, or particle, side of the freeze-out, such
fluctuations are matched by introducing a new critical scalar
field σ which couples to observable particles. One can
understand this field as an effective critical field—a collective
phenomenon in the hadron gas—a precursor of the critical
point. It has the same quantum numbers as the σ meson,
meaning that its couplings to other hadrons, including
protons, are such that fluctuations in σ correspond to
fluctuations in themasses of other hadrons, includingprotons.
In prior estimates of the observable consequences of critical
fluctuations, the σ field and in particular its fluctuations were
assumed to stay in equilibrium near the critical point for lack,
at the time, of an approach to describing its nonequilibrium
evolution. In this paper, we connect the fluctuations of this
field, and consequent observable fluctuations in particle
multiplicities, to the Hydroþ variable ϕQ, which describes
the nonequilibrium evolution of fluctuations in the earlier
hydrodynamic stage of the collision.
Our approach generalizes the well-known and well-

tested Cooper-Frye freeze-out [44], which translates hydro-
dynamic degrees of freedom (but not their fluctuations) into
particle distributions. The Cooper-Frye procedure only
specifies event-averaged single-particle quantities (multi-
plicities and spectra of each hadron species) and as such is
not sufficient to describe the freeze-out of fluctuations or
correlations. Our more general freeze-out procedure allows
us to perform such a translation, or matching, of Hydro+
(hydrodynamic and fluctuation) degrees of freedom to
particle multiplicities and their fluctuations.
We demonstrate our generalized freeze-out procedure in

practice by freezing out a simplified case (the Hydroþ
description of boost-invariant Bjorken expansion with no
transverse expansion) where the calculations can largely be
pushed through analytically and that yields valuable
intuition as well as a numerical Hydroþ simulation of a
more realistic scenario with boost invariance and azimuthal
symmetry that incorporates transverse radial expansion,
similar to the one considered in Ref. [14]. In both examples,
we observed a significant suppression of the out-of-equi-
librium fluctuations relative to what their values would
have been in equilibrium for reasonable values of the
parameters we considered. In addition, we also noted that
while the equilibrium fluctuations sensitively depend on
how soon, i.e., how far below the critical temperature, the
freeze-out occurs, this sensitivity is almost eliminated by
nonequilibrium (“memory”) effects, see Figs. 7, 13, and 14.
The Hydroþ variable ϕQ describes the magnitude of the

fluctuations at different wave vectors Q. We observe [and,
in the case of the Bjorken scenario, can describe analyti-
cally as in Eq. (58)] that the characteristic value of the

wavenumber Q whose ϕQ’s control the magnitude of the
multiplicities after freeze-out is determined by multiple
factors including the scale of the inhomogeneity of the
expanding fluid (the Bjorken time τ in the Bjorken
scenario), the radial flow, the typical thermal velocity
spread of the produced particles, as well as the acceptance
window in rapidity if this acceptance window is larger than
the typical thermal spread in rapidity. This characteristic Q
is small compared to microscopic scales as it is typically of
order 1=τf [see Eq. (58)]. Since the fluctuations at small Q
are suppressed by conservation laws (another aspect of the
out-of-equilibrium dynamics that is in a sense also a
“memory” effect), the smallness of the characteristic Q
relevant for the freeze-out contributes to the suppression of
the fluctuations relative to the equilibrium values.
Our study focused on Gaussian measures of fluctuations.

The higher, non-Gaussian, cumulants are more sensitive to
the proximity of the critical point [8,10]. It is, therefore,
important to generalize our freeze-out procedure to higher-
order cumulants. This can be done using Eq. (28) and we
leave implementation and the analysis of the results to
future work. While we demonstrated the application of our
procedure to the variance of particle multiplicities, it
will also be straightforward to generalize to the cross-
correlation of different particle species, as was done in
Ref. [10] for equilibrium fluctuations. We expect the
conclusion from that work that cumulants involving pro-
tons are most sensitive to critical fluctuations to persist, but
we leave an investigation of how best to combine mea-
surements of different (cross-)correlations so as to optimize
the sensitivity to critical fluctuations while reducing dilu-
tion of their effects by backgrounds to future work.
We have focused on the dependence of the observable

fluctuations on the proximity of the critical point, either by
varying ξmax, which corresponds to varying freeze-out μB
via changing collision energy

ffiffiffi
s

p
(see Fig. 1), or by varying

the freeze-out temperature (for the same trajectory). We
also studied the dependence on the (thus far unknown)
value of the diffusion parameter D0. In order to illustrate
these dependencies, we chose to present our results using
normalized variables which did not depend on the absolute
magnitude of the effect. In order to predict the absolute
magnitude one would have to know the equation of state,
i.e., the parameter Z in Eq. (22) which determines the
absolute strength of the singularity. Also, one would have
to determine the couplings gA of hadrons to the critical
collective field σ. These couplings are, of course, also
related to the equation of state and it would be interesting to
make this relation more explicit. We leave this to future
work. For the purpose of using our results to make crude
estimates, one could take Z ∼ 1=T2

c and follow Ref. [10]
and choose gp ∼ 7 and gπ ∼ 2.
It would be also interesting to consider going beyond

the leading critical behavior of fluctuations to take into
account less singular critical contributions and modes
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which are not critical, including fluctuations of pressure
and flow velocity. Extending our work in this way would be
necessary in order to attempt to develop a fluctuation
freeze-out procedure that could be applied away from the
critical point as well as near it, as in our paper.
It is also important to realize that we considered

fluctuations and freeze-out on the crossover side of the
critical point (see Fig. 1). It would also be interesting and
important to understand what happens on the other side,
where the first-order phase transition occurs. The challenge
in this domain begins already at the level of hydrodynamics
and is beyond the scope of this paper.
Although, as we have detailed in this section, there is a

scope for improvement and generalization of the freeze-out
procedure that we have introduced and explored in this
paper, we believe that the procedure can already be
integrated into the full numerical simulation of heavy-
ion collisions relevant for the BES program aimed at the
search for the QCD critical point. With first results from
high-statistics BES data taken at RHIC in 2019-2021
anticipated soon, this represents a high priority next step.
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APPENDIX A: EQUATION OF STATE USED
IN THE HYDRODYNAMICAL EVOLUTION

The equation of state that we have used in the analytical
calculations of Sec. III, done within a Bjorken scenario, as
well as in the numerical Hydroþ simulations for a semi-
realistic scenario done in Sec. IV, is taken from Ref. [14].
We describe this equation of state briefly in this Appendix.
An aspect of the physics that the Hydroþ formalism is
well suited to describe is the way in which the out-of-
equilibrium fluctuations of the slow modes modify the
equation of state [18]. However, it has been observed in
Refs. [14,30] that these backreaction effects are smaller
than 1% in most cases. For this reason, throughout the
present work we neglect the feedback of Hydroþ modes
on the equation of state. That is, in the notation of
Refs. [14,18,30] we approximate the Hydroþ equation
of state pþðεÞ by the standard pressure pðεÞ given by

p ¼ s
β
− ε ðA1Þ

where ε is the energy density, β is the inverse temperature,
and where the entropy density s is given as a function of the
local temperature by

sðTÞ ¼
Z

T

0

dT 0 cVðT 0Þ
T 0 ðA2Þ

with cVðTÞ being the specific heat capacity at fixed volume.
In Ref. [14], the equation of state is specified close to and
away from a critical temperature Tc by choosing

cVðTÞ¼
8<
:
cno C:PV ðTÞ T ≤TL or T ≥TH

ccritV ðTÞþP
5
n¼0 cn

	
T−Tc
ΔT



n

TL <T <TH

ðA3Þ

with ðTL; THÞ ¼ ðTc − ΔT; Tc þ ΔTÞ and where ΔT,
which parametrizes the width of the critical region, is
the same parameter that arises in Eq. (11). Here as there, we
take ΔT ¼ Tc=5. Following Ref. [14], we take ccritV ðTÞ, the
critical part of cV that shows the leading singular behavior
near the critical point, to have the form

ccritV ðTÞ≡ 1

2

1

ξ30

ξðTÞ
ξ0

; ðA4Þ

where the temperature dependence of the correlation
length of critical fluctuations, ξðTÞ, needs to be specified.
Following Ref. [14], we do so as in Eq. (11). The prefactor
1=2 in Eq. (A4) is a nonuniversal constant whose value
depends on the mapping between the equation of state of
the 3D Ising model and the equation of state of QCD,
whose critical point is in the 3D Ising universality class. We
have used a value that is reasonable for ΔT ¼ Tc=5; see the
argument in Ref. [14]. Continuing to follow Ref. [14], away
from the critical point we choose the form of the specific
heat capacity cnoC:PV ðTÞ as follows:

cnoC:PV ðTÞ
T3

≡
�
aH þ aL

2
þ aH − aL

2
tanh

T − Tcrossover

ΔTcrossover

�
ðA5Þ

with

aL ¼ 0.1aQGP; aH ¼ 0.8aQGP; and

aQGP ≡ 4π2ðN2
c − 1Þ þ 21π2Nf

15
; ðA6Þ

where Nc ¼ 3 and Nf ¼ 3 are the number of flavors and
colors, respectively, and with
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Tcrossover ¼ Tc; ΔTcrossover ¼ 0.6Tc: ðA7Þ

The specification of the equation of state is completed by
choosing the six constant coefficients cn that appear in
Eq. (A3) so as to enforce that cVðTÞ=T3 and its first two
derivatives are continuous at T ¼ TL and at T ¼ TH.

APPENDIX B: ANALYTICAL CALCULATIONS
IN A BJORKEN SCENARIO

In this Appendix, we derive an explicit expression
for the numerator of CAðΔyÞ defined in Eq. (56), namely
hδ dNA

dyþ
δ dNA

dy−
iσ , in the Bjorken symmetric background

described in Sec. III. We shall begin from the somewhat
formal expression for hδN2

Aiσ that we obtained in Eq. (50),
develop an explicit expression for this measure of fluctua-
tions in the Bjorken background, and then see that we can
obtain the explicit expression (57) for the rapidity correlator
hδ dNA

dyþ
δ dNA

dy−
iσ essentially by inspection of the explicit form

of hδN2
Aiσ .

In the second half of the Appendix, as a bonus we shall
use the analytic control that we have over the calculation of
hδN2

Aiσ to show that the low-Q modes of ϕQ make the
dominant contribution to this observable.
We begin by noting that in the Bjorken scenario we have

the following expressions for x and Δx⊥ at τ ¼ τf:

x ¼ τf coshΔητ̂ þ xT ðB1aÞ

Δx⊥ ¼ Δx ¼ 2τf sinh
Δη
2

η̂þ ΔxT: ðB1bÞ

Equations (B1) are exact for two points xþ and x− on the
freeze-out hypersurface and can be obtained by substituting
uτ ¼ 1, ur ¼ 0, τ ¼ τf and Δτ ¼ 0 in Eqs. (46). We have
used xT and ΔxT to denote the transverse parts of x and
Δx⊥, namely their projections onto the plane spanned by r̂
and φ̂. Note that because points on the freeze-out surface,
including xþ and x−, all have the same τ in the Bjorken
scenario,Δx⊥ ¼ Δx in this setting and Eq. (50) need not be
corrected as described around Fig. 3.
Next, we note that the ϕ̃ that arises in the expression (50)

that we wish to evaluate is the inverse Wigner transform of
ϕQ, see Eq. (21). In the Bjorken scenario, this transform
takes the form

ϕ̃ðx;ΔxÞ¼
Z

dQ⊥dQη

ð2πÞ3 ei2Qητf sinh
Δη
2
þix⊥·ΔxTϕQðτf coshΔηÞ

ðB2Þ

where Qη ≡Q · η̂ and Q⊥ ≡Q −Qηη̂. Note that since
points on the freeze-out hypersurface all have the same τ in
the Bjorken scenario, the expression for the two-point
correlator of σ between two points on the freeze-out

hypersurface given by Eq. (31) does not receive the
correction described following that equation. Note that
ϕQ that enters Eq. (B2) is obtained by solving Eq. (53), as
discussed in Sec. III. Later in this Appendix, we shall need
the formal solution to Eq. (53) that satisfies the initial
conditions (54); it is given by

ϕQðτÞ ¼ ϕ̄QðTiÞe−
R

τ

τi
ΓðQξðτ0ÞÞdτ0

þ
Z

τ

τi

e−
R

τ

τ00 ΓðQξðτ0ÞÞdτ0ΓðQξðτ00ÞÞϕ̄QðTðτ00ÞÞdτ00

ðB3Þ

The functional form for the evolution of temperature TðτÞ,
which also determines ξðτÞ through Eq. (11), can be
obtained from the condition

τsðTðτÞÞ ¼ τisðTðτiÞÞ ðB4Þ

that follows from the isentropic nature and Bjorken
symmetry of the flow and that must be satisfied for all
τi < τ < τf. And, we employ the equation of state sðTÞ
from Ref. [14] that we describe briefly in Appendix A.
With these preliminaries in place, we now substitute

Eq. (B2) into Eq. (50) and integrate over dxT, dΔxT and
dQ⊥, obtaining

hδN2
Aiσ ¼ g2AA⊥τ2f

Z
∞

−∞
dη

Z
∞

−∞
dΔηIAðηþ; η−Þ

×
Z

dQη

2π
ei2Qητf sinh

Δη
2 ϕQk ðτf coshΔηÞ; ðB5Þ

where we have defined Qk ≡Qηη̂, where A⊥ is the trans-
verse area in the plane spanned by r̂ and φ̂, and where we
have defined

IAðηþ; η−Þ≡ nðηþÞ · JAðηþÞnðη−Þ · JAðη−Þ: ðB6Þ

Upon explicit evaluation, this function is given by

IAðηþ;η−Þ¼
Z

ymax

ymin

dyþ

Z
ymax

ymin

dy−FAðyþ−ηþÞFAðy− −η−Þ

ðB7Þ

where

FAðy� − η�Þ≡ dAmA

Tf

dy
2π

Z
mT;max

mT;min

mTdmT

2π
e
−mT coshðy�−η�Þ

Tf :

ðB8Þ

Upon specifying mT;min ¼ mA and choosing mT;max ¼ ∞
and ymin ¼ −ymax, FA is given by
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FAðxÞ ¼ dA
mA

Tf

Z
∞

mA

mTdmT

ð2πÞ2 e
−mT cosh x

Tf ðB9aÞ

¼ dAmAð2πÞ−2sech2xðmA cosh xþ TfÞe−
mA cosh x

Tf :

ðB9bÞ

Using the expressions above, Eq. (B6) can be evaluated
directly, numerically. However, to elucidate its main
features we ignore the subleading corrections due to the
curvature of the freeze-out hypersurface and assume that
mA ≫ T, in both cases as discussed in Sec. II C. This
allows us to make the following approximations:

ϕQk ðτf coshΔηÞ≈ϕQk ðτfÞ ðB10aÞ

FAðη�Þ≈dAm2
Að2πÞ−2sechηe

−mA
Tf
½coshη�sinhη

2
Δηþcoshη

8
Δη2�

ðB10bÞ

The assumption mA ≫ T has allowed us to simplify
Eq. (B10b) by expanding only the exponential term in FA
as a function of Δη and not its prefactor. We have verified
by explicit calculation that this assumption is well justified
for protons. With the above simplifications, after defining
Δy≡ yþ − y− and redefining the variables η and Δη
according to η → η − ðyþ þ y−Þ=2 and Δη → Δη − Δy,
Eq. (B6) becomes

hδN2
Aiσ≈g2ATfA⊥τ2f

Z
∞

−∞
dη

Z
∞

−∞
dΔηFAðηþÞFAðη−Þ

×
Z

ymax

−ymax

dyþ

Z
ymax

−ymax

dy−

Z
dQη

2π
eiQητfðΔηþΔyÞϕQk ðτfÞ:

ðB11Þ

This explicit expression for the observable measure of the
fluctuations hδN2

Aiσ is the first main result of this Appendix.
Upon inspection of the result (B11), we see that the

two point rapidity space correlator occurring in CAðΔyÞ is
given by�
δ
dNA

dyþ
δ
dNA

dy−

�
σ

≈ g2ATfA⊥τ2f
Z

∞

−∞
dη

Z
∞

−∞
dΔηFAðηþÞFAðη−Þ

×
Z

dQη

2π
eiQητfðΔηþΔyÞϕQk ðτfÞ ðB12Þ

≈
1

8π7=2
g2Ad

2
AZ

−1m7=2
A T1=2

f A⊥τ2f
Z

dηsech5=2ηe
−2mA cosh η

Tf

×
Z

dQη

2π
eiQητfΔye−

Q2
ητ

2
f
Tf

mA cosh ηϕQk ðτfÞ: ðB13Þ

Eq. (B13), our second main result of this Appendix, is
reproduced in Sec. III as Eq. (57) and its implications are
discussed there.
In the remainder of this Appendix, we shall demonstrate

that the low Q modes of ϕQ contribute the most to the
variance of particle multiplicities, hδN2

Aiσ . We shall expand

(a) (b)

FIG. 15. Panel (a): Normalized ϕ as a function of Q evolved according to model H dynamics with two values of D0, plotted at freeze-
out τ ¼ τf, corresponding to an equilibrium temperature of TfðτfÞ ¼ 140 MeV. The solid and dashed curves were obtained from the
full solution (B3) for ϕQ and its truncated polynomial expansion (B14) respectively. Panel (b): Normalized fluctuation measure
observable (rapidity space correlator) for protons C̃pðΔyÞ obtained with the full form (solid) and truncated form (dashed) of ϕQ. The
qualitative and even semiquantitative agreement between the same colored curves in the right plot indicates that the low-Q modes
contribute significantly to the variance of particle multiplicities. In obtaining these plots, ξmax was set to 3 fm and the fluctuations at
τi ¼ 1 fm were initialized to their equilibrium value at τ ¼ τi ¼ 1 fm with TiðτiÞ ¼ 235 MeV.
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ϕQ, given by Eq. (B3), in powers of Q to OðQ2Þ and
compare the result for hδN2

Aiσ that we obtain starting from
this expansion to the result that we obtain starting from the
full form of ϕQ. We denote the polynomial expansion for
ϕQ to quadratic order by

ϕQ ≈ ϕð0Þ þ ϕð2ÞQ2 ðB14Þ
where

ϕð0Þ ¼ ZTfξ
2ðTiÞ ðB15aÞ

ϕð2Þ ¼−ZTfξ
4ðTiÞ

þ2D0ξ0ZTf

Z
τf

τi

dτ

�
ξðTðτÞÞ− ξ2ðTiÞ

ξðTðτÞÞ
�
: ðB15bÞ

The expression (B14) is a good approximation to ϕQ for its
low-Q modes, as we illustrate in Fig. 15(a).
Upon making the low-Q approximation and working to

orderQ2 as in Eq. (B14), we can perform the Qη integral in
Eq. (B13), obtaining

FIG. 16. Hydroþ fluctuation measure ϕQ evolved according to model A dynamics along two hydrodynamic flow lines passing
through r ¼ ri at initial time τ ¼ τi, with ri ¼ 0.7 fm (top four panels) and 5 fm (bottom four panels). Plots in the left (right) column are
for Γ0 ¼ 1 fm−1 (Γ0 ¼ 8 fm−1), with ξmax ¼ 1 fm and ξmax ¼ 3 fm in alternating rows. The solid (and dashed) curves are the ϕQ (and
ϕ̄Q), normalized to the zero mode of the noncritical fluctuations. The black, red and blue curves correspond to ϕQ’s at the initial time τi
and at the times when the equilibrium temperature reaches 160 MeV and 140 MeV respectively.
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�
δ
dNA

dyþ
δ
dNA

dy−

�
σ

≈
g2Ad

2
AA⊥τfZ−1m4

A

ð2πÞ4
Z

dη
cosh2η

e
−2mA cosh η

Tf
ð1þΔy2

8
Þ
�
ϕð0Þ þ 2TfmA cosh η − Δy2m2

Acosh
2η

4τ2fT
2
f

ϕð2Þ
�
: ðB16Þ

In Fig. 15(b), we compare C̃pðΔyÞ (defined via Eqs. (56), (59), and (60) obtained from hδ dNA
dyþ

δ dNA
dy−

i
σ
computed without

making a low-Q approximation, namely Eq. (B13), which is plotted as the solid curves in Fig. 15(b), to that computed
upon working only to order Q2, namely Eq. (B16), which is plotted as the dashed curves in Fig. 15(b). The qualitative,
even semiquantitative, agreement between them indicates that the low-Q modes contribute significantly to the variance
of particle multiplicities.

FIG. 17. Thevalues ofϕQ (suitably normalized) for three representativevalues ofQ (same for each column), and for two valuesΓ0 (same
in top and bottom six panels) and ξmax (same in alternating rows) as in Fig. 16. The values of ϕQ are taken along a fluid cell trajectory and
plotted as a function of temperature, which is a monotonous function of time τ along the trajectory. The trajectory chosen for these plots
begins at ri ¼ rðτiÞ ¼ 1.8 fm. The dashed and solid curves represent the equilibrium ϕ̄Q and nonequilibrium ϕQ, respectively.
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APPENDIX C: CONTRASTING WITH MODEL A
EVOLUTION

In this Appendix we repeat the calculations of Sec. IV in
a scenario in which the hydrodynamic background is the
same (and hence also the same as in Ref. [14]) but in which
the dynamical evolution of the fluctuations differs. In
Sec. IV we take conservation laws into account, following
model H dynamics. Here, in contrast, we shall consider the
case where the fluctuating slow mode is not a conserved
quantity, meaning that the appropriate dynamics for the
relaxation of the two-point function is that of model A in
the classification of Halperin and Hohenberg [54], with the
relaxation rate given by Eq. (10), which we repeat here:

ΓðQÞ ¼ Γ0

ξ20
ξ2

ð1þ ðQξÞ2Þ; ðmodel AÞ: ðC1Þ

We have performed simulations with Γ0 ¼ 1 fm−1 and
8 fm−1, which correspond to Γ0ξ

2
0 ¼ 0.25 fm and 2 fm,

respectively. Comparing the “shapes” of all the results
plotted in this Appendix to those in the analogous Figures

in Sec. IV provides us with another way of seeing the
impact of conservation laws on the results from Sec. IV.
The main difference between model A and model H
evolution arises from the qualitatively different relaxation
rate for the low Q modes, Qξ ≪ 1, which goes as Γ0ξ

2
0=ξ

2

in model A and as ðD0ξ0=ξÞQ2 in model H, with the
Q2-suppression being a manifestation of conservation.
A second motivation for this Appendix is that, because
model A dynamics is simpler to implement, in their
pioneering calculation the authors of Ref. [14] used model
A dynamics, meaning that in this Appendix we shall be
freezing out the calculations of Ref. [14], turning these
Hydroþ simulations into particle multiplicity fluctuations.

1. Evolution of ϕQ

In Fig. 16, which can be compared to the analogous
model H results shown in Fig. 9, we illustrate the model A
dynamics of ϕQ for fluid cells following two different
hydrodynamic flow lines, with two choices of Γ0 and two
choices of ξmax. As in Sec. IV, varying ξmax corresponds to
varying how close the cooling trajectory of the fluid
cell comes to the critical point on the phase diagram.

FIG. 18. The Hydroþ variable ϕQ (normalized to its value at Q ¼ 0 away from the critical point, where ξ ¼ ξ0) at freeze-out evolved
with Γ0 ¼ 1 fm−1 (upper panels) and 8 fm−1 (lower panels) and with ξmax ¼ 3 fm. The left (right) panels show results for evolution until
the decreasing temperature has reached a higher (lower) freeze-out temperature. The blue, red and purple curves show the values of ϕQ at
different points on the freeze-out hypersurface, characterized by the radial coordinate r. The black dashed and dotted curves are the
equilibrium curves at T ¼ Tf and T ¼ Tc respectively. The dashed brown curve is the (noncritical) equilibrium curve corresponding to
ξ ¼ ξ0.
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The central qualitative difference between the model A
results in Fig. 16 and the model H results in Fig. 9 is that in
model H ϕQ at Q ¼ 0 is unchanging in time, because of
conservation, which means that as critical fluctuations
develop we see that in Fig. 9 ϕQ takes on a shape in
which it first rises as a function of increasing Q and then
falls whereas in the model A dynamics of this Appendix the
maximum value of ϕQ is found at Q ¼ 0, and this value is
time dependent. In model A, here, as in model H in Fig. 9,
the fluctuations ϕQ fall out of equilibrium, lagging behind
the equilibrium fluctuations ϕ̄Q as the latter change
with time.
In Fig. 17, which can be compared to the analogous

model H results shown in Fig. 10, for all three represen-
tative Q modes that are plotted we notice the ϕQ’s lagging
behind their respective ϕ̄Qs, with the degree to which they
fall out of equilibrium greater for smaller Γ0, meaning
slower relaxation toward equilibrium. For the values of Γ0

that we have considered in Fig. 17, we can see that
fluctuations do depend on whether we choose a freeze-
out temperature of 156 MeV or 140 MeV. As we also

observed in Fig. 10, ϕQ has an inflection point at
T ¼ Tc where the relaxation rate takes its minimum value
and the growth of ϕQ stops when ϕQ equals the instanta-
neous ϕ̄Q.

2. Fluctuations on the freeze-out surface

In Fig. 18, which can be compared to Fig. 11, suitably
normalized plots of ϕQ are shown for three points on the
freeze-out hypersurface, characterized by radial coordinate
r ¼ 0, 3 and 6 fm, for two choices of freeze-out temper-
ature Tf and two values of the parameter Γ0. Most of the
discussion of Fig. 11 in Sec. IV applies here also, with the
one significant difference being that here the Q ¼ 0 modes
are not “stuck” at their initial values.
As in Fig. 12, in Fig. 19 we have computed ϕ̃ðΔx⊥Þ,

the inverse Fourier transform of ϕQ defined in Eq. (32),
and plotted Δx2ϕ̃ðΔx⊥Þ as a function of the spatial
separation Δx between the two points in the correlator
hδŝðxþÞδŝðx−Þi. As in the model H evolution of
Fig. 12, the small Δx (large Q) behavior of the

FIG. 19. ϕ̃ × Δx2, the measure of fluctuations of ŝ described by the correlator hδŝðxþÞδŝðx−Þi, at freeze-out as a function of the spatial
separation between the pointsΔx≡ jΔx⊥j. In the calculations depicted in different panels, the ϕQ’s were evolved with two different Γ0’s
until freeze-out at two different Tf’s, with the inverse Fourier transform to obtain ϕ̃ðx⊥Þ performed at Tf . In all panels, we have chosen a
trajectory with ξmax ¼ 3 fm. The three r values depicted via the colored curves correspond to three r values on the freeze-out surface in
the lab frame. The black dashed and dotted curves are the equilibrium curves at T ¼ Tf and T ¼ Tc respectively. The dashed brown
curve is the (noncritical) equilibrium curve corresponding to ξ ¼ ξ0.
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fluctuations in Fig. 19 is not affected by changing Γ0,
while at the same time the spatial correlator becomes
longer ranged as Γ0 is increased. The central difference
between the model A dynamics here in Fig. 19 and the
model H dynamics in Fig. 12 is that here ϕ̃ðΔx⊥Þ is
positive at large Δx: the fact that it becomes negative in
the large Δx region in Fig. 12 is a direct consequence of
conservation in model H.

3. Variance of particle multiplicities

As in Sec. IV, but here with model A dynamics, we close
by computing and plotting the normalized fluctuation
measure for protons and pions, ω̃p and ω̃π , in Figs. 20

and 21. As in Figs. 13 and 14, to which these figures can be
compared, these results demonstrate that for trajectories
passing closer to the critical point (i.e., for trajectories with
larger ξmax) the magnitude of fluctuations is larger. Again
as in Sec. IV, the magnitude of the effect depends on the
rate of the relaxation of the fluctuations, controlled here
by parameter Γ0. We see that for large enough values of
Γ0, e.g., 8 fm−1, the proton and pion fluctuations are able
to come reasonably close to their equilibrium values,
which as an aside means that they depend quite sensitively
on the freeze-out temperature. The differences that we
discussed at length in Sec. IVoriginate from the effects of
conservation.

(a)

(c)

(b)

FIG. 20. Normalized measure of the fluctuations in proton multiplicity, ω̃p ¼ ωp

ωnc
p
, as a function of the maximum equilibrium

correlation length along the system trajectory, which is to say as a function of how closely the trajectory passes the critical point.
As Γ0 → ∞, the ω̃p’s approach their equilibrium values shown in panel (c).
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