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We develop new perturbative tools to accurately study radiatively induced first-order phase transitions.
Previous perturbative methods have suffered internal inconsistencies and been unsuccessful in reproducing
lattice data, which is often attributed to infrared divergences of massless modes (the Linde problem).
We employ a consistent power counting scheme to perform calculations and compare our results against
lattice data. We conclude that the consistent expansion removes many previous issues and indicates that the
infamous Linde problem is not as big a factor in these calculations as previously thought.
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I. INTRODUCTION

A first-order phase transition at the electroweak scale
would have far-reaching consequences for the early
Universe, for example by triggering baryogenesis [1],
and thereby explain the matter-antimatter asymmetry. In
general such a violent transition would echo across the
Universe, leaving a stochastic background of gravitational
waves in its wake. This makes searching for the telltale
spectral shape [2] a key scientific objective of current and
planned gravitational wave observatories [3–7]. Besides
giving clear evidence for a first-order transition, a detected
signal would constrain models of dark matter [8,9], baryo-
genesis [10], inflation [11], and grand unification [12].
Yet current tools have a hard time making reliable

predictions, particularly so for phase transitions which
are “radiatively induced,”1 where perturbative calculations
often cannot distinguish between first-order, second-order,
and crossover transitions. Alternatively, lattice Monte Carlo
simulations can provide quantitatively reliable predictions,
up to (small) statistical uncertainties. But they are slow,
typically requiring thousands of CPU hours to accurately
determine the thermodynamics of a single parameter point.

As a consequence, even with its problems, perturbation
theory is the only tool capable of scanning the high-
dimensional parameter spaces of theories beyond the
Standard Model, which makes it imperative to put pertur-
bative calculations on a solid footing.
In this paper we vie to do just that. In particular, we

construct a new perturbative expansion for models with
radiatively induced phase transitions. Furthermore, to
ensure accuracy we compare the results with lattice data.
In the process we draw attention to prevailing problems
with standard perturbative approaches in this context (for
an overview see Ref. [13]).

II. THEORETICAL CHALLENGES

Consistent calculations of physical observables should
be renormalization-scale invariant [14], gauge invariant
[15–17], and free from infrared (IR) divergences [18–20].
In the present context, most significant renormalization-

scale dependence originates from a hierarchy between the
temperature and particle masses. Such a hierarchy is
typically present at phase transitions in weakly coupled
theories because large temperatures are needed for thermal
loop corrections to overpower the tree-level potential. And
so, because different loop orders are mixed, the expansion
is reorganized. For example, two-loop calculations are
required to achieve any parametric cancellation of the
scale dependence [14]. Additionally, large logarithms arise
due to the hierarchy of scales. Both these issues can be
remedied by working with a dimensionally reduced effec-
tive field theory (EFT) [21–24]. In particular, renormaliza-
tion-group equations of the EFT can be used to introduce a
second renormalization scale, which can be chosen inde-
pendently, thereby eliminating large logarithms.
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1We here use the term “radiative” to denote radiative correc-
tions from energy scales much lower than the temperature.
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This hierarchy of scales also leads to a gauge-dependence
problem, which in the case of tree-level barriers can be
resolved by using a dimensionally reduced EFT [13,14]. Yet
this gauge-dependence problem is more sinister for radia-
tively induced transitions, where standard methods yield IR
divergences [19,20].
With these considerations inmind,wewant toappraisehow

well perturbation theory performs. To do so we study first-
order phase transitions in the three-dimensional (3d) SU(2)
Higgs EFT. This model has been extensively studied using
lattice simulations [25–29], due to its relevance for the
electroweak phase transition. The availability of lattice data
allows us to determine the quantitative reliability of perturba-
tion theory as a function of the expansion parameter. We also
show how the perturbative expansion converges by pushing
calculations to next-to-next-to-leading order (NNLO).
The 3D EFT that we study describes phase transitions of

many extensions of the electroweak sector. This is partly
because, in the vicinity of the phase transition, the degrees of
freedom driving it become anomalously light, and any addi-
tional degrees of freedom need only be heavy compared
with those of the EFT. In addition, the U(1) hypercharge of
the electroweak theory has a relatively small effect on the
thermodynamics [30]. In the literature, the 3D SU(2) Higgs
EFT has been used to describe phase transitions in the
minimally supersymmetric Standard Model [31–34], the
twoHiggs doublet model [35–38], the singlet scalar extension
of the Standard Model [39,40], and the real triplet scalar
extensionof theStandardModel [41].Themodel also serves as
ausefulprototypeformodelswitha radiatively inducedbarrier.

III. A MODIFIED EXPANSION

This paper focuses on the 3D EFT, which contains all the
phase-dependent physics of the transition, so the exact form
of the four-dimensional (4D) theory is not of interest. The
action of the EFT, barring gauge-fixing terms, is

S3 ¼
Z

d3x

�
1

4
Fa
ijF

a
ij þDiΦ†DiΦþ VðΦÞ

�
; ð1Þ

where i, j run over the spatial indices and a runs over the
adjoint indices of SU(2), Fa

ij is the gauge field strength
tensor with associated gauge coupling g3, Φ is the Higgs
field, in the fundamental representation of SU(2), and Di is
the gauge-covariant derivative. Note that the metric for the
spatial indices is positive definite, which implies Di ¼ Di.
The notation is standard and follows Ref. [21]. In addition,
we work with a class of Rξ gauges [42,43], with gauge
parameter ξ, in the standard convention of Ref. [44].
The tree-level potential is

VðΦÞ ¼ m2
3Φ†Φþ λ3ðΦ†ΦÞ2: ð2Þ

All three parameters, g23, m
2
3, and λ3 are effective—temper-

ature-dependent—parameters. The couplings are related to

their 4D counterparts, and the temperature T, as g23 ≈ g2T
and λ3 ≈ λT. The parameter m2

3 is positive at high temper-
atures and negative at low temperatures—schematically
m2

3 ≈ −αþ γT2 for positive constants α, γ.
The phase structure of the model can be studied perturba-

tively via the effective potential. As such we make the usual
expansion,Φ → ð0; 1ffiffi

2
p ϕÞ þΦ, whereϕ denotes thevacuum

expectation value (VEV). In general ϕ can either be zero
(symmetric phase) or nonzero (broken phase). These phases
have different free energy densities,which,when degenerate,
identifies a first-order phase transition.
Looking at the tree-level potential in terms of ϕ, it would

appear that no first-order transition, with a barrier between
coexisting phases, is possible. Yet a barrier can be gen-
erated by vector-bosons loops [45]. Indeed, incorporating
the diagram shown in Fig. 1(a) gives an effective potential

VeffðϕÞ ¼
1

2
m2

3ϕ
2 −

g33
16π

jϕj3 þ λ3
4
ϕ4 þ…: ð3Þ

Taking a closer look at Eq. (3), the symmetric minimum
(ϕ ¼ 0) has lowest energy for large m2

3; while the broken
minimum (ϕ ≠ 0) has lowest energy for small m2

3. These
two minima overlap for some intermediate m2

3 value. This
occurs when terms in the potential are of similar size [45],

ϕ ∼
g33
λ3

; m2
3 ∼

g63
λ3

: ð4Þ

Therefore, the vector-boson mass m2
A ¼ 1

4
g23ϕ

2 and the
scalar-boson mass are related by m2

3=m
2
A ∼ λ3=g23.

Then, if this ratio,

x≡ λ3
g23

; ð5Þ

FIG. 1. Feynman loop diagrams which contribute to the
effective potential. Wavy lines denote vectors, plain lines scalars,
and dotted lines denote ghosts. Parts (a), (b) and (c) show the
diagrams contributing to the effective potential at LO, NLO and
NNLO respectively.
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is parametrically small we can formally integrate out the
vector bosons, which is what generates the barrier in Eq. (3).
Because of this, the perturbative expansion is performed in
powers of x.
Note that in counting powers of x, one can directly

identify the (potentially infinite) classes of Feynman dia-
grams which contribute at a given order in x and make
appropriate resummations and subtractions to avoid double
counting [45,46]. Alternatively, as we do here, one can use
EFT techniques to systematically integrate out vector
bosons. When expanded strictly in x, both approaches
give the same results.
Within this EFT, perturbation theory should work well for

x ≪ 1. However, as x decreases thevectormass in the broken
phase grows as mA ∝ 1=x, so we cannot let x become too
small. If x is as small as x ∼ g2=ð4πÞ2, the vector mass is of
order mA ∼ πT, implying that the high-temperature expan-
sion is invalid, and hence the original 3D EFT no longer
faithfully describes the infrared physics of the 4D theory.
We therefore assume that x satisfies g2=ð4πÞ2 ≪ x ≪ 1.

A natural scaling relation satisfying these bounds is the
geometric midpoint x∼g=ð4πÞ, equivalent to λ∼g3=ð4πÞ
[45,46].

In addition to x, we use y≡ m2
3

g4
3

[25]. With these dimen-

sionless variables, and scaling ϕ → g3ϕ, the leading-order
(LO) potential is

VLOðϕÞ
g63

¼ 1

2
yϕ2 −

1

16π
jϕj3 þ x

4
ϕ4: ð6Þ

In the broken phase, this is of order ∼x−3.
In principle, jyj−1=2 could also act as an expansion

parameter, as it appears in loop corrections through
Feynman integrals. However, close to the critical temper-
ature y scales as y ∼ x−1, so it is enough to count powers of
x. Hereafter, we set g23 ¼ 1; if necessary, factors of g23 can
be reinstated by dimensional analysis.
In the EFT approach one first integrates out the heavy

vector fields and highly energetic scalars with p⃗ ∼mA to
construct an EFT for the light scalar fields [16,17,47–49].
At LO this gives Eq. (6). Subleading corrections to the
EFT action appear at next-to-leading order (NLO) in the
x-expansion. These corrections come with integer powers
of x. After vector bosons are integrated out, the resulting
EFT only contains scalars. These scalars give loop correc-
tions which are suppressed by powers of λ3=m3 ∼ x3=2.
Thus, in the fully coupled gauge-Higgs theory, the

perturbative expansion is a dual expansion in powers of
x and x3=2 (up to logarithms) or, equivalently, an expansion
in powers of x1=2 starting at order x.
That said, the potential to NNLO reads

Veff ¼ VLO þ xVNLO þ x3=2VNNLO þ…: ð7Þ

Here factors of x only signify the suppression of higher-
order terms. Importantly, the expansion is organized in
powers of x—not by loops.
This x-expansion describes radiatively induced first-

order phase transitions in an IR-finite and gauge-invariant
manner. The IR finiteness of the x-expansion should be
contrasted with the IR divergences that start to appear at
two loops in a strict ℏ-expansion [19,20]. In addition,
physical quantities would obtain a spurious gauge depend-
ence if computed by numerically minimizing the effective
potential [43,50] (for an example see Ref. [13]); whereas
the x-expansion is gauge invariant at every order.
Achieving order-by-order gauge invariance for observ-

ables requires the x-expansion to be performed strictly, so
that all quantities are expanded in powers of x, including
intermediate quantities such as the Higgs VEV. Doing so
leads to asymptotic expansions for gauge-invariant observ-
ables, in terms of the gauge-invariant expansion parameter
x. Order-by-order gauge invariance then follows from the
uniqueness of the coefficients of an asymptotic expansion
[51]. With this perspective, the Nielsen-Fukuda-Kugo
identities [43,50] demonstrate the order-by-order gauge
invariance of the free energy density, which is equal to the
gauge-dependent effective action evaluated on solutions
that extremize it.
As mentioned, the NLO potential comes from integrating

out vector bosons at two loops, while contributions from
the scalar fields appear first at NNLO. These should be
computed within the effective description for the light
scalar fields. Thus, at LO the squared masses of the Higgs
and Goldstone fields are, respectively,

m2
HðϕÞ ¼ ∂

2
ϕVLO; m2

GðϕÞ ¼ ϕ−1
∂ϕVLO: ð8Þ

Utilizing the LO potential rather than the tree-level poten-
tial here resums the Higgs and Goldstone self-energies to
LO in x; see Fig. 1(b).
As mentioned, all quantities, including the minima,

should be expanded in powers of x. For example, the
minimization condition is

∂ϕVeffðϕÞjϕ¼ϕmin
¼ 0; ð9Þ

where

ϕmin ¼ ϕLO þ xϕNLO þ…; ð10Þ

and ϕLO solves ∂ϕVLOðϕÞjϕ¼ϕLO
¼ 0. Higher-order terms

of ϕmin are found by using Eq. (10) in a Taylor expansion
of Eq. (9).
The effective potential evaluated at a minimum repre-

sents the free energy density of that phase. And the
difference in free energy density between phases can be
expressed as
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ΔV ≡ ½VeffðϕminÞ − Veffð0Þ�: ð11Þ

We say that a phase transition occurs for some critical
mass, or value of y, defined by ΔVðy ¼ ycÞ ¼ 0. From this
one can determine the critical temperature Tc by solving
yðTcÞ ¼ yc and using the known temperature dependence
of y for a given 4D model. This critical mass should also be
found order by order in x, to wit yc ¼ yLO þ xyNLO þ � � �.
To leading order the critical mass is the solution of
ΔVLO ¼ ½VLOðϕLOÞ − VLOð0Þ�y¼yLO ¼ 0. And the next-
to-leading-order critical mass is

yNLO ¼ −
ΔVNLO

∂yΔVLO

����
ϕ¼ϕLO;y¼yLO

: ð12Þ

Consider now an observable, Fðϕ;yÞ¼FLOþxFNLOþ���,
evaluated at the critical mass. The expansion is of the form

Fðϕmin; ycÞ ¼ FLO þ FNLO þ yNLO∂yFLO

þ ϕ̄NLO∂ϕFLO þ…; ð13Þ

where ϕ̄NLO is given by ϕ̄NLO ¼ ϕNLO þ yNLO∂yϕLO, and all
terms are evaluated at ϕLO, yLO.
Note the simplicity of using strict-perturbation theory

as compared to a numerical approach: there is no need to
numerically minimize (the real parts of) complicated
potentials since everything is expressed in terms of the
LO VEV and critical mass.
Let us now turn to the latent heat, which determines the

strength of a first-order phase transition. It is given by the
temperature derivative of ΔV. This can be written in terms
of derivatives with respect to the 3D effective parameters
x, y, and g33, using the chain rule of differentiation [52].
Dependence on the derivative with respect to g33 cancels at
the critical temperature [25]. This leads us to calculate the
following scalar condensates:

ΔhΦ†Φi≡ ∂

∂y
ΔV; ΔhðΦ†ΦÞ2i≡ ∂

∂x
ΔV; ð14Þ

which determine the contribution to the latent heat from the
infrared EFT scale.

IV. RESULTS

Results at LO follow from the LO effective potential
given in Eq. (6): the sum of tree-level and the one-loop
terms in Fig. 1(a). The minima can be found analytically,
which yields simple expressions for thermodynamic
observables.
NLO corrections arise from two-loop diagrams with loop

momenta of order the vector-boson mass. These diagrams,
shown in Fig. 1(c), appear through integrating out the
heavy vectors for the EFTof the light scalars. Contributions
to these diagrams from smaller loop momenta are

subdominant, so scalar masses can be set to zero within
loop integrals. The total NLO contribution to the effective
potential is

VNLO ¼ ϕ2

ð4πÞ2
�
−
51

32
log

jϕj
μ3

−
63

32
log

3

2
þ 33

64

�
; ð15Þ

where μ3 is the 3D renormalization scale [21].
The NNLO potential consists of one-loop diagrams

within the light scalar EFT. Expanded strictly in x, this
is equivalent to the diagrams in Fig. 1(b). These diagrams
give

VNNLO ¼ −
1

12π
½ðm2

HðϕÞÞ3=2 þ 3ðm2
GðϕÞÞ3=2�: ð16Þ

The resummation of vector petals follows from Eq. (8).
With the effective potential in hand, we can calculate

desired observables. Following the previous section we find

yc ¼
1 − 51

2
x log μ̃3 − 2

ffiffiffi
2

p
x3=2

2ð8πÞ2x ; ð17Þ

ΔhΦ†Φic ¼
1þ 51

2
xþ 13

ffiffiffi
2

p
x3=2

2ð8πxÞ2 ; ð18Þ

ΔhðΦ†ΦÞ2ic ¼
1þ 51xþ 14

ffiffiffi
2

p
x3=2

4ð8πxÞ4 ; ð19Þ

where μ̃3≡e−
11
34
þ42

34
log3

2ð8πxμ3Þ≈1.19ð8πxμ3Þ. These expres-
sions are accurate up to Oðx2Þ in the numerators.
Some information on the convergence of the perturba-

tive expansion can be gleaned by comparing the magni-
tudes of successive terms. One finds that NLO terms in
Eqs. (17)–(19) can dominate over LO for x≳ 0.03, choos-
ing a renormalization scale μ3 ∼ 1=ð8πxÞ. However, in each
case the NNLO term remains smaller until significantly
larger x. This suggests that the NLO term is anomalously
large, and the perturbative expansion may be reliable at
somewhat larger values of x, as indeed we find in our
comparison to lattice data.
The explicit logarithm of the renormalization scale in

Eq. (17) matches the implicit running of y, to ensure that
y − yc is renormalization-scale invariant at this order; for the
beta functions see Refs. [21,29]. By contrast, the absence of
logarithms in the scalar condensates reflects the renormal-
ization-group invariance of these physical quantities. While
the effective potential is μ3 dependent at NLO, this depend-
ence cancels exactly in the observable quantity ΔV.
The x-expansion is gauge invariant and renormalization-

scale invariant order by order. However, residual renorm-
alization-scale dependence can be useful to estimate
theoretical uncertainties. For yc, this can be carried out
by including the exact renormalization-group running,
rather than truncating at the order of x calculated. Doing
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so includes running from terms suppressed by higher
powers of x than we have calculated, which therefore do
not cancel. By contrast, the scalar condensates are simply
renormalization-group invariant, both exactly and order by
order, so there is no way to introduce renormalization-
group running. This is nevertheless a desirable feature of
the x-expansion, as it gives unambiguous predictions at
each order.
Figures 2 and 3 compare perturbative and lattice results,

the latter taken from Refs. [25–27,29,53]. The x-expansion
for yc agrees well with the lattice over the entire range of x
for which there is a first-order phase transition, and the
renormalization-scale dependence gives a good estimate of
the disagreement. By choosing μ3 ∼ 2mA, one avoids large
logarithms. There is a significant improvement from LO to

NLO, and while the NNLO correction is small, it does shift
toward the lattice data. Figure 3 shows similarly good
agreement for the scalar condensates, though in this case
the renormalization-scale invariance of the x-expansion
means there are no uncertainty bands. For the quadratic
condensate, the NNLO correction improves agreement with
the lattice only for x≲ 0.05, suggesting that above this
higher-order terms become important. The quartic con-
densate shows the largest discrepancies between the
x-expansion and the lattice data, which is consistent with
the larger expansion coefficients for this quantity.
For comparison, in Fig. 2 we also show predictions based

on a different perturbative approach: numerically minimiz-
ing the real part of the one- and two-loop effective potentials.
This approach is commonly taken in the literature but, for
radiatively induced transitions, it is not an expansion in any
small parameter, because loop-level contributions are of the
same size as tree-level terms. Further, directly minimizing
the real part of the effective potential cancels neither gauge
nor renormalization-scale dependence at each order. The
large uncertainty at one-loop order in this approach is due to
the presence of a third unphysical phase for Rξ gauge
parameters ξ≳ 3. Predictions for all the condensates in this
approach gain an imaginary part for y < 0.

V. CONCLUSIONS

We find that strong first-order phase transitions can be
described rather well by perturbation theory. We have
developed an EFT approach to transitions with radiatively
generated barriers and performed calculations up to
NNLO. The main results of this paper are presented in
Eqs. (17)–(19) and in Figs. 2 and 3. For the SU(2) Higgs
theory, we find good numerical agreement between our
perturbative expansion, in powers of x, and existing
lattice data.

FIG. 2. The renormalization-scale invariant quantity yc − βy log μ3, where yc is the critical mass, μ3 is the renormalization scale, and βy
is the beta function for y. Theoretical uncertainties for lattice data are shown as (barely visible) error bars, while those for the perturbative
calculations are shown as colored bands. The latter are estimated either by varying the renormalization scale over μ3=ð2mAÞ ∈
½1= ffiffiffiffiffi

10
p

;
ffiffiffiffiffi
10

p � or by varying the Rξ gauge parameter over ξ ∈ ½0; 5�. The hashed region shown on the right reflects the presence of a third
unphysical phase in this approximation. The orange data point shows the location of the end point of the line of first-order phase
transitions, as determined on the lattice.

FIG. 3. The jumps in the scalar condensates as functions of x,
computed in the x-expansion and on the lattice. Both condensates
are manifestly gauge and renormalization-scale invariant.
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The existence of the x-expansion was recognized in the
late 1990s [28,54,55], yet in the two intervening decades it
has not been used once, to our knowledge.2 In this paper, we
revive this forgotten idea and make the first major advance-
ment since its introduction. We elucidate the underlying
structure of the x-expansion and develop the tools necessary
to extend the expansion to higher orders. This allows us to
push calculations to NNLO for the first time—the lowest
order at which resummations are necessary within 3D.
The x-expansion is theoretically well behaved in the

sense that it does not suffer from IR divergences or gauge
dependence, and renormalization-scale dependence cancels
order by order. In addition, contrary to previous calculations
[45,56], our results indicate good convergence. Though the
results are consistent with lattice calculations, and better
behaved than those of other methods, the expansion can
still be improved. As we have seen, going to NLO is very
important to get a reasonably accurate prediction. The next
improvement to NNLO is numerically smaller, but improves
agreement with the lattice results for x≲ 0.05.
Our results can be contrasted with QCD, where there is a

sizable mismatch between perturbative and lattice calcu-
lations of the free energy density [24,57]. This can be
partially ascribed to the absence of a Higgs phase in QCD,
within which perturbation theory is comparatively well
under control, but also to the relatively large magnitude
of the QCD gauge coupling and its slow (logarithmic)
approach to asymptotic freedom.
The x-expansion, like all other perturbative approaches

to non-Abelian gauge fields at high temperature, breaks

down at finite order due to the Linde problem [18]. For the
free energy density, nonperturbative infrared physics con-
tributes first at Oðg6T4Þ. For the quantities studied here,
this means that starting at N5LO, which is suppressed by
Oðx3Þ, the x-expansion is fundamentally nonperturbative.
However, the Linde problem cannot modify the leading
five coefficients of the asymptotic expansion, and hence it
does not stop the x-expansion performing well for small
enough x.
Future studies can utilize the approach taken here for

other models. The remaining higher-order terms in the
expansion should also be calculated: N3LO and N4LO,
respectively, Oðx2Þ and Oðx5=2Þ. Doing so requires calcu-
lation of three-loop diagrams. These two terms are the
highest-order terms that are completely calculable in
perturbation theory and therefore give the final word on
how well the expansion actually works.
Finally, given the importance of a strict expansion for

equilibrium quantities, we expect similar behavior for near-
equilibrium ones, like the bubble-nucleation rate [58]. As
such, our results are an important stepping stone for
accurate predictions of gravitational waves.
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