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In open quantum systems, we study the geometric phases acquired for a two-level atom coupled to a bath
of fluctuating vacuum massless scalar fields due to linear acceleration and circular motion without and with
a boundary. In free space, as we amplify acceleration, the geometric phase acquired purely due to linear
acceleration case firstly is smaller than the circular acceleration case in the ultrarelativistic limit for the
initial atomic state θ ∈ ð0; π

2
Þ ∪ ðπ

2
; πÞ, then equals to the circular acceleration case in a certain acceleration,

and finally, is larger than the circular acceleration case. The spontaneous transition rates show a similar
feature. This result is different from the case of a bath of fluctuating vacuum electromagnetic fields that has
been studied. Considering the initial atomic state θ ∈ ð0; πÞ, we find that the geometric phase acquired
purely due to linear acceleration always equals to the circular acceleration case for the certain acceleration.
The feature implies that, in a certain condition, one can simulate the case of the uniformly accelerated
two-level atom by studying the properties of the two-level atom in circular motion. Adding a reflecting
boundary, we observe that a larger value of a geometric phase can be obtained compared to the absence of a
boundary. Besides, the geometric phase fluctuates along z, and the maximum of geometric phase is closer
to the boundary for a larger acceleration. We also find that geometric phases can be acquired purely due to
the linear acceleration case and circular acceleration case with θ ∈ ð0; πÞ for a smaller z.

DOI: 10.1103/PhysRevD.106.036013

I. INTRODUCTION

In quantum mechanics, the Schrödinger equation [1] can
describe the time evolution of a wave function for a closed
system. Considering the special relativity, Klein [2] and
Gordon [3] obtained a relativistic wave equation (the Klein-
Gordon equation), and Dirac [4] gave a wave equation that
describes relativistic electrons (the Dirac equation). In
1947, the Lamb shift [5,6] showed that the fine structure
of the second quantum state of hydrogen does not agree
with the prediction of the Dirac theory and indicated that
we need to take into account the interactions between
electron and vacuum fluctuations. The Casimir effect [7]
revealed that vacuum fluctuations can be modified by the
boundaries. From the quantum field theory [8], the spin-0
scalar field and spin-1=2 fermion field can be described
by the Klein-Gordon equation and Dirac equation, respec-
tively. The study of fluctuating vacuum fields has become a
very active topic. By treating the atom as an open quantum
system in a bath of the fluctuating vacuum electromagnetic
fields, the authors showed that the modification of the
vacuum fluctuations can be directly detected by means of
the measurement of geometric phase [9].
Geometric phase was introduced in Ref. [10]. Aharonov

and Susskind [11] showed the observability of the sign

change of spinors under 2π rotations in certain circum-
stances. Berry [12] found that there is, in addition to the
familiar dynamical phase, a geometric phase acquired over
the course of a cycle when a quantum system experiences
a cyclic adiabatic process. Aharonov and Anandan [13]
introduced a new geometric phase factor that is defined for
any cyclic evolution of a quantum system, and this phase
factor is a gauge-invariant generalization of the one found
by Berry for the special case of adiabatic evolution. Samuel
and Bhandari [14] showed that the geometric phase appears
in a more general context, in which the evolution of the
quantum system need be neither unitary nor cyclic and may
be interrupted by quantum measurements. Every quantum
system is an open quantum system because it inevitably
interacts with the environment at least with the vacuum
fluctuations. In the framework of open quantum systems,
the geometric phase for a mixed state under a nonunitary
evolution should be considered. Uhlmann [15] firstly
defined a mixed-state geometric phase through the math-
ematical concept of purification. Based on the interferom-
etry, Sjöqvist et al. [16] gave an alternative definition
for the unitarily evolved nondegenerate mixed-state
density matrix, and there have been further studies in
Refs. [17–19]. The mixed-state geometric phase has been
demonstrated in experiments [20,21].
The modification of vacuum fluctuations can be induced

by the acceleration of a two-level atom. The Unruh
effect [22–28] showed that, in Minkowski spacetime, a
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no-particle state of inertial observers corresponds to a ther-

mal state with a temperature TU ¼ a=ð2πÞ for uniformly
accelerated observers, where a is the observers’ proper
acceleration, and we adopt natural units c ¼ ℏ ¼ kB ¼ 1.
This is the result of the quantum field theory. Based on the
works of Dalibard et al. [29,30], Audretsch and Müller
considered a uniformly accelerated atom coupled to a
massless scalar quantum field and calculated the Einstein
coefficients for spontaneous excitation and spontaneous
emission [31] and radiative energy shifts [32]. Passante
[33] showed that the effect of electromagnetic vacuum
fluctuations on atomic level shifts is not totally equivalent
to that of a thermal field with the temperature TU ¼
a=ð2πÞ, due to an extra term proportional to a2, contrary
to the scalar field case. The Unruh effect has been studied
extensively [34–43]. However, the effect has not been
directly detected. Recently, the authors in Ref. [44] showed
that the geometric phase can be employed to detect the
Unruh effect. Hu and Yu studied the geometric phase for a
uniformly accelerated two-level atom coupled in the
multipolar scheme to a bath of fluctuating vacuum electro-
magnetic fields, which provides evidence of the Unruh
effect by the phase variation due to the acceleration that can
be in principle observed via atom interferometry between
the accelerated atom and the inertial one [45]. Based on the
studies in Refs. [46–48], the authors in Ref. [49] considered
a circularly accelerated two-level atom and found in the
ultrarelativistic limit that the phase acquired due to circular
motion is always larger than that in linear acceleration with
the same proper acceleration for θ ∈ ð0; π

2
Þ ∪ ðπ

2
; πÞ. In the

presence of a boundary, the geometric phase of an accel-
erated two-level atom coupled to fluctuating vacuum electro-
magnetic fields has been investigated [50]. There exists a
difference between fluctuating vacuum electromagnetic
fields and scalar fields. The vacuum of the scalar field in
a uniformly accelerated frame is equivalent to a purely
thermal field with the temperature TU ¼ a=ð2πÞ. In order to
exclude the extra term proportional to a2, it is therefore very
natural to consider a geometric phase acquired for a
uniformly accelerated two-level atom coupled to a fluctuat-
ing vacuum scalar field. In addition, we would like to know
the relation of a geometric phase for a two-level atom
between the linear acceleration and circular motion in
fluctuating vacuum scalar fields, which can be compared
with the result for the electromagnetic field [49]. The
vacuum fluctuations will be modified because of the
presence of the boundary; therefore, it is of great interest
to study the geometric phase due to the modification of the
vacuum fluctuations caused by the reflecting plane. In this
work, we will consider the geometric phases acquired for the
atom coupled to a bath of fluctuating vacuummassless scalar
fields due to circular motion and linear acceleration without
and with a boundary.
The structure of this work is as follows. In Sec. II, we

exhibit the basic formula governing dynamical evolution

for a two-level atom coupled to the scalar fields in open
quantum systems and the equation for the geometric phase.
In Sec. III, for a two-level atom coupled to a massless scalar
field in the Minkowski vacuum, we compare the geometric
phases acquired purely due to linear and circular accel-
eration without a boundary. In Sec. IV, we study the cases
of the presence of a boundary. We will summarize our
results in the last section.

II. THE BASIC FORMULA OF DYNAMICAL
EVOLUTION AND GEOMETRIC PHASE

FOR A TWO-LEVEL ATOM

We consider a two-level atom interacting with a bath of
fluctuating scalar fields in the Minkowski vacuum. The
Hamiltonian of the system is given by

H ¼ Hs þHf þHI; ð1Þ

where Hs, Hf, and HI denote Hamiltonian of the atom, the
scalar field, and their interaction. For the atom and the
interaction between the atom and the scalar field, their
Hamiltonians are given by

Hs¼
1

2
ℏω0σ3; HIðτÞ¼ μðσþþσ−Þϕðt;xÞ; ð2Þ

where ω0 is the energy level spacing of the atom and σ3 is
the Pauli matrix; σþ and σ− are the atomic raising and
lowering operators, respectively, and ϕðt;xÞ is the operator
of the scalar field.
The initial total density matrix of the system takes

ρtot ¼ ρð0Þ ⊗ j0ih0j, in which ρð0Þ is the initial reduced
density matrix of the atom, and j0i is the vacuum state of
the field. The evolution of the total density matrix ρtot reads

∂ρtotðτÞ
∂τ

¼ −
i
ℏ
½H; ρtotðτÞ�; ð3Þ

where τ is the proper time. Assuming that the interaction
between the atom and the field is weak, we obtain the
evolution of the reduced density matrix ρðτÞ in the
Kossakowski-Lindblad form [51–54],

∂ρðτÞ
∂τ

¼ −
i
ℏ
½Heff ; ρðτÞ� þ L½ρðτÞ�; ð4Þ

where

L½ρ� ¼ 1

2

X3
i;j¼1

aij½2σjρσi − σiσjρ − ρσiσj�: ð5Þ

We introduce the two-point correlation function for the
scalar field,

Gþðx; x0Þ ¼ h0jϕðt;xÞϕðt0;x0Þj0i: ð6Þ
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The Fourier and Hilbert transforms of the field correlation
function read, respectively,

GðλÞ ¼
Z

∞

−∞
dΔτeiλΔτGþðΔτÞ; KðλÞ ¼ P

πi

Z
∞

−∞
dω

GðωÞ
ω− λ

:

ð7Þ

Therefore, the coefficients of Kossakowski matrix aij can
be written as

aij ¼ Aδij − iBϵijkδk3 − Aδi3δj3; ð8Þ

where

A¼μ2

4
½Gðω0ÞþGð−ω0Þ�; B¼μ2

4
½Gðω0Þ−Gð−ω0Þ�: ð9Þ

By absorbing the Lamb shift term, the effective
Hamiltonian Heff is written as

Heff ¼
1

2
ℏΩσ3 ¼

ℏ
2

�
ω0 þ

i
2
½Kð−ω0Þ−Kðω0Þ�

�
σ3: ð10Þ

Under the assumption that the initial state of the atom is
jψð0Þi ¼ cos θ

2
jþi þ sin θ

2
j−i, one can work out the time-

dependent reduced density matrix,

ρðτÞ ¼
 
e−4Aτ cos2 θ

2
þ B−A

2A ðe−4Aτ − 1Þ 1
2
e−2Aτ−iΩτ sin θ

1
2
e−2AτþiΩτ sin θ 1 − e−4Aτ cos2 θ

2
− B−A

2A ðe−4Aτ − 1Þ

!
: ð11Þ

The geometric phase for a mixed state under a nonunitary evolution can be defined as [18]

γg ¼ arg

�XN
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λkð0ÞλkðTÞ

p
hϕkð0ÞjϕkðTÞie−

R
T

0
hϕkðτÞj _ϕkðτÞidτ

�
; ð12Þ

where λkðτÞ and jϕkðτÞi are the eigenvalues and eigenvec-
tors of the reduced density matrix ρðτÞ. In order to find the
geometric phase, we first calculate the eigenvalues of the
density matrix (11) to get λ�ðτÞ ¼ 1

2
ð1� ηÞ, where η ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ23 þ e−4Aτ sin2 θ
p

and ρ3 ¼ e−4Aτ cos θ þ B
A ðe−4Aτ − 1Þ. It

is easy to see that λ−ð0Þ ¼ 0. Therefore, the contribution
only comes from the eigenvector corresponding to λþ,

jϕþðτÞi ¼ sin
θτ
2
jþi þ cos

θτ
2
eiΩτj−i; ð13Þ

where

tan
θτ
2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ηþ ρ3
η − ρ3

r
: ð14Þ

The geometric phase can then be calculated directly using
Eq. (12),

γg ¼ −Ω
Z

T

0

cos2
θτ
2
dτ: ð15Þ

Therefore, the geometric phase can be written as

γg¼−
Z

T

0

1

2

�
1−

R−Re4Aτþcosθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e4Aτ sin2θþðR−Re4AτþcosθÞ2

p �
Ωdτ;

ð16Þ

where R ¼ B=A. For a single period of evolution, the result
of this integral can be expressed as

γg ¼
Ω
ω0

½Fð2πÞ − Fð0Þ�; ð17Þ

where the function FðφÞ is defined as

FðφÞ ¼ −
1

2
φ −

ω0

8A
ln
�
1 −Q2 − R2 þ 2R2e4Aφ=ω0

2R
þ SðφÞ

�

−
ω0

8A
sgnðQÞ lnð1 −Q2 − R2 þ 2Q2e−4Aφ=ω0 þ 2jQjSðφÞe−4Aφ=ω0Þ; ð18Þ

where SðφÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2e8Aφ=ω0 þ ð1 −Q2 − R2Þe4Aφ=ω0 þQ2

p
, Q ¼ Rþ cos θ, and sgnðQÞ is the standard sign function. We

adopt natural units c ¼ ℏ ¼ kB ¼ 1.
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III. GEOMETRIC PHASES ACQUIRED FOR A
TWO-LEVEL ATOM DUE TO LINEAR

ACCELERATION AND CIRCULAR MOTION
IN FREE SPACE

For a uniformly accelerated two-level atom coupled to a
massless scalar field in the Minkowski vacuum, the
trajectory of the atom can be described as

tðτÞ ¼ 1

a
sinh aτ; xðτÞ ¼ 1

a
coshaτ;

yðτÞ ¼ y0; zðτÞ ¼ z0: ð19Þ

The Wightman function of massless scalar field in the
Minkowski vacuum takes the form,

Gþ
0 ðx; x0Þ

¼ −
1

4π2
1

ðt− t0 − iεÞ2 − ðx− x0Þ2 − ðy− y0Þ2 − ðz− z0Þ2 :

ð20Þ

Applying the trajectory of the atom (19), we obtain the field
correlation function,

Gþ
0lðx; x0Þ ¼ −

a2

16π2
1

sinh2ðaΔτ
2
− iεÞ ; ð21Þ

where Δτ ¼ τ − τ0.
The Fourier transform of the field correlation function is

given by

G0lðλÞ ¼
1

2π

λ

1 − e−2πλ=a
: ð22Þ

The coefficients for the Kossakowski matrix are

A0l ¼
γ0
4

coth
πω0

a
;

B0l ¼
γ0
4
; ð23Þ

where γ0 ¼ μ2ω0=ð2πÞ is the spontaneous emission rate.
We obtain the geometric phase,

γgl ≈ −πð1 − cos θÞ

− π2
γ0
2ω0

sin2 θ

�
2þ cos θ þ 2

e
2πω0
a − 1

cos θ

�
: ð24Þ

The first term −πð1 − cos θÞ is the geometric phase for a
closed system under unitary evolution. The second term is
a correction due to the interaction between the linearly
accelerated atom and the environment. For the fluctuating
vacuum electromagnetic field in the multipolar scheme, the
geometric phase contains the term ∼ð1þ a2=c2ω2

0Þ, which
has an extra term proportional to a2 [45]. The similar a2

term also appeared in Ref. [33], and Passante showed
that the presence of this term is a direct consequence of
the ∼a4 sinh−4½aðτ − τ0Þ=2c� behavior of the symmetric
correlation function, which is different from the term
∼a2 sinh−2½aðτ − τ0Þ=2c� for the scalar field case.
For the limit of a → 0, we get the inertial atom case,

γgi ≈ −πð1 − cos θÞ − π2
γ0
2ω0

sin2 θð2þ cos θÞ; ð25Þ

in which there also exists a correction because of the zero
point fluctuations of the Minkowski vacuum. The correc-
tion to the geometric phase purely due to the linearly
accelerated motion can be obtained

δ0l ¼ γgl − γgi ≈ −π2
γ0
2ω0

2

e
2πω0
a − 1

sin2 θ cos θ: ð26Þ

Now we calculate the geometric phase of a two-level
atom with the circular motion. The trajectory of the atom
can be expressed as

tðτÞ ¼ γτ; xðτÞ ¼ r cos
γτv
r

;

yðτÞ ¼ r sin
γτv
r

; zðτÞ ¼ 0; ð27Þ

where v denotes the tangential velocity of the circularly
accelerated atom, r is the radius of the orbit, and
γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
is the Lorentz factor. The centripetal

acceleration of the atom is a ¼ γ2v2=r. Applying the
trajectory of the atom (27), we need expand

sin2½aΔτ=ð2vγÞ� ¼ a2ðΔτÞ2
4v2γ2 − a4ðΔτÞ4

48v4γ4 þ a6ðΔτÞ6
1440v6γ6

−… with

Δτ ¼ τ − τ0. Since it is hard to find the explicit form of
Gðω0Þ and Gð−ω0Þ with all orders of Δτ, we consider the
ultrarelativistic limit γ ≫ 1 [47], in which

Gþ
0cðx;x0Þ ¼−

1

4π2
1

ðΔτ− iεÞ2½1þa2ðΔτ− iεÞ2=12� : ð28Þ

Therefore, the Fourier transforms of the field correlation
function are

G0cðω0Þ ¼
μ2ω0

2π

�
1þ a

4
ffiffiffi
3

p
ω0

e−
2
ffiffi
3

p
ω0

a

�
; ð29Þ

G0cð−ω0Þ ¼
μ2ω0

2π

a

4
ffiffiffi
3

p
ω0

e−
2
ffiffi
3

p
ω0

a : ð30Þ

We can obtain

A0c ¼
γ0
4

�
1þ a

2
ffiffiffi
3

p
ω0

e−
2
ffiffi
3

p
ω0

a

�
;

B0c ¼
γ0
4
: ð31Þ
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In the left panel of Fig. 1, we present the relative
transition rate Γ ¼ G0ð−ω0Þ=G0ðω0Þ as a function of the
acceleration of the atom in vacuum massless scalar fields.
We find that the relative transition rate in the linear
acceleration case firstly is smaller than circular acceleration
case, then equals to the circular acceleration case in a
certain a, and finally, is larger than the circular acceleration
case. The result is different from the case of fluctuating
vacuum electromagnetic fields that has been studied in
Ref. [49], where the relative transition rate in the circular
acceleration case is always larger than that in the linear
acceleration case, as shown graphically in the right panel
of Fig. 1.
The geometric phase for the circular motion can be

written as

γgc ≈ −πð1 − cos θÞ

− π2
γ0
2ω0

sin2 θ

�
2þ cos θ þ a

2
ffiffiffi
3

p
ω0

cos θe−
2
ffiffi
3

p
ω0

a

�
:

ð32Þ

For the limit of a → 0, we get the inertial atom case γgi. The
correction to the geometric phase purely due to the circular
motion can be found by subtracting the contribution of the
inertial part γgi,

δ0c ¼ γgc − γgi ≈−π2
γ0
2ω0

a

2
ffiffiffi
3

p
ω0

e−
2
ffiffi
3

p
ω0

a sin2 θ cosθ: ð33Þ

It should be noted that there exists a certain acceleration a,
where the linear and circular accelerations lead to the same
geometric phase acquired for every θ. The certain a can be
calculated by using Eqs. (26) and (33),

2

e
2πω0
a − 1

¼ a

2
ffiffiffi
3

p
ω0

e−
2
ffiffi
3

p
ω0

a : ð34Þ

In the following discussion, we use a → ã≡ a=ω0,

δ0l → δ̃0l ≡ δ0l=ðπ
2γ0
2ω0

Þ, δ0c → ˜δ0c ≡ δ0c=ðπ
2γ0
2ω0

Þ. For simplic-

ity, ã, δ̃0l and ˜δ0c will be written as a, δ0l and δ0c.
In the left panel of Fig. 2, we describe the geometric

phase as a function of acceleration with the initial atomic

FIG. 2. Geometric phase as a function of acceleration for the initial atomic state θ ¼ π=4. The left panel and the right panel correspond
the vacuum massless scalar fields and electromagnetic fields. The solid (red) and dashed (blue) lines represent the geometric phases
purely due to linear acceleration case and circular acceleration case, respectively.

FIG. 1. Relative transition rate as a function of acceleration. The left panel and the right panel correspond the vacuum massless scalar
fields and electromagnetic fields. The solid (red) and dashed (blue) lines represent the linearly and circularly accelerated atom,
respectively.
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state θ ¼ π=4 for the vacuum massless scalar fields.
Increasing the acceleration a, we find that the geometric
phase acquired purely due to linear acceleration firstly is
smaller than circular acceleration case, then equals to the
circular acceleration case in a certain a, and finally, is
larger than the circular acceleration case. This result is
different from the case of fluctuating vacuum electro-
magnetic fields that has been studied in Ref. [49], where
the phase acquired purely due to circular acceleration
case is always larger than that due to linear acceleration,
as shown in the right panel of Fig. 2. We deduce that the
relation between linear acceleration case and circular
acceleration case is not the same for different fluctuating
vacuum fields.
In Fig. 3, we plot the geometric phase as a function of the

initial atomic state for different acceleration a. We observe
that the geometric phases are the periodic function of the
initial atomic state θ. We find that the geometric phase
acquired purely due to linear acceleration equals to the
circular acceleration case when a ≈ 2.69 for every initial
atomic state θ ∈ ð0; πÞ. The very large acceleration
required for experiments is more feasible to achieve in
the circular motion. For the massless scalar field, by taking
the particular acceleration a, one can use circularly accel-
erated atom to simulate linearly accelerated atom where the
Unruh temperature is TU ¼ a=ð2πÞ.
The vacuum fluctuations will be modified because of

the presence of a boundary. Therefore, we would like to
know the geometric phase of an atom in the vicinity of a
reflecting boundary.

IV. GEOMETRIC PHASES ACQUIRED FOR A
TWO-LEVEL ATOM DUE TO LINEAR

ACCELERATION AND CIRCULAR MOTION
WITH A BOUNDARY

We add a boundary at z ¼ 0 and consider a uniformly
accelerated atom moving in the x–y plane at a distance z
from the boundary. Then, the two-point function in this
case can be expressed as

Gþðx; x0Þ ¼ Gþ
0 ðx; x0Þ þGþ

b ðx; x0Þ; ð35Þ

whereGþ
0 ðx; x0Þ is the two-point function in the unbounded

case, which has already been calculated above, and

Gþ
b ðx; x0Þ

¼ −
1

4π2
1

ðx− x0Þ2 þ ðy− y0Þ2 þ ðzþ z0Þ2 − ðt− t0 − iεÞ2 ;

ð36Þ

gives the correction due to the presence of the boundary.
Applying the trajectory of the atom (19), we obtain the field
correlation function,

Gþ
l ðx;x0Þ¼−

a2

16π2

�
1

sinh2ðaΔτ
2
−iεÞ−

1

sinh2ðaΔτ
2
−iεÞ−a2z2

�
;

ð37Þ

where Δτ ¼ τ − τ0. The Fourier transform of the field
correlation function is given by

GlðλÞ ¼
1

2π

λ

1 − e−2πλ=a
−

1

2π

λ

1 − e−2πλ=a
sin½2λa sinh−1ðazÞ�
2zλ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2z2

p :

ð38Þ

The coefficients for the Kossakowski matrix are

Al ¼
γ0
4
coth

πω0

a

�
1 −

sin½2ω0

a sinh−1ðazÞ�
2zω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2z2

p
�
;

Bl ¼
γ0
4

�
1 −

sin½2ω0

a sinh−1ðazÞ�
2zω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2z2

p
�
: ð39Þ

Then, the geometric phase can be written as

γbl ≈ −πð1 − cos θÞ − π2
γ0
2ω0

sin2 θ

�
2þ cos θ coth

πω0

a

�

×

�
1 −

sin½2ω0

a sinh−1ðazÞ�
2zω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2z2

p
�
: ð40Þ

For the limit of a → 0, we obtain the inertial atom case,

FIG. 3. Geometric phase as a function of the initial atomic state for a ¼ 2, a ¼ 2.69 and a ¼ 5. The solid (red) and dashed (blue) lines
represent the geometric phases purely due to linear acceleration case and circular acceleration case, respectively.
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γbi ≈ −πð1 − cos θÞ − π2
γ0
2ω0

sin2 θð2þ cos θÞ
�
1 −

sinð2zω0Þ
2zω0

�
: ð41Þ

The correction to the geometric phase purely due to the linearly accelerated motion can be written as

δbl ≈ −π2
γ0
2ω0

sin2θ

��
2þ cos θ coth

πω0

a

��
1 −

sin½2ω0

a sinh−1ðazÞ�
2zω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2z2

p
�
− ð2þ cos θÞ

�
1 −

sinð2zω0Þ
2zω0

��
: ð42Þ

Now we consider a two-level atom with the circular motion moving in the x–y plane at a distance z from the boundary.
We have

Gþ
bcðx; x0Þ ¼ −

1

4π2
1

4z2 − ðΔτ − iεÞ2 − a2ðΔτ − iεÞ4=12 : ð43Þ

The Fourier transforms of the correlation function can be written as

Gcðω0Þ ¼
ω0

2π

"
1þ a

4
ffiffiffi
3

p
ω0

e−
2
ffiffi
3

p
ω0

a −
ffiffiffi
3

p
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−3þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 12a2z2

pp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6þ 8a2z2

p
ω0

sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−6þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 12a2z2

pp
ω0

a

−
ffiffiffi
3

p
a

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 12a2z2

pp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6þ 8a2z2

p
ω0

e−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6þ2

ffiffiffiffiffiffiffiffiffiffiffi
9þ12a2z2

pp
ω0

a

#
; ð44Þ

Gcð−ω0Þ ¼
ω0

2π

"
a

4
ffiffiffi
3

p
ω0

e−
2
ffiffi
3

p
ω0

a −
ffiffiffi
3

p
a

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 12a2z2

pp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6þ 8a2z2

p
ω0

e−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6þ2

ffiffiffiffiffiffiffiffiffiffiffi
9þ12a2z2

pp
ω0

a

#
: ð45Þ

We therefore have

Ac ¼
γ0
4

"
1þ a

2
ffiffiffi
3

p
ω0

e−
2
ffiffi
3

p
ω0

a −
ffiffiffi
3

p
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−3þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 12a2z2

pp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6þ 8a2z2

p
ω0

sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−6þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 12a2z2

pp
ω0

a

−
ffiffiffi
3

p
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 12a2z2

pp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6þ 8a2z2

p
ω0

e−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6þ2

ffiffiffiffiffiffiffiffiffiffiffi
9þ12a2z2

pp
ω0

a

#
;

Bc ¼
γ0
4

"
1 −

ffiffiffi
3

p
affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−3þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 12a2z2

pp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6þ 8a2z2

p
ω0

sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−6þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 12a2z2

pp
ω0

a

#
: ð46Þ

We obtain the geometric phase,

γbc ≈ −πð1 − cos θÞ − π2
γ0
2ω0

sin2θ

�
2þ cos θ þ a

2
ffiffiffi
3

p
ω0

cos θe−
2
ffiffi
3

p
ω0

a

−
ffiffiffi
6

p
a

2Vω0

�
cos θffiffiffiffiffiffiffiffiffiffiffiffi
U þ 3

p e−
ω0
ffiffiffiffiffiffiffi
2Uþ6

p
a þ ð2þ cos θÞffiffiffiffiffiffiffiffiffiffiffiffi

U − 3
p sin

ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2U − 6

p

a

��
; ð47Þ

where

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 12a2z2

p
; V ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 4a2z2

p
: ð48Þ

We get the inertial atom case γbi for a → 0. The correction to the geometric phase purely due to the circular motion can be
obtained
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δbc ¼ γbc− γbi

≈−π2
γ0
2ω0

sin2θ

�
a

2
ffiffiffi
3

p
ω0

cosθe−
2
ffiffi
3

p
ω0

a −
ffiffiffi
6

p
a

2Vω0

�
cosθffiffiffiffiffiffiffiffiffiffiffiffi
Uþ3

p e−
ω0
ffiffiffiffiffiffiffi
2Uþ6

p
a þð2þ cosθÞffiffiffiffiffiffiffiffiffiffiffi

U−3
p sin

ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2U−6

p

a

�
þð2þ cosθÞsinð2zω0Þ

2zω0

�
:

ð49Þ

In the following discussion, we use a → ã≡ a=ω0,

δbl→ ˜δbl≡δbl=ðπ
2γ0
2ω0

Þ, δbc→ ˜δbc≡δbc=ðπ
2γ0
2ω0

Þ, z → z̃≡ zω0.

For simplicity, ã, ˜δbl, ˜δbc and z̃ will be written as a, δbl, δbc,
and z.
In Fig. 4, we present the geometric phase as a function of

acceleration for the initial atomic state θ ¼ π=4 with
different z. Compared to the absence of a boundary, a
larger value of geometric phase can be obtained. The
geometric phase purely due to the linear acceleration case
is larger than circular acceleration case for a large enough

acceleration, although they fluctuate for small accelera-
tion case.
In Fig. 5, we plot the geometric phase as a function of z

for the initial atomic state θ ¼ π=4 with a ¼ 0.5, a ¼ 1,
and a ¼ 10. We find that the geometric phase fluctuates
along z, and the maximum of geometric phase is closer to
the boundary for a larger acceleration.
In Fig. 6, we depict the geometric phase as a function of

the initial atomic state with a ¼ 2 for different z. We find
that the geometric phase may be nonzero for θ ¼ π=2,
which is different from unbounded case. The result implies

FIG. 5. Geometric phase as a function of z for the initial atomic state θ ¼ π=4with different a. The solid (red) and dashed (blue) lines
represent the geometric phases purely due to linear acceleration case and circular acceleration case, respectively.

FIG. 6. Geometric phase as a function of the initial atomic state with a ¼ 2 for z ¼ 0.5, z ¼ 10, and z ¼ 50. The solid (red) and dashed
(blue) lines represent the geometric phases purely due to linear acceleration case and circular acceleration case, respectively.

FIG. 4. Geometric phase as a function of acceleration for the initial atomic state π=4with z ¼ 0.5, z ¼ 10, and z ¼ 20. The solid (red)
and dashed (blue) lines represent the geometric phases purely due to linear acceleration case and circular acceleration case, respectively.
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that geometric phases can be acquired purely due to linear
acceleration case and circular acceleration case with the
initial atomic state θ ∈ ð0; πÞ for a smaller z.

V. CONCLUSIONS

For a two-level atom interacted with a bath of fluctuating
massless scalar fields in the Minkowski vacuum, we have
investigated the geometric phases due to circularly accel-
erated case and linear acceleration. We found that the
geometric phase acquired purely due to linear acceleration
firstly is smaller than circular acceleration case in the
ultrarelativistic limit for θ ∈ ð0; π

2
Þ ∪ ðπ

2
; πÞ, then equals to

the circular acceleration case in a certain a, and finally, is
larger than the circular acceleration case. The spontaneous
transition rates show similar feature. This result is different
from the case of a bath of fluctuating vacuum electromag-
netic fields that has been studied in Ref. [49]. We concluded
that the relation between linear acceleration case and
circular acceleration case is not the same for different
fluctuating vacuum fields. We also observed that the

geometric phase acquired purely due to linear acceleration
always equals to the circular acceleration case for the
certain acceleration with every initial atomic state
θ ∈ ð0; πÞ. One can use a circularly accelerated atom to
simulate a linearly accelerated atom in a certain condition.
With a boundary, we observed that a larger value of
geometric phase can be obtained when compared to the
absence of a boundary. We found that the geometric phase
fluctuates along z, and the maximum of geometric phase is
closer to the boundary for a larger acceleration. The
geometric phases purely due to acceleration may be not
zero for θ ¼ π=2, which is different from the unbounded
case. The result suggested that, besides θ ¼ π=2, the
geometric phases can be acquired purely due to linear
acceleration case and circular acceleration case with the
initial atomic state θ ∈ ð0; πÞ for a smaller z.
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