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A quantity of particular experimental interest is the forward-backward asymmetry in the angular
distribution of positively and negatively charged fermions produced in Z0 decays. Measurements of this
asymmetry can enable independent determinations of the neutral-current couplings of these fermions, i.e.,
the Z0 boson couplings for left- and right-handed fermions, respectively. Due to the quark confinement,
however, it is difficult to determine the electroweak interactions of quarks, especially for light quarks. In the
hadron production electron positron annihilation process, the parton model with factorization theorem
gives a reliable approximate description. Quantities are thus expressed in terms of fragmentation functions
in the annihilation process. In this paper, we consider the vector meson production in the inclusive electron
positron annihilation process and calculate the forward-backward asymmetry in the hadronic level.
Calculations are carried out by applying the collinear expansion in the parton model at leading order twist-
4. We note here this process provides not only a tool for analyzing the hadronic weak interactions but also
an opportunity for understanding the parton model of the strong interaction. In other words, the results can
be used to test the electroweak and strong interactions simultaneously.

DOI: 10.1103/PhysRevD.106.036016

I. INTRODUCTION

The Standard Model (SM) of elementary particles and
their interactions has achieved great success in the past
decades. It has two basic components, the spontaneously
broken electroweak (EW) theory and the color gauge
theory or quantum chromodynamics (QCD). Since the
left- and right-handed fermions in the EW theory live in
different representations of the fundamental gauge group,
they have different couplings for the gauge bosons, Z0;W�.
As for Z0, the difference leads to an asymmetry in the
angular distribution of positively and negatively charged
leptons and/or quarks produced in Z boson decays. This
asymmetry, known as the forward-backward asymmetry
[1–4], depends on the Weinberg angle or the weak mixing
angle and can enable independent determinations of the
neutral-current couplings of these fermions. Due to the
quark confinement it is relatively difficult to determine
the electroweak interactions of quarks. Heavy quarks (c or
b) can be determined by tagging the decays of correspond-
ing hadrons containing them. However, light quarks require

other flavor separation methods. The difficulty in describ-
ing the weak interactions of quarks lies in the description of
the quark fragmentation process. Thanks to the asymptotic
freedom of QCD, the fragmentation process can be studied
in the factorization theorem framework [5] in the parton
model. The factorization theorem tells one that measurable
quantities, e.g., a cross section, can be separated by the
calculable hard parts from the nonperturbative soft parts. If
only the fragmentation process is taken into consideration,
the nonperturbative soft parts are usually factorized as
fragmentation functions. Fragmentation functions (FFs) are
most important physical quantities in describing hadron
productions in high-energy reactions. They quantify the
hadronization process of quarks and/or gluons in high-
energy reactions where hadrons are produced. Quantities
therefore can be expressed in terms of FFs in the annihi-
lation and other fragmentation processes.
In this paper, we consider the vector meson production in

the inclusive electron positron annihilation process and
calculate the forward-backward asymmetry in the hadronic
level, i.e., the asymmetry in the angular distribution of the
produced vector meson. For certain higher twists, factori-
zation theorems can be written down, but in most cases, all
orders proofs do not exist. Since factorization beyond
leading order for twist-4 terms is unclear, we limit
ourselves by leading order calculations in this paper. In
other words, the calculations are carried out in the parton

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 106, 036016 (2022)

2470-0010=2022=106(3)=036016(14) 036016-1 Published by the American Physical Society

https://orcid.org/0000-0002-3668-696X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.036016&domain=pdf&date_stamp=2022-08-17
https://doi.org/10.1103/PhysRevD.106.036016
https://doi.org/10.1103/PhysRevD.106.036016
https://doi.org/10.1103/PhysRevD.106.036016
https://doi.org/10.1103/PhysRevD.106.036016
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


model at leading order twist-4 by applying the collinear
expansion formalism [6–9]. Collinear expansion is a
powerful tool to calculate higher twist effects by taking
into account multiple gluon exchange contributions. On the
one hand, gauge links will be obtained automatically which
make the calculation explicitly gauge invariant. On the
other hand, collinear expansion gives a very simple
factorization form which consists of calculable hard parts
and FFs. This will greatly simplify the systematic calcu-
lation of higher twist contributions. After obtaining the
differential cross section, we introduce the definition of the
forward-backward asymmetry for the production hadron.
We finally present these asymmetry results in terms of FFs.
The rest of the paper is organized as follows. In Sec. II,

we first introduce the general definition of the forward-
backward asymmetry of the muon pair in the electron
positron annihilation process and show some conventions
used in this paper. In Sec. III, we present the formalism of a
vector meson production annihilation process where the
differential cross section is given in terms of structure
functions. The study in the parton model formulism is given
in Sec. IV, where we present a detailed calculation of how
to obtain the hadronic tensor and the cross section at
leading order twist-4. In Sec. V, we present the results for
the structure functions and forward-backward asymmetries
in terms of the gauge invariant FFs. A brief summary is
given in Sec. VI.

II. INTRODUCTION TO THE
FORWARD-BACKWARD ASYMMETRY

A simple exercise for the fermion pair production in
the electron positron annihilation process is to calculate
the muon pair production process eþðl0Þ þ e−ðlÞ →
μþðk0Þ þ μ−ðkÞ. It gives fruitful information about the
annihilation reactions. By considering the EW theory,
the differential cross section of this process can bewritten as

dσ
d cos θ

¼ πα2em
2Q2

fχ½ce1cμ1ð1þ cos2θÞ þ 2ce3c
μ
3 cos θ�

þ χint½ceVcμVð1þ cos2θÞ þ 2ceAc
μ
A cos θ�

þ e2qð1þ cos2θÞg; ð1Þ

where θ is the scattering angle in the lepton center-of-mass
frame or the gauge boson rest frame, αem ¼ e2=4π is the
fine structure constant, and Q2 ¼ q2 ¼ ðlþ l0Þ2,

χ ¼ Q4

½ðQ2 −M2
ZÞ2 þ Γ2

ZM
2
Z�sin42θW

; ð2Þ

χint ¼ −
2eqQ2ðQ2 −M2

ZÞ
½ðQ2 −M2

ZÞ2 þ Γ2
ZM

2
Z�sin22θW

; ð3Þ

where MZ and ΓZ are respectively the mass and decay
width of the Z-boson, θW is the Weinberg angle or the weak
mixing angle. ce1 ¼ ðceVÞ2 þ ðceAÞ2 and ce3 ¼ 2ceVc

e
A, c

e
V and

ceA are defined in the weak interaction current JμðxÞ ¼
ψ̄ðxÞΓμψðxÞ where Γμ ¼ γμðceV − ceAγ

5Þ. Similar notations
are also used for muon and quarks where we use a
superscript μ and q to replace e.
The forward-backward asymmetry in the angular dis-

tribution of positively and negatively charged muons is
defined as

AFB ¼
R
1
0 dσθd cos θ −

R
0
−1 dσθd cos θR

1
−1 dσθd cos θ

; ð4Þ

where dσθ ¼ dσ=d cos θ given in Eq. (1). Using the
definition in Eq. (4) and the differential cross section in
Eq. (1), we have

Aμ
FB ¼ 3ðχce3cμ3 þ χintceAc

μ
AÞ

4ðe2q þ χce1c
μ
1 þ χintceVc

μ
VÞ

: ð5Þ

At the low-energy limit (Q2 ≪ M2
Z), this asymmetry is

given approximately by

Aμ
FB ¼ −

3GFQ2ceAc
μ
A

4
ffiffiffi
2

p
παem

; ð6Þ

where GF is the Fermi constant. Similar results can also be
obtained for quarks as long as we replace the corresponding
couplings for muons by that for quarks. For example, at the
low-energy limit, we have

Aq
FB ¼ 3GFQ2ceAc

q
A

4
ffiffiffi
2

p
eqπαem

; ð7Þ

where eq is the electric charge of the quark with flavor q.
From Eqs. (5)–(7), we can see that forward-backward
asymmetries depend on weak couplings for certain fer-
mions; they would give independent determinations of
these couplings. In the following context, we extend the
results to the hadron production process. We note that the
definition of the forward-backward asymmetry in Eq. (4)
will be slightly modified for calculating that for hadrons. It
will be shown in Sec. V.

III. THE GENERAL FORM OF THE
CROSS SECTION IN TERMS
OF STRUCTURE FUNCTIONS

At first sight, the vector boson production inclusive
electron positron annihilation process cannot be calculated
because of the lack of perturbative description of the
fragmentation process. Therefore, we consider the general
decomposition of the hadronic tensor and give the general
form of the cross section in terms of structure functions.
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We show this hadron production annihilation process in
Fig. 1. To be explicit, we write down the differential cross
section as

dσ
dzdy

¼ πzα2em
Q4

X
r

ηrL
μν
r ðl; l0ÞWr;μνðq; p; SÞ: ð8Þ

Here we use the notations as illustrated in Fig. 1. The
standard variables are z ¼ 2p · q=Q2 and y ¼ p · l0=p · q.
The subscript r denotes γγ, γZ, and ZZ corresponding
respectively to the electromagnetic, interference, and weak
contributions to this process. The summation of r denotes
the summation of these cross sections, i.e.,

dσ
dzdy

¼ dσγγ

dzdy
þ dσγZ

dzdy
þ dσZZ

dzdy
: ð9Þ

Correspondingly, ηγγ ¼ e2q, ηγZ ¼ χint, and ηZZ ¼ χ.
The leptonic tensors for the electromagnetic, interfer-

ence, and weak contributions are respectively given by

Lγγ
μνðl; l0Þ ¼ lμl0ν þ lνl0μ − gμνl · l0; ð10Þ

LγZ
μνðl; l0Þ ¼ ceVðlμl0ν þ lνl0μ − gμνl · l0Þ þ iceAεμνll0 ; ð11Þ

LZZ
μν ðl; l0Þ ¼ ce1ðlμl0ν þ lνl0μ − gμνl · l0Þ þ ice3εμνll0 ; ð12Þ

where εμνAB ≡ εμναβAαBβ. The hadronic tensors are respec-
tively given by

Wγγ
μνðq;p;SÞ¼ 1

2π

X
X

ð2πÞ4δ4ðq−p−pXÞ

× h0jJγγν ð0Þjp;S;Xihp;S;XjJγγμ ð0Þj0i; ð13Þ

WγZ
μνðq;p;SÞ¼ 1

2π

X
X

ð2πÞ4δ4ðq−p−pXÞ

×h0jJZZν ð0Þjp;S;Xihp;S;XjJγγμ ð0Þj0i; ð14Þ

WZZ
μν ðq;p;SÞ¼

1

2π

X
X

ð2πÞ4δ4ðq−p−pXÞ

×h0jJZZν ð0Þjp;S;Xihp;S;XjJZZμ ð0Þj0i; ð15Þ

where S denotes the polarization of the hadron and JZZμ ðxÞ
is the quark weak current.
To deal with the hadronic tensor, it is convenient to

construct it with known quantities, e.g., momenta. First of
all we show the general decomposition of the hadronic
tensor by dividing it into a symmetric and an antisymmetric
part, Wμν ¼ WS

μν þ iWA
μν, where we have omitted the sub-

script r ¼ γγ; γZ; ZZ for simplicity. Each of them is given
by a linear combination of a set of basic Lorentz tensors
(BLTs), i.e.,

WSμν ¼
X
σ;j

WS
σjh

Sμν
σj þ

X
σ;j

W̃S
σjh̃

Sμν
σj ; ð16Þ

WAμν ¼
X
σ;j

WA
σjh

Aμν
σj þ

X
σ;j

W̃A
σjh̃

Aμν
σj ; ð17Þ

where hμν and h̃μν represent the space reflection even and
space reflection odd BLTs, respectively. The subscript σ
specifies the polarization. In the general decomposition of
the hadronic tensor, we require that hadron tensors corre-
sponding to the electromagnetic, interference and weak
contributions have the same form. Therefore, they can by
summed together.
For inclusive reactions, the unpolarized or the spin-

independent BLTs can only be constructed by momentum
vectors, q, p. There are in total three unpolarized BLTs
given by

hSμνUi ¼
�
gμν −

qμqν

q2
; pμ

qpν
q

�
; ð18Þ

h̃AμνU ¼ εμνqp: ð19Þ

The subscript U denotes the unpolarized part. Here pμ
q ≡

pμ − qμðp · qÞ=q2 which satisfies pq · q ¼ 0. This notation
ensures that the hadron tensor satisfies the current
conservation.
The vector polarization dependent BLTs are given by

hSμνVi ¼ εfμqpSpνg
q ; ð20Þ

h̃SμνVi ¼ fðq · SÞhSμνUi ; S
fμ
q pνg

q g; ð21Þ

hAμνVi ¼ fðq · SÞh̃AμνU ; ε½μqpSpν�
q g; ð22Þ

h̃AμνVi ¼ S½μq p
ν�
q ; ð23Þ

where AfμBνg ≡ AμBν þ AνBμ and A½μBν� ≡ AμBν − AνBμ.
There are seven such vector polarized BLTs in total.
The tensor polarized part is composed of SLL-, SLT-, and

STT-dependent parts. More discussions of polarizations of
spin one particles can be found in Ref. [10]. For simplicity,
we do not show them in this paper. The tensor polarized

FIG. 1. Diagram of the vector boson production inclusive
electron positron annihilation process.
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part can be taken as a product of the unpolarized BLTs
and polarization dependent Lorentz scalar(s) or pseudo-
scalar(s). They are given by

hSμνLLi ¼ SLLh
Sμν
Ui ; ð24Þ

h̃AμνLL ¼ SLLh̃
Aμν
U ; ð25Þ

hSμνLT ¼ SfμLTp
νg
q ; ð26Þ

h̃SμνLT ¼ εfμqpSLTpνg
q ; ð27Þ

hAμνLT ¼ S½μLTp
ν�
q ; ð28Þ

h̃AμνLT ¼ ε½μqpSLTpν�
q ; ð29Þ

hSμνTT ¼ SμνTT; ð30Þ

h̃SμνTT ¼ εfμαqpSνgαTT : ð31Þ

Substituting Eqs. (18)–(31) into Eqs. (16)–(17) and
contracting with the leptonic tensor yields the differential
cross section. The forward-backward asymmetry is defined
in the lepton center-of-mass frame. To be consistent with
the definition, we show this cross section in the same frame
in which

p ¼ ðEp; 0; 0; pzÞ; ð32Þ

l ¼ Qð1; sin θ; 0; cos θÞ=2; ð33Þ

S ¼
�
λh

pz

M
; jST j cosφS; jST j sinφS; λh

EP

M

�
; ð34Þ

SLT ¼ ð0; jSLT j cosφLT; jSLT j sinφLT; 0Þ; ð35Þ

SxμTT ¼ ð0; jSTT j cos 2φTT; jSTT j sin 2φTT; 0Þ: ð36Þ

After making Lorentz contraction with the leptonic tensor,
we obtain the general form for the cross section,

dσ
dzdy

¼ πzα2em
Q2

X
r

ηr½FUþSLLFLLþjST jðF T þ F̃ TÞ

þλhF̃LþjSLT jðFLT þ F̃LTÞþ jSTT jðF TT þ F̃ TTÞ�;
ð37Þ

where we use F and F̃ to denote the parity conserved and
parity violated parts, respectively. These explicit expres-
sions are given by

FU ¼ 2AðyÞFU1 þD2ðyÞFU2 þ BðyÞFU3; ð38Þ

F̃L ¼ 2AðyÞF̃L1 þD2ðyÞF̃L2 þ BðyÞF̃L3; ð39Þ

FLL ¼ 2AðyÞFLL1 þD2ðyÞFLL2 þ BðyÞFLL3; ð40Þ

F T ¼ sinφS½DðyÞFsinφS
T1 þ 2CðyÞFsinφS

T2 �; ð41Þ

F̃ T ¼ cosφS½DðyÞF̃cosφS
T1 þ 2CðyÞF̃cosφS

T2 �; ð42Þ

FLT ¼ cosφLT ½DðyÞFcosφLT
LT1 þ 2CðyÞFcosφLT

LT2 �; ð43Þ

F̃LT ¼ sinφLT ½DðyÞF̃sinφLT
LT1 þ 2CðyÞF̃sinφLT

LT2 �; ð44Þ

F TT ¼ cos 2φTTD2ðyÞFcos 2φTT
TT ; ð45Þ

F̃ TT ¼ sin 2φTTD2ðyÞF̃sin 2φTT
TT ; ð46Þ

where F and F̃ with subscriptsU, L, LL, T, LT, and TT are
known as structure functions. We have in total 19 inclusive
structure functions. Here we have defined

AðyÞ ¼ ð1 − yÞ2 þ y2 ¼ 1

2
ð1þ cos2 θÞ; ð47Þ

BðyÞ ¼ 2y − 1 ¼ cos θ; ð48Þ

CðyÞ ¼ 2ð2y − 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1 − yÞ

p
¼ 1

2
sin 2θ; ð49Þ

DðyÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yð1 − yÞ

p
¼ sin θ; ð50Þ

with y ¼ ð1þ cos θÞ=2. We can see that all the θ-depen-
dent terms are given explicitly. From Eq. (1) we see that the
differential cross section at the quark level depends on AðyÞ
and BðyÞ only. This implies that FU1;3; F̃L1;3, and FLL1;3 are
leading twist structure functions (may have higher twist
corrections) while the other terms are higher twist ones.

IV. THE CROSS SECTION IN THE
PARTON MODEL

As mentioned in the Introduction, the difficulty in
describing the weak interactions of quarks lies in the
description of the fragmentation process. The parton model
which is applicable to any hadronic cross section involving
a large momentum transfer can be used to describe this.
Measurable quantity is then factorized as a convolution of
the hard part and the nonperturbative soft part. If only the
fragmentation process is taken into consideration, the
nonperturbative soft parts are usually factorized as frag-
mentation functions. This is the case in this paper. In this
section, in the parton model framework, we present a
detailed calculation of how to obtain the hadronic tensor
and the cross section at leading order twist-4.
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A. The general forms of hadronic tensors
in the parton model

The parton model gives a reliable approximate descrip-
tion of the hadronic interactions and an opportunity to
calculate the forward-backward asymmetry at hadronic
level. By applying this model, we limit our considerations
at the tree level or leading order of the QCD and consider
the series of diagrams illustrated in Fig. 2, where diagrams
with exchange of j gluon(s) (j ¼ 0; 1; 2;…) are included.
To obtain the explicit expression of the hadronic tensor,we

use the collinear expansion formalism. It provides not only
the correct formalism where the differential cross section or
the hadronic tensor is given in terms of gauge invariant FFs,
but also very simplified expressions so that even twist-4
contributions can be calculated. After the collinear expan-
sion, the hadronic tensor is obtained as [11–14]

Wμνðq; p; SÞ ¼
X
j;c

W̃ðj;cÞ
μν ðq; p; SÞ; ð51Þ

where c ¼ L, R,M denotes different cuts for left, right, and

middle, respectively. The W̃ðj;cÞ
μν is a trace of the collinear-

expanded hard part and gauge invariant quark-j-gluon-quark
correlator. In other words, the hadronic tensor is written as an
explicit factorized form. To be explicit, we have

W̃ð0Þ
μν ¼ 1

2
Tr½ĥð0Þμν Ξ̂ð0Þ�; ð52Þ

W̃ð1;LÞ
μν ¼ −

1

4ðp · qÞTr½ĥ
ð1Þρ
μν Ξ̂ð1Þ

ρ �; ð53Þ

W̃ð2;MÞ
μν ¼ 1

4ðp · qÞ2 Tr½ĥ
ð2Þρσ
μν Ξ̂ð2;MÞ

ρσ �; ð54Þ

W̃ð2;LÞ
μν ¼ 1

4ðp · qÞ2 Tr½N̂
ð2Þρσ
μν Ξ̂ð2Þ

ρσ þ ĥð1Þρμν Ξ̂ð20Þ
ρ �; ð55Þ

where we have omitted the arguments for simplicity. The
hard parts or simplified scattering amplitudes are given by

ĥð0Þμν ¼ Γq
μ=nΓq

ν=pþ; ð56Þ

ĥð1Þρμν ¼ Γq
μ=nγρn̄Γq

ν ; ð57Þ

N̂ð2Þρσ
μν ¼ q−Γμγ

ρ=nγσΓν; ð58Þ

ĥð2Þρσμν ¼ pþΓμn̄γρ=nγσn̄Γν=2: ð59Þ

The corresponding quark-j-gluon-quark correlators are
given by

Ξ̂ð0Þ ¼
X
X

Z
pþdξ−

2π
e−ik

þξ−h0jL†ð0;∞Þψð0ÞjhXi

× hhXjψ̄ðξ−ÞLðξ−;∞Þj0i; ð60Þ

Ξ̂ð1Þ
ρ ¼

X
X

Z
pþdξ−

2π
e−ip

þξ−=zh0jL†ð0;∞ÞDρð0Þψð0ÞjhXi

× hhXjψ̄ðξ−ÞLðξ−;∞Þj0i; ð61Þ

Ξ̂ð2MÞ
ρσ ¼

X
X

Z
pþdξ−

2π
e−ip

þξ−=zh0jL†ð0;∞ÞDρð0Þψð0ÞjhXi

× hhXjψ̄ðξ−ÞDσðξ−ÞLðξ−;∞Þj0i; ð62Þ

Ξ̂ð20Þ
ρ ¼

X
X

Z
pþdξ−

2π
e−ip

þξ−=zpσh0jL†ð0;∞ÞDρð0ÞDσð0Þ

× ψð0ÞjhXihhXjψ̄ðξ−ÞLðξ−;∞Þj0i; ð63Þ

Ξ̂ð2Þ
ρσ ¼

X
X

Z
pþdξ−

2π
ipþdη−e−ipþξ−=ze−ip

þη−=zh0j

× L†ðη−;∞ÞDρðη−ÞDσðη−ÞL†ð0; η−Þψð0ÞjhXi
× hhXjψ̄ðξ−ÞLðξ−;∞Þj0i; ð64Þ

whereDρ ¼ −i∂ρ þ gAρ are the transverse covariant deriva-
tive, and Lð0; yÞ is the gauge link. The argument ξ in the
quark filed operator ψ and gauge link represents ð0; ξ−Þ. We

note that the leading power contribution of W̃ðjÞ
μν is twist-

(jþ 2). Therefore the second term in Eq. (55) has no
contribution up to twist-4 because of the factor pσ in the

definition of Ξ̂ð20Þ
ρ given by Eq. (63). The leading power

contribution of this term is twist-5.

B. Decompositions of correlators

In the previous part, hadronic tensors are given in the
explicit factorization forms where hard parts and non-
perturbative soft parts are naturally separated. These soft
parts are correlators shown in Eqs. (60)–(64). Correlators
cannot be calculated with perturbative theory because they
contain the hadronization information. However, they are
4 × 4 matrices in Dirac space and can be decomposed in

(a) (b1) (b2)

(c1) (c2) (c3)

FIG. 2. The first few diagrams are examples of the considered
diagram series with exchange of j-gluon(s) and different cuts. We
see (a) j ¼ 0, (b1) j ¼ 1 and left cut, (b2) j ¼ 1 and right cut, (c1)
j ¼ 2 and left cut, (c2) j ¼ 2 and middle cut, and (c3) j ¼ 2 and
right cut, respectively.

FORWARD-BACKWARD ASYMMETRY IN THE ELECTRON … PHYS. REV. D 106, 036016 (2022)

036016-5



terms of Γ matrices, i.e., Γ ¼ fI; iγ5; γα; γ5γα; iσαβγ5g. The
decomposition can be written explicitly as

Ξ̂ ¼ IΞþ iγ5Ξ̃þ γαΞα þ γ5γαΞ̃α þ iσαβγ5Ξαβ: ð65Þ

In the inclusive electron positron annihilation process, only
the chiral even quantities are involved due to no spin flip.
Thus we only need to consider the γα and the γ5γα terms in
the decomposition of the correlators in terms of the Γ
matrices and corresponding coefficient functions, such

as Ξ̂ð0Þ ¼ Ξð0Þ
α γα þ Ξ̃ð0Þ

α γ5γα þ � � �.
We first consider the quark-quark correlator Ξ̂ð0Þ. At

twist-4, the coefficient functions are given by

zΞð0Þ
α ¼ pþn̄αðD1 þ SLLD1LLÞ −MS̃TαDT

−MSLTαDLT þM2

pþ nαðD3 þ SLLD3LLÞ; ð66Þ

zΞ̃ð0Þ
α ¼ −pþn̄αλhG1L −MSTαGT

−MS̃LTαGLT −
M2

pþ nαλhG3L: ð67Þ

Here S̃Tα ¼ ε⊥βαS
β
T . D’s and G’s represent the γα- and

γ5γα-type FFs, respectively. The digit j in the subscript
denotes twist-(jþ 1); the capital letters such as L, T, LL,
and LT denote hadron polarizations.
For the quark-gluon-quark correlator Ξ̂ð1Þ

ρ , the chiral even
parts are

zΞð1Þ
ρα ¼ pþn̄αMðS̃TρDdT þ SLTρDdLTÞ

þM2g⊥ραðD3d þ SLLD3dLLÞ
þ iM2ε⊥ραλhD3dL; ð68Þ

zΞ̃ð1Þ
ρα ¼ ipþn̄αMðSTρGdT þ S̃LTρGdLTÞ

þ iM2ε⊥ραðG3d þ SLLG3dLLÞ
þM2g⊥ραλhG3dL; ð69Þ

where we use subscript d to denote FFs which are defined

through Ξ̂ð1Þ
ρ .

For the quark-gluon-gluon-quark correlators Ξ̂ð2Þ
ρσ and

Ξ̂ð2;MÞ
ρσ , we require that the decomposition of Ξ̂ð2;MÞ

ρσ takes

exactly the same form as that of Ξ̂ð2Þ
ρσ . We just add an

additional superscript M to distinguish them in the follow-
ing context from each other. For the chiral even part, the
corresponding coefficient functions are given by

zΞð2Þ
ρσα ¼ pþn̄αM2½g⊥ρσD3dd þ iε⊥ρσλhD3ddL�; ð70Þ

zΞ̃ð2Þ
ρσα ¼ pþn̄αM2½iε⊥ρσG3dd þM2g⊥ρσλhG3ddL�; ð71Þ

where we use dd in the subscript to denote FFs defined via

Ξ̂ð2Þ
ρσ . From Eqs. (66)–(71), we see that for the twist-4 parts,

the decomposition of Ξ and that of Ξ̃ have exact one-to-one
correspondence. For each D3, there is a G3 corresponding
to it. They always appear in pairs. Because of the

Hermiticity of Ξ̂ð0Þ and Ξ̂ð2;MÞ
ρσ , FFs defined via them are

real. For those defined via Ξ̂ð1Þ
ρ and Ξ̂ð2Þ

ρσ , there is no such
constraint so that they can be complex.
Not all the FFs defined in Eqs. (66)–(71) are actually

independent. We can eliminate the correlated terms by
using the QCD equation of motion γ ·Dψ ¼ 0. With this
equation, the quark-j-gluon-quark correlator is related to
the quark-quark correlator. For the two transverse compo-

nents Ξð0Þρ
⊥ and Ξ̃ð0Þρ

⊥ , we have

kþΞð0Þρ
⊥ ¼ −gρσ⊥ ReΞð1Þ

σþ − ερσ⊥ ImΞ̃ð1Þ
σþ; ð72Þ

kþΞ̃ð0Þρ
⊥ ¼ −gρσ⊥ ReΞ̃ð1Þ

σþ − ερσ⊥ ImΞð1Þ
σþ: ð73Þ

Equations (72) and (73) lead to a set of relationships
between twist-3 FFs which can be given in the unified form

DS − iGS ¼ −zðDdS − GdSÞ; ð74Þ

where S ¼ T and LT whenever applicable. Similarly, for

the minus components of Ξð0Þ
α and Ξ̃ð0Þ

α , we have

2kþ2Ξð0Þ
− ¼ kþðgρσ⊥ Ξð1Þ

ρσ þ iερσ⊥ Ξ̃ð1Þ
ρσ Þ

¼ −gρσ⊥ Ξð2;MÞ
ρσþ þ iερσ⊥ Ξ̃ð2;MÞ

ρσþ ; ð75Þ

2kþ2Ξ̃ð0Þ
− ¼ kþðgρσ⊥ Ξ̃ð1Þ

ρσ þ iερσ⊥ Ξð1Þ
ρσ Þ

¼ −gρσ⊥ Ξ̃ð2;MÞ
ρσþ þ iερσ⊥ Ξð2;MÞ

ρσþ : ð76Þ

From Eqs. (75) and (76), we obtain a set of relationships
between twist-4 FFs defined via Ξ̂ð0Þ, Ξ̂ð1Þ, and Ξ̂ð2;MÞ,

D3 ¼ zD−3d ¼ −z2DM
þ3dd; ð77Þ

D3LL ¼ zD−3dLL ¼ −z2DM
þ3ddLL; ð78Þ

G3L ¼ zD−3dL ¼ z2DM
þ3ddL; ð79Þ

where D� ≡D� G such as D−3d ≡D3d −G3d and so on.
We note here that only the one-dimensional or collinear
FFs are shown. In fact the relationships between three-
dimensional or transverse momentum-dependent FFs can
be obtained in the same way [15]; we do not repeat them in
this paper.
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C. The hadronic tensor at twist-4

It is straightforward to calculate the hadronic tensor with
FFs and the corresponding hard parts at hand. The
important step is calculating these traces. To be explicit,
we calculate the leading twist, twist-3, and twist-4 con-
tributions in turn. The leading twist contributions only
come from the quark-quark correlator Ξð0Þ. The correspond-
ing traces are simple and given by

Tr½ĥð0Þμν n̄ � ¼ −
4

pþ ðcq1g⊥μν þ icq3ε⊥μνÞ; ð80Þ

Tr½ĥð0Þμν γ5n̄ � ¼ 4

pþ ðcq3g⊥μν þ icq1ε⊥μνÞ: ð81Þ

And the leading twist hadronic tensor is

zW̃t2μν ¼ −2½cq1g⊥μν þ icq3ε⊥μν�ðD1 þ SLLD1LLÞ
− 2½cq3g⊥μν þ icq1ε⊥μν�λhG1L: ð82Þ

We find that W̃t2μν satisfies the current conservation,
i.e., qμW̃t2μν ¼ qνW̃t2μν ¼ 0.
Twist-3 contributions have two origins, one is the quark-

quark correlator Ξ̂ð0Þ and the other is the quark-gluon-quark
correlator Ξ̂ð1Þ

ρ . We first calculate these contributions from
the quark-quark correlator Ξ̂ð0Þ. Here we use traces

Tr½ĥð0Þμν =k� ¼ 4

pþ ðcq1kfμnνg þ icq3 k̃½μnν�Þ; ð83Þ

Tr½ĥð0Þμν γ5=k� ¼ −
4

pþ ðcq3kfμnνg þ icq1k̃½μnν�Þ; ð84Þ

where k denote STðS̃TÞ and SLTðS̃LTÞ and we obtain

zW̃ð0Þ
t3μν ¼ −

2M
pþ ½ðcq1S̃Tfμnνg − icq3ST½μnν�ÞDT

þ ðcq1SLTfμnνg þ icq3S̃LT½μnν�ÞDLT �

þ 2M
pþ ½ðcq3STfμnνg þ icq1S̃T½μnν�ÞGT

þ ðcq3S̃LTfμnνg − icq1SLT½μnν�ÞGLT �: ð85Þ

For the twist-3 contribution from the quark-gluon-quark

correlator Ξ̂ð1Þ
ρ , we use

Tr½ĥð1Þρμν n̄ � ¼ −8ðcq1gρ⊥μn̄
ν þ icq3ε

ρ
⊥μn̄

νÞ; ð86Þ

Tr½ĥð1Þρμν γ5n̄ � ¼ þ8ðcq3gρ⊥μn̄
ν þ icq1ε

ρ
⊥μn̄

νÞ; ð87Þ

and obtain

zW̃ð1ÞL
t3μν ¼ 2pþM

p · q
½ðcq1S̃Tfμn̄νg − icq3ST½μn̄ν�ÞDdT

þ ðcq1SLTfμn̄νg þ icq3S̃LT½μn̄ν�ÞDdLT �

−
2pþM
p · q

½ðcq3S̃Tfμn̄νg þ icq1ST½μn̄ν�ÞGdT

þ ðcq3SLTfμn̄νg − icq1S̃LT½μn̄ν�ÞGdLT �: ð88Þ

The complete twist-3 hadronic tensor is the sum of all the

twist-3 contributions, i.e., W̃t3μν¼W̃ð0Þ
t3μνþW̃ð1ÞL

t3μνþðW̃ð1ÞL
t3νμ Þ�.

Using Eqs. (74), (85), and (88), we eliminate the nonin-
dependent FFs and obtain the complete hadronic tensor at
twist-3.

zW̃t3μν ¼ −
2M
p · q

½ðcq1S̃Tfμq̄νg − icq3ST½μq̄ν�ÞDT

þ ðcq1SLTfμq̄νg þ icq3S̃LT½μq̄ν�ÞDLT �

þ 2M
p · q

½ðcq3STfμq̄νg þ icq1S̃T½μq̄ν�ÞGT

þ ðcq3S̃LTfμq̄νg − icq1SLT½μq̄ν�ÞGLT �; ð89Þ

where q̄ ¼ q − 2p=z. It it can be shown that W̃t3μν satisfies
the current conservation qμW̃t3μν ¼ qνW̃t3μν ¼ 0. Here we
can see that consideration of the quark(-j)-gluon-quark
correlator is also a requirement of the current conservation.
As for the twist-4 contributions, they have three origins

which correspond to correlators Ξ̂ð0Þ, Ξ̂ð1Þ
ρ , and Ξ̂ð2Þ

ρσ ,
respectively. We first calculate contributions from quark-
quark correlator Ξ̂ð0Þ. Using the following two traces,

Tr½ĥð0Þμν =n � ¼ 8

pþ cq1nμnν; ð90Þ

Tr½ĥð0Þμν γ5=n � ¼ −
8

pþ cq3nμnν; ð91Þ

we obtain

zW̃ð0Þ
t4μν ¼ −

4M2

ðpþÞ2 c
q
1nμnνðD3 þ SLLD3LLÞ

þ 4M2

ðpþÞ2 c
q
3nμnνλhG3L: ð92Þ

For the twist-4 contributions from quark-gluon-quark
correlator Ξ̂ð1Þ

ρ , we use

Tr½ĥð1Þμν γα�ðg⊥ρα þ iε⊥ραÞ ¼
16

pþ ðcq1 þ cq3Þnμn̄ν; ð93Þ

Tr½ĥð1Þμν γ5γα�ðiε⊥ρα þ g⊥ραÞ ¼ −
16

pþ ðcq1 þ cq3Þnμn̄ν; ð94Þ
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and obtain

zW̃ð1ÞL
t4μν ¼ −

4M2

p · q
nμnν½cq1ðD3d þ SLLD3dLLÞ þ cq3λhD3dL�

þ 4M2

p · q
nμnν½cq1ðG3d þ SLLG3dLLÞ þ cq3λhG3dL�:

ð95Þ

It is convenient to divide the contributions from quark-
gluon-gluon-quark correlator Ξ̂ð2Þ

ρσ into two parts; one is the
middle-cut and the other is the left- and right-cut part. We
first consider the middle-cut part and use the superscriptM
to distinguish it from the others. Using

Tr½ĥð2Þμν γα�ðg⊥ρα þ iε⊥ραÞ ¼ −
16

pþ ðcq1 − cq3Þpμpν; ð96Þ

Tr½ĥð2Þμν γ5γα�ðiε⊥ρα þ g⊥ραÞ ¼ −
16

pþ ðcq1 − cq3Þpμpν; ð97Þ

and Eqs. (70)–(71) yield

zW̃ð2ÞM
t4μν ¼ −

4M2

ðp · qÞ2 pμpν½cq1ðDM
3dd þ SLLDM

3ddLLÞ

þ cq3λhD
M
3ddL�

−
4M2

ðp · qÞ2 pμpν½cq1ðGM
3dd þ SLLGM

3ddLLÞ

þ cq3λhG
M
3ddL�: ð98Þ

Here we define W̃t4μν¼W̃ð0Þ
t4μνþW̃ð1ÞL

t4μνþðW̃ð1ÞL
t4νμ Þ�þW̃ð2ÞM

t4μν .
By using Eqs. (77)–(79), (92), (95), and (98), we can obtain

zW̃t4μν¼
4M2

ðp ·qÞ2 q̄
μq̄ν½cq1ðD3þSLLD3LLÞþcq3λhG3L�: ð99Þ

It it can be shown that W̃t4μν satisfies the current con-
servation qμW̃t4μν ¼ qνW̃t4μν ¼ 0.
To obtain the contributions from the left- and right-cut

parts, one needs to very carefully calculate the following
traces:

Tr½N̂ð2Þρσ
μν n̄ � ¼ þ 4ðp · qÞ

pþ cq1½gρσ⊥ g⊥μν þ gρ⊥½μg
σ⊥ν��

−
4ðp · qÞ
pþ icq3½gρ⊥με

σ⊥ν − gσ⊥νε
ρ
⊥μ�; ð100Þ

Tr½N̂ð2Þρσ
μν γ5n̄ � ¼ −

4ðp · qÞ
pþ cq3½gρσ⊥ g⊥μν þ gρ⊥½μg

σ⊥ν��

þ 4ðp · qÞ
pþ icq1½gρ⊥με

σ⊥ν − gσ⊥νε
ρ
⊥μ�: ð101Þ

The hadronic tensor is given by

zW̃ð2ÞL
t4μν ¼ 2M2

p · q
½ðcq1g⊥μν þ icq3ε⊥μνÞðD3dd þ SLLD3ddLLÞ

þ ðcq3g⊥μν þ icq1ε⊥μνÞλhD3ddL�

−
2M2

p · q
½ðcq1g⊥μν þ icq3ε⊥μνÞðG3dd þ SLLG3ddLLÞ

þ ðcq3g⊥μν þ icq1ε⊥μνÞλhG3ddL�: ð102Þ

We define W̃ð2Þ
t4μν ¼ W̃ð2ÞL

t4μν þ ðW̃ð2ÞL
t4νμ Þ�. Using Eqs. (77)–

(79) to eliminate the nonindependent FFs yields

zW̃ð2Þ
t4μν ¼

4M2

p · q
½ðcq1g⊥μν þ icq3ε⊥μνÞðD−3dd þ SLLD−3ddLLÞ

þ ðcq3g⊥μν þ icq1ε⊥μνÞλhD−3ddL�; ð103Þ

where

D−3dd ¼ D3dd −G3dd; ð104Þ

D−3ddL ¼ D3ddL −G3ddL; ð105Þ

D−3ddLL ¼ D3ddLL −G3ddLL: ð106Þ

In this part we obtain the complete hadronic tensor up to
twist-4 level. In Eq. (82) we show the leading twist
hadronic tensor while we show the twist-3 hadronic tensor
in Eq. (89). The twist-4 hadronic tensors are given in
Eqs. (99) and (103). All these hadronic tensors satisfy the
current conservation law.

D. Contributions from the four-quark correlator

At twist-4, there are also contributions from diagrams
involving the four-quark correlator [6,7,16] except for those
from quark-j-gluon-quark correlators. Following the pre-
vious discussion, we consider the four-quark correlator in
this part. The general operator definition of the four-quark
correlator is given by

Ξ̂ð0Þ
ð4qÞðk1; k; k2Þ ¼

g2

8

Z
d4y
ð2πÞ4

d4y1
ð2πÞ4

d4y2
ð2πÞ4

× e−ik1yþiðk1−kÞy1−iðk2−kÞy2

×
X
X

h0jψ̄ðy2ÞL†ð0; y2Þψð0ÞjhXi

× hhXjψ̄ðyÞLðy; y1Þψðy1Þj0i: ð107Þ

Some examples of the four-quark diagrams are shown in
Fig. 3. We note that if the cut is given at the middle we have
contributions from the gluon jet. If the cut is at the left and/
or right, we have contributions from the quark jet. Both of
them contribute to the vector meson production annihila-
tion process; in this case we consider them together.
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It can be shown that the collinear expansion can also be
applied to this case and the gauge links included in the
correlators given by Eq. (107) are obtained by taking the
multiple gluon scattering into account. The explicit fac-
torization form of the hadronic tensor is the product of the
hard part and the four-quark correlator. It can be written as

W̃ðg=qÞ
4qμν ¼ 1

p · q

Z
dzdz1dz2h

g=q
4q ½ðcq1g⊥μν þ icq3ε⊥μνÞĈs

þ ðcq3g⊥μν þ icq1ε⊥μνÞĈps�: ð108Þ

Here we have written the hadronic tensorWðgÞ
4qμν for both the

quark and gluon jet cases into a unified form which is
distinguished by superscripts g, q for gluon and quark jet,
respectively. Ĉs and Ĉps are the correlators considered.
They can also be written as the unified form

Ĉj ¼
Z

d2k0⊥
ð2πÞ2

Z
d4k1d4kd4k2δ

�
z −

pþ

kþ

�
δðkþ1 z1 − pþÞ

× δðkþ2 z2 − pþÞð2πÞ2δ2ðk⃗⊥ þ k⃗0⊥ÞΞ̂ð0Þ
ð4qÞjðk1; k; k2;pÞ;

ð109Þ

where j ¼ s; ps. The corresponding Ξ̂ð0Þ
ð4qÞs and Ξ̂ð0Þ

ð4qÞps are
given by

Ξ̂ð0Þ
ð4qÞs ¼

g2

8

Z
d4y
ð2πÞ4

d4y1
ð2πÞ4

d4y2
ð2πÞ4 e

−ik1yþiðk1−kÞy1−iðk2−kÞy2

×
X
X

fh0jψ̄ðy2Þ=nψð0ÞjhXihhXjψ̄ðyÞ=nψðy1Þj0i

þ h0jψ̄ðy2Þγ5=nψð0ÞjhXihhXjψ̄ðyÞγ5=nψðy1Þj0ig;
ð110Þ

Ξ̂ð0Þ
ð4qÞps ¼

g2

8

Z
d4y
ð2πÞ4

d4y1
ð2πÞ4

d4y2
ð2πÞ4 e

−ik1yþiðk1−kÞy1−iðk2−kÞy2

×
X
X

fh0jψ̄ðy2Þγ5=nψð0ÞjhXihhXjψ̄ðyÞ=nψðy1Þj0i

þ h0jψ̄ðy2Þ=nψð0ÞjhXihhXjψ̄ðyÞγ5=nψðy1Þj0ig:
ð111Þ

For simplicity, we have omitted gauge links in
Eqs. (110)–(111).
In the hadronic tensor shown in Eq. (108), hg=q4q denotes

the sum of all the hard parts which correspond to the four
diagrams in Fig. 3. They are

hg4q ¼
zz3Bδðz− zBÞ

ðz1 − zB þ iϵÞðz2 − zB − iϵÞþ
z2B=z1z2δðz− zBÞ

ð1=z1þ iϵÞð1=z2 − iϵÞ

−
z3B=z2δðz− zBÞ

ðz1 − zB þ iϵÞð1=z2 − iϵÞ− ð1↔ 2Þ�; ð112Þ

hqL4q ¼
zz3Bδðz1− zBÞ

ðz− zB− iϵÞðz2− zB− iϵÞ−
�
1

z2
→

1

z
−
1

z2

�

−
zz3Bδðz1þ zB−

z1zB
z Þ

ðz−zB− iϵÞðz2−zB− iϵÞþ
�
1

z2
→

1

z
−
1

z2

�
; ð113Þ

where z ¼ zB ¼ pþ=kþ, hqR4q ðz1; z; z2Þ ¼ hqL�4q ðz2; z; z1Þ.
The complete one is obtained by summing over all the
hard parts, i.e., h4q ¼ hqL4q þ hqR4q þ hg4q.
Equation (108) shows the explicit factorization form

of the hadronic tensor. Apart from the tensors, it is
convenient to consider the other terms as a whole. As
for the quark-j-gluon-quark correlators, we decompose Ĉs

and Ĉps in terms of the four-quark FFs as follows:

z
Z

dzdz1dz2h4qĈs ¼ M2ðD4q þ SLLD4qLLÞ; ð114Þ

z
Z

dzdz1dz2h4qĈps ¼ M2λhG4qL: ð115Þ

Substituting Eqs. (114)–(115) into Eq. (108) yields the
hadronic tensor for the four-quark correlator contributions,

zW̃4qμν ¼
M2

p · q
½ðcq1g⊥μν þ icq3ε⊥μνÞðD4q þ SLLD4qLLÞ

þ ðcq3g⊥μν þ icq1ε⊥μνÞλhG4qL�: ð116Þ

We can see that W̃4qμν takes exactly the same form as the
leading twist W̃t2μν given in Eq. (82).

E. The cross section at twist-4

Contracting the leptonic tensor and the hadronic tensor
yields the complete cross section of the vector meson
production inclusive electron positron annihilation process.
We show the leading twist, twist-3, and twist-4 contribu-
tions together,

(a) (c)(b) (d)

FIG. 3. The first four of the four-quark diagrams where no
multiple gluon scattering is involved. In (a), we have k01 ¼ k1 − k
and k02 ¼ k2 − k; in (b) we have the interchange of k1 with k01; in
(c) we have the interchange of k2 with k02; and in (d) we have both
interchanges of k1 with k01 and k2 with k02.
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dσZZ

dzdy
¼ 2πα2em

Q2
χ

�
Tq
0;ZZðyÞðD1 þ SLLD1LLÞ þ Tq

1;ZZðyÞλhG1L −
κM
z
jST jðTq

2;ZZðyÞ sinφSDT þ Tq
3;ZZðyÞ cosφSGTÞ

þ κM
z
jSLT jðTq

2;ZZðyÞ cosφLTDLT þ Tq
3;ZZðyÞ sinφLTGLTÞ þ

2κ2M
z2

D2ðyÞce1cq1ðD3 þ SLLD3LLÞ

þ 2κ2M
z2

D2ðyÞce1cq3λhG3L −
4κ2M
z

Tq
0;ZZðyÞReðD−3dd þ SLLD−3ddLLÞ −

4κ2M
z

Tq
1;ZZðyÞReλhG−3ddL

−
κ2M
z
Tq
0;ZZðyÞðD4q þ SLLD4qLLÞ −

κ2M
z
Tq
1;ZZðyÞλhG4qL

�
; ð117Þ

where the four-quark correlator contributions are included.
To simplify this expression we have defined κM ¼ M=Q and

Tq
0;ZZðyÞ ¼ ce1c

q
1AðyÞ þ ce3c

q
3BðyÞ; ð118Þ

Tq
1;ZZðyÞ ¼ ce1c

q
3AðyÞ þ ce3c

q
1BðyÞ; ð119Þ

Tq
2;ZZðyÞ ¼ ce1c

q
1CðyÞ þ ce3c

q
3DðyÞ; ð120Þ

Tq
3;ZZðyÞ ¼ ce1c

q
3CðyÞ þ ce3c

q
1DðyÞ: ð121Þ

Here we only show the cross section of the weak interaction
term. The complete cross section also includes the electro-
magnetic and interference terms, see Eq. (9). For the
electromagnetic interaction, we require c3¼0 and c1 ¼ 1.
In this case, only Tq

0;ZZðyÞ and Tq
2;ZZðyÞ are left, Tq

0;ZZðyÞ →
AðyÞ and Tq

2;ZZðyÞ → CðyÞ. For the interference terms, we
need to set c3 ¼ cA and c1 ¼ cV . To be explicit, we have

Tq
0;γγðyÞ ¼ AðyÞ; ð122Þ

Tq
1;γγðyÞ ¼ 0; ð123Þ

Tq
2;γγðyÞ ¼ CðyÞ; ð124Þ

Tq
3;γγðyÞ ¼ 0: ð125Þ

Tq
0;γZðyÞ ¼ ceVc

q
VAðyÞ þ ceAc

q
ABðyÞ; ð126Þ

Tq
1;γZðyÞ ¼ ceVc

q
AAðyÞ þ ceAc

q
VBðyÞ; ð127Þ

Tq
2;γZðyÞ ¼ ceVc

q
VCðyÞ þ ceAc

q
ADðyÞ; ð128Þ

Tq
3;γZðyÞ ¼ ceVc

q
ACðyÞ þ ceAc

q
VDðyÞ: ð129Þ

Correspondingly the kinematic factor χ should change to e2q
and χint for electromagnetic and interference contributions,
respectively.

V. THE COMPLETE RESULTS AT TWIST-4

A. The structure functions

In the following, we present structure functions in terms
of FFs by only considering the weak contribution. Other
contributions from electromagnetic and interference terms
can be obtained by replacing the corresponding factors.
Among the 19 structure functions shown in Eqs. (38)–(46),
six of them have leading twist contributions; they are
given by

zFU1 ¼ ce1c
q
1

�
D1 −

κ2M
z
ð4ReD−3dd þD4qÞ

�
; ð130Þ

zFU3 ¼ 2ce3c
q
3

�
D1 −

κ2M
z
ð4ReD−3dd þD4qÞ

�
; ð131Þ

zF̃L1 ¼ ce1c
q
3

�
G1L −

κ2M
z
ð4ReD−3ddL þ G4qLÞ

�
; ð132Þ

zF̃L3 ¼ 2ce3c
q
1

�
G1L −

κ2M
z
ð4ReD−3ddL þG4qLÞ

�
; ð133Þ

zFLL1¼ ce1c
q
1

�
D1LL−

κ2M
z
ð4ReD−3ddLLþG4qLLÞ

�
; ð134Þ

zFLL3¼2ce3c
q
3

�
D1LL−

κ2M
z
ð4ReD−3ddLLþG4qLLÞ

�
: ð135Þ

We see that they are functions for the unpolarized and the
longitudinally polarized cases. In Eqs. (38)–(46) they just
correspond to the ð1þ cos2 θÞ and cos θ terms. We can see
that the four-quark correlator contributions are included in
Eqs. (130)–(135) and they have the same modes as for the
leading twist contributions.
There are eight structure functions which have twist-3

contributions, and are given by

z2FsinφS
T1 ¼ −2κMce3c

q
3DT; ð136Þ

z2FsinφS
T2 ¼ −κMce1c

q
1DT; ð137Þ

z2F̃cosφS
T1 ¼ −2κMce3c

q
1GT; ð138Þ
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z2F̃cosφS
T2 ¼ −κMce1c

q
3GT; ð139Þ

z2F̃sinφLT
LT1 ¼ 2κMce3c

q
1GLT; ð140Þ

z2F̃sinφLT
LT2 ¼ κMce1c

q
3GLT; ð141Þ

z2FcosφLT
LT1 ¼ 2κMce3c

q
3DLT; ð142Þ

z2FcosφLT
LT2 ¼ κMce1c

q
1DLT: ð143Þ

They all correspond to the transverse components of hadron
polarizations. They correspond to the sin θ and sin 2θ terms
in Eqs. (38)–(46).
The left three structure functions have only twist-4

contributions, and they are given by

zFU2 ¼ 2κ2Mc
e
1c

q
1D3=z2; ð144Þ

zF̃L2 ¼ 2κ2Mc
e
1c

q
3G3L=z2; ð145Þ

zFLL2 ¼ 2κ2Mc
e
1c

q
1D3LL=z2: ð146Þ

We note that Fcos 2φTT
TT and Fsin 2φTT

TT do not have correspon-
dence to the FFs. These structure functions indicate that
transverse momentum dependent FFs do not appear in the
inclusive annihilation process.

B. The forward-backward asymmetries

As we emphasized in the Introduction, the main focus of
this paper is calculating the forward-backward asymmetries
for the produced hadron in the inclusive annihilation
process. The forward-backward asymmetry is introduced
to describe the angle distribution of the fermions from Z0

decays as introduced in Sec. II. Here we redefine the
asymmetry at the hadonic level to illustrate the angle
distribution of the produced hadron in the electron positron
annihilation process. Comparing to Eq. (4), we define the
forward-backward asymmetry for a hadron as

AFB ¼
R
1
0 ½dσ�d cos θ −

R
0
−1½dσ�d cos θR

1
−1½dσ�Ud cos θ

; ð147Þ

where ½dσ� ¼ dσ=dzd cos θ while ½dσ�U denotes the differ-
ential cross section for the unpolarized case at leading twist.
In Eq. (117), the differential cross section is given in terms
of y instead of cos θ; it is then convenient to rewrite the
forward-backward asymmetry AFB in the following form:

AFB ¼
R
1
1=2ðdσÞdy −

R 1=2
0 ðdσÞdyR

1
0 ðdσÞUdy

; ð148Þ

where ðdσÞ ¼ dσ=dzdy and ðdσÞU denotes the unpolarized
differential cross section at leading twist only,

Z
1

0

ðdσÞUdy ¼ 4πα2em
3Q2

ðe2q þ χce1c
q
1 þ χintceVc

q
VÞD1: ð149Þ

Using the definition in Eq. (148) and the corresponding
differential cross section, we obtain

AFB;U ¼ 3ðχce3cq3 þ χintceAc
q
AÞD̃1

4ðe2q þ χce1c
q
1 þ χintceVc

q
VÞD1

; ð150Þ

AFB;L ¼ 3ðχce3cq1 þ χintceAc
q
VÞG̃1L

4ðe2q þ χce1c
q
1 þ χintceVc

q
VÞD1

; ð151Þ

AFB;LL ¼ 3ðχce3cq3 þ χintceAc
q
AÞD̃1LL

4ðe2q þ χce1c
q
1 þ χintceVc

q
VÞD1

; ð152Þ

Ax
FB;T ¼ −

ðχce1cq3 þ χintceVc
q
AÞGT

2ðe2q þ χce1c
q
1 þ χintceVc

q
VÞD1

; ð153Þ

Ay
FB;T ¼ −

ðχce1cq1 þ χintceVc
q
VÞDT

2ðe2q þ χce1c
q
1 þ χintceVc

q
VÞD1

; ð154Þ

Ax
FB;LT ¼ ðχce1cq1 þ χintceVc

q
VÞDLT

2ðe2q þ χce1c
q
1 þ χintceVc

q
VÞD1

; ð155Þ

Ay
FB;LT ¼ ðχce1cq3 þ χintceVc

q
AÞGLT

2ðe2q þ χce1c
q
1 þ χintceVc

q
VÞD1

; ð156Þ

where subscripts U, L, LL, T, and LT denote respectively
the polarizations of the produced hadron. D̃1, G̃1L, and
D̃1LL denote FFs including twist-4 contributions, e.g.,

D̃1¼D1−
κ2M
z ð4ReD−3ddþD4qÞ. We can see that Eq. (150)

is similar to Eq. (5) except for the FF D1ðD̃1Þ. The explicit
factorized forms shown in Eqs. (150)–(156) provide a
direct demonstration of the factorization theorem and/or the
parton model. They can be used to test the electroweak and
strong interactions simultaneously. These forward-back-
ward asymmetries can also be expressed with structure
functions. We do not show them for simplicity.
To have an intuitive impression of the hadron forward-

backward asymmetry shown above, we present the numeri-
cal values of AFB;U and AFB;L in Fig. 4. The produced
hadron is chosen as a Λ hyperon. Only leading twist
contributions are considered. We do not show other
asymmetries due to lack of proper parametrizations. The
parametrization of the unpolarized FF D1 is taken from
[17]. Only the light valence quarks (u, d, s) and gluons are
considered here while sea quarks and heavy quarks are
ignored. (We found that they have limited influences on the
numerical results.) The QCD evolution of the FF starts
from Q ¼ 2 GeV and is limited at leading order.
We use the same parametrization of the longitudinal spin

transfer FF G1L given in Ref. [18]. We use
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Gs→Λ
1L ðzÞ ¼ zaDs→Λ

1 ðzÞ ð157Þ

for the s-quark FF and

Gq→Λ
1L ðzÞ ¼ NzaDq→Λ

1 ðzÞ ð158Þ

for the u- and d-quark FF, where superscript q ¼ u, d. We
fix the parameters as a ¼ 0.5 and N ¼ −0.1. The evolution
function and polarized splitting functions can be found in
Refs. [18–20]. We do not show them here for simplicity.
For comparison, we draw asymmetries for quarks (u, d,

s) as well as that for the produced hadron in the same panel.
We find that they have the same behaviors but different
numerical values. This is because the forward-backward
asymmetry which arises from the difference of Z0 cou-
plings for left- and right-quarks is dominated by the energy
and couplings. At the same time, the longitudinal spin
transfer FF G1LðzÞ satisfies jG1LðzÞj ≤ D1ðzÞ. The same
goes for momentum fractions, z ¼ 0.20, 0.30, 0.40. We

here only consider the collinear FFs. Parametrizations of
the transverse momentum-dependent polarizing FF for Λ
can be found, e.g., in Refs. [21,22].

C. Parity-violating asymmetries

With the advent of highly polarized electron beams,
parity violation measurements have become a standard tool
for probing a variety of phenomena. In this part, we
calculate the parity-violating asymmetries in the inclusive
annihilation process. Parity-violating asymmetry usually
describes the difference of the cross section for respectively
the right- and left-handed electrons in the deeply inelastic
scattering process [23,24]. In this paper, we consider the
unpolarized lepton beam and calculate the parity-violating
asymmetries with the polarized produced hadron. The
definition of the parity-violating asymmetry is given by

APV ¼ dσðS ¼ þ1Þ − dσðS ¼ −1Þ
dσðS ¼ þ1Þ þ dσðS ¼ −1Þ ; ð159Þ

where S denotes the hadon spin and dσ denotes the
unpolarized differential cross section, i.e., dσ¼dσ=dzdy.
This definition is different from that in Ref. [25] where
asymmetry was given with respect to the unpolarized
electromagnetic cross section. Different definitions in
principle do not change the physical meanings. How-
ever, the numerical result shows the definition in
Eq. (159) is more reasonable.
First of all, we present the two asymmetries given by the

longitudinal polarized FFs; they are

APV;L ¼ ðχTq
1;ZZ þ χintT

q
1;γZÞG̃1L

ðe2qTq
0;γγ þ χTq

0;ZZ þ χintT
q
0;γZÞD1

; ð160Þ

APV;LL ¼ ðχTq
0;ZZ þ χintT

q
0;γZÞD̃1LL

ðe2qTq
0;γγ þ χTq

0;ZZ þ χintT
q
0;γZÞD1

: ð161Þ

We can see that they are leading twist asymmetries with
twist-4 corrections. We use the same parametrization of the
longitudinal spin transfer FF G1L shown before and present
the numerical values of APV;L in Fig. 5.
Correspondingly, there are two twist-4 asymmetries

which are given by

A4
PV;L ¼ κ2M

2ðχce1cq3 þ χintceVc
q
AÞD2ðyÞG3L

z2ðe2qTq
0;γγ þ χTq

0;ZZ þ χintT
q
0;γZÞD1

; ð162Þ

A4
PV;LL ¼ κ2M

2ðχce1cq1 þ χintceVc
q
VÞD2ðyÞD3LL

z2ðe2qTq
0;γγ þ χTq

0;ZZ þ χintT
q
0;γZÞD1

: ð163Þ

We can also calculate the parity-violating asymmetries
for the transversely polarized hadron case; they are all
twist-3 asymmetries,

(a)

(b)

FIG. 4. The forward-backward asymmetries for AFB;U (a) and
AFB;L (b). Dashed lines show asymmetries for the u and dðsÞ
quarks. Solid lines show asymmetries for produced hadrons with
different momentum fraction z.
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Ay
PV;T ¼ −κM

ðχTq
2;ZZ þ χintT

q
2;γZÞDT

zðe2qTq
0;γγ þ χTq

0;ZZ þ χintT
q
0;γZÞD1

; ð164Þ

Ax
PV;T ¼ −κM

ðχTq
3;ZZ þ χintT

q
3;γZÞGT

zðe2qTq
0;γγ þ χTq

0;ZZ þ χintT
q
0;γZÞD1

; ð165Þ

Ay
PV;LT ¼ κM

ðχTq
3;ZZ þ χintT

q
3;γZÞGLT

zðe2qTq
0;γγ þ χTq

0;ZZ þ χintT
q
0;γZÞD1

; ð166Þ

Ax
PV;LT ¼ κM

ðχTq
2;ZZ þ χintT

q
2;γZÞDLT

zðe2qTq
0;γγ þ χTq

0;ZZ þ χintT
q
0;γZÞD1

: ð167Þ

Parity-violating asymmetry which is similar to the forward-
backward asymmetry combines the electroweak and
QCD theories. Measuring these asymmetries can be

important ways to examine electroweak and QCD theories
simultaneously.

VI. SUMMARY

In this paper, we consider the vector meson production in
the inclusive electron positron annihilation process and
calculate the forward-backward asymmetry in the hadronic
level, i.e., the asymmetry in the angular distribution of the
produced vector meson. The asymmetry arises from the
difference of Z0 couplings for left- and right-handed
fermions. Measurements of this asymmetry can enable
independent determinations of the neutral-current couplings
of these fermions. To deal with the nonperturbative frag-
mentation process, we present a factorized form of the
hadronic tensor by using the collinear expansion method in
the parton model. Results are finally expressed in the
factorized forms; see Eqs. (150)–(156). The explicit factor-
ized forms provide a direct demonstration of the factoriza-
tion theorem and/or the parton model. We can see that
Eq. (150) is similar to Eq. (5) except for the FFD1ðD̃1Þ. This
process provides not only a tool for analyzing the hadronic
weak interactions but also an opportunity for understanding
the parton model of the strong interaction. In other words,
the results can be used to test the electroweak and strong
interactions simultaneously. In addition to the forward-
backward asymmetries, we also calculate parity-violating
asymmetries and structure functions at leading order twist-4.
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