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A quantity of particular experimental interest is the forward-backward asymmetry in the angular
distribution of positively and negatively charged fermions produced in Z° decays. Measurements of this
asymmetry can enable independent determinations of the neutral-current couplings of these fermions, i.e.,
the Z° boson couplings for left- and right-handed fermions, respectively. Due to the quark confinement,
however, it is difficult to determine the electroweak interactions of quarks, especially for light quarks. In the
hadron production electron positron annihilation process, the parton model with factorization theorem
gives a reliable approximate description. Quantities are thus expressed in terms of fragmentation functions
in the annihilation process. In this paper, we consider the vector meson production in the inclusive electron
positron annihilation process and calculate the forward-backward asymmetry in the hadronic level.
Calculations are carried out by applying the collinear expansion in the parton model at leading order twist-
4. We note here this process provides not only a tool for analyzing the hadronic weak interactions but also
an opportunity for understanding the parton model of the strong interaction. In other words, the results can

be used to test the electroweak and strong interactions simultaneously.
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I. INTRODUCTION

The Standard Model (SM) of elementary particles and
their interactions has achieved great success in the past
decades. It has two basic components, the spontaneously
broken electroweak (EW) theory and the color gauge
theory or quantum chromodynamics (QCD). Since the
left- and right-handed fermions in the EW theory live in
different representations of the fundamental gauge group,
they have different couplings for the gauge bosons, Z°, W*.
As for Z°, the difference leads to an asymmetry in the
angular distribution of positively and negatively charged
leptons and/or quarks produced in Z boson decays. This
asymmetry, known as the forward-backward asymmetry
[1-4], depends on the Weinberg angle or the weak mixing
angle and can enable independent determinations of the
neutral-current couplings of these fermions. Due to the
quark confinement it is relatively difficult to determine
the electroweak interactions of quarks. Heavy quarks (c or
b) can be determined by tagging the decays of correspond-
ing hadrons containing them. However, light quarks require
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other flavor separation methods. The difficulty in describ-
ing the weak interactions of quarks lies in the description of
the quark fragmentation process. Thanks to the asymptotic
freedom of QCD, the fragmentation process can be studied
in the factorization theorem framework [5] in the parton
model. The factorization theorem tells one that measurable
quantities, e.g., a cross section, can be separated by the
calculable hard parts from the nonperturbative soft parts. If
only the fragmentation process is taken into consideration,
the nonperturbative soft parts are usually factorized as
fragmentation functions. Fragmentation functions (FFs) are
most important physical quantities in describing hadron
productions in high-energy reactions. They quantify the
hadronization process of quarks and/or gluons in high-
energy reactions where hadrons are produced. Quantities
therefore can be expressed in terms of FFs in the annihi-
lation and other fragmentation processes.

In this paper, we consider the vector meson production in
the inclusive electron positron annihilation process and
calculate the forward-backward asymmetry in the hadronic
level, i.e., the asymmetry in the angular distribution of the
produced vector meson. For certain higher twists, factori-
zation theorems can be written down, but in most cases, all
orders proofs do not exist. Since factorization beyond
leading order for twist-4 terms is unclear, we limit
ourselves by leading order calculations in this paper. In
other words, the calculations are carried out in the parton
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model at leading order twist-4 by applying the collinear
expansion formalism [6-9]. Collinear expansion is a
powerful tool to calculate higher twist effects by taking
into account multiple gluon exchange contributions. On the
one hand, gauge links will be obtained automatically which
make the calculation explicitly gauge invariant. On the
other hand, collinear expansion gives a very simple
factorization form which consists of calculable hard parts
and FFs. This will greatly simplify the systematic calcu-
lation of higher twist contributions. After obtaining the
differential cross section, we introduce the definition of the
forward-backward asymmetry for the production hadron.
We finally present these asymmetry results in terms of FFs.

The rest of the paper is organized as follows. In Sec. II,
we first introduce the general definition of the forward-
backward asymmetry of the muon pair in the electron
positron annihilation process and show some conventions
used in this paper. In Sec. III, we present the formalism of a
vector meson production annihilation process where the
differential cross section is given in terms of structure
functions. The study in the parton model formulism is given
in Sec. IV, where we present a detailed calculation of how
to obtain the hadronic tensor and the cross section at
leading order twist-4. In Sec. V, we present the results for
the structure functions and forward-backward asymmetries
in terms of the gauge invariant FFs. A brief summary is
given in Sec. VL

II. INTRODUCTION TO THE
FORWARD-BACKWARD ASYMMETRY

A simple exercise for the fermion pair production in
the electron positron annihilation process is to calculate
the muon pair production process et (l')+ e (I) —
ut (k') +p~ (k). It gives fruitful information about the
annihilation reactions. By considering the EW theory,
the differential cross section of this process can be written as

do _ndy, e
dcos® 202 {xlcsci(1 4 cos?0) + 2¢5c cos 0]
+ Kindlct Sy (1 + cos?0) + 2¢4c!y cos 0]
+ e2(1 + cos?0)}, (1)

where @ is the scattering angle in the lepton center-of-mass
frame or the gauge boson rest frame, a,,, = €*>/4r is the
fine structure constant, and Q° = ¢*> = (I + I')?,

Q4
£ [(Q? — M2%)? + TZM2)sin*20y, 2)

Y = — 2qu2(Q2_M%)
= G M M0y

(3)

where M, and ', are respectively the mass and decay
width of the Z-boson, 0y, is the Weinberg angle or the weak
mixing angle. ¢ = (c§)? + (c§)? and ¢§ = 2c$c§, % and
c4 are defined in the weak interaction current J,(x) =
w(x)Cup(x) where T', = y,(ct, — ¢4y°). Similar notations
are also used for muon and quarks where we use a
superscript ¢ and g to replace e.

The forward-backward asymmetry in the angular dis-
tribution of positively and negatively charged muons is
defined as

_ Jo dogdcos — [°, doyd cos O

A
FB [1, doyd cos

; (4)

where doy = do/dcos@ given in Eq. (1). Using the
definition in Eq. (4) and the differential cross section in
Eq. (1), we have

A 3(xcsch + ximesichy) 5)
B4l + xei e+ pimel )

At the low-energy limit (Q> < M2), this asymmetry is
given approximately by

3GrQ%cscy
4\/§ﬂaem ’

where G is the Fermi constant. Similar results can also be
obtained for quarks as long as we replace the corresponding
couplings for muons by that for quarks. For example, at the
low-energy limit, we have

[
AFB_

(6)

¢ 3GpQ*cict )

e 4\/§eqﬂaem ’
where ¢, is the electric charge of the quark with flavor g.
From Egs. (5)-(7), we can see that forward-backward
asymmetries depend on weak couplings for certain fer-
mions; they would give independent determinations of
these couplings. In the following context, we extend the
results to the hadron production process. We note that the
definition of the forward-backward asymmetry in Eq. (4)
will be slightly modified for calculating that for hadrons. It
will be shown in Sec. V.

III. THE GENERAL FORM OF THE
CROSS SECTION IN TERMS
OF STRUCTURE FUNCTIONS

At first sight, the vector boson production inclusive
electron positron annihilation process cannot be calculated
because of the lack of perturbative description of the
fragmentation process. Therefore, we consider the general
decomposition of the hadronic tensor and give the general
form of the cross section in terms of structure functions.
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FIG. 1. Diagram of the vector boson production inclusive
electron positron annihilation process.

We show this hadron production annihilation process in
Fig. 1. To be explicit, we write down the differential cross
section as

do  rmza,
dzdy Q%

LY (L)W, (g, p.S). (8)

r

Here we use the notations as illustrated in Fig. 1. The
standard variables are z =2p-q/Q* and y=p-I'/p-q.
The subscript r denotes yy, yZ, and ZZ corresponding
respectively to the electromagnetic, interference, and weak
contributions to this process. The summation of r denotes
the summation of these cross sections, i.e.,

do do”"  do"?  do*?
= + + . 9)
dzdy dzdy dzdy dzdy

: _ 2 _ _
Correspondingly, 1,, = €3, 1,z = Xin and nzz = x.

The leptonic tensors for the electromagnetic, interfer-
ence, and weak contributions are respectively given by

L (L) =10, + L1, —gu,l- 1, (10)

L2 1) = (L A+ 1,1, — gl - 1) + icher,  (11)

LZE(LT) = (Ll 4+ L, — g, 0 - ) + icse . (12)
where €,,45 = sﬂm/jA"‘Bﬁ. The hadronic tensors are respec-
tively given by

1
Wik(g.p.8)=5- (21)'6*(q—p—px)

X

x (0177(0)

Hp.S:X|Ji(0)[0),  (13)

1
Wii(a.p.8) =53 _(22)'6* (4= p—px)

X

x (0]75(0)

W p.S:X|Ji/(0)[0).  (14)

1
Wit(a.p.8)=5-> _(27)*6"(g=p=px)
X

x (0177%(0)

) p.S:X|J7#(0)[0). (15)

where S denotes the polarization of the hadron and JZ%(x)
is the quark weak current.

To deal with the hadronic tensor, it iS convenient to
construct it with known quantities, e.g., momenta. First of
all we show the general decomposition of the hadronic
tensor by dividing it into a symmetric and an antisymmetric
part, W, = WS,, + IWﬁD, where we have omitted the sub-
script r = yy,yZ, ZZ for simplicity. Each of them is given
by a linear combination of a set of basic Lorentz tensors
(BLTs), i.e.,

Suv __ S 7,Suv S 7.Suv
Wk =D Wkl + D Wi (16)
o,] o.J

A A
W=D Wolel” + 3 Wl (1)

where #** and h* represent the space reflection even and
space reflection odd BLTs, respectively. The subscript o
specifies the polarization. In the general decomposition of
the hadronic tensor, we require that hadron tensors corre-
sponding to the electromagnetic, interference and weak
contributions have the same form. Therefore, they can by
summed together.

For inclusive reactions, the unpolarized or the spin-
independent BLTs can only be constructed by momentum
vectors, g, p. There are in total three unpolarized BLTs
given by

v ., 49 B
i = {r =L ). (18)
R = gmar, (19)

The subscript U denotes the unpolarized part. Here p; =
p* —q"(p - q)/q* which satisfies p, - ¢ = 0. This notation
ensures that the hadron tensor satisfies the current
conservation.

The vector polarization dependent BLTs are given by

= ebarspil, (20)
= {(q- ). Sy i), (21)
e = {(q- kg enars 3, (22)
Ry = Sipy., (23)

where A“BY} = A*BY + AYB* and A¥BY = A*B* — AYB*.
There are seven such vector polarized BLTs in total.

The tensor polarized part is composed of S;; -, S; -, and
Srr-dependent parts. More discussions of polarizations of
spin one particles can be found in Ref. [10]. For simplicity,
we do not show them in this paper. The tensor polarized
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part can be taken as a product of the unpolarized BLTs
and polarization dependent Lorentz scalar(s) or pseudo-
scalar(s). They are given by

hi’g = SLLh%y’ (24)
héﬁ” = SLLhAlw (25)
B — Siﬂr ;}’ (26)
Pty = elrapsin pt), (27)
P S%qu], (28)
i eluapSir PZ]» (29)
s — g (30)
RS — g{ﬂaqps’;};’. (31)

Substituting Egs. (18)—(31) into Egs. (16)-(17) and
contracting with the leptonic tensor yields the differential
cross section. The forward-backward asymmetry is defined
in the lepton center-of-mass frame. To be consistent with
the definition, we show this cross section in the same frame
in which

p = (E,.0.0,p,), (32)
I =Q(1,sin0,0,cos0)/2, (33)
(ﬂh Sr|singg, 4y E—) (34)
M
Ser = (0, Ser|singrr.0), (35)

S;"l;" = (0,]S7r|cos 27, [Syr| sin 2977, 0). (36)

After making Lorentz contraction with the leptonic tensor,
we obtain the general form for the cross section,

do ﬂzaem
dzdy

Z’?r Fu+SepF i +|Sr|(Fr+Fr)

+/1h~7:L+|SLT|(~7:LT+~7:LT)+|STT|(~7:TT+-7:TT)]’

(37)
where we use F and F to denote the parity conserved and

parity violated parts, respectively. These explicit expres-
sions are given by

Fu =2A(»)Fu1 + D*(y)Fyy + B(y)Fus, (38)
Fr=2A()Fp +D*(y)Frp + B(y)Fy3, (39)
Fro =2A0)Frpy +D*(V)F o+ B(Y)Frs  (40)
Fr = sings[D(y)F7 " +2C(y)Fr "], (41)
Fr = cosps[D(y)F77" +2C(y)F3 "], (42)

Frr = cosgrr[Dy)Fip*" +2C(y)F7™], (43)

Frr =sing r[D(y)F] gm(pLT +2C(y) 2;{2/1“]7 (44)
Frr = cos 2€0TTD2( )Fco;erTT’ (45)
F 7T = Sin 2(PTTD2()’)F sn;zq)” (46)

where F and F with subscripts U, L, LL, T, LT, and TT are
known as structure functions. We have in total 19 inclusive
structure functions. Here we have defined

AG) = (1 =3P 42 =3 (1 +eol),  (47)
B(y) =2y — 1 = cos, (48)
C(y) =202y~ V3T —y) = 35in20, (49
D(y) =2/y(1 —y) = sin®, (50)

with y = (1 + cos8)/2. We can see that all the -depen-
dent terms are given explicitly. From Eq. (1) we see that the
differential cross section at the quark level depends on A(y)
and B(y) only. This implies that Fy, 3, F;; 3, and Fy | 3 are
leading twist structure functions (may have higher twist
corrections) while the other terms are higher twist ones.

IV. THE CROSS SECTION IN THE
PARTON MODEL

As mentioned in the Introduction, the difficulty in
describing the weak interactions of quarks lies in the
description of the fragmentation process. The parton model
which is applicable to any hadronic cross section involving
a large momentum transfer can be used to describe this.
Measurable quantity is then factorized as a convolution of
the hard part and the nonperturbative soft part. If only the
fragmentation process is taken into consideration, the
nonperturbative soft parts are usually factorized as frag-
mentation functions. This is the case in this paper. In this
section, in the parton model framework, we present a
detailed calculation of how to obtain the hadronic tensor
and the cross section at leading order twist-4.

036016-4



FORWARD-BACKWARD ASYMMETRY IN THE ELECTRON ...

PHYS. REV. D 106, 036016 (2022)

A. The general forms of hadronic tensors
in the parton model

The parton model gives a reliable approximate descrip-
tion of the hadronic interactions and an opportunity to
calculate the forward-backward asymmetry at hadronic
level. By applying this model, we limit our considerations
at the tree level or leading order of the QCD and consider
the series of diagrams illustrated in Fig. 2, where diagrams
with exchange of j gluon(s) (j =0, 1,2, ...) are included.

To obtain the explicit expression of the hadronic tensor, we
use the collinear expansion formalism. It provides not only
the correct formalism where the differential cross section or
the hadronic tensor is given in terms of gauge invariant FFs,
but also very simplified expressions so that even twist-4
contributions can be calculated. After the collinear expan-
sion, the hadronic tensor is obtained as [11-14]

Wﬂl/(q7 p’ S) = ZW/EJUC)(q’ pv S)’
Jj.c

(51)

where ¢ = L, R, M denotes different cuts for left, right, and

middle, respectively. The W,(],jc) is a trace of the collinear-
expanded hard part and gauge invariant quark- j-gluon-quark
correlator. In other words, the hadronic tensor is written as an
explicit factorized form. To be explicit, we have

W = ~Tr[hlEO), (52)
Wi = = gy Trlh &) (53)
WM = WTrmﬁ?p"éf,%M)], (54)
Wi = Wn[ﬁ,&?””éﬁ? +HPER, (53)

where we have omitted the arguments for simplicity. The
hard parts or simplified scattering amplitudes are given by

g
™

PP i )

.

FIG. 2. The first few diagrams are examples of the considered
diagram series with exchange of j-gluon(s) and different cuts. We
see (a) j = 0, (bl) j = 1 and left cut, (b2) j = 1 and right cut, (c1)
j = 2 and left cut, (c2) j = 2 and middle cut, and (c3) j = 2 and
right cut, respectively.

hiy) = Tipre/ pt, (56)
) = ThpyriTd, (57)
NG = g T2y T 58
b q Ty hy°T,, (58)
hZPe = p T fy sy AT, /2. (59)

The corresponding quark-j-gluon-quark correlators are
given by

[

D [ s ol 0. o))

X (hX|ip(§7)L(¢7, 0)[0), (60)

) =3 [P e 010,000, (01 0)
Xl c0)). (61)
B0 = 3 [ e 01 (0.00), (0w 0)1X)
(X DAE (e 0. (62

a2) prdé ‘e /7 o ¥
57 =3 [ Py 01 (0,000, 01,0

<y (0)[hX) (X[ (&) L(E7, 00)[0). (63)
&) _ prde . . —iptE [z p=iptu/z
By —ZX:/ 5, P dne e (0]

x L7, 00)D,(n7) D (n17) LF(0. 117 )y (0)[hX)

x (hX|ip(E7)L(E7, 0)[0). (64)
where D, = —id, + gA, are the transverse covariant deriva-

tive, and £(0,y) is the gauge link. The argument & in the
quark filed operator y and gauge link represents (0, ™). We
note that the leading power contribution of W,(]D) is twist-
(j +2). Therefore the second term in Eq. (55) has no
contribution up to twist-4 because of the factor p® in the
definition of éf,z/) given by Eq. (63). The leading power
contribution of this term is twist-5.

B. Decompositions of correlators

In the previous part, hadronic tensors are given in the
explicit factorization forms where hard parts and non-
perturbative soft parts are naturally separated. These soft
parts are correlators shown in Eqgs. (60)—(64). Correlators
cannot be calculated with perturbative theory because they
contain the hadronization information. However, they are
4 x 4 matrices in Dirac space and can be decomposed in
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terms of I" matrices, i.e., I' = {I,iy>, y*,y>y% ic®y}. The
decomposition can be written explicitly as
BE=IE+iPE+y"E, + r'1°E, + icy°E (65)
In the inclusive electron positron annihilation process, only
the chiral even quantities are involved due to no spin flip.
Thus we only need to consider the y* and the y°y* terms in
the decomposition of the correlators in terms of the I
matrices and corresponding coefficient functions, such
as 20 = E((l())y“ + E((lo)ys}/“ +-- .
We first consider the quark-quark correlator 2. At
twist-4, the coefficient functions are given by
=29 — p+a (D, +S,,.D
78y = pFig(D1+ SpDiry)
M2
—MSpreDrr + o

— MS;,Dr

ng(D3 + Sy Dsr),  (66)

EY = —ptiignGy, — MS1,Gr
. M?
—MS;1,Grr — ot naAp G- (67)

Here S;, = ¢ L/}aS/;- D’s and G’s represent the y“*- and
y r°-type FFs, respectively. The digit j in the subscript
denotes twist-(j + 1); the capital letters such as L, T, LL,
and LT denote hadron polarizations.

For the quark-gluon-quark correlator & _,(,1)
parts are

, the chiral even

(1 .
Z-:;(m) = p*aM(Sr,Dar + Si1pDarr)
+ M?g1 p0(D3g + Sp.Dsarr)
+ iMzSL/)a/‘LhD.’)dL’ (68)

ZE( ) — = ipTn M(S7,Gar + SLTdeLT)
+ iM*¢ 1 )y (G3g + S1.G3arr)
+ Mzglpaj'hG?’dL’ (69)

where we use subscript d to denote FFs which are defined
through ﬁ;l).
For the quark-gluon-gluon-quark correlators = ,(,? and

éé%,’M) we require that the decomposition of _.,(,5 ! takes

exactly the same form as that of _,(,6) We just add an
additional superscript M to distinguish them in the follow-
ing context from each other. For the chiral even part, the
corresponding coefficient functions are given by

—(2 _ .
Zd/(m)a = ptaM 2 [gj_paDde + lflpaﬂhD3ddL]v (70)

~(2 _ .
Z-:,S)a)oc = pTiM?ie | )oGraa + M?91541G3qar),  (71)

where we use dd in the subscript to denote FFs defined via

.?./(,? From Eqgs. (66)—(71), we see that for the twist-4 parts,
the decomposition of Z and that of Z have exact one-to-one
correspondence. For each Dj, there is a G5 corresponding
to it. They always appear in pairs. Because of the

Hermiticity of 2 and éﬁ,%;M), FFs defined via them are

real. For those defined via é,(}) and é,(,%,) there is no such
constraint so that they can be complex.

Not all the FFs defined in Egs. (66)—(71) are actually
independent. We can eliminate the correlated terms by
using the QCD equation of motion y - Dy = 0. With this
equation, the quark-j-gluon-quark correlator is related to
the quark-quark correlator. For the two transverse compo-

nents 2 and £, we have
—(0 2 2 ;
K EY” = g ReE!!) — ¢ ImELY, (72)
~(0)p oy & ( 24
KHED” = —°ReE!") — ¢°Im (73)

Equations (72) and (73) lead to a set of relationships
between twist-3 FFs which can be given in the unified form

—iGs = —z(Dys — Gys), (74)

where S =T and LT whenever applicable. Similarly, for
(0) (0)

the minus components of E,’ and =y , we have
2U2EO) = ket (BN + i EL))

06 = 2,.M) m'.—‘ 2.m
= 1= /(m+ 8/ /)0'+ )’ (75)

22RO = k(B + i)
= —gral sl ()

From Egs. (75) and (76), we obtain a set of relationships
between twist-4 FFs defined via 2, 1) and 2>M),

Dy =zD_3; = =2*D'5 . (77)
D3y = 2D 30 = =2*DY 000 (78)
G3p = 2D _34 = ZzD%ddu (79)

where D = D 4+ G such as D_3; = D3; — Gz, and so on.
We note here that only the one-dimensional or collinear
FFs are shown. In fact the relationships between three-
dimensional or transverse momentum-dependent FFs can
be obtained in the same way [15]; we do not repeat them in
this paper.
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C. The hadronic tensor at twist-4

It is straightforward to calculate the hadronic tensor with
FFs and the corresponding hard parts at hand. The
important step is calculating these traces. To be explicit,
we calculate the leading twist, twist-3, and twist-4 con-
tributions in turn. The leading twist contributions only
come from the quark-quark correlator Z(). The correspond-
ing traces are simple and given by

R 4 )

Trlhy 7] = ~ (el ticlen,). (80

T il(o) Sﬂ _ i q . q 81
I'[ w Y ] p+ (c3gJ_/,w + lcng_/u/)' ( )

And the leading twist hadronic tensor is

ZWIZ;w = _2[C?gl;w + icggLyu](Dl + SLLDILL)
- 2[ngL/w + ic?gluy]ﬂhGlL' (82)

We find that sz;w satisfies the current conservation,
ie., qMWIZﬂV = qut2;w =0.

Twist-3 contributions have two origins, one is the quark-
quark correlator £ and the other is the quark-gluon-quark
correlator éf,n. We first calculate these contributions from
the quark-quark correlator 20 Here we use traces

4

~ 0 . T
Tr[hfw)ﬂ = p+ (C({k{ynu} + lcgk[ﬂl’ly]), (83)

. 4 o
Tr[h,(w)y5k} = o (cTkguny,y + iclkyn,),  (84)

where k denote S;(S7) and S, 7(S,7) and we obtain

- 2M -
0 .
W§3;)w =T [(c{Srgunyy = icSyyn,) Dy

+ (C?SLT{M%} + l.CSIS‘LT[ynu])DLT}
2M .
+ o [(c2S7gunyy + ic]Spyn,)Gr
+ (CS’SLT{,,I%} - iC?SLT[ﬂnD])GLT]' (85)

For the twist-3 contribution from the quark-gluon-quark

A(1
correlator :,(, >, we use

Telhfs 7| = —8(clg i + icle i), (86)
e[y 7] = +8(cid) i + icle "), (87)

and obtain

= (1)L 2p+M

ZWIS;U/ = [(C({ST{yﬁv} - ichTWﬁu])DdT

+ (cfSLrguiyy + ic§S,77,)) Darr]
2ptM

pegq

+ (cASergatiyy — ic{Spryiiy)Garr). (88)

[(C?ST{,J%} + ic{Sryt,))Gar

The complete twist-3 hadronic tensor is the sum of all the
twist-3 contributions, i.e., W3 = W£(3)1)41/ + WS}; + (Wgzﬁ )
Using Egs. (74), (85), and (88), we eliminate the nonin-
dependent FFs and obtain the complete hadronic tensor at

twist-3.

Wi = _51'\/[(1 [(c{87uduy — ic4S7,d,)) Dy
+ (1817440} + i3S 171,d,)) D1 7]
+ b q [(c4S7udy + ic{87,4,)Gr

+ (ngLT{yC_Iy} — ic{S1114,)Grrls (89)

where g = g — 2p/z. It it can be shown that Wt3/w satisfies
the current conservation q”W,3W = q”WBW = 0. Here we
can see that consideration of the quark(-j)-gluon-quark
correlator is also a requirement of the current conservation.

As for the twist-4 contributions, they have three origins
which correspond to correlators @0), é;l), and é,(,?,
respectively. We first calculate contributions from quark-

quark correlator =20, Using the following two traces,

~(0 8
Tr[hie o] = i, (90)
~(0 8
Tl y ] = =5 e, (91)
we obtain
7,(0) am? q
ZWZ4;w == (p+)2 Cln;tnu(D3 + SLLDSLL)
4M?
+ chnﬂnu/th3L. (92)

For the twist-4 contributions from quark-gluon-quark
correlator E,()l), we use

A1) g _ 16 _
Te(ha) 7% (9 Ly + i€ pa) = o7 (el Dma,.(93)

A1) S a1y 16 _
Tr[hﬁllf)ysy Kng_pa + g_Lpa) = _p_+ (C(II + Cg)n/tnw (94)
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and obtain

~ (I)L 4-M2 q q
Wi = —n”u”u[cl (D34 + SppD3arr) + c343 D3]

4M? q q
+ 7q n,n,[c{(Gsq + Sp.Gaarr) + ¢34,Gsar ).

(95)

It is convenient to divide the contributions from quark-
gluon-gluon-quark correlator éff,) into two parts; one is the
middle-cut and the other is the left- and right-cut part. We
first consider the middle-cut part and use the superscript M
to distinguish it from the others. Using

~2) 4 . 16
ﬁ%thW+wm0:—;ﬂﬁ—£mww (96)

N i 16
Tr[h/(l?ysya](lel_pa + gJ.pa) = _F (Ci] - Cg)PﬂPw (97)

and Egs. (70)—(71) yield

R (¢! (DM, + S, DY, . )
= (p'q)zp;lpv 1340 T9OLL 30411
+C(31/1hD13‘{idL]
4M?>

“ gt [c1(G3aa + St.G3arr)
+ cA,GY (98)
H define W.. =W LWL DLy @M
ere we define Wiy, =W, +W,, + (WMW) + Wi -
By using Egs. (77)—(79), (92), (95), and (98), we can obtain

- aM?*
Wi =—5"3"[c](D3+S1.D311) +¢34,G3.]. (99)
(P-q)

It it can be shown that szwy satisfies the current con-
servation g Wﬂw = q”WﬂW = 0.

To obtain the contributions from the left- and right-cut
parts, one needs to very carefully calculate the following
traces:

S o 4 p- o o
Tr[N,ﬁ)p A=+ (p+Q) S 91w + g/i[ﬂgly]]

4(p-q)

0D i - ) (100
~(2)po 4(p ) Q) e o
TrN2ry55] = — oF S 91w + 9,90,
4p-q). o
+ ( ) lc‘ll[gﬁ_ﬂgj_v - glugﬁ_y]' (101)

p+

The hadronic tensor is given by

2
%-(2)L .
ZW§4,)W i (191 + icie 1) (D3ga + SrrD3aarr)

+ (39 +icle ) nD3gar]

2M? q g
- 7 (Vg1 +ic3e1)(G3ga + S1LG3aarr)

+ (391 +icle 1) Gsaa]- (102)

We define Wﬁi}w = Wﬁ;’; + (ngl)//’:)* Using Eqgs. (77)-

(79) to eliminate the nonindependent FFs yields

ZW&,)W = ;tM; (191 +icte ) (D _3ga + StiD34arL)
+ (391 + icle ) D 34aL], (103)

where
D_344 = D34a — G3aa (104)
D_3441. = D3gar — G3aar» (105)
D 3441 = D3aarr, — Gsadri- (106)

In this part we obtain the complete hadronic tensor up to
twist-4 level. In Eq. (82) we show the leading twist
hadronic tensor while we show the twist-3 hadronic tensor
in Eq. (89). The twist-4 hadronic tensors are given in
Egs. (99) and (103). All these hadronic tensors satisfy the
current conservation law.

D. Contributions from the four-quark correlator

At twist-4, there are also contributions from diagrams
involving the four-quark correlator [6,7,16] except for those
from quark-j-gluon-quark correlators. Following the pre-
vious discussion, we consider the four-quark correlator in
this part. The general operator definition of the four-quark
correlator is given by

. 2 [ odly dby, dt
2O (k. koky) =L / y A dys
(49) 8 ) (2n)* (27)* (2x)

x e~ thky+ilki—k)y —i(ky=k)y
% D (00 (y2) L7 (0. y2)yr(0)| hX)
X

x (hX[i (y) £(y. y1)w(y1)[0)-

(107)

Some examples of the four-quark diagrams are shown in
Fig. 3. We note that if the cut is given at the middle we have
contributions from the gluon jet. If the cut is at the left and/
or right, we have contributions from the quark jet. Both of
them contribute to the vector meson production annihila-
tion process; in this case we consider them together.
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FIG. 3.

The first four of the four-quark diagrams where no
multiple gluon scattering is involved. In (a), we have k| = k; — k
and k, = k, — k; in (b) we have the interchange of k; with &/; in
(c) we have the interchange of k, with k5; and in (d) we have both
interchanges of k; with k| and k, with k.

It can be shown that the collinear expansion can also be
applied to this case and the gauge links included in the
correlators given by Eq. (107) are obtained by taking the
multiple gluon scattering into account. The explicit fac-
torization form of the hadronic tensor is the product of the
hard part and the four-quark correlator. It can be written as

- 1 i (
W%fv) - ﬁ/ dZdzldzzhﬁéq[(C?gle + lcggiﬂ”)cs

+ (C’Z‘Igl;w + ic?ﬁlyu)éps]' (108)

Here we have written the hadronic tensor Wz(tquy for both the

quark and gluon jet cases into a unified form which is
distinguished by superscripts g, g for gluon and quark jet,
respectively. C, and C »s are the correlators considered.
They can also be written as the unified form

R I PN ot
o} :/(2”)2/51 ki d*kd k26<z—k—+>5(k1 z1-pY)

x 8(ki 2y — p*) (a8 (ku + RLEG) (K ko ks p).
(109)

where j = s, ps. The corresponding égg; s and éggl)m are

given by

—ikyy+i(ky=k)y,—i(ky=k)y,

(4g)s — g

20 _ & / d'y d'y, d'y,
- (27)* (27)* (2m)*

5> {{0f (v2)sbyr (0) |hX) (hX[ () by (v1)|0)

+ (017 (v2)7> sy (0)|AX) (hX 1 (v) 7 shw (31)10) }.
(110)

[x»

(0) — gz / (;l4);4 (6;4)})14 (‘;4)))24 e—ikl)"H(kl—k)}'1—i(kz—k)y'2
JT T T

(4g)ps — g
Y {017 (y2)7° sy (0)|1X) (hX | (v by (v1)]0)

+ (O (v2) b (0)[X) (X g (y)y° shyr (v1)|0) }.
(111)

For simplicity, links in
Eqgs. (110)—(111).

In the hadronic tensor shown in Eq. (108), hZ{]q denotes
the sum of all the hard parts which correspond to the four

diagrams in Fig. 3. They are

we have omitted gauge

ZZ%5<Z —2p) Z%/Z1125(Z -2p)

o

Y7 (zy—zptie)(za—zp—i€)  (1/z) +i€)(1/zy —ie€)
_ w/ud—z) — (1 2) (112)
(21 —zp +ie)(1/z, — ie) ’

it (21 =2p) _(1 1_1)

Y (z—zp—ie)(za—zp—i€) \2 Z 2

3 212,
7730(z71 + 25 —£ 1 1 1
3621 + 25— 230 (E-LD)

(z—zp—ie)(zy —z5—i€) 5 2_5

where z=1z5=pt/k", hf{g(zl,z,zz) = hﬁg*(zbz,zl).
The complete one is obtained by summing over all the

hard parts, i.e., hy, = hf, + hiy + hj,.

Equation (108) shows the explicit factorization form
of the hadronic tensor. Apart from the tensors, it is
convenient to consider the other terms as a whole. As
for the quark-j-gluon-quark correlators, we decompose C,

and C ps 10 terms of the four-quark FFs as follows:

z / dzdz;dzyhsyCy = M?(Dyy + S Dagrr).  (114)

z / dzdzdzyhs,Cpe = M?2,Guyy . (115)

Substituting Eqs. (114)—(115) into Eq. (108) yields the
hadronic tensor for the four-quark correlator contributions,

2
ZW4q/u/ = ﬁ [(C?glyy + icg'glﬂu)<D4q + SLLD4qLL)

+ (391 +icle ) Gagr). (116)

We can see that W4q;w takes exactly the same form as the
leading twist W,QW given in Eq. (82).

E. The cross section at twist-4

Contracting the leptonic tensor and the hadronic tensor
yields the complete cross section of the vector meson
production inclusive electron positron annihilation process.
We show the leading twist, twist-3, and twist-4 contribu-
tions together,

036016-9



WEIHUA YANG and CHAO LI

PHYS. REV. D 106, 036016 (2022)

de**  2rmat,
dzdy ~— Q?

+ — |SLT|( 2, zz( )cos @ rDyr + Tg,zz()’) sing,7Gpr)

2’<12v1 5 4K,2V1 g
+7D (V)e§e§uGay, — . T6.77(y)Re(D_ 344 + Sp1D_34411) —
2 2

K
- §4T0 22()(Dag + SppDagrr) —

where the four-quark correlator contributions are included.
To simplify this expression we have defined k), = M/Q and

T322(y) = cic{A(Y) + c5e5B(y).  (118)
T 22(y) = cic3A(y) + c5¢1B(y), (119)
T322(y) = c{c{C(y) +¢5¢3D(y). (120
T3 22(y) = ¢{c5C(y) + c5cD(y). (121)

Here we only show the cross section of the weak interaction
term. The complete cross section also includes the electro-
magnetic and interference terms, see Eq. (9). For the
electromagnetic interaction, we require ¢c3 =0 and ¢; = 1.
In this case, only 7§ ,,(y) and T3 ,,(y) are left, T ,,(v) —
A(y) and T4 ,,(y) = C(y). For the interference terms, we
need to set c; = ¢4 and ¢; = cy. To be explicit, we have

T5,,(v) = A(y), (122)
i, (y) =0, (123)
T3,,(v) = CO). (124)
TS () =0. (125)
T§,2(y) = c{cVAWY) + cqciB(y).  (126)
T1,2(y) = iAW) + cacyB(y), (127)
T3,2(y) = cyeyC(y) + cicaD(y), (128)
T3,2(3) = cyeiCy) + cicyD(y).  (129)

Correspondingly the kinematic factor y should change to ¢
and y;,, for electromagnetic and interference contributions,
respectively.

1 zz( )th4qL}

K .
Z{Tg.zz()’)(Dl +SpDipr) + TLII,ZZ<y)/1hGlL - 7M |ST|<T3,ZZ(Y) singsDr + ngz()’) cos psGr)

2K2
+ Z—éuDz(Y)C?C?(D3 +8S1.D311)
453

— T? zz( JReA,G 3441

(117)

|
V. THE COMPLETE RESULTS AT TWIST-4

A. The structure functions

In the following, we present structure functions in terms
of FFs by only considering the weak contribution. Other
contributions from electromagnetic and interference terms
can be obtained by replacing the corresponding factors.
Among the 19 structure functions shown in Egs. (38)—(46),
six of them have leading twist contributions; they are
given by

Z2Fy = ¢§cf {Dl - % (4ReD_3,44 + D4q)} , (130)
ZFy3 = 2¢5¢d {Dl - % (4ReD_34y + D4q)} , (131)
2Fpy = c§cd |:G1L - % (4ReD_34q1, + G4qL):| ; (132)
2F 3 = 2¢5c] {Gu - % (4ReD_3441, + G4qL):| ) (133)
2Fpp = ctcf |:D]LL _%(4R6D—3ddLL + G4qLL):| . (134)

2
2F 3 =2c5c] |:D1LL _7M(4RCD—3ddLL =+ G4qLL>:| . (135)

We see that they are functions for the unpolarized and the
longitudinally polarized cases. In Eqs. (38)—(46) they just
correspond to the (1 + cos® §) and cos € terms. We can see
that the four-quark correlator contributions are included in
Egs. (130)—(135) and they have the same modes as for the
leading twist contributions.

There are eight structure functions which have twist-3
contributions, and are given by

2FNS = “2icycéciDy, (136)
2ER?S — —kpc¢cd Dy, (137)
P = =2ky,¢4¢Gr, (138)
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PFRS = —kyc§ciGr, (139)
2FS = 26 ¢5¢1Grr, (140)
2F18 = kucieiGyr, (141)
PFpT = 2kp¢5¢ID, 1, (142)
PFp"" = kycic{Dyy. (143)

They all correspond to the transverse components of hadron
polarizations. They correspond to the sin @ and sin 20 terms
in Eqgs. (38)-(46).

The left three structure functions have only twist-4
contributions, and they are given by

2Fyy = 2k3,¢5c!Ds /22, (144)
F, = 2K%,,cfch3L/zz, (145)
ZFLL2 = ZKIZWCfC?DT,LL/Zz. (146)

We note that Fior>*"" and F5>*" do not have correspon-
dence to the FFs. These structure functions indicate that
transverse momentum dependent FFs do not appear in the
inclusive annihilation process.

B. The forward-backward asymmetries

As we emphasized in the Introduction, the main focus of
this paper is calculating the forward-backward asymmetries
for the produced hadron in the inclusive annihilation
process. The forward-backward asymmetry is introduced
to describe the angle distribution of the fermions from Z°
decays as introduced in Sec. II. Here we redefine the
asymmetry at the hadonic level to illustrate the angle
distribution of the produced hadron in the electron positron
annihilation process. Comparing to Eq. (4), we define the
forward-backward asymmetry for a hadron as

_ Joldoldcos6 — [° [do]d cos

A
B J1,[do]ydcos @

, (147)

where [do] = do/dzd cos 0 while [do],; denotes the differ-
ential cross section for the unpolarized case at leading twist.
In Eq. (117), the differential cross section is given in terms
of y instead of cos#; it is then convenient to rewrite the
forward-backward asymmetry Agg in the following form:

A — Jijp(do)dy — fol/z(do')d)’
v Jo (do)ydy ’

where (do) = do/dzdy and (do),; denotes the unpolarized
differential cross section at leading twist only,

(148)

2
4ras,,

1
A (do)ydy = 30° (e 4+ xcicl + et cl)Dy.

(149)

Using the definition in Eq. (148) and the corresponding
differential cross section, we obtain

3(xcsed + ximeed) D,

Apgy = ) (150)
4(e2 + yc§cd + yimccl) D,
A o 3(XC§CCII +)(imcic?/)GIL (151)
FB.L _4 2 e .q - ceci\D,’
(eq +)(c101 +)(1ntchV) 1
A _3(resed + ximeici)Diny (152)
FB.LL — 4 2 e .q - ceci\D,’
(eq +)(Clcl "‘thcvcv) 1
AX _ ()(CTCSI +)(intC€/CZ)GT (153)
FB.T — 2 2 e .q T AY )
(eq +)(Clcl +)(mtcvcv) 1
Ay _ ()(C?C‘II +)(intcf/c§l/>DT (154)
FB,T — 2(e2 e .4 T AY )
(eq +)(CIC1 +)(1mCVCV) 1
(resel 4+ ximey ) Doy
AéB’LT:2(62+ csel + xime§el)Dy (155)
g TXCICy )(mtcvcv) 1
A%'B _ (ZC?C; +)(intC€/CZ)GLT (156)
LT —

2(eg + xeicl + ey el )Dy

where subscripts U, L, LL, T, and LT denote respectively
the polarizations of the produced hadron. D,, G,;, and
Dy, denote FFs including twist-4 contributions, e.g.,

Dlle—%(étReD_Md—f—DM). We can see that Eq. (150)

is similar to Eq. (5) except for the FF D, (D,). The explicit
factorized forms shown in Egs. (150)-(156) provide a
direct demonstration of the factorization theorem and/or the
parton model. They can be used to test the electroweak and
strong interactions simultaneously. These forward-back-
ward asymmetries can also be expressed with structure
functions. We do not show them for simplicity.

To have an intuitive impression of the hadron forward-
backward asymmetry shown above, we present the numeri-
cal values of Apgy and Apg,; in Fig. 4. The produced
hadron is chosen as a A hyperon. Only leading twist
contributions are considered. We do not show other
asymmetries due to lack of proper parametrizations. The
parametrization of the unpolarized FF D, is taken from
[17]. Only the light valence quarks (u, d, s) and gluons are
considered here while sea quarks and heavy quarks are
ignored. (We found that they have limited influences on the
numerical results.) The QCD evolution of the FF starts
from Q =2 GeV and is limited at leading order.

We use the same parametrization of the longitudinal spin
transfer FF G, given in Ref. [18]. We use
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—u PN
06{ 7 ds / =
—— tot,z=0.20 ,' -

04l — tot,z=0.30 : ,/
B — tot,z=0.40 ,1
I

Ars,u

10! 102
Q[GeV]
(@)

-=-u
06{ " ds

— tot,z=0.20

—— tot,z=0.30
049 — tot,z=0.40
0.2

£ oo

100 102
Q[GeV]

(b)

FIG. 4. The forward-backward asymmetries for Agg ;; (a) and
Apg (b). Dashed lines show asymmetries for the u and d(s)
quarks. Solid lines show asymmetries for produced hadrons with
different momentum fraction z.

GirM(2) = 2DyA(2) (157)
for the s-quark FF and
GI7Mz) = N2“DI™\(2) (158)

for the u- and d-quark FF, where superscript ¢ = u, d. We
fix the parameters as @ = 0.5 and N = —0.1. The evolution
function and polarized splitting functions can be found in
Refs. [18-20]. We do not show them here for simplicity.

For comparison, we draw asymmetries for quarks (u, d,
s) as well as that for the produced hadron in the same panel.
We find that they have the same behaviors but different
numerical values. This is because the forward-backward
asymmetry which arises from the difference of Z° cou-
plings for left- and right-quarks is dominated by the energy
and couplings. At the same time, the longitudinal spin
transfer FF Gy, (z) satisfies |G (z)] < D;(z). The same
goes for momentum fractions, z = 0.20, 0.30, 0.40. We

here only consider the collinear FFs. Parametrizations of
the transverse momentum-dependent polarizing FF for A
can be found, e.g., in Refs. [21,22].

C. Parity-violating asymmetries

With the advent of highly polarized electron beams,
parity violation measurements have become a standard tool
for probing a variety of phenomena. In this part, we
calculate the parity-violating asymmetries in the inclusive
annihilation process. Parity-violating asymmetry usually
describes the difference of the cross section for respectively
the right- and left-handed electrons in the deeply inelastic
scattering process [23,24]. In this paper, we consider the
unpolarized lepton beam and calculate the parity-violating
asymmetries with the polarized produced hadron. The
definition of the parity-violating asymmetry is given by

do(S =+1) —do(
do(S = +1) 4 do(

-1)
=1y (159)
where § denotes the hadon spin and do denotes the
unpolarized differential cross section, i.e., do=do/dzdy.
This definition is different from that in Ref. [25] where
asymmetry was given with respect to the unpolarized
electromagnetic cross section. Different definitions in
principle do not change the physical meanings. How-
ever, the numerical result shows the definition in
Eq. (159) is more reasonable.

First of all, we present the two asymmetries given by the
longitudinal polarized FFs; they are

S
A =
PV S

T 7, +x intT(l],yZ>GlL
ApveL = oy q q , (160)
(eqT0,, + 471022 + xinT5,7)Di
A  UToy + ximT6,2)D11L (161)
A et e A B, W
€y 0.7y XLozz T Xint 0yz/*~1

We can see that they are leading twist asymmetries with
twist-4 corrections. We use the same parametrization of the
longitudinal spin transfer FF G; shown before and present
the numerical values of Apy ; in Fig. 5.

Correspondingly, there are two twist-4 asymmetries
which are given by

A3, | = 2, 2+ i R DY () G
' 2(e3T,, + 2716 72 "’ZintTg,yz)Dl

(162)

Y

s 2(xeie! + pinet ch)D*(y) D3y g

Aby =K '
PV.LL M Zz(e%ITg-,W + 27622 +Xi“tTg-VZ)D'

(163)

We can also calculate the parity-violating asymmetries
for the transversely polarized hadron case; they are all
twist-3 asymmetries,
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FIG. 5. The parity-violating asymmetry for Apy ;. z is the
momentum fraction.

(T35, +x intTg,yZ)D T

Apy.r = —Km ., (164)

e Z(engg.yy +)(Tg,ZZ +)(intTg,yz)D1
q q

Abyr = Ky —s (XT3 22 + XmT13,2)Gr o (165)
' Z(eng,yy "‘)(Tg,zz "‘)(intTg,yz)Dl

Ay e = Ky —s T3z +xinT5,2)Gir ’ (166)
’ 2(e5T0,, + 47522 + XinT6,2) D1

(ZTg,zz +ZintTg,yz>DLT (167)

A% =Ky .
PV.LT Z(eéT(q)W +xT§ 22 +ZimT<q),yz)D1
Parity-violating asymmetry which is similar to the forward-
backward asymmetry combines the electroweak and

QCD theories. Measuring these asymmetries can be

important ways to examine electroweak and QCD theories
simultaneously.

VI. SUMMARY

In this paper, we consider the vector meson production in
the inclusive electron positron annihilation process and
calculate the forward-backward asymmetry in the hadronic
level, i.e., the asymmetry in the angular distribution of the
produced vector meson. The asymmetry arises from the
difference of Z° couplings for left- and right-handed
fermions. Measurements of this asymmetry can enable
independent determinations of the neutral-current couplings
of these fermions. To deal with the nonperturbative frag-
mentation process, we present a factorized form of the
hadronic tensor by using the collinear expansion method in
the parton model. Results are finally expressed in the
factorized forms; see Eqs. (150)—(156). The explicit factor-
ized forms provide a direct demonstration of the factoriza-
tion theorem and/or the parton model. We can see that
Eq. (150) is similar to Eq. (5) except for the FF D, (D, ). This
process provides not only a tool for analyzing the hadronic
weak interactions but also an opportunity for understanding
the parton model of the strong interaction. In other words,
the results can be used to test the electroweak and strong
interactions simultaneously. In addition to the forward-
backward asymmetries, we also calculate parity-violating
asymmetries and structure functions at leading order twist-4.
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