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In open quantum systems, we study the geometric phases acquired for a two-level atom coupled to a bath
of fluctuating vacuum massless scalar fields due to linear acceleration and circular motion without and with
a boundary. In free space, as we amplify acceleration, the geometric phase acquired purely due to linear
acceleration case firstly is smaller than the circular acceleration case in the ultrarelativistic limit for the
initial atomic state 6 € (0, %) U (g , @), then equals to the circular acceleration case in a certain acceleration,
and finally, is larger than the circular acceleration case. The spontaneous transition rates show a similar
feature. This result is different from the case of a bath of fluctuating vacuum electromagnetic fields that has
been studied. Considering the initial atomic state 8 € (0, z), we find that the geometric phase acquired
purely due to linear acceleration always equals to the circular acceleration case for the certain acceleration.
The feature implies that, in a certain condition, one can simulate the case of the uniformly accelerated
two-level atom by studying the properties of the two-level atom in circular motion. Adding a reflecting
boundary, we observe that a larger value of a geometric phase can be obtained compared to the absence of a
boundary. Besides, the geometric phase fluctuates along z, and the maximum of geometric phase is closer
to the boundary for a larger acceleration. We also find that geometric phases can be acquired purely due to

the linear acceleration case and circular acceleration case with 6 € (0, z) for a smaller z.

DOI: 10.1103/PhysRevD.106.036013

I. INTRODUCTION

In quantum mechanics, the Schrodinger equation [1] can
describe the time evolution of a wave function for a closed
system. Considering the special relativity, Klein [2] and
Gordon [3] obtained a relativistic wave equation (the Klein-
Gordon equation), and Dirac [4] gave a wave equation that
describes relativistic electrons (the Dirac equation). In
1947, the Lamb shift [5,6] showed that the fine structure
of the second quantum state of hydrogen does not agree
with the prediction of the Dirac theory and indicated that
we need to take into account the interactions between
electron and vacuum fluctuations. The Casimir effect [7]
revealed that vacuum fluctuations can be modified by the
boundaries. From the quantum field theory [8], the spin-0
scalar field and spin-1/2 fermion field can be described
by the Klein-Gordon equation and Dirac equation, respec-
tively. The study of fluctuating vacuum fields has become a
very active topic. By treating the atom as an open quantum
system in a bath of the fluctuating vacuum electromagnetic
fields, the authors showed that the modification of the
vacuum fluctuations can be directly detected by means of
the measurement of geometric phase [9].

Geometric phase was introduced in Ref. [10]. Aharonov
and Susskind [11] showed the observability of the sign
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change of spinors under 2z rotations in certain circum-
stances. Berry [12] found that there is, in addition to the
familiar dynamical phase, a geometric phase acquired over
the course of a cycle when a quantum system experiences
a cyclic adiabatic process. Aharonov and Anandan [13]
introduced a new geometric phase factor that is defined for
any cyclic evolution of a quantum system, and this phase
factor is a gauge-invariant generalization of the one found
by Berry for the special case of adiabatic evolution. Samuel
and Bhandari [14] showed that the geometric phase appears
in a more general context, in which the evolution of the
quantum system need be neither unitary nor cyclic and may
be interrupted by quantum measurements. Every quantum
system is an open quantum system because it inevitably
interacts with the environment at least with the vacuum
fluctuations. In the framework of open quantum systems,
the geometric phase for a mixed state under a nonunitary
evolution should be considered. Uhlmann [15] firstly
defined a mixed-state geometric phase through the math-
ematical concept of purification. Based on the interferom-
etry, Sjoqvist et al. [16] gave an alternative definition
for the unitarily evolved nondegenerate mixed-state
density matrix, and there have been further studies in
Refs. [17-19]. The mixed-state geometric phase has been
demonstrated in experiments [20,21].

The modification of vacuum fluctuations can be induced
by the acceleration of a two-level atom. The Unruh
effect [22-28] showed that, in Minkowski spacetime, a
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no-particle state of inertial observers corresponds to a ther-

mal state with a temperature 7y = a/(2z) for uniformly
accelerated observers, where a is the observers’ proper
acceleration, and we adopt natural units ¢ = 4 = kp = 1.
This is the result of the quantum field theory. Based on the
works of Dalibard et al. [29,30], Audretsch and Miiller
considered a uniformly accelerated atom coupled to a
massless scalar quantum field and calculated the Einstein
coefficients for spontaneous excitation and spontaneous
emission [31] and radiative energy shifts [32]. Passante
[33] showed that the effect of electromagnetic vacuum
fluctuations on atomic level shifts is not totally equivalent
to that of a thermal field with the temperature 7, =
a/(2r), due to an extra term proportional to a?, contrary
to the scalar field case. The Unruh effect has been studied
extensively [34-43]. However, the effect has not been
directly detected. Recently, the authors in Ref. [44] showed
that the geometric phase can be employed to detect the
Unruh effect. Hu and Yu studied the geometric phase for a
uniformly accelerated two-level atom coupled in the
multipolar scheme to a bath of fluctuating vacuum electro-
magnetic fields, which provides evidence of the Unruh
effect by the phase variation due to the acceleration that can
be in principle observed via atom interferometry between
the accelerated atom and the inertial one [45]. Based on the
studies in Refs. [46—48], the authors in Ref. [49] considered
a circularly accelerated two-level atom and found in the
ultrarelativistic limit that the phase acquired due to circular
motion is always larger than that in linear acceleration with
the same proper acceleration for 6 € (0,5) U (5. 7). In the
presence of a boundary, the geometric phase of an accel-
erated two-level atom coupled to fluctuating vacuum electro-
magnetic fields has been investigated [S0]. There exists a
difference between fluctuating vacuum electromagnetic
fields and scalar fields. The vacuum of the scalar field in
a uniformly accelerated frame is equivalent to a purely
thermal field with the temperature T, = a/(2x). In order to
exclude the extra term proportional to a2, it is therefore very
natural to consider a geometric phase acquired for a
uniformly accelerated two-level atom coupled to a fluctuat-
ing vacuum scalar field. In addition, we would like to know
the relation of a geometric phase for a two-level atom
between the linear acceleration and circular motion in
fluctuating vacuum scalar fields, which can be compared
with the result for the electromagnetic field [49]. The
vacuum fluctuations will be modified because of the
presence of the boundary; therefore, it is of great interest
to study the geometric phase due to the modification of the
vacuum fluctuations caused by the reflecting plane. In this
work, we will consider the geometric phases acquired for the
atom coupled to a bath of fluctuating vacuum massless scalar
fields due to circular motion and linear acceleration without
and with a boundary.

The structure of this work is as follows. In Sec. II, we
exhibit the basic formula governing dynamical evolution

for a two-level atom coupled to the scalar fields in open
quantum systems and the equation for the geometric phase.
In Sec. I1I, for a two-level atom coupled to a massless scalar
field in the Minkowski vacuum, we compare the geometric
phases acquired purely due to linear and circular accel-
eration without a boundary. In Sec. IV, we study the cases
of the presence of a boundary. We will summarize our
results in the last section.

II. THE BASIC FORMULA OF DYNAMICAL
EVOLUTION AND GEOMETRIC PHASE
FOR A TWO-LEVEL ATOM

We consider a two-level atom interacting with a bath of
fluctuating scalar fields in the Minkowski vacuum. The
Hamiltonian of the system is given by

H=H,+H;+H, (1)

where H, H, and H; denote Hamiltonian of the atom, the
scalar field, and their interaction. For the atom and the
interaction between the atom and the scalar field, their
Hamiltonians are given by

Ho=shonos,  Hi(e)=plo, +o)p(tx).  (2)

where @ is the energy level spacing of the atom and o3 is
the Pauli matrix; ¢, and o_ are the atomic raising and
lowering operators, respectively, and ¢(z, x) is the operator
of the scalar field.

The initial total density matrix of the system takes
Pt = P(0) ® |0)(0|, in which p(0) is the initial reduced
density matrix of the atom, and |0) is the vacuum state of
the field. The evolution of the total density matrix p,, reads

0P (7) i
9 = = 7 [H, prot(7)], (3)

where 7 is the proper time. Assuming that the interaction
between the atom and the field is weak, we obtain the
evolution of the reduced density matrix p(z) in the
Kossakowski-Lindblad form [51-54],

apa(:) = _%[Heffv/)(r)] + Llp(7)]. (4)
where
13
Llp] = 2 Z a;j[20,p0; = 0:0;p — poioj]. (5)
ij=1

We introduce the two-point correlation function for the
scalar field,

G (x.x") = (0lp(2. x)p(¢'. x')[0). (6)
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The Fourier and Hilbert transforms of the field correlation

function read, respectively,
P[> Go)
K(A) =— do——=.
@) i /_oo wa)—/l

()

Therefore, the coefficients of Kossakowski matrix a;; can
be written as

G(A) = /mdAre’MTGJ“(AT),

a;; = Aél} - iBeijkékf'a - A5i36j3, (8)

J

where

—4AT 2 0 | B=A (,—4At _
() = e cos” S+ 52 (e
p 1 e—2AT+iQr

3 sin @

A= 1Glw0) +G-n)l. B="1G(n) ~G(-0)]. ()

By absorbing the Lamb shift term, the effective

Hamiltonian H is written as

n

Hae =39, =5 { o+ IC(-00) =Kol . (10

2

Under the assumption that the initial state of the atom is
ly(0)) = cos§|+) + sing|—), one can work out the time-
dependent reduced density matrix,

[\S]

1 ,-2A7—-iQt sin @
. 11
1 — e %7 coszg - % (e=#7 - 1) (1)

The geometric phase for a mixed state under a nonunitary evolution can be defined as [18]

1

where 1;(7) and |¢ (7)) are the eigenvalues and eigenvec-
tors of the reduced density matrix p(z). In order to find the
geometric phase, we first calculate the eigenvalues of the

density matrix (11) to get A4 (z) =1 (1 £#), where n =
Vp3+ e sin?0and p; = e 7 cos 0 + B (e — 1) Tt
is easy to see that A_(0) = 0. Therefore, the contribution
only comes from the eigenvector corresponding to 4.,

6,(2) = sin ) +eos T o), (13)

2

tan& =, /m. (14)
2 n=ps

The geometric phase can then be calculated directly using
Eq. (12),

where

(Z VO u(0)] i (1)) e~ o (oD ) (12)

T 0
Yy = —Q/ coszédr. (15)
0

Therefore, the geometric phase can be written as

T
yg:_/ (1
0

R—Re**+cos0 ) Qds.
\/e*7sin2 0+ (R — Re*™ 4-cos)?
(16)

where R = B/A. For a single period of evolution, the result
of this integral can be expressed as

2 (F(2m) - F(0)) (17)

]/:
g9 o

where the function F(¢) is defined as

1 1

F((P):—Eéﬂ—g—Al <
_% —_ 02
8Asgn(Q)ln(1 Q

where S(g) = \/R2e849/ + (1 - Q% -
adopt natural units ¢ = h = kg = 1.

_ Q2 —R2+ 2R2 ¢*Ap/a
+S(p)
= R? 200/ 42| Q| S(p)eH0/n), (18)

R?)e* %/ 1 0%, O = R + cos 6, and sgn(Q) is the standard sign function. We
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III. GEOMETRIC PHASES ACQUIRED FOR A
TWO-LEVEL ATOM DUE TO LINEAR
ACCELERATION AND CIRCULAR MOTION
IN FREE SPACE

For a uniformly accelerated two-level atom coupled to a
massless scalar field in the Minkowski vacuum, the
trajectory of the atom can be described as

1 1
t(7) = —sinh ar, = ~coshar,
(7) _sinhaz x(7) _coshaz
y(@) =yo.  z(7) = 20 (19)

The Wightman function of massless scalar field in the
Minkowski vacuum takes the form,

G (5.
o I
At (=1 —ie) = (x=X) = (y=Y) = (z=2)*

(20)

Applying the trajectory of the atom (19), we obtain the field
correlation function,

a? 1

G+ N N = — 5
(%) 1677 sinh? (4% — ie)

(21)

where At =7 —17'.
The Fourier transform of the field correlation function is
given by

Go(4) = S — (22)

2n ] — e 2

The coefficients for the Kossakowski matrix are

4

7o
By =, 23
w=" 23)

where y, = u?w,/(2x) is the spontaneous emission rate.
We obtain the geometric phase,

Yo~ —n(1 —cos6)
7o

2
— 1? sin? 0(2 +cosf + —— cos 9) . (24)
20)0 e ao -1

The first term —z(1 — cos @) is the geometric phase for a
closed system under unitary evolution. The second term is
a correction due to the interaction between the linearly
accelerated atom and the environment. For the fluctuating
vacuum electromagnetic field in the multipolar scheme, the
geometric phase contains the term ~(1 + a*/c?®3), which
has an extra term proportional to a® [45]. The similar a?

term also appeared in Ref. [33], and Passante showed
that the presence of this term is a direct consequence of
the ~a*sinh™*[a(r — 7’)/2¢] behavior of the symmetric
correlation function, which is different from the term
~a? sinh~?[a(z — 7') /2¢] for the scalar field case.

For the limit of @ — 0, we get the inertial atom case,

Vg & —n(l —cosf) — x* J0_gin? 02 +cosh), (25)
2(00

in which there also exists a correction because of the zero
point fluctuations of the Minkowski vacuum. The correc-
tion to the geometric phase purely due to the linearly
accelerated motion can be obtained

2 Y0
2mwg

n sin@cosf.  (26)
2600 e a — 1

601 =Yg _Ygi -

Now we calculate the geometric phase of a two-level
atom with the circular motion. The trajectory of the atom
can be expressed as

t(r) = yr, x(7) = rcos Lw,
,
y(z) = rsin—yw, z(r) =0, (27)
r

where v denotes the tangential velocity of the circularly
accelerated atom, r is the radius of the orbit, and

y =1/V1—1? is the Lorentz factor. The centripetal
acceleration of the atom is a = y?v?/r. Applying the
trajectory of the atom (27), we need expand

. 2(AT)? 4(AT)4 6(A7)0 .
sin?[aAz/(2vy)] = a4§,2;2> - ig(tfyi + 1i4(0;>y6 —...  with

At =t — 7. Since it is hard to find the explicit form of
G(wg) and G(—wy) with all orders of Az, we consider the
ultrarelativistic limit y > 1 [47], in which

1 1
4n2 (At —ie)?[l +a?(Ar—ie)?/12]

Gi(x) = (28)

Therefore, the Fourier transforms of the field correlation
function are

2w a
gh@w=”°<u4

2v/30)
_TO> ) (29)

2z N ¢
,uza)o a _2VBwy
Goe(—wo) = 21 4y e (30)
We can obtain
a 23w
A“_%<Hé%%f_#>
By, ="2. (31)
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FIG. 1.

Relative transition rate as a function of acceleration. The left panel and the right panel correspond the vacuum massless scalar

fields and electromagnetic fields. The solid (red) and dashed (blue) lines represent the linearly and circularly accelerated atom,

respectively.

In the left panel of Fig. 1, we present the relative
transition rate I' = Gy(—wy)/Go(wy) as a function of the
acceleration of the atom in vacuum massless scalar fields.
We find that the relative transition rate in the linear
acceleration case firstly is smaller than circular acceleration
case, then equals to the circular acceleration case in a
certain a, and finally, is larger than the circular acceleration
case. The result is different from the case of fluctuating
vacuum electromagnetic fields that has been studied in
Ref. [49], where the relative transition rate in the circular
acceleration case is always larger than that in the linear
acceleration case, as shown graphically in the right panel
of Fig. 1.

The geometric phase for the circular motion can be
written as

Yge & —n(1 —cosd)

V3o,
—7r22y—osin29<2+cos9+ a COSQE_#>.

linear
----- circular

) 2\/§(1)0
(32)
0_305, T T ]
0.25; massless scalar fields
0.20f 1

|G| 0.15f
o.10f

0.05f

0.00f

For the limit of a — 0, we get the inertial atom case y ;. The
correction to the geometric phase purely due to the circular
motion can be found by subtracting the contribution of the
inertial part y;,

Zﬁwg
e " a

2o 4

7 sinZ 0 cos 6.
2600 2\/§(1)0

50C =7Yge —Vgi ~ (33)

It should be noted that there exists a certain acceleration «,
where the linear and circular accelerations lead to the same
geometric phase acquired for every 6. The certain a can be
calculated by using Egs. (26) and (33),

2 a
= e
eZ:r;uO —1 2\/§0)0

In the following discussion, we use a — @ = a/w,

So1 = o1 = 8o/ (%) Soc = 0c = Soc/ (’;,Zg) For simplic-

ity, a, 6o and &, will be written as a, &y, and &,.
In the left panel of Fig. 2, we describe the geometric
phase as a function of acceleration with the initial atomic

2V3wy

2, (34)

100+ 1

80 electromagnetic fields

linear 4

60 I circular ]

6ol

FIG. 2. Geometric phase as a function of acceleration for the initial atomic state @ = 7 /4. The left panel and the right panel correspond
the vacuum massless scalar fields and electromagnetic fields. The solid (red) and dashed (blue) lines represent the geometric phases
purely due to linear acceleration case and circular acceleration case, respectively.
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FIG. 3.

1.5 2.0 25 3.0 0.0 0.5 1.0 1.5 2.0 25 3.0

Geometric phase as a function of the initial atomic state for a = 2, a = 2.69 and a = 5. The solid (red) and dashed (blue) lines

represent the geometric phases purely due to linear acceleration case and circular acceleration case, respectively.

state @ = n/4 for the vacuum massless scalar fields.
Increasing the acceleration a, we find that the geometric
phase acquired purely due to linear acceleration firstly is
smaller than circular acceleration case, then equals to the
circular acceleration case in a certain a, and finally, is
larger than the circular acceleration case. This result is
different from the case of fluctuating vacuum electro-
magnetic fields that has been studied in Ref. [49], where
the phase acquired purely due to circular acceleration
case is always larger than that due to linear acceleration,
as shown in the right panel of Fig. 2. We deduce that the
relation between linear acceleration case and circular
acceleration case is not the same for different fluctuating
vacuum fields.

In Fig. 3, we plot the geometric phase as a function of the
initial atomic state for different acceleration a. We observe
that the geometric phases are the periodic function of the
initial atomic state §. We find that the geometric phase
acquired purely due to linear acceleration equals to the
circular acceleration case when a =~ 2.69 for every initial
atomic state 6 € (0,7). The very large acceleration
required for experiments is more feasible to achieve in
the circular motion. For the massless scalar field, by taking
the particular acceleration a, one can use circularly accel-
erated atom to simulate linearly accelerated atom where the
Unruh temperature is 7y = a/(2x).

The vacuum fluctuations will be modified because of
the presence of a boundary. Therefore, we would like to
know the geometric phase of an atom in the vicinity of a
reflecting boundary.

IV. GEOMETRIC PHASES ACQUIRED FOR A
TWO-LEVEL ATOM DUE TO LINEAR
ACCELERATION AND CIRCULAR MOTION
WITH A BOUNDARY

We add a boundary at z = 0 and consider a uniformly
accelerated atom moving in the x—y plane at a distance z
from the boundary. Then, the two-point function in this
case can be expressed as

Gt (x,x') = GJ (x,x') + G} (x,X'), (35)

where G (x, x') is the two-point function in the unbounded
case, which has already been calculated above, and

G} (x,x)
o I
4> (x =X+ (y=y)+(z+7) = (t =1 —ie)*’

(36)

gives the correction due to the presence of the boundary.
Applying the trajectory of the atom (19), we obtain the field
correlation function,

a’ 1 1
1672 [sinh?(44%—ie) sinh*(“9T—ie)—a’z?]’

(37)

GF ()=

where At =t — /. The Fourier transform of the field
correlation function is given by

Gi(1) = 1 yl 1 A sin[#sinh~! (az)]
MY T og 1 —e2mila Qg — g~2ri/a 20V1 + a2
(38)
The coefficients for the Kossakowski matrix are
. 2010 . —1
sin|=-2 sinh
Azzyocoth”wo{l— i (az)]}
4 a 2zw0V 1 + a’7?
. 2(1)0 . -1
sin[=2 sinh
B,:yo{l— b (az)]} (39)
4 2z00V 1 + a’7?

Then, the geometric phase can be written as

Yo = —n(1 —cos Q) — n? 70 Gin2 g <2 + cos @ coth @>
2(1)0 a
{1 sin[22 sinh ™! (az)]}
x <1 - :
2zwgV 1 + a*z?

For the limit of @ — 0, we obtain the inertial atom case,

(40)
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Vi & —n(1 —cos @) — 7122}/—0sin2 0(2 + cos 0) {1 -

sin(2zwy)
o 7] : (41)

2Z(UO

The correction to the geometric phase purely due to the linearly accelerated motion can be written as

s 200 o1 .
Yo . W, sin[*22 sinh™! (az)] sin(2zawy)
) z—nZ—stG{ (2+cos€coth—> [1 - a —(24cosf) |1 ——=22) 8 42
bl 20 ; reo/ T T a2 ( ) 2oy (42)

Now we consider a two-level atom with the circular motion moving in the x—y plane at a distance z from the boundary.
We have

1 1
G/ (x,X)=-— . 43
belx: ) 47?472 — (At —ie)? — a* (At — ie)* /12 (43)
The Fourier transforms of the correlation function can be written as
G.(w0) g - a 23wy V3a sin \/—6 +2V9 + 12a% 7w,
\@y) =5~ —= ¢ ¢ -
2| 43, V=3 4+ V0 + 12a22V6 + 8a7 2w, a
\/ga _V6r2v9+12d2 2y (44)
_ e
2\/3 + V9 + 12a%22V6 + 8a2 22w,
@o|_ 4 2w V3a _VervhindZe
gc(_a)o) = — e a - e a . (45)
27 |4\/3w, 2\/3 + V9 + 12a%22V6 + 8a% 22w,
We therefore have
4 Y0 a e‘m 3 V3a in V=6 +2v9 + 12a*7%w,
4 23wy V=3 +V9 + 124222V6 + 847w, a
\/§a _V6+2V9+124% 20y
— e a ,
V3 + V9 + 128226 + 822w,
s _10, V3a G V=6 + 29 + 12d> 2w, (46)
c == — 1 .
41 V31V + 12a22V6 + 8a* Py a
We obtain the geometric phase,
Voe = —1(1 — cos 0) — n° 70 gin2g [2 40080+ —2cos G
¢ 2600 2\/5(00
Véa [ cos® _wwwm  (24-cosh) . wyV/2U -6
- | ——e « + sin , (47)
2Vwy \\/U + 3 U-3 a

where

U=V9+ 124%7?, V=1v3+4a*7. (48)

We get the inertial atom case y;,; for a — 0. The correction to the geometric phase purely due to the circular motion can be
obtained
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FIG. 4. Geometric phase as a function of acceleration for the initial atomic state 7 /4 with z = 0.5, z = 10, and z = 20. The solid (red)
and dashed (blue) lines represent the geometric phases purely due to linear acceleration case and circular acceleration case, respectively.

Sbe =Vbe — Vi
2% . 2 a o V6a [ cos@
~ —x°——sin“0 cosfe @« ———— |——e¢
2wq {2\/§a)0 2Vw, |/ U+3

In the following discussion, we use a — @ = a/w,

~ 2 ~ 2 »
Sp1 = 851 =81/ (352)s Obe = Bbe =0pe/ (300)s 2 = T = za.

For simplicity, &, 8,;,0, and Z will be written as a, 5, 5.
and z.

In Fig. 4, we present the geometric phase as a function of
acceleration for the initial atomic state 6 = z/4 with
different z. Compared to the absence of a boundary, a
larger value of geometric phase can be obtained. The
geometric phase purely due to the linear acceleration case

V2T
7

(2+cos0)
U-3

SI

V2U -6
in 20 +(2+4cos0)
a

00,
(49)

acceleration, although they fluctuate for small accelera-
tion case.

In Fig. 5, we plot the geometric phase as a function of z
for the initial atomic state 0 = z/4 with a = 0.5, a =1,
and a = 10. We find that the geometric phase fluctuates
along z, and the maximum of geometric phase is closer to
the boundary for a larger acceleration.

In Fig. 6, we depict the geometric phase as a function of
the initial atomic state with a = 2 for different z. We find
that the geometric phase may be nonzero for 6 = z/2,

is larger than circular acceleration case for a large enough ~ which is different from unbounded case. The result implies

0.4 04+ 2.0
0=1/4,a=0.5 O=r/4,a=1 0=r1/4,a=10
0.3 linear 03f linear 15 linear
----- circular ===-=- circular circular
16| 0.2 |6 0.2f 16] 1.0
0.1 0.1 0.5
0.0 0.0} ) 0.0
0 2 4 6 8 10 12 14 0 2 4 6 8 10 0 1 2 3 4 5 6 7
z z z
FIG. 5. Geometric phase as a function of z for the initial atomic state & = = /4 with different a. The solid (red) and dashed (blue) lines

represent the geometric phases purely due to linear acceleration case and circular acceleration case, respectively.

0.8 a=2,z=0.5 0.15 a=2,z=10 0.07 a=2,z=50
linear P linear 0.06 linear

o6r N - circular 7 ool N\ @ T circular 005  ===—— circular

0.04
|6 04 161 161
0.03
0.05

0.2 002
0.01

0.0 0.00 0.00

0.0 0.5 1.0 1.5 20 25 3.0 0.0 0.5 1.0 1.5 20 25 3.0
6 6

FIG.6. Geometric phase as a function of the initial atomic state with a = 2 for z = 0.5, z = 10, and z = 50. The solid (red) and dashed
(blue) lines represent the geometric phases purely due to linear acceleration case and circular acceleration case, respectively.
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that geometric phases can be acquired purely due to linear
acceleration case and circular acceleration case with the
initial atomic state 6 € (0, z) for a smaller z.

V. CONCLUSIONS

For a two-level atom interacted with a bath of fluctuating
massless scalar fields in the Minkowski vacuum, we have
investigated the geometric phases due to circularly accel-
erated case and linear acceleration. We found that the
geometric phase acquired purely due to linear acceleration
firstly is smaller than circular acceleration case in the
ultrarelativistic limit for 6 € (0,%) U (5, 7), then equals to
the circular acceleration case in a certain a, and finally, is
larger than the circular acceleration case. The spontaneous
transition rates show similar feature. This result is different
from the case of a bath of fluctuating vacuum electromag-
netic fields that has been studied in Ref. [49]. We concluded
that the relation between linear acceleration case and
circular acceleration case is not the same for different
fluctuating vacuum fields. We also observed that the

geometric phase acquired purely due to linear acceleration
always equals to the circular acceleration case for the
certain acceleration with every initial atomic state
0 € (0,7). One can use a circularly accelerated atom to
simulate a linearly accelerated atom in a certain condition.
With a boundary, we observed that a larger value of
geometric phase can be obtained when compared to the
absence of a boundary. We found that the geometric phase
fluctuates along z, and the maximum of geometric phase is
closer to the boundary for a larger acceleration. The
geometric phases purely due to acceleration may be not
zero for 8 = x/2, which is different from the unbounded
case. The result suggested that, besides 8 = z/2, the
geometric phases can be acquired purely due to linear
acceleration case and circular acceleration case with the
initial atomic state 8 € (0, z) for a smaller z.
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