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Using the Landau-level representation for the imaginary part of the photon polarization tensor, we derive
an explicit expression for the dilepton production rate from a hot quark-gluon plasma in a quantizing
background magnetic field. We study in detail the dependence of the production rate on the dilepton
invariant mass and the transverse momentum at midrapidity. We also investigate in detail the angular
dependence and ellipticity of dilepton emission. By comparing the result with the zero-field Born
approximation, we find that the magnetic field leads to a strong enhancement of the dilepton rate at
small values of the invariant mass (M ≲ ffiffiffiffiffiffiffiffiffijeBjp

). In the same kinematic region, the dilepton production is

characterized by a sizable ellipticity. At large values of the dilepton invariant mass (M ≳ ffiffiffiffiffiffiffiffiffijeBjp
), the role of

the magnetic field decreases and the result approaches the isotropic zero-field Born rate. By investigating the
dependence of ellipticity on the transverse momentum, we argue that the future measurements of dilepton
rate in the region of small invariant masses can constrain the magnetic field produced in heavy-ion collisions.
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I. INTRODUCTION

One of the main achievements of the heavy-ion research
program at the Relativistic Heavy Ion Collider (RHIC) at
Brookhaven and the Large Hadron Collider (LHC) at CERN
is the discovery of hot quark-gluon plasma (QGP). The
study of the fundamental properties of the corresponding
deconfined state of matter is the broad goal of the ongoing
program. The electromagnetic probes (i.e., photons and
leptons) play a special role in this endeavor. Unlike the
strongly interacting hadrons, they have long mean-free
paths that greatly exceed the size of the fireballs created
by the collisions. Thus, they carry invaluable information
about the plasma directly to the detectors. Here, we will
concentrate specifically on the dilepton emission. Recently,
several measurements of the dilepton production were
reported by both RHIC and LHC [1–9].
The noncentral heavy-ion collisions produce the QGP

together with superstrong magnetic fields. For a fixed
impact parameter, one can estimate the strength of the
magnetic field during the early stages of the collision
[10–13]. Yet, it is uncertain how strong the field is during
the later stages when the hot plasma forms and expands. If
it remains relatively strong, the magnetic field can trigger
anomalous phenomena, modify the flow of plasma, cause
new types of collective modes, and affect the emission of

particles. In this study, we explore how the magnetic field
affects the dilepton production. Without the magnetic field,
the thermal radiation from the QGP, the Drell–Yan process,
and semileptonic decays of heavy quarks provide the
dominant contributions to the dilepton rate in the inter-
mediate range of the dilepton invariant masses. Notably,
one often views the thermal part of the dilepton rate as a
perfect thermometer of the QGP because the blue shift of
the expanding medium does not modify it [14]. However,
as we argue in this study, the dilepton emission is also a
perfect magnetometer for the hot QGP with a strong
background magnetic field. The signature effects of the
magnetic field are the rate enhancement and strong
anisotropy, whose measurements could provide valuable
bounds on the field strength in the plasma produced by
heavy-ion collisions.
The dilepton production rate for a hot QGP in the

presence of a background magnetic field was studied
previously by many authors using different approximations
[15–24]. In particular, the dilepton rate was obtained in the
equivalent photon flux approximation in Ref. [15], the
lowest Landau level approximation in Refs. [17,20], and
the weak field limit in Refs. [18,21]. Some results were
obtained by using the Ritus method and the real-time
formalism in Refs. [16,19], respectively. The corrections to
the rate from the anomalous magnetic moment and the
chiral condensate of quarks were studied in Refs. [22,23]
by using variants of the Nambu–Jona-Lasinio models.
However, the kinematics was usually limited to the case
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of the vanishing perpendicular component of the dilepton
momentum. Recently a more general result was presented
in Ref. [24]. While the latter overlaps most closely with the
current work, the angular dependence of the rate was not
studied there. In this study, we extend the analysis by also
calculating the ellipticity of the dilepton emission.
The main goal of this paper is to deepen the theoretical

understanding of dilepton production from a strongly
magnetized hot QGP. We will investigate the dependence
of the dilepton rate on the invariant mass M, the transverse
momentum kT and, most importantly, the azimuthal
angle ϕ. The corresponding results will reveal a nontrivial
ellipticity of dilepton production caused by the background
magnetic field for a range of model parameters. As we
will argue, such ellipticity carries information about the
magnitude of the magnetic field at the early stages of
heavy-ion collisions.
The starting point in our analysis will be the explicit

expression for the imaginary part of the polarization tensor
obtained in Ref. [25,26]. It leads to a relatively simple form
for the differential dilepton production rate as a sum over
the quark Landau levels. As we explain, one must treat the
lepton states as plane waves. Accordingly, no sum over the
lepton Landau levels appears in the rate. Such an approach
is justified because (i) the mean free path of leptons is much
longer than the QGP fireball, and (ii) the leptons themselves
are detected far away from the magnetized QGP, where they
are described naturally by plane waves. In simple terms,
while the production occurs in a strongly magnetized
plasma, the leptons have little chance of interacting with
the plasma and get projected onto plane waves right after
leaving the QGP. It is in a drastic contrast to several existing
studies in the literature [16–23], where one uses the Landau
levels for describing the final states of leptons. The
corresponding treatment is misguided, however.
The paper is organized as follows. In Sec. II, we start

from the definition of dilepton rate in a magnetic field by
using the one-loop photon polarization tensor in the Landau
level representation. The corresponding numerical results
are presented in Sec. III. The summary of the main results
and conclusions are given in Sec. IV. The Appendix at the
end of the paper contains the expression for the magneto-
optical conductivity.

II. FORMALISM

The thermal emission of dileptons from a hot QGP is
represented schematically by the Feynman diagram in
Fig. 1. We will focus on the local expanding plasma at
midrapidity, assuming it is approximately thermalized.
Without loss of generality, we will also assume that the
magnetic field points in the z direction and the beam is
along the x axis. In such a setup, the x-y plane is the
reaction plane.
Because of a quantizing background magnetic field, the

quark and antiquark states in the QGP are characterized by

the Landau-level quantum numbers, i.e., the integer indices
n and n0 and the longitudinal momenta pz and p0

z ≡ pz − kz,
where kz is the longitudinal component of the virtual
photon momentum. For simplicity, we will assume that
the masses of both light quarks are the same, namely,
mu ¼ md ¼ m ¼ 5 MeV. The flavor-dependent quark
charges are ef ¼ qfe, where qu ¼ 2=3, qd ¼ −1=3, and
e is the absolute value of the electron charge.
Since the dilepton (virtual photon) is a neutral state,

it is characterized by a well-defined four-momentum
K ¼ ðΩ;kÞ with the magnitude of the spatial component
given by k ¼ jkj. Given the rotational symmetry about the
z axis (coinciding with the magnetic field direction), it is
sufficient to restrict the dilepton momentum to its transverse
componentkT lying in the y-z plane, which is perpendicular
to the beam direction. We specify the direction of kT in
the transverse plane by the azimuthal angle ϕ, which,
by convention, is measured from the reaction plane, see
Fig. 1. In other words, the transverse components are
ky ¼ kT cosϕ and kz ¼ kT sinϕ.
The dilepton rate (or, equivalently, the differential lepton

multiplicity per unit spacetime volume) is given by [27]

dRll̄ ¼ 2πe2e−βΩLμνðQ1; Q2ÞρμνðΩ;kÞ
d3q1

ð2πÞ3E1

d3q2

ð2πÞ3E2

;

ð1Þ

where the three-momenta and energies of the two leptons
are denoted by qi and Ei with i ¼ 1, 2, respectively. To the
leading linear order in the electromagnetic coupling con-
stant, the electromagnetic spectral function ρμνðΩ;kÞ is
expressed in terms of the imaginary part of the photon
polarization tensor as follows:

FIG. 1. A schematic illustration of the dilepton emission from a
magnetized plasma at midrapidity. The transverse momentum of
a virtual photon kT lies in the y-z plane. The azimuthal angle ϕ is
measured from the reaction plane, i.e., the x-y plane. The lepton
momenta are q1 and q2.
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ρμνðΩ;kÞ ¼ −
1

π

eβΩ

eβΩ − 1

Im½ΠμνðΩ;kÞ�
K4

: ð2Þ

This spectral function includes the sum over all quark
flavors, which is implicit in the photon polarization tensor.
Moreover, the weights of the individual flavor contributions
appear precisely as they should be in the dilepton produc-
tion formula (1). Its validity is reconfirmed indirectly by
noting that the production of virtual photons is an inter-
mediate process in the emission of dilepton pairs. We
emphasize this point here because there are studies in the
literature, see, for example Ref. [17], which extract a factor
of q2f from the polarization tensor and introduce an effective
coupling constant instead. Such an approach is unjustified
since it changes the flavor weights and produces an
incorrect expression for the rate.
In Eq. (1), the leptonic tensor for the final plane-wave

states has the following explicit form:

LμνðQ1;Q2Þ¼
1

4

X
spins

tr½ūðQ2ÞγμvðQ1Þv̄ðQ1ÞγνuðQ2Þ�

¼Q1μQ2νþQ1νQ2μ− ðQ1 ·Q2þm2
l Þgμν; ð3Þ

where Q2 ¼ K −Q1 due to the energy momentum con-
servation. We emphasize once again that the leptons are
characterized by the usual four-momentaQ1 andQ2, which
are the appropriate quantum numbers for the final states
observed in a detector located far from the magnetized
QGP. This may seem counterintuitive at first glance.
Naively, since the leptons are produced inside the mag-
netized QGP, one might use the Landau-level eigenstates.
As we explain below, the situation is more subtle.
While each lepton may be produced as a Landau-

level state jnli, it turns into a plane wave jQi right after
leaving the magnetized QGP. Quantum mechanically, the
corresponding projection amplitude is given by hnljQi.
Therefore, in order to calculate the production amplitude for
the leptons with momenta Q1 and Q2 in the final state, one
must sum over all intermediate (Landau-level) states. So, by
making use of the completeness of such states, the corre-
sponding amplitude can be written as follows:

hqn;pz
; qn0;p0

z
jMjQ1Q2i

¼
X

nl1 ;nl2

hqn;pz
q̄n0;p0

z
jMjnl1

; nl2ihnl1 jQ1ihnl2 jQ2i; ð4Þ

where qn;pz
and qn0;p0

z
represent the initial quark states in

the magnetized plasma. In essence, while the amplitude of
the dilepton production inside the magnetized QGP is
hqn;pz

q̄n0;p0
z
jMjnl1 ; nl2

i, the amplitude associated with the
detector measurement is given by hqn;pz

; qn0;p0
z
jMjQ1Q2i.

The relation in Eq. (4) formally justifies the use of
plane waves in the expression for the dilepton rate (1).
One should note, however, that the use of quantum-
state projections alone would not be sufficient if the
leptons had a high probability of scattering inside the
plasma. Fortunately, the corresponding probability is very
small since the scattering mean free path of leptons
is much larger than the plasma regions produced by
heavy-ion collisions. Therefore, Eq. (4) is indeed a good
approximation.
By using the explicit form of the leptonic tensor (3),

we rewrite the differential dilepton production rate as
follows:

dRll̄ ¼ −
α

8π5
nBðΩÞLμνðQ1; Q2Þ

Im½ΠμνðΩ;kÞ�
K4

d3q1

E1

d3q2

E2

;

ð5Þ

where α≡ e2=ð4πÞ ¼ 1=137 is the fine structure con-
stant and nBðΩÞ ¼ ðeΩ=T − 1Þ−1 is the Bose-Einstein
distribution function. In terms of the total four-momen-
tum K of the lepton pair, the corresponding differential
rate reads [27]

dRll̄

d4K
¼ α

12π4
nBðΩÞ
K2

�
1þ2m2

l

K2

��
1−

4m2
l

K2

�
1=2

Im½Πμ
μðΩ;kÞ�:

ð6Þ

For the purposes of this study, the lepton masses ml can
be set to zero. This is justified since the dilepton
energies and momenta of interest will be much larger
than the lepton masses. Then, the expression for the rate
further simplifies, i.e.,

dRll̄

d4K
¼ α

12π4
nBðΩÞ
M2

Im½Πμ
μðΩ;kÞ�; ð7Þ

where M2 ¼ K2 ≡Ω2 − k2⊥ − k2z is the square of the

invariant mass of the lepton pair. By definition, k⊥ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
is the magnitude of the momentum compo-

nent perpendicular to the magnetic field. Note that Ω ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ k2⊥ þ k2z

p
and d4K ¼ MdMkTdkTdydϕ, where

kT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2y þ k2z

q
is the transverse momentum (with

respect to the beam direction) and y ¼ 1
2
ln Ωþkx

Ω−kx
is the

rapidity.
To obtain the explicit expression for the dilepton rate

in a strongly magnetized QGP, we use the imaginary part
of the Lorentz-contracted photon polarization tensor that
was derived recently in Refs. [25,26]. The final result
reads
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dRll̄

d4K
¼ α2Nc

48π5
nBðΩÞ
M2

X
f¼u;d

q2f
l4
f

"X∞
n¼0

g0ðnÞθð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ k2⊥

p
− kfþÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðM2 þ k2⊥Þ½M2 þ k2⊥ − ðkfþÞ2�
q F f

n;nðξÞ

− 2
X∞
n>n0

gðn; n0Þ½θðkf− −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ k2⊥

p
Þ − θð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ k2⊥

p
− kfþÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ðkf−Þ2 − ðM2 þ k2⊥Þ�½ðkfþÞ2 − ðM2 þ k2⊥Þ�
q F f

n;n0 ðξÞ
#
; ð8Þ

where lf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=jefBj

p
is the flavor-specific magnetic length. The Heaviside step-function is denoted by θðxÞ and the

Landau-level threshold momenta are given by kf� ¼
��� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ 2njefBj
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2n0jefBj

q ���. The explicit expressions for

functions gðn; n0Þ and g0ðnÞ are given by

gðn; n0Þ ¼ 2 −
X

s1;s2¼�
nF

�
Ω
2
þ s1

Ωðn − n0ÞjefBj
M2 þ k2⊥

þ s2jkzj
2ðM2 þ k2⊥Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2 þ k2⊥ − ðkf−Þ2ÞðM2 þ k2⊥ − ðkfþÞ2Þ

q �
; ð9Þ

g0ðnÞ ¼ gðn; nÞ ¼ 2 − 2
X
s¼�

nF

�
Ω
2
þ sjkzj
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ k2⊥

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ k2⊥ − 4ðm2 þ 2njefBjÞ

q �
; ð10Þ

where nFðΩÞ ¼ ðeΩ=T þ 1Þ−1 is the Fermi-Dirac distribution function.

Note that the dependence of the rate on the perpendicular
component of the virtual photon momentum k⊥ enters in
Eq. (8) not only explicitly but also via F f

n;n0 ðξÞ, which is a
function of ξ ¼ ðk⊥lfÞ2=2. The explicit form of the
corresponding function reads

F f
n;n0 ðξÞ ¼ 8πðnþn0 þm2l2

fÞ½In;n0
0;f ðξÞþIn−1;n0−1

0;f ðξÞ�

þ 8π

�
M2l2

f

2
− ðnþn0Þ

�
½In;n0−1

0;f ðξÞþIn−1;n0
0;f ðξÞ�;

ð11Þ

where functions In;n0
0;f ðξÞ are defined in terms of the

generalized Laguerre polynomials [28] as follows:

In;n0
0;f ðξÞ ¼ ð−1Þnþn0l2

fe
−ξLn0−n

n ðξÞLn−n0
n0 ðξÞ: ð12Þ

In Sec. III below, we will use the general expression in
Eq. (8) to calculate the dilepton rate numerically and study
its dependence on the kinematic parameters.
When studying the dilepton rate in QGP with a strong

background magnetic field, it is useful to compare the
results with the corresponding rate in the zero-field limit. In
the Born approximation, such a rate is given by [29]

dRll̄;Born

d4K
¼ 5α2T

18π4jkj nBðΩÞ ln
 
cosh Ωþjkj

4T

cosh Ω−jkj
4T

!
; ð13Þ

where the massless quarks and leptons are assumed.
It is interesting to note that the result for the dilepton

rate simplifies considerably in the zero-momentum limit.

As one can see, the corresponding result is proportional to
the trace of the magneto-optical conductivity tensor σijðΩÞ
evaluated at Ω ¼ M, i.e.,

dRll̄

d4K

����
jkj→0

≃
α

12π4
nBðMÞ
M

½σkðMÞ þ 2σ⊥ðMÞ�; ð14Þ

where σkðΩÞ and σ⊥ðΩÞ are the longitudinal and trans-
verse (with respect to the magnetic field) components of
magneto-optical conductivity, respectively. For a generic
strongly magnetized relativistic plasma, both components
of conductivity were calculated in Ref. [26]. To extend
the corresponding expressions to the case of QGP, one
must include the contributions of all quark flavors, see
Appendix.
As we show in Appendix, both longitudinal and trans-

verse components of optical conductivity reduce to the
same expression in the limit of the vanishing magnetic
field:

σkðΩÞjB→0
¼ σ⊥ðΩÞjB→0 ≃

αNcðq2u þ q2dÞ
3

Ω tanh

�
Ω
4T

�
;

ð15Þ

where we assumed the vanishing quark masses. By sub-
stituting the optical conductivity into Eq. (14), we obtain

dRll̄

d4K

����
jkj→0;B→0

≃
5α2

36π4
nBðMÞ tanh

�
M
4T

�
: ð16Þ

As expected, this result agrees with the Born rate (13) in the
limit jkj → 0.
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III. NUMERICAL RESULTS

In this section, we study numerically the dependence of
the dilepton production rate in Eq. (8) on the main
kinematic parameters, namely the invariant mass M, the
transverse momentum kT , and the azimuthal angular
coordinate ϕ. For simplicity, we will limit consideration
only to the case of midrapidity by setting kx ¼ 0. We will
also use the angular dependence to extract the ellipticity of
the dilepton emission.
To probe different regimes of strongly magnetized QGP,

we will calculate the rate for two representative values of the
magnetic field strength, i.e., jeBj ¼ m2

π and jeBj ¼ 5m2
π ,

where mπ ≈ 0.135 GeV is the (neutral) pion mass. In
conventional units, the corresponding values of the field
are B ≈ 3.08 × 1018 G and B ≈ 1.54 × 1019 G, respectively.
To understand how the magnetic field interplays with the
thermal effects in the QGP, we will also consider two
different representative temperatures, i.e., T ¼ 0.2 GeV
and T ¼ 0.35 GeV. Roughly speaking, one may view them
as the temperatures at the early and late stages of the QGP
produced in heavy-ion collisions.

A. Dilepton rate dependence on M and kT
The dilepton rate is anisotropic in the presence of a

magnetic field. This is reconfirmed by the general expres-
sion in Eq. (8), which has a nontrivial dependence on k⊥ ¼
kT cosϕ and, thus, on the angular coordinate ϕ. Before
addressing the subtleties of the angular dependence, it is
instructive to define the total differential rate, i.e.,

dRll̄

MdMkTdkTdy
¼
Z

2π

0

dϕ
dRll̄

d4K
: ð17Þ

To calculate the differential rate in the whole range of the
angular coordinate ϕ more efficiently, we use the spatial
symmetries in the magnetized plasma at midrapidity. For the
setup in Fig. 1, there are two relevant symmetries. The first
one is a subgroup of spatial rotations about the z axis, which
remains unbroken in the presence of a constant background
magnetic field. The other is the mirror reflection in the x-y
plane, which is the consequence of the magnetic field being
a parity-even axial vector. In application to the rate, we
utilize the symmetry under the rotation by angle π about the
z axis to obtain dRll̄=d

4Kðπ − ϕÞ ¼ dRll̄=d
4KðϕÞ. In turn,

the mirror reflection symmetry leads to dRll̄=d
4Kð−ϕÞ ¼

dRll̄=d
4KðϕÞ. Therefore, the knowledge of the differential

rate in the first quadrant, i.e., 0 ≤ ϕ < π=2, is sufficient to
obtain the results in the other three quadrants too.
To compile the numerical dependence of the differential

rate on ϕ, we use a large set (nϕ ¼ 1001) of equidistant
angular coordinates in the first quadrant, ranging from
ϕmin ¼ 10−4 π

2
to ϕmax ¼ π

2
− ϕmin, with a small discretiza-

tion step Δϕ ≃ 10−3ðϕmax − ϕminÞ. Note that there is
nothing special about the rates at the limiting values of

the angular coordinate ϕ ¼ 0 and ϕ ¼ π=2, provided no
accidental Landau-level thresholds appear at those values.
Originally, we avoided the limiting values of ϕ out of an
abundance of caution. However, the numerical values of the
rates at ϕ ¼ 0 and ϕ ¼ π=2 are nearly indistinguishable
from those at ϕmin and ϕmax, respectively. The total
integrated rate in Eq. (17) is obtained approximately by
calculating the sum of the individual contributions, each
multiplied by the weight factor Δϕ. (To account for the
contributions from all four quadrants, the summation result
must be also multiplied by a factor of 4.)
When calculating the differential rate in Eq. (8) numeri-

cally, one of the challenging tasks is the sum over Landau
levels. The sum needs to be truncated at a finite but
sufficiently large number of terms nmax. The estimate for
nmax is the same as that in the photon emission study but
expressed in terms of Ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ k2T

p
instead of kT [26].

Indeed, when Ω is small compared to the magnetic field
scale

ffiffiffiffiffiffiffiffiffijeBjp
, large separations between low-lying Landau

levels strongly suppresses contributions of quark states with
small Landau indices. In this regime, we find that many
Landau levels, with indices up to about nmax ≃ jeBj=Ω2,
contribute. In the opposite limit of large Ω, one requires a
large enough cutoff in quark energies merely to open the
phase space for dilepton production. The corresponding
requirement translates into the following estimate for the
Landau index cutoff: nmax ≃Ω2=jeBj. For simplicity, we
use a fixed value nmax ¼ 1000 in the numerical calculations.
It is sufficiently large to render reliable results for the rate in
a wide range of energies from about Ωmin ≃ 0.02 GeV to
about Ωmax ≃ 2 GeV.
The dependence of the rate (17) on the invariant mass is

presented in Fig. 2. The corresponding data was calculated
for the whole range of invariant masses between Mmin ¼
0.02 GeV and Mmax ¼ 1 GeV, using the discretization
step ΔM ¼ 0.01 GeV. Individual panels show the results
for two representative choices of temperature, i.e., T ¼
0.2 GeV (two left panels) and T ¼ 0.35 GeV (two right
panels), and two values of the magnetic field, i.e., jeBj ¼
m2

π (two top panels) and jeBj ¼ 5m2
π (two bottom panels).

Each panel contains the rates for the same set of fixed
values of the transverse momenta, i.e., kT ¼ 0 (black),
kT ¼ 0.1 GeV (blue), kT ¼ 0.2 GeV (orange), kT ¼
0.5 GeV (green), and kT ¼ 1 GeV (red). For comparison,
we also show the zero-field Born rate (dashed lines), which
is defined by Eq. (13).
As expected, the Landau-level quantization of the quark

spectrum produces a nonsmooth dependence of the rate on
the invariant mass. The origin of many sharp spikes in the
dilepton rate is the same as in the photon emission,
discussed in detail in Ref. [26]. They show up whenever
the center-of-mass energy crosses one of the numerous
Landau-level thresholds, leading to a sudden change of the
kinematic phase space for the dilepton production. As seen
in Fig. 2, the spiky behavior is pronounced most strongly at
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low transverse momenta. If such signature quantization
effects could be observed in an experiment, they would
provide the unambiguous proof of a strong background
magnetic field in the plasma. The chances of that are small,
however. For one thing, the Landau-level threshold effects
should smooth out when strong quark interactions are taken
into account [26]. Also, additional smoothing will neces-
sarily come from the time evolution of the background
magnetic field in the QGP.
By disregarding the spiky behavior, it is still instructive

to compare the overall profiles of dilepton rates in a
strongly magnetized plasma with the benchmark zero-field
Born rate. We find that the rates at B ≠ 0 remain about the
same on average as those at B ¼ 0 when the invariant mass
is sufficiently large, i.e., M ≳ ffiffiffiffiffiffiffiffiffijeBjp

. On the other hand,
the magnetic field has a dramatic effect on the dilepton
production in the region of small invariant masses, i.e.,
M ≲ ffiffiffiffiffiffiffiffiffijeBjp

, where the rates are strongly enhanced. As
seen in the four panels of Fig. 2, the rate can increase by
several orders of magnitude when M decreases only by
half. The same qualitative dependence on the invariant
mass remains robust for a wide range of transverse
momenta and other plasma parameters, including different
temperatures and magnetic fields.

As we see from Fig. 2, the dilepton rate is on-average a
decreasing function of the invariant mass M. The rate for
the vanishing (sufficiently small) kT is an exception. Its
nonmonotonic dependence at small M will be discussed
below. Generically, the rate in the magnetized QGP
approaches the zero-field Born result (13) when the
invariant mass is sufficiently large (i.e., M ≫

ffiffiffiffiffiffiffiffiffijeBjp
).

By comparing the plots in Fig. 2 for different values of
the transverse momenta, we see that the dilepton rate tends
to decrease with increasing kT . As one can verify, the
suppression of the rate at large M or kT (or both) comes
primarily from the overall Bose distribution function nBðΩÞ
in Eq. (8).
It is interesting to note that the dilepton rate at kT ¼ 0 is

nonmonotonic, with a maximum appearing at a small but
nonzero invariant mass. The corresponding maxima are
seen in Fig. 2 for three out of the four sets of model
parameters. (The maximum is present but outside the plot
range when T ¼ 0.35 GeV and jeBj ¼ m2

π .) We can
show that such a behavior is universal for the vanishing
(or sufficiently small) kT . Indeed, by using Eq. (14) and the
optical conductivities, obtained in Appendix, we derive the
following analytical expression for the dilepton rate at
kT ¼ 0:

FIG. 2. The integrated dilepton rate as a function of the dilepton invariant mass M for several fixed values of the transverse momentum
kT ¼ 0; 0.1; 0.2; 0.5; 1 GeV, two values of the temperature, i.e., T ¼ 0.2 GeV (left panels) and T ¼ 0.35 GeV (right panels), and two
values of the magnetic field, i.e., jeBj ¼ m2

π (top panels) and jeBj ¼ 5m2
π (bottom panels). For comparison, the dashed lines represent the

zero-field Born rate and the gray dotted lines show the approximate rate at kT ¼ 0 and M ≪
ffiffiffiffiffiffiffiffiffijeBjp

, given in Eq. (18).
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dRll̄

d4K

����
jkj¼0

≃
X
f¼u;d

α2Ncq2fjefBj3 exp ð− M
2TÞ

9π4M6½coshðM
2TÞ þ coshðjefBjTM Þ�

; ð18Þ

which is valid when M ≪
ffiffiffiffiffiffiffiffiffijeBjp

. It describes the regime
when a large separation between the low-lying Landau
levels of quarks suppresses the production of dileptons
with a small invariant mass (note that Ω ¼ M at kT ¼ 0).
Instead, transitions between quark states with sufficiently
large but closely lying energies dominate the rate. The
corresponding phase space includesmany transitions between
Landau levels with indices up to nmax ≲ jefBj=ð2Ω2Þ, see
Appendix. Note that the rate in Eq. (18) describes the strong-
field limit where the lowest Landau level approximation is
completely inapplicable.
The maximum value of the rate in Eq. (18) is achieved at

Mmax ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð6TÞ2 þ 2jedBj

p
− 6T. Around the maximum,

the dominant contribution comes from the down quarks.
For the magnetic fields and temperatures considered in this
study, the value of jedBj is at least an order of magnitude
smaller than ð6TÞ2. Thus, one can use the expansion in
powers of small jedBj to obtain an approximate location of
the peak: Mmax ≃ jedBj=ð6TÞ. Furthermore, we find that

the corresponding rate is a factor of order of ð3TÞ6=jedBj3
larger than the zero-field limit in Eq. (16).

B. Angular dependence of the dilepton rate

Because of the presence of a background magnetic field,
the differential dilepton rate is expected to be anisotropic.
To quantify the anisotropy it is instructive to investigate the
detailed angular dependence of the rate. The correspond-
ing representative results for several fixed values of the
invariant mass, i.e., M ¼ 0.02 GeV, M ¼ 0.5 GeV, and
M ¼ 1 GeV, are shown Figs. 3–5, respectively. Each
figure contains a set of four panels with the rates for
two values of the temperature, i.e., T ¼ 0.2 GeV (left
panels) and T ¼ 0.35 GeV (right panels), and two values
of the magnetic field, i.e., jeBj ¼ m2

π (top panels) and
jeBj ¼ 5m2

π (bottom panels). Each individual panel shows
the rates for several fixed transverse momenta, i.e., kT ¼
0.1 GeV (blue), kT ¼ 0.2 GeV (orange), kT ¼ 0.5 GeV
(green), and kT ¼ 1 GeV (red).
By reviewing the numerical data for the angular depend-

ence, one can readily identify several qualitative features in
the dilepton rate. In general, the rates are nonsmooth
functions of the azimuthal angle ϕ. The numerous spikes

FIG. 3. The dilepton production rate as a function of the azimuthal angle ϕ for a fixed invariant mass M ¼ 0.02 GeV, two
temperatures, i.e., T ¼ 0.2 GeV (left panels) and T ¼ 0.35 GeV (right panels), and two magnetic fields, i.e., jeBj ¼ m2

π (top panels) and
jeBj ¼ 5m2

π (bottom panels). Each panel shows the rates for four fixed transverse momenta, i.e., kT ¼ 0.1 GeV (blue), kT ¼ 0.2 GeV
(orange), kT ¼ 0.5 GeV (green), and kT ¼ 1 GeV (red).
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FIG. 4. The dilepton production rate as a function of the azimuthal angle ϕ for a fixed invariant massM ¼ 0.5 GeV, two temperatures,
i.e., T ¼ 0.2 GeV (left panels) and T ¼ 0.35 GeV (right panels), and two magnetic fields, i.e., jeBj ¼ m2

π (top panels) and jeBj ¼ 5m2
π

(bottom panels). Each panel shows the rates for four fixed transverse momenta, i.e., kT ¼ 0.1 GeV (blue), kT ¼ 0.2 GeV (orange),
kT ¼ 0.5 GeV (green), and kT ¼ 1 GeV (red).

FIG. 5. The dilepton production rate as a function of the azimuthal angle ϕ for a fixed invariant massM ¼ 1 GeV, two temperatures,
i.e., T ¼ 0.2 GeV (left panels) and T ¼ 0.35 GeV (right panels), and two magnetic fields, i.e., jeBj ¼ m2

π (top panels) and jeBj ¼ 5m2
π

(bottom panels). Each panel shows the rates for four fixed transverse momenta, i.e., kT ¼ 0.1 GeV (blue), kT ¼ 0.2 GeV (orange),
kT ¼ 0.5 GeV (green), and kT ¼ 1 GeV (red).
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in the rate come from same Landau-level threshold effects
that showed earlier in its dependence on the invariant mass.
Repeating the arguments of Ref. [26], we know that the
interaction effects in the hot QGP plasma should lead to
nonzero quasiparticle widths for quarks that, in turn, should
smooth out the functional dependence in Figs. 3–5.
Nevertheless, the dilepton rate will still have a substantial
overall anisotropy for some ranges of model parameters.
We discuss the corresponding quantitative measure of
anisotropy in the next subsection.

C. Ellipticity of dilepton emission

One can quantify the degree of anisotropy in the dilepton
production by using the conventional ellipticity parameter
v2. By definition, it is defined in terms of the differential
rate as follows:

v2ðM; kTÞ ¼
R
2π
0 dϕ cosð2ϕÞðdRll̄=d

4kÞR
2π
0 dϕðdRll̄=d

4kÞ : ð19Þ

This characteristics measures the average ellipticity of
dilepton rate. While it is also affected by the Landau-level
threshold effects, the overall average profile should remain

mostly unchanged even after the quark interactions in the
plasma are accounted for [26].
The dependence of the ellipticity parameter v2 on the

dilepton invariant mass M is shown in Fig. 6. The four
panels contain the results for same two temperature, i.e.,
T ¼ 0.2 GeV (two left panels) and T ¼ 0.35 GeV (two
right panels), and two values of the magnetic field, i.e.,
jeBj ¼ m2

π (two top panels) and jeBj ¼ 5m2
π (two bottom

panels). Each panel shows the ellipticities for the four
different values of the transverse momenta: kT ¼ 0.1 GeV
(blue), kT ¼ 0.2 GeV (orange), kT ¼ 0.5 GeV (green), and
kT ¼ 1 GeV (red).
From Fig. 6, in the case of small invariant masses,

M ≲ ffiffiffiffiffiffiffiffiffijeBjp
, there is a clear tendency of v2 to become

positive. The latter is particularly well pronounced at
large kT , which is analogous to the synchrotron regime
in the photon emission [26]. Such a behavior is con-
sistent with the angular dependence of the rate in Fig. 3,
which shows the data for the smallest invariant mass
M ¼ 0.02 GeV. The corresponding rates are clearly
anisotropic when the transverse momenta take two larger
values, i.e., kT ¼ 0.5 GeV (green lines) or kT ¼ 1 GeV
(red lines). Indeed, as one can see, the overall values are

FIG. 6. The dilepton emission ellipticity as a function of the dilepton invariant mass M for two temperatures, i.e., T ¼ 0.2 GeV (left
panels) and T ¼ 0.35 GeV (right panels), and two magnetic fields, i.e., jeBj ¼ m2

π (top panels) and jeBj ¼ 5m2
π (bottom panels). Each

panel shows the results for four fixed transverse momenta, i.e., kT ¼ 0.1 GeV (blue), kT ¼ 0.2 GeV (orange), kT ¼ 0.5 GeV (green),
and kT ¼ 1 GeV (red).
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systematically larger for the azimuthal directions near
ϕ ≈ 0 (in the reaction plane) and systematically smaller
for ϕ ≈ π=2 (out of the reaction plane). Qualitatively, this
implies that the differential production rate has an oblate
shape (v2 > 0).
The positive value of the ellipticity parameter v2 for the

dilepton rate at small invariant masses, M ≲ ffiffiffiffiffiffiffiffiffijeBjp
, and

large transverse momenta can be verified by plotting the
angular dependence of the rates at fixed kT ¼ 1 GeV and
several fixed small values of M. The corresponding data
is shown in Fig. 7. As one can see, the data confirms that the
average rate is highest nearϕ ≈ 0 and smallest nearϕ ≈ π=2.
The overall ellipticity is harder to discern from the data at

small values of the transverse momenta, i.e., kT ¼ 0.1 GeV
(blue lines) and kT ¼ 0.2 GeV (orange lines). For suffi-
ciently small invariant masses, M ≲ ffiffiffiffiffiffiffiffiffijeBjp

, the ellipticity
parameter appears to be generally nonvanishing. How-
ever, as seen from Fig. 6, its sign may change from being
positive at intermediate values of M (i.e., M ≃

ffiffiffiffiffiffiffiffiffijeBjp
), to

being negative at sufficiently small values of M (i.e.,
M ≪

ffiffiffiffiffiffiffiffiffijeBjp
). This is particularly clear in the case of the

stronger magnetic field jeBj ¼ 5m2
π , illustrated by the two

bottom panels in Fig. 6.

It should be also noted that the average ellipticity
parameter v2 is consistent with zero for sufficiently large
invariant masses, M ≳ ffiffiffiffiffiffiffiffiffijeBjp

, see Fig. 6. This conclusion
is also reconfirmed by the angular dependence of the rate in
Fig. 5, which shows the data for the largest invariant mass
M ¼ 1 GeV and four different values of the transverse
momenta. Indeed, the corresponding rates have overall flat
profiles.

IV. DISCUSSION AND CONCLUSION

In this paper, we derived an explicit expression for the
dilepton production rate from a hot QGP in a quantizing
background magnetic field. We used the Landau-level
representation for the imaginary part of the photon polari-
zation tensor. The latter has a clear structure and allows
straightforward interpretation of all underlying processes in
terms of quantum transitions between the Landau-level
states of quarks.
We studied in detail the numerical dependence of

the dilepton rate on the invariant mass, the transverse
momentum, and the azimuthal angle measured from the
reaction plane. To understand the interplay of the thermal
and magnetic effects, we calculated the rates for two

FIG. 7. The dilepton production rate as a function of the azimuthal angle ϕ for a fixed transverse momentum kT ¼ 1 GeV, two
temperatures, i.e., T ¼ 0.2 GeV (left panels) and T ¼ 0.35 GeV (right panels), and two magnetic fields, i.e., jeBj ¼ m2

π (top panels) and
jeBj ¼ 5m2

π (bottom panels). Each panel shows the rates for four fixed invariant masses, i.e., M ¼ 0.02 GeV (blue), M ¼ 0.06 GeV
(orange), M ¼ 0.1 GeV (green), and M ¼ 0.14 GeV (red).
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representative temperatures and magnetic fields. Because of
the Landau-level quantization of quark in a magnetized
plasma, the functional dependence of the dilepton rate has
numerous threshold spikes. They appear when the center-of-
mass energy crosses any of the numerous Landau-level
thresholds, leading to sudden changes of the kinematic
phase space for the dilepton production. As in the case of the
photon emission, the functional dependence is expected to
smooth out when the strong quark interactions are taken into
account [26]. For the QGP produced in heavy-ion collisions,
the time evolution of the magnetic field should provide
additional smoothing. Thus, in this study, we did not
concentrate too much on the nonsmooth behavior associated
with the Landau-level thresholds.
Unlike the zero-field Born rate, the dilepton rate for a

magnetized QGP is generally anisotropic. The anisotropy is
pronounced the most in the regime of small values of the
dilepton invariant mass, i.e., M ≲ ffiffiffiffiffiffiffiffiffijeBjp

. When the trans-
verse momenta are large, the ellipticity parameter v2 tends
to be positive and large. It resembles a similar anisotropy in
the quantum synchrotron regime of photon emission at
large kT [26]. The situation is more subtle at small trans-
verse momenta. In this case, the ellipticity parameter v2
may still remain nonzero in general. However, its sign
gradually changes from being positive at intermediate
values of M (i.e., M ≃

ffiffiffiffiffiffiffiffiffijeBjp
) to being negative at small

M (i.e., M ≪
ffiffiffiffiffiffiffiffiffijeBjp

). Under optimal conditions, we find
that the magnitude of v2 could be as large as 0.2. If such
large values are measured in an experiment, they will most
likely indicate the presence of a nonzero magnetic field in
the QGP plasma.
Besides inducing a nontrivial angular dependence, a

strong magnetic field (i.e., jeBj≳m2
π) substantially modi-

fies the overall integrated dilepton rate. In particular, the
background field strongly enhances the rate at small values
of the dilepton invariant mass (M ≲ ffiffiffiffiffiffiffiffiffijeBjp

). At large values
of the invariant mass (M ≳ ffiffiffiffiffiffiffiffiffijeBjp

), of course, the role of the
magnetic fields decreases, and the results gradually
approach the isotropic zero-field Born rate.

We argue that the significant enhancement of the
integrated dilepton rate at small invariant masses is a
unique signature of a nonzero background magnetic field.
Thus, measuring the corresponding rate at M ≲ 0.2 GeV,
for example, could provide sufficient information to con-
firm or rule out the fields of order jeBj ≃m2

π in relativistic
heavy-ion collisions. Optimistically, the excess of mea-
sured emission over the Born rate can also constrain the
value of the average field strength. To implement this
proposal in practice, one will require to perform additional
studies and modeling. It will be critical, for example, to
investigate the emission at nonzero rapidity, to model the
dependence on centrality, to estimate the background
effects, and much more.
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APPENDIX: OPTICAL CONDUCTIVITY

Here we present explicit expressions for the longitudinal
and transverse components of the optical conductivity of a
strongly magnetized QGP. For a generic plasma, both
components of the conductivity were calculated in
Ref. [26]. In the case of the QGP with two lightest quark
flavors, the corresponding expressions read

σkðΩÞ ¼
X
f¼u;d

4αNcq2f
Ω2l2

f

tanh

�jΩj
4T

�Xnkmax

n¼0

ð2 − δn;0Þ

×
M2

n;fθðΩ2 − 4M2
n;fÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ω2 − 4M2
n;f

q ; ðA1Þ

σ⊥ðΩÞ ¼
X
f¼u;d

2αNcq2f sinhðΩ2TÞ
Ωl4

f½coshðΩ2TÞ þ coshðjefBjTΩ Þ�
Xn⊥max

n¼1

½2ð2n − 1Þ −Ω2l2
f�θ½ðMn;f −Mn−1;fÞ2 − Ω2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ðMn;f −Mn−1;fÞ2 −Ω2�½ðMn;f þMn−1;fÞ2 −Ω2�
q

þ
X
f¼u;d

2αNcq2f sinhðΩ2TÞ
Ωl4

f½coshðΩ2TÞ þ coshðjefBjTΩ Þ�
Xn⊥max

n¼1

½Ω2l2
f − 2ð2n − 1Þ�θ½Ω2 − ðMn;f þMn−1;fÞ2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½Ω2 − ðMn;f −Mn−1;fÞ2�½Ω2 − ðMn;f þMn−1;fÞ2�
q ; ðA2Þ

where Nc ¼ 3 is the number of colors and

Mn;f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2njefBj þm2

q
. Notice that the Landau-level

sums in the longitudinal and transverse conductivities

are finite, terminating at nkmax ¼ ½ðΩ2 − 4m2Þ=ð4jefBjÞ�

and n⊥max ¼ ½ðð2jefBj þ Ω2Þ2 − 4m2Ω2Þ=ð8jefBjΩ2Þ�, re-
spectively.
In the limit of the vanishing magnetic field, the sum over

Landau levels turns into an integral over the continuous variable
u ¼ 2njefBj. Therefore, in the limit B → 0, one obtains

RATE AND ELLIPTICITY OF DILEPTON PRODUCTION IN A … PHYS. REV. D 106, 036014 (2022)

036014-11



σkðΩÞjB→0
¼
X
f¼u;d

4αNcq2f
Ω2

tanh

�jΩj
4T

�

×
Z

∞

0

du
ðuþm2ÞθðΩ2 − 4ðuþm2ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ω2 − 4ðuþm2Þ
p ; ðA3Þ

σ⊥ðΩÞjB→0 ¼
X
f¼u;d

αNcq2f sinhðjΩj2TÞ
Ω2½coshðΩ

2TÞþ 1�

×
Z

∞

0

du
ðΩ2 − 2uÞθ½Ω2 − 4ðuþm2Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ω2 − 4ðuþm2Þ
p : ðA4Þ

In this limit, only thequark-antiquarkprocesses contribute to the
conductivity. After performing the integrals, we find that both
longitudinal and transverse components of the optical conduc-
tivity reduce to the same expression:

σkðΩÞjB→0
¼ σ⊥ðΩÞjB→0¼

αNcðq2uþq2dÞ
3

Ω tanh
�
Ω
4T

�

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

4m2

Ω2

r �
1þ2m2

Ω2

�
θðΩ2−4m2Þ

≃
αNcðq2uþq2dÞ

3
Ω tanh

�
Ω
4T

�
; form→ 0: ðA5Þ

Interestingly, one can also derive a simple analytical
asymptote for σ⊥ðΩÞ in the limit Ω ≪

ffiffiffiffiffiffiffiffiffijeBjp
. In this

regime, the transverse conductivity is dominated by the
Landau levels with high indices n≲ n⊥max ≃ jefBj=ð2Ω2Þ.
(Note that the value of n⊥max is consistent with the cutoff
estimate nmax ≃ jeBj=Ω2, obtained in the main text from
the quantization of low-lying Landau levels.) Thus, by
approximating the sum in Eq. (A2) with an integral over
u ¼ 2nðΩlfÞ2, we derive

σ⊥ðΩÞ ≃
X
f¼u;d

αNcq2f sinhðΩ2TÞ
Ω5l6

f½coshðΩ2TÞ þ coshðjefBjTΩ Þ�

Z
1

0

uduffiffiffiffiffiffiffiffiffiffiffi
1 − u

p

¼
X
f¼u;d

4αNcq2fjefBj3 sinhðΩ2TÞ
3Ω5½coshðΩ

2TÞ þ coshðjefBjTΩ Þ�
: ðA6Þ

In the same limit Ω ≪
ffiffiffiffiffiffiffiffiffijeBjp

, the longitudinal component
σkðΩÞ is negligible. It is suppressed by a factor of the order
of ðmΩ=jeBjÞ2 compared to σ⊥ðΩÞ.
Let us emphasize in passing that Eq. (A6) represents the

strong-field limit but not the lowest Landau level approxi-
mation. Actually, it is the opposite of the lowest Landau
level approximation since many Landau levels, with indices
up to nmax ≃ jefBj=ð2Ω2Þ, contribute to the result.
By substituting the above results for optical conductivity

into Eq. (14), one can derive an analytical expression for
the dilepton rate at kT ¼ 0 andM ≪

ffiffiffiffiffiffiffiffiffijeBjp
, see Eq. (18) in

the main text.
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